薄膜太阳能电池及制造工艺解析

合集下载

《薄膜太阳电池》课件

《薄膜太阳电池》课件

在光照下,光子被吸收 并传递给电子,电子和 空穴分别向导带和价带 跃迁,形成光生电流。 随后,电子和空穴分别 被传输到金属电极并收 集起来,形成输出电流 。
薄膜太阳电池的结构和 工作流程决定了其能量 转换效率、开路电压和 短路电流等性能参数。
03 薄膜太阳电池的 材料
硅基薄膜太阳电池
总结词
高效稳定,技术成熟
THANKS
感谢观看
随着移动设备的普及和能源需求的增长,移动能源系 统的发展前景广阔。
未来发展前景与挑战
随着技术的不断进步和应用领域的拓展,薄膜太阳电池的发展前景广阔。
未来,薄膜太阳电池将更加注重提高光电转换效率、降低成本、优化组件制造工艺等方面的 发展。
同时,薄膜太阳电池也面临着市场竞争力、政策支持、并网技术等方面的挑战,需要不断加 强技术创新和市场推广。
在薄膜太阳电池中,光子首先被 吸收并传递给电子,电子从价带
跃迁到导带,形成光生电流。
光电效应是薄膜太阳电池的基本 工作原理之一,它决定了电池的
能量转换效率。
光伏效应
光伏效应是指光生电压或电流的现象 ,即当光照射在半导体材料上时,半 导体的导电性能发生变化,产生电压 或电流。
光伏效应是薄膜太阳电池的基本工作 原理之一,它决定了电池的开路电压 。
真空沉积技术包括真空蒸镀、 电子束蒸镀和离子束溅射等。
真空沉积技术具有较高的沉积 速率和较好的大面积成膜质量 ,适用于制备高性能的薄膜太 阳电池。
化学气相沉积技术
化学气相沉积技术是通过化学反应将气态物质转化为固态薄膜的一种技术。
化学气相沉积技术包括常压化学气相沉积、等离子体增强化学气相沉积和金属有机 化学气相沉积等。
《薄膜太阳电池》PPT课件

CIGS薄膜太阳能电池解读

CIGS薄膜太阳能电池解读

CIGS薄膜太阳能电池的结构
金属栅电极 减反射膜(MgF2) 窗口层ZnO 过渡层CdS 光吸收层CIGS 金属背电极Mo 玻璃衬底 高阻ZnO
低阻AZO
CIGS薄膜太阳能电池的结构
结构原理


减反射膜:增加入射率 AZO: 低阻,高透,欧姆接触 i-ZnO:高阻,与CdS构成n区 CdS: 降低带隙的不连续性,缓 冲晶格不匹配问题 CIGS: 吸收区,弱p型,其空间电 荷区为主要工作区 Mo: CIS的晶格失配较小且热膨 胀系数与CIS比较接近
测试设备主要有:台阶仪,SEM,XRD, RAMAN、分度光透射仪、I-V 分析系统等
铜铟镓硒(CIGS)太阳电池制造工艺路 线
清洁—基膜—单元或多元磁控溅射—沉积—硒化—防护膜—随机检 测—印刷—切割—检测—组装—检测—包装。
CIGS薄膜太阳能电池的制备
• CIGS薄膜太阳能电池的底电极Mo和上电极n-ZnO一般采用磁控溅射的 方法,工艺路线比较成熟 • 最关键的吸收层的制备有许多不同的方法,这些沉积制备方法包括:蒸发 法、溅射后硒法、电化学沉积法、喷涂热解法和丝网印刷法



CIGS的性能不是Ga越多性能越好的,因为短路电流是随 着Ga的增加对长波的吸收减小而减小的。 当x=Ga/(Ga+In)<0.3时,随着的增加,Eg增加, Voc也增 加; x=0.3时带隙为1.2eV;当x>0.3时,随着x的增加,Eg减小, Voc也减小。 G.Hanna等也认为x=0.28时材料缺陷最少,电池性能最好。
CIGS薄膜太阳能电池介绍
二、铜铟硒(CIS)薄膜太阳能电池介绍 三、铜铟镓硒(CIGS)薄膜太阳能电池介绍
一、第三代太阳能电池

薄膜太阳能电池封装工艺简介

薄膜太阳能电池封装工艺简介

薄膜太阳能电池封装工艺简介概述薄膜太阳能电池作为一种高效、轻薄、柔性的太阳能电池,已经在能源领域得到广泛应用。

其中,薄膜太阳能电池封装工艺是整个生产过程中非常重要的一部分,它是将薄膜太阳能电池片与封装材料合理结合,以保护电池片,并提高电池的稳定性和效率的过程。

本文将介绍薄膜太阳能电池封装的基本工艺和流程。

薄膜太阳能电池封装工艺流程薄膜太阳能电池封装工艺包括以下几个主要步骤:1.准备工作:对薄膜太阳能电池片进行检查,确保其质量符合要求。

同时,准备好所需的封装材料,如背电极、背板、封装胶等。

2.封装背电极:将背电极粘贴在薄膜太阳能电池片的背面,以提供电流的传导和连接功能。

背电极的粘贴需要使用特殊的胶水,确保背电极与电池片之间无空隙。

3.安装背板:将背板固定在背电极上,以保护电池片,并提供良好的支撑。

背板通常采用耐候性较好的材料,如塑料或金属。

4.填充封装胶:在背板上涂覆一层封装胶,将封装胶均匀地涂抹在整个背板上,确保电池片能够被充分覆盖。

封装胶的材料可根据具体需求选择,常见的有有机硅、聚氨酯等。

5.封装胶固化:待封装胶涂覆完毕后,需要将其进行固化,以提高胶水的稳定性。

固化的方法可以是自然固化或烘箱固化,根据具体工艺和生产需求进行选择。

6.切割:将已固化的薄膜太阳能电池进行切割,得到所需尺寸的电池片。

切割时需要注意切口的平整和尺寸的一致性,以保证后续组装的顺利进行。

7.电池片测试:对切割好的电池片进行测试,检查其光电性能和其他关键指标是否符合要求。

测试的方法可以是电流-电压曲线测试、光谱响应测试等。

8.组装:根据具体的产品需求,将电池片与其他组件进行组装,如连接导线、安装支架等。

组装工艺需要严格控制每个环节的精度和质量,确保组装的稳定性和可靠性。

9.封装测试:对已组装好的薄膜太阳能电池组件进行全面的测试,包括电池组件的电性能、机械性能等。

测试结果将直接影响组件的质量和性能。

结论薄膜太阳能电池封装工艺是保护和提升电池性能的关键环节,它涉及多个步骤和工艺参数的控制。

CIGS薄膜太阳能电池简要介绍和发展现状

CIGS薄膜太阳能电池简要介绍和发展现状
CIGS薄膜太阳能电池简要介绍和 发展现状
汇报人:XX
目 录
• CIGS薄膜太阳能电池概述 • CIGS薄膜太阳能电池发展历程 • CIGS薄膜太阳能电池制备技术 • CIGS薄膜太阳能电池性能评价 • CIGS薄膜太阳能电池应用领域拓展 • CIGS薄膜太阳能电池产业发展现状及挑战 • 总结与展望
01
CIGS薄膜太阳能电池概述
定义与基本原理
CIGS薄膜太阳能电池定义
CIGS是铜铟镓硒(CuInGaSe2)的缩写,是一种基于多元化合物半导体的薄 膜太阳能电池。
工作原理
CIGS薄膜太阳能电池利用光电效应,将光能转换为电能。当太阳光照射到电池 表面时,光子被吸收并激发出电子-空穴对,在内建电场作用下分离并收集到电 极上,从而产生电流。
优点
工艺简单,成本低,适用于大面积生产。
缺点
薄膜质量受喷涂工艺和热处理条件等因素影响, 难以控制。
不同制备方法比较
真空蒸发法与电化学沉积法比较
真空蒸发法制备的薄膜质量较高,但设备成本高;电化学沉积法设备简单,成本 低,但沉积速率较慢。
喷涂热解法与前两者比较
喷涂热解法工艺简单,成本低,适用于大面积生产,但薄膜质量相对较难控制。 在实际应用中,可根据具体需求和条件选择合适的制备方法。
器件结构
初步构建CIGS薄膜太阳能电池的 器件结构,研究各层之间的相互 影响。
实验室规模制备
在实验室规模下,制备出小面积 的CIGS薄膜太阳能电池,并对其 性能进行评估。
技术突破与产业化进程
01
02
03
大面积制备技术
突破大面积均匀制备CIGS 薄膜的技术难题,为产业 化奠定基础。
转换效率提升
通过优化材料组成、改进 制备工艺等方式,不断提 高CIGS薄膜太阳能电池的 转换效率。

CIGS薄膜太阳能电池材料的制备 结构及性能研究

CIGS薄膜太阳能电池材料的制备 结构及性能研究

三、玻璃基太阳能电池薄膜材料的性能研究
2、电学性能:薄膜材料的电学性能主要包括导电性能、电荷传输性能和接触 电阻等。这些性能直接影响着太阳能电池的电流和电压输出。因此,研究薄膜材 料的电学性能及其影响因素,有助于提高太阳能电池的电学性能和稳定性。
三、玻璃基太阳能电池薄膜材料的性能研究
3、稳定性:太阳能电池在长期使用过程中会受到环境因素的影响,如光照、 温度、湿度等。因此,研究薄膜材料的稳定性及其影响因素,有助于提高太阳能 电池的使用寿命和稳定性。
三、CIGS薄膜太阳能电池材料的性能研究
1、光学性能:CIGS薄膜具有较高的光学吸收系数,这使得其能够有效地吸收 太阳光并转化为电能。在可见光波段,CIGS薄膜的吸收系数大于10^4 cm-1,而 在红外波段,吸收系数则下降至3000-4000 cm-1。
三、CIGS薄膜太阳能电池材料的性能研究
三、CIGS薄膜太阳能电池材料的性能研究
4、环境友好性:CIGS太阳能电池在生产和使用过程中产生的环境污染较小, 且材料可回收再利用。这使得其成为一种具有可持续发展潜力的能源形式。
参考内容
内容摘要
随着全球对可再生能源需求的日益增长,薄膜太阳能电池作为一种清洁、高 效、可灵活制备的能源转换技术,受到了广泛。其中,铜、铟、镓、硒(CIGS) 薄膜太阳能电池是研究最为活跃的一类。CIGS太阳能电池具有高光电转换效率、 低成本、可柔性制备等优势,被认为是下一代薄膜太阳能电池的主流技术之一。 本次演示将对CIGS薄膜太阳能电池吸收层的制备工艺进行综述。
溶液处理法制备CIGS薄膜一般包括:溶液混合、薄膜沉积和硒化处理等步骤。 在制备过程中,各元素的化学计量比、溶液浓度、沉积温度和硒化条件等因素对 薄膜的结构和性能有重要影响。因此,优化制备工艺,实现CIGS薄膜的可控制备, 对于提高CIGS太阳能电池的光电转换效率具有重要意义。

薄膜太阳能电池及制造工艺

薄膜太阳能电池及制造工艺

05
制造工艺的应用与发展趋势
在光伏产业中的应用
薄膜太阳能电 池的应用:在 光伏发电、建 筑一体化、便 携式电子设备 等领域的应用
制造工艺的发 展趋势:提高 转换效率、降 低成本、提高 稳定性和可靠

薄膜太阳能电 池的优势:轻 便、柔性、可 弯曲、易于安
装和维护
制造工艺的创 新:采用新型 材料、改进生 产工艺、提高 生产效率和降
封装材料:选择 耐高温、耐腐蚀 、密封性好的封 装材料
基底处理
清洗:去除基底表面的灰尘、油污等杂质 打磨:使基底表面平整,提高附着力 活化:增加基底表面的活性,提高薄膜太阳能电池的性能 镀膜:在基底表面沉积薄膜太阳能电池所需的功能层
薄膜制备
薄膜沉积:采用化学气相沉积、 物理气相沉积等方法,在基底
特点:轻便、柔性、可弯曲、 易于安装和携带
分类:硅基薄膜太阳能电池、 铜铟镓硒薄膜太阳能电池、钙 钛矿太阳能电池等
应用领域:建筑、汽车、电子 设备、航天等领域
工作原理
薄膜太阳能电池 主要由半导体材 料制成,如硅、 砷化镓等。
太阳光照射到半 导体材料上,产 生电子-空穴对。
电子-空穴对在半 导体材料内部运 动,形成电流。
电流通过外部电 路,产生电能。
优缺点
优点:轻便、可弯曲、可折叠、 可粘贴
优点:易于安装和维护
缺点:能量转换效率较低
缺点:对环境敏感,易受温度、 湿度等环境因素影响
03
制造工艺流程
原材料选择
硅片:选择高质 量的硅片,保证 电池性能
导电浆料:选择 导电性好、稳定 性高的导电浆料
背电极材料:选 择导电性好、耐 腐蚀的背电极材 料
所需的图案
薄膜钝化:采用化学气相沉积、 物理气相沉积等方法,在半导 体薄膜表面沉积钝化层,以提

非晶硅薄膜太阳能电池概要课件

非晶硅薄膜太阳能电池概要课件
非晶硅薄膜太阳能 电池简介
定义与特性
定义
非晶硅薄膜太阳能电池是一种利 用非晶硅材料制成的太阳能电池 。
特性
具有轻便、柔韧、可折叠等优点 ,同时制造成本较低,适合大规 模生产。
工作原理
01பைடு நூலகம்
02
03
光吸收
非晶硅薄膜能够吸收太阳 光并将其转换为电能。
电极
通过电极将产生的电流导 出,实现电能的有效利用 。
染料敏化太阳能电池
非晶硅薄膜太阳能电池与染料敏化太 阳能电池相比,具有更高的光电转换 效率和更长的使用寿命,但制造成本 较高。
03
非晶硅薄膜太阳能 电池的制造工艺
硅烷气体选择
硅烷气体是制造非晶硅薄膜太阳能电池的关键原料之一,其纯度对电池的性能和稳 定性有着至关重要的影响。
选择高纯度的硅烷气体可以减少杂质和缺陷,提高非晶硅薄膜的质量和光电性能。
非晶硅薄膜太阳能电 池概要课件
目录
CONTENTS
• 非晶硅薄膜太阳能电池简介 • 非晶硅薄膜太阳能电池的优势与
局限 • 非晶硅薄膜太阳能电池的制造工
艺 • 非晶硅薄膜太阳能电池的应用与
前景
目录
CONTENTS
• 非晶硅薄膜太阳能电池的挑战与 解决方案
• 非晶硅薄膜太阳能电池的实际案 例分析
01
反应温度与压强控制
制造非晶硅薄膜太阳能电池需要在一定 的温度和压强条件下进行。
温度和压强对非晶硅薄膜的结构、性能 和光电性能有着直接的影响。通过精确 控制温度和压强,可以优化非晶硅薄膜 的结构,提高其光电转换效率和稳定性

通常需要在较低的温度和压强条件下进 行非晶硅薄膜的合成,以减少缺陷和杂
质,提高其质量。

碲化镉薄膜太阳能电池生产工艺流程

碲化镉薄膜太阳能电池生产工艺流程

碲化镉薄膜太阳能电池生产工艺流程
碲化镉薄膜太阳能电池是一种高效、环保的新型太阳能电池,它的生产工艺流程主要由以下几个步骤组成。

第一步,制备透明导电玻璃基板。

透明导电玻璃基板是太阳能电池的重要组成部分,其主要作用是传输电荷和反射光线。

一般采用锡氧化铟(ITO)薄膜作为导电层,制备方法包括热氧化法、溅射法和离子束溅射法等。

第二步,沉积碲和镉层。

在透明导电玻璃基板上沉积碲层和镉层,制备p-n结。

常用的制备方法包括蒸发法、电化学法、化学浴沉积法等。

其中,化学浴沉积法是最为普遍的方法。

第三步,制备接触电极。

在碲化镉薄膜上制备透明导电电极和金属电极。

透明导电电极同样使用ITO薄膜,金属电极采用铝或钼等金属薄膜。

制备方法包括隔离焊接法、电镀法和真空沉积法等。

第四步,进行光照。

用太阳模拟器照射样品,通常在AM1.5G标准下进行,以测试电池的光电转换效率和输出功率。

第五步,进行测试和分类。

测量电池的I-V曲线,计算出其性能参数,如开路电压(Voc)、短路电流(Isc)、填充因子(FF)等。

然后将电池按照性能参数分类,分为等效类型和交流类型等。

第六步,进行封装。

将电池封装到玻璃或有机材料的保护层中,并接入阳极和阴极。

此时,就可以将其作为成品进行销售和使用。

以上就是碲化镉薄膜太阳能电池的生产工艺流程。

通过不断的优化和改进,这一工艺能够更好地满足人们对新能源的需求,为环保和可持续发展做出重要贡献。

CIGS薄膜太阳能电池解析

CIGS薄膜太阳能电池解析

现在CIGS组件处于产业化初级阶段,主要是美国、德国和日本等发达国 家公司。其工艺各具特色,主要采用的都是真空溅射技术,区别主要是制备 CIGS吸收层的部分工艺差别。下表给出了主要公司生产工艺比较。可以看出, 最主流形式是溅射金属预制层后硒化工艺。该工艺对溅射设备防腐要求低,维 护简单,生产过程更容易控制。也有采用四元化合物靶直接溅射CIGS的研究, 由于设备防腐要求高,吸收层存在缺陷,溅射后仍需要热退火处理,这种方法 现阶段没有表现出产业化优势。

CuInSe2黄铜矿晶格结构
非晶硅薄膜太阳能电池的优点
• • • • • • 低成本 能量返回期短 大面积自动化生产 高温性好 弱光响应好(充电效率高) 其他
• 低成本
• 单结晶硅太阳电池的厚度<0.5um。 • 主要原材料是生产高纯多晶硅过程中使用的硅烷,这种气体, 化学工业可大量供应,且十分便宜,制造一瓦非晶硅太阳能 电池的原材料本约RMB3.5-4(效率高于6%) • 且晶体硅太阳电池的基本厚度为240-270um,相差200多倍, 大规模生产需极大量的半导体级,仅硅片的成本就占整个太 阳电池成本的65-70%,在中国1瓦晶体硅太阳电池的硅材料 成本已上升到RMB22以上。
非晶硅太阳电池的市场
• 大规模地成本发电站
• 1996年美国APS公司在美国加州建了一个400千瓦的非晶硅电 站,引起光伏产业振动。 • Mass公司(欧洲第三大太阳能系统公司)去年从中国进口约 5MWp的非晶硅太阳能电池。 • 日本CANECA公司年产25MWp的非晶硅太阳能电池大部分输往 欧洲建大型发电站(约每座500KWp-1000KWp)。 • 德国RWESCHOOTT公司也具有30MWp年产量,全部用于建大规模 太阳能电站。

CIGS薄膜太阳能电池的研究及制备

CIGS薄膜太阳能电池的研究及制备

CIGS薄膜太阳能电池的研究及制备摘要:CuIn1-xGaxSe2(CIGS)薄膜太阳能电池以其效率高、稳定性强、耐辐射、耗材少等众多优点成为近些年太阳能电池领域的研究热点。

这种电池的性能主要由吸收层 CIGS薄膜的质量决定,目前其主要制备方法有:共蒸发法、金属预置层后硒化法、电沉积法和喷雾高温分解法等,然而由于 CIGS 薄膜结构复杂,结晶成膜要求条件较高,以共蒸发法和金属预制层后硒化法为主的制备方法还存在着各种各样的问题,阻碍了其产业化的进程。

本文利用磁控溅射方法制备了 CIGS 薄膜太阳能电池各层薄膜,研究了溅射的工艺参数以及退火温度对薄膜结构和各种性能的影响。

关键词:CIGS薄膜太阳能电池,磁控溅射,合金靶,固态硒源,硒化1 引言能源和环境是二十一世纪面临的两个重大问题,据估纠¨,以现在的能源消耗速度,可开采的石油资源将在几十年后耗尽,煤炭资源也只能供应人类使用约200年。

随着全球经济的发展,尤其是中国、印度等新兴国家经济的快速增长,整个世界正在以前所未有的速度消耗自然资源,这也是世界原油、煤炭价格飙升的一种基本因素。

2004年,世界一次能源消费构成中煤炭占27.2%、石油占36.8%、天然气23.7%、水电占6.2%、核电占6.1%;同期中国一次能源消费成中煤炭占69.0%、石油占22.3%、天然气占2.5%、水电占5.4%和核电占O.82%。

随着一次性能源走向枯竭;未来人类将无可选择地依赖太阳能、风能、核能等清洁能源;尤其是取之不尽的太阳能。

正因为如此,即便在成本高企的现状下世界各国政府依然未雨绸缪,在政策上给予大力的支持,推动光伏产业的高速发展。

因此,太阳能光伏发电成为了世界上各种能源中发展最快的能源之一,世界光伏产业在上世纪80年代至90年代中期,年平均年增长率为15%左右。

90年代后期,世界市场出现了供不应求的局面,发展更加迅速。

1997年世界太阳电池光伏组件生产达122MW(太阳能电池的峰值功率,通常可用Wp表示),比1996年增长了38%,是4年前的2倍,是7年前的3倍,超过集成电路工业。

薄膜太阳能电池生产线设备和工艺流程

薄膜太阳能电池生产线设备和工艺流程

薄膜太阳能电池生产线设备和工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!薄膜太阳能电池是利用光电效应将太阳光转换为电能的一种装置,其生产过程相较于传统的硅晶太阳能电池来说,成本较低,可适用于大规模生产。

新型晶硅太阳能电池、薄膜太阳能电池-概述说明以及解释

新型晶硅太阳能电池、薄膜太阳能电池-概述说明以及解释

新型晶硅太阳能电池、薄膜太阳能电池-概述说明以及解释1.引言1.1 概述晶硅太阳能电池和薄膜太阳能电池是目前研究和应用最广泛的两种太阳能电池技术。

随着对可再生能源需求的日益增长,这两种太阳能电池的研究和发展在近年来获得了巨大的关注。

晶硅太阳能电池是一种基于单晶硅或多晶硅材料制造的太阳能电池。

其工作原理是利用太阳光照射在硅材料上时会产生光生电流,进而转化为电能。

晶硅太阳能电池具有高转换效率、较长的寿命和良好的稳定性等特点,适用于各种规模的太阳能发电系统,从小型家庭系统到大型商业系统。

而薄膜太阳能电池是一种利用非晶态硅、铜铟镓硫等材料制造的太阳能电池。

相比于晶硅太阳能电池,薄膜太阳能电池可以实现更低的制作成本和更高的柔韧性。

薄膜太阳能电池通常采用卷曲或可弯折的材料制成,可以应用于建筑物外墙、屋顶和其他曲面。

此外,薄膜太阳能电池还具有吸收弱光、高温环境下的较好表现等优势。

研究新型晶硅太阳能电池和薄膜太阳能电池的目的是为了进一步提高太阳能电池的效率、降低制造成本以及拓展其在各个领域的应用。

本文将从工作原理、特点和优势以及应用前景等方面对新型晶硅太阳能电池和薄膜太阳能电池进行详细介绍,并最后对其重要性进行总结以及展望未来的发展方向。

通过深入了解这两种太阳能电池技术,可以为太阳能行业的发展提供有价值的参考。

1.2 文章结构本文将详细介绍新型晶硅太阳能电池和薄膜太阳能电池两种不同类型的太阳能电池。

首先,引言部分将提供对整篇文章的概述,包括对这两种太阳能电池的介绍以及它们的应用前景。

接下来,本文将分别介绍新型晶硅太阳能电池和薄膜太阳能电池的工作原理、特点和优势。

在工作原理部分,将详细解释这两种太阳能电池的工作机制,包括光电转换和能量输出过程。

特点和优势部分将重点介绍新型晶硅太阳能电池和薄膜太阳能电池相比传统太阳能电池的优势和特点,比如转换效率的提高、制造成本的降低等。

在应用前景部分,将探讨这两种太阳能电池在未来的潜在应用领域,比如建筑一体化、电动汽车等。

太阳能电池片主流工艺

太阳能电池片主流工艺

太阳能电池片主流工艺
太阳能电池片的主流工艺有以下几种:
1. 单晶硅工艺:单晶硅太阳能电池片采用高纯度硅材料制成,具有高转换效率和较高的稳定性。

该工艺将硅材料铸造成硅棒,再通过切割成薄片,最后进行电池片的加工和组装。

2. 多晶硅工艺:多晶硅太阳能电池片使用多晶硅材料制造,相比单晶硅电池片,具有成本较低的优势。

多晶硅材料经过熔融后,在恶劣环境下快速冷却形成多晶结构,再经过切割成薄片,最后进行电池片的加工和组装。

3. 薄膜太阳能电池工艺:薄膜太阳能电池片采用非晶硅、铜铟镓硒等材料制造,具有较低的成本和较高的灵活性。

该工艺将薄膜材料沉积在透明基板上,再进行电池片的加工和组装。

4. 固态太阳能电池工艺:固态太阳能电池利用具有光电转换特性的固态材料制造。

这种工艺不需要使用液态电解质,可以有效减少能量损失。

以上是主流的太阳能电池片工艺,随着技术的不断发展,还有其他新兴的工艺不断涌现。

太阳电池中的薄膜技术与材料PPT课件

太阳电池中的薄膜技术与材料PPT课件

可编辑课件PPT
28
3.2 碲化镉太阳电池结构
金属层
+
缓冲层
降低CdTe和金属电极的接触势垒,引出电流,使金属电极 与CdTe形成欧姆接触。
-
电池的主体吸光层,它与n型的CdS窗口层形成的p-n结是整个电
p-CdTe
池最核心的部分。多晶CdTe薄膜具有制备太阳能电池的理想的 禁带宽度(Eg=1.45 eV)和高的光吸收率(大约10^4/cm)。CdTe
的光谱响应与太阳光谱几乎相同。
n-CdS TCO
n型半导体,与P型CdTe组成p/n结。CdS的吸收边大约 是521 nm,可见几乎所有的可见光都可以透过。因此 CdS薄膜常用于薄膜太阳能电池中的窗口层。
透明导电氧化层。它主要的作用是透光和导电的作用。
玻璃基板
主要对电池起支架、防止污染和入射太阳光的作用。
非晶硅太阳电池受光持续照射,缺陷增加,使电池转换效率下降
可编辑课件PPT
20
2.5 非晶硅/微晶硅薄膜太阳电池概况
微晶硅材料是微晶粒、晶粒间界和非晶相共存的混合相材料,一般都存在 微空洞,其带隙随着晶相比的不同,由1.2eV到1.7eV连续可调,而且几乎没有光 致衰退效应。薄膜非晶硅/微晶硅叠层电池, 即以非晶硅为顶电池, 以微晶硅 为底电池的叠层电池, 是目前获得高效率高稳定性硅基薄膜太阳电池的最佳 途径。
2、采用PECVD或VHF-PECVD来沉积顶电池,沉积压力为50-1000Pa,衬底温度为150-250℃, 在透明导电膜上依次沉积p型非晶硅掺杂层、i本征非晶硅层和n型非晶硅掺杂层,制备 出顶电池;
3、预热已沉积的器件,温度为180℃-250℃,沉积压力为130-1000Pa,在真空室中用PECVD 或VHF-PECVD法,在中间透明反射层背面沉积微晶硅薄膜底电池;

薄膜太阳能电池的制备及应用研究

薄膜太阳能电池的制备及应用研究

薄膜太阳能电池的制备及应用研究在日益紧张的能源短缺背景下,太阳能电池作为一种清洁绿色的新型能源,备受关注。

与传统的硅晶太阳能电池相比,薄膜太阳能电池具有更高的光电转换效率和更大的灵活性,逐渐成为研究的热点之一。

本文将介绍薄膜太阳能电池制备及其应用研究的进展和趋势。

一、薄膜太阳能电池制备技术薄膜太阳能电池主要由多层薄膜堆积结构组成,其中光吸收层、电荷分离层和电子传输层等是实现高效能量转换的关键部分。

目前,主要的薄膜太阳能电池有非晶硅、染料敏化型(DSSC)、有机太阳能电池(OSC)和钙钛矿太阳能电池(PSC)等。

(一)非晶硅太阳能电池非晶硅太阳能电池是最早被研究和应用的一种薄膜太阳能电池。

其基本结构是由玻璃基板、导电层、p-i-n结构薄膜和金属电极组成。

非晶硅薄膜由于具有高的光吸收系数和高的载流子迁移率,因此具有较高的光电转换效率。

但是其低稳定性和性能退化等问题限制了其应用。

(二)染料敏化型太阳能电池染料敏化型太阳能电池常用的是钛酸盐作为阳极材料,以染料分子为光吸收层进行光电转换。

其基本结构是由导电玻璃、导电链、暴露于染料敏化电解液中的TiO2纳米晶、染料分子和反电极组成。

染料敏化型太阳能电池具有较高的光电转换效率和较低的成本,但是其稳定性仍存在问题,需要进一步改进和优化。

(三)有机太阳能电池有机太阳能电池以有机分子或聚合物为光吸收层,光生载流子的传输过程中利用电子与空穴的相互作用进行光电转换。

其优点是重量轻、柔性好、性能可调,但是其效率仍需要提高和稳定性也需要解决。

(四)钙钛矿太阳能电池钙钛矿太阳能电池是近年发展起来的一类新型太阳能电池。

其光吸收层为有机-无机钙钛矿晶体,具有高的光吸收系数和光电转换效率,已经成为应用研究的热点。

此外,钙钛矿太阳能电池具有可调性强、制备工艺简单等优点。

二、薄膜太阳能电池应用研究随着薄膜太阳能电池制备技术的不断发展,其应用领域也逐渐扩大。

目前,薄膜太阳能电池主要应用于移动电源、灵活显示屏、无线传感器等领域,未来还将有更广泛的应用前景。

cigs薄膜太阳能电池的原理及制备

cigs薄膜太阳能电池的原理及制备

cigs薄膜太阳能电池性能改
04
进及优化
优化设计薄膜结构
优化薄膜厚度
通过调整薄膜厚度,可以优化太阳能电池的光吸收和载流子输运性能。较薄的薄膜可以增 加光吸收,但可能影响载流子的输运效率;较厚的薄膜可以提供更多的载流子输运通道, 但可能降低光吸收。因此,需要找到合适的厚度平衡点,以实现最佳性能。
调整薄膜成分
目前CIGS薄膜太阳能 电池的生产效率相对 较低,影响了其大规 模应用。
环保问题
CIGS薄膜太阳能电池 的生产过程中可能产 生环境污染,需要采 取环保措施降低对环 境的影响。
06
Байду номын сангаас
结论与展望
研究成果总结
高效性能
通过优化薄膜厚度和结构,CIGS薄膜 太阳能电池展现出了高效的性能,其
光电转换效率高达20%以上。
短路电流(ISC)
在零负载条件下,太阳能 电池的最大输出电流。
填充因子(FF)
衡量太阳能电池整体效率 的重要参数,等于最大输 出功率与开路电压和短路 电流乘积之比。
转换效率(η)
太阳能电池将光能转换为 电能的效率,通常以百分 比表示。
cigs薄膜太阳能电池制备方
03

真空蒸镀法
原理:真空蒸镀法是一种物理气相沉积技术,其 原理是将待沉积的材料置于真空室中,通过加热 蒸发材料并使其沉积在基底上,形成薄膜。
低成本
相对于传统的硅基太阳能电池,CIGS 薄膜太阳能电池具有较低的生产成本
,有利于大规模应用和推广。
稳定性良好
CIGS薄膜太阳能电池具有良好的热稳 定性和化学稳定性,能够在各种环境 下稳定运行。
应用广泛
CIGS薄膜太阳能电池适用于各种表面 和形状,如建筑、汽车、航空航天等 领域。

薄膜太阳能电池的归纳总结

薄膜太阳能电池的归纳总结

薄膜太阳能电池的归纳总结薄膜太阳能电池是一种新型的太阳能转换设备,其独特的结构与材料使得其在太阳能领域有着广泛的应用前景。

本文将对薄膜太阳能电池的原理、发展历程、优缺点以及应用领域进行归纳总结。

一、薄膜太阳能电池的原理薄膜太阳能电池是通过几个薄膜层之间的相互作用和能量转换来实现太阳能的转化过程。

它主要由包括透明导电层、n型半导体层、p型半导体层、反射层和背接触层等多个功能层组成。

光线首先穿过透明导电层进入电池,经过吸收层后,光能被转化为电能,并通过导电层输出。

二、薄膜太阳能电池的发展历程薄膜太阳能电池起源于20世纪80年代初,当时主要使用硅薄膜材料。

随着技术的发展,航空航天领域对薄膜太阳能电池的需求促进了其进一步研究与创新。

近年来,薄膜太阳能电池的发展经历了无机材料、有机材料、无机-有机混合材料等多个阶段,并在效率、稳定性和成本方面取得了长足的进步。

三、薄膜太阳能电池的优缺点1. 优点:a. 薄膜太阳能电池相比传统硅晶体太阳能电池更轻薄、柔软,适应于更多的应用场景,如建筑外墙、柔性设备等。

b. 制造过程简单,不需要高温高压的工艺条件,成本较低。

c. 在低光照条件下仍能产生电能,具备良好的低光响应性能。

2. 缺点:a. 效率较传统硅晶体太阳能电池低,尚需要进一步提升。

b. 光电转换过程中存在能量损失,影响系统整体效率。

c. 长期使用中薄膜太阳能电池可能受到环境因素的影响,稳定性有待提升。

四、薄膜太阳能电池的应用领域1. 太阳能建筑集成:薄膜太阳能电池适用于建筑外墙、屋顶、窗户等各种形状的建筑表面,能够与建筑完美融合,实现建筑与能源的高效利用。

2. 移动设备应用:由于薄膜太阳能电池的轻薄柔软特性,使其成为移动设备(如手机、平板电脑、手表等)的理想充电装置,提供便携式、可持续的能源供应。

3. 太阳能汽车:将薄膜太阳能电池应用于汽车车顶、车窗等部位,可实现汽车自身充电,降低能源消耗,为电动汽车提供可持续的动力。

铜锌锡硫硒薄膜太阳能电池_概述及解释说明

铜锌锡硫硒薄膜太阳能电池_概述及解释说明

铜锌锡硫硒薄膜太阳能电池概述及解释说明1. 引言1.1 概述太阳能电池作为一种可再生能源技术,已经在全球范围内得到广泛应用。

然而,传统的硅基太阳能电池存在成本高、制造复杂和使用受限等问题。

因此,人们开始研究新型材料和结构设计,以提高太阳能电池的效率和稳定性。

铜锌锡硫硒薄膜太阳能电池就是近年来备受关注的替代解决方案之一。

1.2 文章结构本文将首先介绍铜锌锡硫硒薄膜太阳能电池的基本原理,并详细描述其构成和工作原理。

接着,我们将探讨该类型太阳能电池的优势与应用前景,并对相关领域进行分析与评价。

随后,我们将对铜锌锡硫硒薄膜太阳能电池制备技术研究进展进行深入探讨,并从材料选择、合成方法、薄膜形貌和结构调控方法以及性能改进等方面进行详细说明。

此外,我们还将分析该类太阳能电池的性能评价标准、光稳定性与耐候性问题,并探讨提高稳定性和可靠性的策略研究。

最后,我们将对整个研究进行总结,展望铜锌锡硫硒薄膜太阳能电池未来的发展前景,并提出一些建议和启示。

1.3 目的本文旨在综述铜锌锡硫硒薄膜太阳能电池的基本原理、构成和工作原理,介绍其制备技术研究进展,评估其性能及相关问题。

通过对该类太阳能电池的全面分析和评价,可以为相关领域研究人员提供有关材料选择、制备方法、效率评估和稳定性改进等方面的重要参考。

此外,我们也希望通过文章的撰写与解释说明,增加读者对于铜锌锡硫硒薄膜太阳能电池潜力以及未来发展前景的了解,并鼓励更多科学家投入到该领域的研究与创新中来。

以上是“1. 引言”部分内容,请核对确认是否满意。

2. 铜锌锡硫硒薄膜太阳能电池的原理2.1 太阳能电池的基本原理太阳能电池是一种可将光能转化为电能的器件。

其基本原理是利用光生电效应和材料的半导体性质来实现光到电的转换。

当太阳辐射照射在太阳能电池表面时,光子与半导体材料相互作用,激发出自由载流子(即电子-空穴对)。

这些自由载流子在内部形成漂移电场并沿着外部连接器流动,从而产生了电流。

CIGS薄膜太阳能电池的原理及制备

CIGS薄膜太阳能电池的原理及制备
• 金属栅电极:用作铝电极,用电子束
• •
蒸发法制备. 减反射膜:作用是增加入射率,减少 电池表面光反射的损失,增加光透过 率。 窗口层:N型窗口层不仅与CdS缓冲 层一起构成了异质结的n型部分,而 且还是电池功率输出的通道。窗口 层与缓冲层之间有很好的匹配性,且 透光性好。 过渡层:作用是降低带隙的不连续 性,缓冲晶格不匹配问题,作为pn 结的n型半导体。 吸收层:作为pn结的p型半导体, 作用是吸收光,以激发电子,使电 子跃迁,达到光电转化的目的。 CIGS必须有足够的厚度,且缺陷少。
太阳能电池的短路电流既 光生电流,是指在一定的 温度和辐照度条件下,光 伏发电器在端电压为零时 的输出电流。分析短路电 流最直接的方法就是对不 同波段的光所产生的光生 电子空穴对数量进行积分, 并计算出每一波段所产生 的电流,将电流求和,最 终得到的总电流就是其短 路电流。
CIGS薄膜太阳能电池层状结构
CIGS电池各层的制备
• 衬底:衬底一般采用玻璃,也有的采用不同材料的柔性箔
• • • • •

片作为材料。 背电极:在洁净的衬底上沉积1到1.5um的金属铝 吸收层:在铝电极上沉积1.6到2.0um的CIGS 缓冲层:在吸收层上依次制备厚60一100nm的硫化锡 窗口层:在缓冲层上沉积100nm左右的本征氧化锌层 减反层和铝电极:沉积厚600nm左右的掺铝氧化锌层和银 电极。 整个电池的制备过程就是不同薄膜的制备与叠加过程,多 层薄膜叠加形成P一N结结构而实现光电转化。整个制膜过 程一般采用磁控溅射、蒸发镀膜或是其他一些非真空技术 实现。电池的衬底一般采用含钠的CorningGlaSS,为CIGS 吸收层提供适量的钠源,适量的金属钠元素对于CIGS电池 的填充因子有着很大的提高。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
敏化电池,有机薄膜电池,纳米结构电池 等。 ➢第四代太阳能电池:热电子型。
太阳能电池转换效率世界记录
高效太阳电池榜
三种主要光伏发电技术比较
技术路线
晶体硅太 阳能电池
单晶硅 多晶硅
薄膜太阳 非晶硅薄膜电
能电池

其他
聚光太阳能电池
实验室最高 转换效率 24.70% 20.30% 12.80%
40.70%
京都议定书的实施,世界各国降低温室气体排放,实行减碳 措施,重视地球环保,开发洁净新能源刻不容缓。
能源消费结构不合理—煤炭比例过高
2006年中国一次能源消费构成
电力缺口逐年增加
中国未来电力发展的预测(中国电力科学院)
能源 水 食物 环境 贫穷 战争
疾病 教育 民主政治 人口
Energy Water Food Environment Poverty Terrorism&War Disease Education Democracy Population
太阳能素有“干净能源”和“安全能源”之称。它不仅毫无污染,远比常规 能源清洁;也毫无危险,远比原子核能安全。
例:3kW太阳能发电系统对环境污染物的削减量 石油替代量:729L/年 减排放CO2能力:540kg-C/年 森林面积换算:5544m2
②对能源和节能的贡献 太阳能电池2.2年的发电量即可收回制造太阳能电池时使用的电力
海洋能
使用其它能源(再生动力资源) ➢ 水力发电 (H.E.P)
➢ 风力发电 (Wind Power)
➢ 地热能发电 ➢ 太阳能发电
➢ 潮汐发电
可再生能源的优点
➢ 环保(Environmental benefits) ➢ 可持续(Sustainability) ➢ 能源安全(Energy security)
三分之二的国土面积年日照小时数在2200小时以上 年太阳辐射总量大于每平方米5000兆焦。
中国太阳能资源分布情况
中国有12%国土面积为沙漠或戈壁滩,这些地区年日照小时数在 3200小时以上,如果在这些地区全部安装太阳能电池发电,其电 力足于供给全球使用。其发展潜力远远没有挖掘出来。
中国沙漠戈壁分布情况
简单的说,太阳光电的发电原理,是利用太阳电池吸收一定波 长的太阳光,将光能直接转变成电能输出的一种发电方式。
太阳能电池技术发展:
➢第一代太阳能电池:结晶硅类,单晶硅、多晶硅太阳能电池。 ➢第二代太阳能电池:薄膜太阳能电池,如硅基薄膜电池,CIGS
薄膜等。 ➢第三代太阳能电池:量子点型新概念,新结构的电池,如染料
节约及保护能源
➢ 把不需要的电器用品关掉。 ➢ 减少在夏季使用冷气的机会。 ➢ 尽量使用公共交通工具。 ➢ 使用节省能源的汽車或机器。
寻找新型清洁能源是解决问题的唯一途径
可再生能源 ➢ 不断补充(Constantly replenishing) ➢ 用之不竭(Inexhaustible) 分类 ➢ 太阳能、风能、生物能、地热能、水利发电、氢能、
太阳能的优点:
1、数量巨大:太阳能够给地球提供惊人的能量。
➢太阳给地球1.5天提供的能量相当于全球可 供开采石油的总量(3万亿桶)。
➢太阳给地球1小时的能量可供全球人类使用 一年。
➢太阳提供给地球1秒钟的能量,相当于2008 年汶川8.0级地震所释放的能量。
地球上几乎所有地方都能使用太阳能。 太阳能:唯一的兆兆瓦量级再生能源!
批量生产 效率 17% 16%
6%-7%
30%
组件成本 (美元/W)
2.29 2.25 1.0-1.5
优缺点
硅耗大、成本高 硅耗大、成本高 硅耗小、投资大、有衰

3
效率高、成本高
太阳能光伏术语:
光伏 (Photovoltaic, PV)光能到电能的直接转换 太阳能电池(Solar cells) 太阳能电池模组(Solar modules) 太阳能电池板(Solar panels) 建筑光伏一体化(Building Integrated Photovoltaics,BIPV) 非晶硅(amorphous Silicon, a-Si ) 多晶硅(polycrystalline silicon, p-Si) 单晶硅(crystalline silicon, c-Si) 铜铟镓硒(Copper Indium Gallium Diselenide, CIGS)
薄膜太阳能电池及制造工艺
I.太阳能电池技术及光伏产业背景知识
地球天然资源有限,物以稀为贵,原油价格将持续飚涨
世界和中国主要常规能源储量预测
全球能源短缺,而且分布不均匀,尤其是发展中国家能源匮乏。
NASA拍摄的地球夜晚卫星图片
温室效应使地球平均气温持续升高
1928年与2004年阿根廷的冰川消退对照
太阳能的利用
太阳能的利用可以分为两种:即光-热转化利用和光-电转化利用。 太阳能集热器 太阳能热水池(英文为Solar Cell)是一种利用太阳光直接发电的
光电半导体薄片。它只要被光照射,瞬间就可输出电流。在物理学 上称为光伏(Photovoltaic)。
2、时间长久: 太阳能发电在全球未来能源结构中扮演着重要的地位。
太阳能:取之不尽,用之不竭!
世界能源发展趋势
3、普照大地 太阳辐射能“送货上门”,既不需要开采和挖掘,也不需要运
输。普天之下,无论大陆或海洋,无论高山或岛屿,都一视同仁“。 既无”专利“可言,也不可能进行垄断,开发和利用都极为方便。
人类未来50年面临的十大问题,以“能源”问题为首。
我们可以怎样解決能源危机?
1. 增加及改善能源 (煤、石油、天然气)的生产 2. 节约及保护能源 3. 利用其它能源(可再生能源)
非再生能源(Non-renewable energy)
A. 煤
B. 石油
缺点: 有限资源;价格昂贵;环境破坏。
C. 天然气
阳光对地球各个地区的供应比其他资源的供应公平得多。
世界太阳能资源地图
4、清洁安全
①对防止地球温暖化,减轻对地球环境的贡献从太阳能发电系统 排放的二氧化碳,即使是考虑其生产过程的排放量,也绝对少于 传统的燃料发电设备,是防止地球温暖化的环保设备。同时在发 电时,不排放氧化硫,氧化氮等污染物, 减轻了对环境的压力。
相关文档
最新文档