定积分讲义
数学《定积分》讲义
第九章 定 积 分1 定积分的定义一、背景1、曲边梯形的面积1()ni i i S f x ξ=≈∆∑2、变力所做的功 1()ni i i W F x ξ=≈∆∑上述问题均可归结为一个特定形式的和式逼近,思想方法:分割、近似求和、取极限.二、定积分的定义定义 1 设闭区间[],a b 内有1n -个点,依次为0121n n a x x x x x b -=<<<⋅⋅⋅<<=,其把[],a b 分成n 个小区间[]1,,1,i i i x x i n -∆==⋅⋅⋅.称这些点或小闭子区间构成[],a b 的一个分割,记为{}01,,n T x x x =⋅⋅⋅或{}12,,n ∆∆⋅⋅⋅∆,小区间i ∆的长度为1i i i x x x -∆=-,同时记{}1max i i nT x ≤≤=∆,称为分割T 的模(或细度).注1 ||||,1,i x T i n ∆≤=⋅⋅⋅. 因而,||||T 可用来刻画[],a b 被分割的细密程度,同时,若T 给定,则||||T 确定,而对同一细度(模), 相应的分割却有无穷多个.定义 2 设f 为[],a b 上的函数,对[],a b 上的分割{}12,,n T =∆∆⋅⋅⋅∆,任取点,i i ξ∈∆1,i n =⋅⋅⋅,作和式1()niii f x ξ=∆∑,称为函数f 在[],a b 上的一个积分和,也称为Riemann 和.注2. Riemann 和与分割T 及i ξ的取法有关. 对同一个分割T ,相应的Riemann 和有无穷多个.定义 3 设f 是[],a b 上的函数,J 为一个确定的数. 若对任给正数0ε>,存在正数0δ>,使得对[],a b 上的任何分割T ,以及其上任选的i ξ,只要T δ<,就有1()niii f x Jξε=∆-<∑,则称f 在[],a b 上可积(或Riemann 可积) ,数J 称为f 在[],a b 上的定积分(或Riemann 积分) ,记作()baJ f x dx =⎰. 其中f 称为被积函数,x 称为积分变量,[],a b 称为积分区间,,a b 分别称为积分的下限、上限.注.1()lim ()nbi i aT i f x dx f x ξ→==∆∑⎰⇔0,0,,,,i i T T εδδξ∀>∃>∀<∀∈∆1()()nbi i ai f x f x dx ξε=∆-<∑⎰定积分的几何意义(f 可积)(1) 0f ≥时,()ba f x dx ⎰就是以,,x a xb x ==轴及()y f x =围成的曲边梯形的面积.(2) 0f ≤时,()baf x dx ⎰为x 轴下方的曲边梯形面积的相反数(负面积) .(3) ()baf x dx ⎰是曲线()y f x =在x 轴上方部分所有曲边梯形的正面积与下方所有曲边梯形的负面积的代数和. (4) 注.()()()bb baaaf x dx f t dt f u du ==⎰⎰⎰,定积分与积分变量无关.三、举例例 1 已知函数2()f x x =在区间[]0,1上可积,求120x dx ⎰.例 2 已知1()1f x x=+,()sin g x x π=在[]0,1上可积. 利用定积分的定义说明 1) 10111lim()1221n dx n n n x→∞++⋅⋅⋅+=+++⎰. 2) 10012(1)1lim (sin sin sin )sin sin n n xdx x dx n n n n ππππππ→∞-++⋅⋅⋅+==⎰⎰.给出一般公式().......ba f x dx =⎰例 3 讨论Dirichlet 函数1()0x D x x ⎧=⎨⎩,为有理数,为无理数 在[]0,1上的可积性.四、 定积分的计算 定理 (微积分基本定理)设[]:,f a b R →可积,存在可导函数[]:,F a b R →,使F f '=,则()()|()()bx bx a af x dx F x F b F a ====-⎰上式也称为Newton-Leibniz 公式.例 4 求例2中定积分的值.例 5 1) 211(ln )eex dx x⎰;2) 2⎰;3) 求11()f x dx -⎰,其中210()0x x x f x e x --<⎧=⎨≥⎩, ,;4) 0⎰;5) 221lim nn i in i→∞=+∑;6) 112lim[(1)(1)(1)]n n n n n n→∞++⋅⋅⋅+.2 可积性条件一、可积的必要条件定理1 若函数f 在[],a b 上可积,则f 在[],a b 上有界.注 有界仅是f 可积的必要条件,而非充分条件. 如[]0,1上的()D x . 定理2 设函数f 在[],a b 上可积,则f 在(),a b 内至少有一个连续点. [ 若函数f 在[],a b 上处处不连续,则f 必不可积. ] 二、可积的充要条件设{}12,,n T =∆∆⋅⋅⋅∆为[],a b 上的一个分割,设f 在[],a b 上有界,则f 在每个i ∆上必有上下确界,记{}sup ()ii x M f x ∈∆=,{}inf ()ii x m f x ∈∆=,1,i n =⋅⋅⋅.作和式1()n i i i S T M x ==∆∑,1()ni i i s T m x ==∆∑,分别称为f 关于T 的上和和下和(Darboux 上下和) , 从而i i ξ∀∈∆,1,i n =⋅⋅⋅,1()()()ni i i s T f x S T ξ=≤∆≤∑. (作图几何意义)注 当分割T 确定后,则上和与下和完全确定.性质1 对同一分割T ,上和()S T 是所有积分和1()ni i i f x ξ=∆∑的上确界(相对于i ξ取),下和()s T 是所有积分和1()ni i i f x ξ=∆∑的下确界, 即{}1()inf ()i i n i i i s T f x ξξ∈∆=⎧⎫=∆⎨⎬⎩⎭∑, {}1()sup ()i i n i i i S T f x ξξ∈∆=⎧⎫=∆⎨⎬⎩⎭∑,且 1()()()()()ni i i m b a s T f x S T M b a ξ=-≤≤∆≤≤-∑,其中,M m 分别为f 在[],a b 上的上、下确界.性质2 设T '为分割T 添加p 个新分点后所得到的分割. 则()()()()s T s T s T p M m T '≤≤+- ()()()()S T S T S T p M m T '≥≥--即分点增加后,下和不减,上和不增.性质3 若T 与T '为任意两个分割,T ''为T 与T '所有分点合并组成的分割,记为T T T '''=+,则 ()()s T s T ''≥, ()()S T S T ''≤;()()s T s T '''≥, ()()S T S T '''≤.性质4 对任意两个分割T 、T ',总有()()s T S T '≤.即:对任何两个分割,下和总不大于上和. 因而,所有的上和有下界,所有的下和有上界,从而分别有下、上确界,记为S 和s . 即{}inf ()TS S T =,{}sup ()Ts s T =,称S 和s 分别为f 在[],a b 上的上、下积分,记为()ba S f x dx -=⎰,()b a s f x dx -=⎰.性质5 ()()()()bbaa mb a f x dx f x dx M b a ---≤≤≤-⎰⎰性质6. [Darboux 定理] 0lim ()()b a T S T f x dx -→=⎰,0lim ()()ba T s T f x dx →-=⎰.定理 3 (第一充要条件) [],a b 上的有界函数f 可积⇔()()bb a a f x dx f x dx --=⎰⎰定理4 (可积的第二充要条件)[],a b 上的有界函数f 可积⇔ 0ε∀>,存在分割T ,使得()()S T s T ε-<.由于11()()()nni i i i i i i S T s T M m x x ω==-=-∆=∆∑∑,其中i i i M m ω=-称为f 在i ∆上的振幅. 从而有定理4' [],a b 上的有界函数f 可积⇔0ε∀>,存在分割T ,使得1ni i i x ωε=∆<∑.定理4'的几何意义:若f 可积,则曲线()y f x =可用总面积任意小的一系列小矩形覆盖. 反之亦然.三、可积函数类(充分条件)定理 5. 若f 在[],a b 上连续,则f 在[],a b 上可积.定理 6. 若f是[],a b上仅有有限个间断点的有界函数,则f在[],a b上可积.注.改变可积性函数在某些点处的值, 不改变可积性, 也不改变积分值. 定理7. 若f为[],a b上的单调函数,则f在[],a b上可积.例1试用两种方法证明函数0 0()1111xf xxn n n=⎧⎪=⎨<≤⎪+⎩,,,1,2n=⋅⋅⋅在[]0,1上可积.例2 设f 在[],a b 上有界,{}[],n a a b ⊂,lim n na c =.证明:若f 仅在{}n a 上间断,则f 在[],a b 上可积.例3 f 在[],a b 上可积,[][],,a b αβ⊂,则f 在[],αβ上可积.例4 证明定理2: 若f 在[],a b 上可积,则f 在(),a b 内至少有一个连续点(从而有无穷多个连续点) .例5 证明: Riemann 函数[]1, ()0 0,10,1p x p q q p q q f x x ⎧=>⎪=⎨⎪=⎩,和互素,,或中的无理数 在[]0,1上可积,且1()0f x dx =⎰.(第三充要条件)3 定积分的性质一、定积分的性质 1. 线性性质定理 1 设f 在[],a b 上可积,k 为常数,则kf 在[],a b 上可积,且 ()()bbaakf x dx k f x dx =⋅⎰⎰.定理 2 设,f g 在[],a b 上可积,则f g ±在[],a b 上可积,且()()()()bb baaaf xg x dx f x dx g x dx ±=±⎰⎰⎰.推论. 设,f g 在[],a b 上可积,,αβ为常数,则f g αβ+在[],a b 上可积,且()()()()bb baaaf xg x dx f x dx g x dx αβαβ+=+⎰⎰⎰.2. 乘积可积性定理 3 设,f g 在[],a b 上可积,则f g ⋅在[],a b 上可积. 注 一般情形下,()()()()b b baaaf xg x dx f x dx g x dx ⋅≠⋅⎰⎰⎰.定理 4 有界函数f 在[],a c 和[],c b 上可积f ⇔在[],a b 上可积,且()()()bcbaacf x dx f x dx f x dx =+⎰⎰⎰规定 1) ()0aa f x dx =⎰.2)()()baab f x dx f x dx =-⎰⎰,()b a <.则对任何,,a b c 均有 ()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰.4. 关于函数的单调性定理5 设,f g 在[],a b 上可积,且()()f x g x ≤,[],x a b ∀∈,则()()bbaaf x dxg x dx ≤⎰⎰.推论 (积分值的估计) 设f 在[],a b 上可积,,M m 分别为f 在[],a b 上的上、下确界,则 ()()()ba mb a f x dx M b a -≤≤-⎰.定理6 若函数f 在[],a b 上可积,则f 在[],a b 上可积,且|()||()|bbaaf x dx f x dx ≤⎰⎰.注. 定理 6的逆不真.6. 积分第一中值定理定理 7 若函数f 在[],a b 上连续,则至少存在一点[],a b ξ∈,使得()()()baf x dx f b a ξ=-⎰.几何意义: 称1()ba f x dxb a -⎰为f 在[],a b 上的平均值.定理7' (推广的第一中值定理) 若,f g 在[],a b 上连续,且()g x 在[],a b 上不变号,则至少存在一点[],a b ξ∈,使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.[()1g x ≡时,即为定理7.]二、应用举例例 1 求11()f x dx -⎰. 其中2110() 01x x x f x e x ---≤<⎧=⎨≤<⎩, ,.例 2 求()sin f x x =在[]0,π上的平均值.例 3 若f 在[],a b 上连续,()0f x ≥,且()0f x ≡/,则()0ba f x dx >⎰.例 4比较积分1⎰和21x e dx ⎰的大小.例 5证明:22ππ<<⎰.例 6 若f 在[],a b 上可积,()0f x >,则()0ba f x dx >⎰.例 7 若,f g 在[],a b 上可积,则{}()max (),()M x f x g x =在[],a b 上可积.*例 8 设f 在[],a b 上可积,且()0f x m >>,则1f可积.*例 9 证明:若f 在[],a b 上连续,且()()0b baaf x dx xf x dx ==⎰⎰,则在(),a b 内至少存在两点12,x x 使12()()0f x f x ==. 又若2()0bax f x dx =⎰,此时,f 在(),a b 内是否至少有三个零点?*例 10 设f 在[],a b 上二阶可导,且()0f x ''>,证明: 1) 1()()2ba ab f f x dx b a+≤-⎰ 2) 又若()0f x ≤,[],x a b ∈,则又有2()()ba f x f x dxb a ≥-⎰,[],x a b ∈.*例11证明:(1)11ln(1)11ln2n nn+<++⋅⋅⋅+<+(2)1112lim1lnnnn→∞++⋅⋅⋅+=*例13若f可积,m f M≤≤,g在[,]m M上连续,则复合函数h g f=可积.由此, 若f可积, 则2f,13,f||f, ()f xe, (0)f≥,1(inf0)ff>可积.4 微积分基本定理 定积分的计算一、微积分基本定理 1. 变限积分的可微性设f 在[],a b 上可积,则任何[],x a b ∈,f 在[],a x 上也可积,从而()()xa x f t dt Φ=⎰,[],x ab ∈定义了一个以x 为积分上限的函数, 称为变上限积分.定理1 若f 在[],a b 上可积,则()()xa x f t dt Φ=⎰在[],ab 上连续.定理 2 (原函数存在定理,微积分学基本定理)若f 在[],a b 上连续,则()()xa x f t dt Φ=⎰在[],ab 上处处可导,且()()()xa d x f t dt f x dx'Φ==⎰,[],x a b ∈.注. 1) 当f 在[],a b 上连续,则()()xax f t dt Φ=⎰为f 的一个原函数,且f 的任一原函数()()xaF x f t dt C =+⎰. 令x a =,则()F a C =. 从而()()()xaf t dt F x F a =-⎰——Newton-Leibniz .2) 定理2. 揭示了导数和定积分之间的深刻联系,同时证明了连续函数必有原函数,并说明变上限积分就是一个原函数. 由于它的重要作用而被称为微积分基本定理.3) 同样可定义变下限积分()()bxxbf t dt f t dt =-⎰⎰. 且当f 连续时,有()()bxd f t dt f x dx =-⎰ 4) 变上限积分()xaf t dt ⎰一般不写作()xaf x dx ⎰.例 1 1)⎰2) 220sin cos t tdt π⎰例 2 设f 在[],a b 上连续,()0f x ≥,且()0f x ≡/,证明: ()0baf x dx >⎰.例 3 设f 为连续函数,,u v 均为可导函数,且复合f u ,f v 均有意义,证明()()()(())()(())()v x u x d f t dt f v x v x f u x u x dx''=⋅-⋅⎰.例 4 求1) 230limx x x +→⎰2) 222010cos limx x x t dtx →-⎰二、定积分的换元法定理 3 设f 在[],a b 上连续,Φ满足条件1) ()a αΦ=,()b βΦ=. [](),,a t b t αβ≤Φ≤∈ 2) ()t Φ在[],αβ上有连续导函数,则()(())()baf x dx f t t dt βα'=Φ⋅Φ⎰⎰.例 5 1)⎰2) 220sin cos t tdt π⎰3)10x x dx e e -+⎰4)3212(1)dx x x -+⎰5)120ln(1)1x dx x ++⎰6) 已知32()4f x dx =-⎰,求21(1)xf x dx +.注 在换元法计算定积分时,一要注意积分上下限的变化(这里只需要求,a b 的对应值为,αβ,而不计较,αβ的大小) . 二是要注意代入新变量,直接求定积分的值,而无需变量还原. (此与不定积分是不一样的. 这是因为不定积分求的是被积函数的原函数,其变量应一致,而定积分的结果是一个数值,只需求出即可) .注 定理3换元积分条件,f 可减弱为f 可积,ϕ可减弱为()t ϕ'在[],αβ上可积,且除有限个点外()0t ϕ'>(或()0t ϕ'<) . (保证[][]:,,a b ϕαβ→是11-的.) 例 6 设f 为[],a a -(对称区间) 上的连续奇(偶) 函数,则()0aaf x dx -=⎰(0()2()a aaf x dx f x dx -=⎰⎰) .如求22223(sin3cos 5arctan 1)x x x x x e x dx ππ--⋅+⋅--⎰.例 7 设f 为(,)-∞+∞上以T 为周期的可积函数,证明:对任何实数a R ∈,有()()a TTaf x dx f x dx +=⎰⎰.例 8 设f 为连续函数,则1) 22(sin )(cos )f x dx f x dx ππ=⎰⎰;2)(sin )(sin )2xf x dx f x dx πππ=⎰⎰.由此计算2sin sin cos xdx x x π+⎰和20sin 1cos x x dx xπ⋅+⎰.例 9 设f 在[],a b 上连续,求证:()()bbaaf x dx f a b x dx =+-⎰⎰.由此计算362cos (2)xdx x x πππ-⎰.三、分部积分定理 4 若(),()u x v x 为[],a b 上的连续可导函数,则有定积分分部积分公式()()()()()()bbb a aau x v x dx u x v x u x v x dx ''⋅=⋅-⋅⎰⎰或()()()()()()bb b a aau x dv x u x v x v x du x =⋅-⎰⎰例 10 1) 10x xe dx ⎰ 2)21ln ex xdx ⎰3) 1ln eexdx ⎰4) 1arcsin xdx ⎰5) 2sin x x e dx π⋅⎰6)4⎰例 11 求20sin nxdx π⎰和2cos n xdx π⎰.注 由前两式可推出著名的Wallis 公式:2(2)!!1lim 2(21)!!21m m m m π→∞⎡⎤=⋅⎢⎥-+⎣⎦.四、Taylor 公式的积分型余项 推广的分部积分公式设(),()u t v t 在[,]a b 上有1n +阶连续导函数,则(1)()(1)()()()()()()()(1)()()bn n n n n baau t v t dt u t v t u t v t u t v t +-'⎡⎤⋅=⋅-⋅+⋅⋅⋅+-⋅⎣⎦⎰1(1)(1)()()bn n au t v t dt +++-⋅⎰.设f 在0x 处的某邻域0()U x 有1n +阶连续导函数,0()x U x ∈,则有(1)()1(1)()()()()()()!()0()xxn n n n n n xx x x x t ft dt x t f t n x t f t n f t f t dt +--⎡⎤-=-+-+⋅⋅⋅++⋅⎣⎦⎰⎰()00000()!()![()()()()]!n n f x n f x n f x f x x x x x n '=-+-+⋅⋅⋅+-!()n n R x =(1)1()()()!x n n n x R x f t x t dt n +⇒=-⎰ ——积分型余项注 1) 由推广的第一积分中值定理((1)()n f t +连续,()n x t -在[]0,x x 或[]0,x x 上保持同号) ,则(1)1()()()!x n n n x R x f x t dt n ξ+=-⎰(1)101()()(1)!n n f x x n ξ++=-+ ——Lagrange 型余项2) 直接由积分第一中值定理,有(1)01()()()()!n n n R x f x x x n ξξ+=-- (1)10001(())(1)()!n n n f x x x x x n θθ++=+--- 00x =时,(1)11()()(1)!n n n n R x f x x n θθ++=-, 01θ≤≤——Cauchy 型余项五、积分第二中值定理 定理 5 设f 在[],a b 上可积,1) 若g 在[],a b 上减,且()0g x ≥,则存在[],a b ξ∈,使()()()()baaf xg x dx g a f x dx ξ=⎰⎰.2) 若g 在[],a b 上增,且()0g x ≥,则存在[],a b η∈,使()()()()bbaf xg x dx g b f x dx η=⎰⎰.推论. 设f 在[],a b 上可积,g 为单调函数,则存在[],a b ξ∈,使得()()()()()()bbaaf xg x dx g a f x dx g b f x dx ξξ=+⎰⎰⎰.例 12 设()f x 为[]0,2π上的单调递减函数,证明:对任何正整数n ,恒有20()sin 0f x nxdx π≥⎰.定理 6 设函数f 在闭区间[],a b 上连续,函数g 在[],a b 上可导,且导函数()g x '在[],a b 上非负且连续,则存在[],c a b ∈,使得()()()()()()bc baacf xg x dx g a f x dx g b f x dx =+⎰⎰⎰.例 13 证明:当0x >时,有不等式21sin x cxt dt x+≤⎰(0)c >.例 14 设()y f x =为[],a b 上严格增的连续曲线,试证:存在(),a b ξ∈使图中阴影部分面积相同.习 题1. 求)0(F '及)4(πF '. 其中⎰-=202sin )(x t tdt e x F2. 求下列极限(1) ⎰→xx dt t x 020cos 1lim (2) dxe dt e x txt x ⎰⎰∞→020222)(lim3. 求下列积分(1) ⎰⋅2042sin cos πxdx x (2)dx x ⎰-224(3) dx xx⎰+202sin 1cos π (4) dx xx ⎰+411(5) dx x x ⎰-1122)2( (6)dx x a x a2202-⎰(7)dx xx ⎰++311 (8)xdx x 3sin][3π⎰4. 求下列积分 (1) dx xe x⎰-2ln 0(2) ⎰210arccos xdx(3) ⎰-adx x a 022 (4) dx x x⎰-1221(5)⎰-2ln 01dx e x(6)dx ax x aa⎰-+222(7)dx xb x a xx ⎰+⋅202222sin cos cos sin π(8)dx x x ee⎰1ln(9)⎰+20cos sin cos πdx xx x(10)⎰+-adx xa xa 0arctan(11)dx e x x ⎰-⋅202sin π(12)dx xa xa x a⎰+-025. 求下列极限 (1) ∑=+∞→nk n nk 123lim (2) 2213lim k n nk nk n -∑=∞→6. 证明 (1)⎰⎰-=-11)1()1(dx x x dx x x m n n m(2) 若f 在R 上连续, 且⎰=x adt t f x f )()(, 则.0)(≡x f (3) 0sin sin ,m n mx nxdx m n N m nπππ-≠⎧=∈⎨=⎩⎰,(4)⎰-=ππ0cos sin nx mx(5) 设f 在],0[π上连续,且⎰⎰⎰===πππ0cos )(sin )()(xdx x f xdx x f dx x f求证f 在),0(π内至少两个零点.定积分1、定积分的定义1()lim ()nbi i aT i f x dx f x ξ→==∆∑⎰0,0,,,,di i T T εδδξ⇔∀>∃>∀<∀∈∆1()ni i i f x J ξε=∆-<∑. (())baJ f x dx =⎰2、可积函数(充要) 条件1) f 在[],a b 上可积⇒f 在[],a b 上有界⇒f 在(),a b 内至少有一个连续点2) f 在[],a b 上可积⇔()()b ba a f x dx f x dx --=⎰⎰⇔0,,()()T S T s T εε∀>∃-< ⇔10,,ni i i T w x εε=∀>∃∆<∑3) f 在[],a b 上连续⇒f 在[],a b 上可积f 在[],a b 上单调⇒f 在[],a b 上可积f 在[],a b 上仅有限个间断点(或间断点仅有限个聚点) ,则f 在[],a b 上可积. f 在[],a b 上可积,g 与f 仅有限个点处不相等,则g 在[],a b 上可积,且()()bbaag x dx f x dx =⎰⎰4) 可积函数复合未必可积.3、定积分性质1) 线性性质 2) 子区间可积性 3) 乘积可积 4) 区间可加性 5) 单调性 6) 绝对可积性4、微积分基本定理与Newton-Leibniz 公式定理. 若f 在[],a b 上连续,则()()xa x f t dt Φ=⎰在[],ab 上处处可导,且()()()xa d x f t dt f x dx'Φ==⎰. 由此可得()()()baf x dx F b F a =-⎰.注. 若f '可积,则()()()b af x dx f b f a '=-⎰.定理. 若f 在[],a b 上可积,则()()xax f t dt Φ=⎰在[],a b 上连续.结论 (变限积分的导数)()()(())(())()(())()h x g x f t dt f h x h x f g x g x '''=⋅-⋅⎰5、定积分的积分方法 1) 换元设()y f x =在[],a b 上可积,()x t ϕ=满足ϕ'在[],αβ上可积,且在[],αβ上至多除有限个点使()0t ϕ'=,其余点()0t ϕ'>,(),()a b ϕαϕβ==,则()(())()baf x dx f t t dt βαϕϕ'=⋅⎰⎰[ 注意:积分上下限只需对应,而不管大小. ] 2) 分部积分 (注意具体被积函数的形式) 设,u v ''为[],a b 上可积函数, 则 bbb a aaudv uv vdu =-⎰⎰.6、Taylor 公式与积分中值定理. 1) 可积函数未必有原函数.1, 01;() 1 , 1 2.x f x x -≤≤⎧=⎨<<⎩ 2) 有原函数的函数也未必可积.22211cos 2sin , 0;()0, 0.x x f x x x xx ⎧-+≠⎪=⎨⎪=⎩在[1,1]-上有原函数220, 0;()1sin , 0.x x F x x x =⎧⎪=⎨⋅≠⎪⎩ 但f 在[0,1]上不可积.3) 可积不连续的函数也可能有原函数.习 题 课一、定积分的计算 例 1 1)20πθ⎰2) 1t x t dt -⎰, (1,0,01)x x x ><≤≤3)arctana⎰4) 10(1)xdx x α+⎰5)10ln(1dx ⎰6)0⎰7)121⎰8)2-⎰9) 21,0() , 0x x x f x e x -⎧+<⎪=⎨>⎪⎩ , 求31(2)f x dx -⎰.10) 1(2)2f =,(2)0f '=,20()1f x dx =⎰. 求120(2)x f x dx ''⎰.二、利用定积分定义求和式极限11111()lim ()lim ()nn i i T n i i f x dx f x f n n ξ→→∞===∆=∑∑⎰1()lim ()n ban i b a b af x dx f a i n n→∞=--=+∑⎰例 2 1) 221lim nn i i n i→∞=+∑2) 11lim[(1)]n n n k k n -→∞=+∏3) 12lim 1knnn k n k→∞=+∑4) 444333124lim (12)5n n n n →∞++⋅⋅⋅+=++⋅⋅⋅+三、变限积分的导数例 3 1)2sin b a d x dx dx⎰ 2) 2sin x a d tdt dx ⎰3) 10(arctan )t x e tdt '⋅⎰4)23ln t t d dxdt x⎰ 例 4 1) 设0x ≥时,()f x 连续,且230()x f t dt x =⎰,求()f x .2) 设f 连续,31()x f t dt x c -=+⎰,求c 与(7)f .例 5 1) 设f 在[],a b 上连续,0()()()xF x f t x t dt =-⎰,[],x a b ∈.求证:()()F x f x ''=.2) 设f 在[)0,+∞上连续,且()0f x >,00()()()xx tf t dt x f t dtϕ=⎰⎰.试证:ϕ在()0,+∞上严格增.3) f 为连续可导函数. 试求:()()xa d x t f t dt dx'-⎰.四、求含变限积分未定型极限 例 6 1) 20cos limsin xx x x t dttdt→⎰⎰2) 222020()limxt x x t e dt e dt→∞⎰⎰例 7 1) 设f 在[],a b 上连续,求证:(),x a b ∈时,1lim ()()()()xa h f t h f t dt f x f a n+→+-=-⎰.2) ()f x 在R 上连续,且以T 为周期,求证:0011lim ()()x Tx f t dt f t dt x T→∞=⎰⎰.3)1lim bb -→⎰,(01)b << 存在.4) 设f 在[]0,A (0)A ∀>上可积,lim ()x f x a →+∞=,则01lim()xx f t dt a x →+∞=⎰.五、定积分的极限例 8 1) 求证: 1) 10lim 1nnx dx x +⎰ 2) 120lim (1)n n x dx →∞-⎰3) 2lim sin n n xdx π→∞⎰2) 设f 在[]0,2π上单调,求证:20lim ()sin 0f x xdx πλλ→∞⋅=⎰.六、某些积分不等式1、利用积分关于被积函数的单调性证明不等式.例 9 证明不等式 11201413n x dx n x x n-≤≤-+⎰,n ∈.例 10 证明:1) 211<⋅⋅⋅+< 2) 11ln(1)11ln 2n n n+<++⋅⋅⋅+<+[由此证明11lim(1ln )2n n n ++⋅⋅⋅+-存在,一般称此极限为Euler 常数,记为C ]2、某些不等式的积分形式设函数,f g 在[],a b 上可积,对[],a b 上n 等分, 取[]1,i i i x x ξ-∈,若对任何n ,1i n ≤≤,有11()()nn i i i i b a b af g n n ξξ==--⋅≤⋅∑∑,则有()()b b a a f x dx g x dx ≤⎰⎰. 例 11 1) 证明Schwarz 不等式.设,f g 在[],a b 上可积, 则222()()()()b b ba a a f x g x dx f x dx g x dx ⎡⎤≤⋅⎢⎥⎣⎦⎰⎰⎰.而当,f g 连续时, 等号成立⇔c ∃,g cf =.2) 设f 在[],a b 上连续,且0f >,则21()()()bba af x dx dx b a f x ⋅≥-⎰⎰.3) 设f 在[]0,1上可积,证明:21120()()f x dx f x dx ≤⎰⎰.4) 设,f g 在[],a b 上可积,则有Minkowski 不等式()111222222()()()()b b b a a a f x g x dx f x dx g x dx ⎡⎤⎡⎤⎡⎤+≤+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰.例 12 若ϕ在[]0,a 上连续,f 二阶可导,且()0f x ''≥, 则有Jesen 不等式0011(())(())a af t dt f t dt a a ϕϕ≥⎰⎰.3、其它不等式例13 1) 设f 在[]0,1上连续可导,证明:10()()()f x f t f t dt '≤+⎰,[]0,1x ∈.2) 设0a >,f 在[]0,a 上连续可导,则01(0)()()aa f f x dx f x dx a '≤+⎰⎰.3) 设f 在[]0,1上连续可导, 且(0)0,(1)1f f ==, 求证:110()()f x f x dx e -'-≥⎰.4) 设f 二阶可导, 求证:3()()()()224baa b Mf x dx b a f b a +--≤-⎰. 其中[],sup ()x a b M f x ∈''=.。
定积分的概念 课件
位:h)这段时间内行驶的路程 s(单位:km)是多少? [解] (1)分割 在时间区间[0,2]上等间隔地插入 n-1 个分点,将它等
分成 n 个小区间,记第 i 个小区间为2i-n 1,2ni(i=1,2,…, n),其长度为 Δt=2ni-2i-n 1=n2.每个时间段上行驶的路程
y=0 所围成的曲边梯形的面积时,将区间[0,t]等分成 n
个小区间,则第 i-1 个区间为
()
A.i-n 1,ni C.ti-n 1,tni
B.ni ,i+n 1 D.ti-n 2,ti-n 1
[解析]
每个小区间长度为
t n
,故第i-1个区间的左
端点为0+(i-2)×
t n
=
ti-2 n
,右端点为
ti-2 n
+
t n
=
ti-1 n.
[答案] D
[易错防范] 1.解决本题易错误地认为区间左端为ti-n 1,从而误选 C. 2.在将区间[0,1]等分成 n 个小区间时,其第 1 个小区间的 左端点为 0,第 2 个小区间的左端点为n1,…,依次类推,第 i 个小区间的左端点为i-n 1.
小区间长 Δx=n1为其邻边的小矩形面积,近似代替小曲边梯形面
积.第 i 个小曲边梯形面积,可以近似地表示为ΔSi≈ξ3i ·Δx=
n+ni-13·n1(i=1,2,3,…,n).
(3)求和 因为每一个小矩形的面积都可以作为相应的小曲边梯形面
积的近似值,所以 n 个小矩形面积的和就是曲边梯形 ABCD 面积 S 的近似值,
n
n
即 S=ΔSi≈
i=1
定积分的概念讲课稿课件
实例2 (求变速直线运动的路程)
n
s
lim
0
i 1
v(
i
)ti
二、定积分的概念
定义 设函数 f ( x)在[a, b]上有界,在[a, b]中任意插入
若干个分点 a x x x x x b
0
1
2
n1
n
把区间[a, b]分成n个小区间,各小区间的长度依次为
xi xi xi1,(i 1,2,),在各小区间上任取
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 23
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 33
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 43
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 53
1
A1
A2
-1 o
1x
11 x dx 2 A1
2 1 11 1 2
例4 利用定义计算定积分 1 x2dx. 0
解
将[0,1]n 等分,分点为xi
i ,(i n
1,2,, n )
小区间[ xi1 ,
xi ]的长度xi
1 ,(i n
1,2,, n )
取xi xi,(i 1,2,, n)
n
xn-1 b x
n
A lim 0 i1
f
(xi )xi
实例2 (求变速直线运动的路程)
设物体作直线运动,已知速度 v v(t) 是时间间隔
[T1,T2 ]上的连续函数,且 v(t) 0, 计算在这段时间
内物体所经过的路程。
V(T)
A
B
(1)分割 T1 t0 t1 t2 tn1 tn T2,ti ti ti1
定积分的概念【高等数学PPT课件】
4
2
ba , 24 4
2 4
2 4
sin xdx x
2 2, 4
1
2
2
4
sin xdx x
2. 2
性质7(定积分中值定理)
如果函数f ( x)在闭区间[a, b]上连续,
则在积分区间[a, b]上至少存在一点,
使
b
f ( x)dx
则 b a
f
(
x
)dx
0.
(a b)
例3 比较积分值 -2 e xdx和 2 xdx的大小.
0
0
解 令 f ( x) e x x, x [2, 0]
f ( x) 0,
0 (e x x)dx 0, 2
0 e xdx
0
xdx,
2
2
f ()(b a)
(a b).
a
积分中值公式
证
m(b
a)
b
a
f
( x)dx
M(b
a)
m
1b
b a a
f ( x)dx
M
由闭区间上连续函数的介值定理知
在区间[a, b]上至少存在一个点 ,
使
f
()
b
1
a
b
a
f
(
x)dx,
即
b
a f ( x)dx
dx x
的值.
解
f
(
x)
3
1 sin 3
高数讲义第一节定积分的概念与性质(二)
1 ba
b
a f (x)d x
b
a f ( x)d x f ( ) (b a)
性质7(中值定理):如果 f (x) 在区间 [ a , b ]
上连续,则至少存在一点 [ a , b ] , 使得
b
a
f (x)d x
f ( )
(b a)
f ( )
1 ba
b
a
f
(x)d x
y
f ( )
y f (x)
例1:比较积分
2
1
ln x d x
和
2
1
(ln
x
)
2
d
x
的大小。
解: 因为在区间 [ 1 ,2 ] 上, 0 ln x 1
且除 x 1外, 恒有 ( ln x) 2 ln x ,
因此
2
1
(ln
x
)
2
d
x
2
1 ln x d x
推论2:
b
b
f (x)d x | f (x) |d x
(a b)
值两和边最同大除值以,b则-对a任(何注一意常到数bc-: ma >0c) M ,
至少存在一点m
1
b
[
a
b
aa,
bf
(]x,)d x使得M:
f ( ) = c
即常数
c 1 ba
b
a f (x)d x
介于 m 和 M 之间
由介值定理的推论,至少存在一点 [ a , b] , 使得
或写成
f ( )
(二)基本性质
性质1:代数和的积分等于积分的代数和,即
b
b
b
定积分的概念讲义
定积分的概念【知识要点】(1)定积分的定义及相关概念① 分割 如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),区间[x i -1,x i ] 的长度1i i i x x x -∆=-。
② 近似取代 “以直代取”,用矩形的面积近似代替小曲边梯形的面积,求出每个小曲边梯形面积的近似值.③ 求和 作和式i =1n f (ξi )Δx =∑i =1nb -anf (ξi ), ④ 取极限 当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛ab f (x )d x .即:()()1lim n i n i b b af x dx f a n ξ→∞=-=∑⎰ 注:在⎠⎛ab f (x )d x 中,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. (2)定积分的几何意义从几何上看,如果在区间[a,b]上的函数()f x 连续且恒有()0f x ≥。
那么定积分()baf x dx ⎰表示由直线,x a x b ==(a b ≠),0y =和曲线()y f x =所围成的曲边梯形的面积。
(3 )定积分的性质 ①a b dx ba-=⎰1②⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数). (其中k 是不为0的常数) (定积分的线性性质)③⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x . (定积分的线性性质)④⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ). (定积分对积分区间的可加性)说明:①推广:1212[()()()]()()()bb bbm m aaaaf x f x f x dx f x dx f x dx f x ±±±=±±±⎰⎰⎰⎰②推广:121()()()()kbc c baac c f x dx f x dx f x dx f x dx =+++⎰⎰⎰⎰③性质解释:PCN M B AabOyxy=1yxOba【例题精讲】例1.计算定积分21(1)x dx +⎰分析:所求定积分即为如图阴影部分面积,面积为52。
定积分的应用讲义公开课一等奖优质课大赛微课获奖课件
A
b a
f (x) g(x) dx.
第15页
例1.用定积分表示图中四个阴影部分面积
y
f(x)=x2
y
f(x)=x2
y
y f(x)=(x-1)2-1
f(x)=1
0 a x -10 2 x a 0 b x -10 2 x
①
②
③
④
解: (1)在图①中,被积函数f (x) x2在[0,a]
上连续,且f (x) 0,根据定积分的几何意
y
f (x)
dV ( x dx)2 f ( x) x2 f ( x)
2f ( x)dx
b
Vy 2 a x f ( x)dx
x
x x dx
第38页
利用公式,
b
Vy 2 a x f ( x)dx
可知上例中
2a
Vy 2 0 x | f ( x) | dx
2
20 a(t sin t) a(1 cos t)d[a(t sin t)]
o 解 过原点 及点p(h, r) y
P
直线方程y 为 r x
o
h
r
h
x
取积分变量为x,它的变化区间为[0, h]
圆锥体中相应于[0, h]上任一小区间[ x, x dx]的薄片
第33页
的体积近似于底半径为
r h
x
、高为dx
的扁圆柱体的体
积即体积元素
dV
r h
2
x dx
y
o
于是所求圆锥体的体积为
A
1( 0
x
x2 )dx
2 3
3
x2
x3 3
1 0
1. 3
定积分的概念课件
欢迎来到定积分的概念课件!本课件将带你深入探索定积分的定义、基本性 质、计算方法,并展示在不同领域中的应用和几何解释。
定积分的定义
定积分是将曲线下的面积划分成无穷多个矩形,然后通过取极限的方式来求 得曲线下的总面积。
定积分的基本性质
1 线性性质
定积分具有线性性质,可以对函数的和、差和常数倍进行运算。
定积分的概念在实际生活中的应用
统计学
定积分在统计学中有着广泛的 应用,例如求解概率密度函数、 计算累积分布函数。
工程学
工程学中常常使用定积分来计 算流体力学、电磁学以及结构 分析等问题。
经济学
经济学中利用定积分来计算总 产出、消费量和劳动力需求等 关键指标。
定积分在物理学中的应用
1
质量分布
通过定积分求解物体的质量分布,可以帮助
电荷密度
2
我们了解物体的物理特性和性能。
对于并进一步推导出
电场强度。
3
能量积分
定积分可以应用于物体内部的能量分布计算, 例如弹簧势能和微分力的功。
定积分的几何解释
定积分的几何解释是曲线下面积,这代表了函数图像与坐标轴之间的区域所占空间的大小。
2 区间可加性
若函数在闭区间[a, b]上可积,那么它在其中任一子区间上也可积。
3 保号性质
定积分的结果能够反映函数在区间上正负值的变化情况。
利用定积分求曲线下面积
几何解释
通过定积分,我们可以计算曲线与坐标轴之间的面积, 这在几何学上具有重要意义。
计算方法
定积分可以通过求解函数的原函数,并计算两个边界值 之差来实现。
非常好的定积分与微积分基本定理复习讲义
定积分与微积分基本定理复习讲义备考方向要明了考什么怎么考1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.2.了解微积分基本定理的含义.1.考查形式多为选择题或填空题.2.考查简单定积分的求解.3.考查曲边梯形面积的求解.4.与几何概型相结合考查.归纳·知识整合1.定积分1 定积分的相关概念:在错误!错误!f x d x中,a,b分别叫做积分下限与积分上限,区间a,b叫做积分区间,f x叫做被积函数,x叫做积分变量,f x d x叫做被积式.2 定积分的几何意义①当函数f x在区间a,b上恒为正时,定积分错误!错误!f x d x的几何意义是由直线x=a,x=b a≠b,y=0和曲线y=f x所围成的曲边梯形的面积左图中阴影部分.②一般情况下,定积分错误!错误!f x d x的几何意义是介于x轴、曲线f x以及直线x=a,x=b之间的曲边梯形面积的代数和右上图中阴影所示 ,其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数.3 定积分的基本性质:①错误!错误!kf x d x=k错误!错误!f x d x.②错误!错误!f1x±f2x d x=错误!错误!f1x d x±错误!错误!f2x d x.③错误!错误!f x d x=错误!错误!f x d x+错误!错误!f x d x.探究 1.若积分变量为t,则错误!错误!f x d x与错误!错误!f t d t是否相等提示:相等.2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算.3.定积分错误!错误!f x-g x d x f x >g x的几何意义是什么提示:由直线x=a,x=b和曲线y=f x ,y=g x所围成的曲边梯形的面积.2.微积分基本定理:如果f x是区间a,b上的连续函数,并且F′ x=f x ,那么错误!错误!f x d x=F b-F a ,这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式.为了方便,常把F b-F a记成F x错误!错误!,即错误!错误!f x d x=F x错误!错误!=F b-F a.课前预测:错误!错误!d x等于A.2ln 2 B.-2ln 2 C.-ln 2 D.ln 22.教材习题改编一质点运动时速度和时间的关系为V t=t2-t+2,质点作直线运动,则此物体在时间 1,2 内的位移为3.教材习题改编直线x=0,x=2,y=0与曲线y=x2所围成的曲边梯形的面积为________.4.教材改编题错误!错误!错误!d x=________.5.由y=错误!,直线y=-x+错误!所围成的封闭图形的面积为________考点一利用微积分基本定理求定积分例1 利用微积分基本定理求下列定积分:1 错误!错误! x 2+2x +1 d x ;2 错误!错误! sin x -cos x d x ;3 错误!错误!x x +1 d x ;4 错误!错误!错误!d x ;5 20π⎰ sin 2错误!d x . ——————————————————— 求定积分的一般步骤:1 把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差;2 把定积分用定积分性质变形为求被积函数为上述函数的定积分;3 分别用求导公式找到一个相应的原函数;4 利用牛顿—莱布尼兹公式求出各个定积分的值;5 计算原始定积分的值.强化训练:1.求下列定积分: 1 错误!错误!|x -1|d x ; 2 20π⎰错误!d x .考点二 利用定积分的几何意义求定积分例2 错误!错误!错误!d x =________.变式:在本例中,改变积分上限,求错误!错误!错误!d x 的值.———————————————————利用几何意义求定积分的方法1 当被积函数较为复杂,定积分很难直接求出时,可考虑用定积分的几何意义求定积分.2 利用定积分的几何意义,可通过图形中面积的大小关系来比较定积分值的大小.强化训练:2. 2014·福建模拟 已知函数f x =错误!错误! cos t -sin t d t x >0 ,则f x 的最大值为________.考点三:利用定积分求平面图形的面积例3 2014·山东高考由曲线y=错误!,直线y=x-2及y轴所围成的图形的面积为A.错误!B.4 D.6变式训练:若将“y=x-2”改为“y=-x+2”,将“y轴”改为“x轴”,如何求解———————————————————利用定积分求曲边梯形面积的步骤1 画出曲线的草图.2 借助图形,确定被积函数,求出交点坐标,确定积分的上、下限.3 将“曲边梯形”的面积表示成若干个定积分的和或差.4 计算定积分,写出答案.强化训练:3. 2014·郑州模拟如图,曲线y=x2和直线x=0,x=1,y=错误!所围成的图形阴影部分的面积为考点四:定积分在物理中的应用例4 列车以72 km/h的速度行驶,当制动时列车获得加速度a=- m/s2,问列车应在进站前多长时间,以及离车站多远处开始制动———————————————————1.变速直线运动问题如果做变速直线运动的物体的速度v关于时间t的函数是v=v t v t ≥0 ,那么物体从时刻t=a到t=b所经过的路程为错误!错误!v t d t;如果做变速直线运动的物体的速度v关于时间t的函数是v=v t v t≤0 ,那么物体从时刻t=a到t=b所经过的路程为-错误!错误!v t d t.2.变力做功问题物体在变力F x的作用下,沿与力F x相同方向从x=a到x=b所做的功为错误!错误!F x d x.强化训练:4.一物体在力F x=错误!单位:N 的作用下沿与力F x相同的方向运动了4米,力F x做功为A.44 J B.46 J C.48 J D.50 J1个定理——微积分基本定理由微积分基本定理可知求定积分的关键是求导函数的原函数,由此可知,求导与积分是互为逆运算.3条性质——定积分的性质1 常数可提到积分号外;2 和差的积分等于积分的和差;3 积分可分段进行.3个注意——定积分的计算应注意的问题1 若积分式子中有几个不同的参数,则必须分清谁是积分变量;2 定积分式子中隐含的条件是积分上限不小于积分下限;3 面积非负, 而定积分的结果可以为负.易误警示——利用定积分求平面图形的面积的易错点典例 2013·上海高考已知函数y=f x的图象是折线段ABC,其中A 0,0 ,B错误!,C 1,0 .函数y=xf x0≤x≤1 的图象与x轴围成的图形的面积为________.1.本题易写错图形面积与定积分间的关系而导致解题错误.2.本题易弄错积分上、下限而导致解题错误,实质是解析几何的相关知识和运算能力不够致错.3.解决利用定积分求平面图形的面积问题时,应处理好以下两个问题:1 熟悉常见曲线,能够正确作出图形,求出曲线交点,必要时能正确分割图形;2 准确确定被积函数和积分变量.变式训练:1.由曲线y=x2,y=x3围成的封闭图形面积为2. 2014·山东高考设a>0.若曲线y=错误!与直线x=a,y=0所围成封闭图形的面积为a2,则a=________.定积分与微积分基本定理检测题一、选择题本大题共6小题,每小题5分,共30分错误!错误!d x=A.ln x+错误!ln2x-12.2012·湖北高考已知二次函数y=f x的图象如图所示,则它与x 轴所围图形的面积为3.设函数f x=ax2+b a≠0 ,若错误!错误!f x d x=3f x0 ,则x0等于A.±1 C.±错误!D.24.设f x=错误!则错误!错误!f x d x=D.不存在5.以初速度40 m/s竖直向上抛一物体,t秒时刻的速度v=40-10t2,则此物体达到最高时的高度为m m m m6.2013·青岛模拟由直线x=-错误!,x=错误!,y=0与曲线y=cos x所围成的封闭图形的面积为B.1二、填空题本大题共3小题,每小题5分,共15分7.设a =错误!错误!sin x d x ,则曲线y =f x =xa x +ax -2在点 1,f 1 处的切线的斜率为________.8.在等比数列{a n }中,首项a 1=错误!,a 4=错误!错误! 1+2x d x ,则该数列的前5项之和S 5等于________.9. 2013·孝感模拟 已知a ∈错误!,则当错误!错误! cos x -sin x d x 取最大值时,a =________.三、解答题 本大题共3小题,每小题12分,共36分10.计算下列定积分: 1 20π⎰ sin 2x d x ; 2 错误!错误!错误!2d x ; 3 120⎰e 2x d x . 11.如图所示,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.12.如图,设点P 从原点沿曲线y =x 2向点A 2,4 移动,直线OP 与曲线y =x 2围成图形的面积为S 1,直线OP 与曲线y =x 2及直线x =2围成图形的面积为S 2,若S 1=S 2,求点P的坐标.备选习题1.一物体做变速直线运动,其v -t 曲线如图所示,则该物体在错误! s ~6 s 间的运动路程为________.2.计算下列定积分:1 31-⎰ 3x 2-2x +1 d x ;2 错误!错误!错误!d x . 3.求曲线y =错误!,y =2-x ,y =-错误!x 所围成图形的面积.4.某技术监督局对一家颗粒输送仪生产厂进行产品质量检测时,得到了下面的资料:这家颗粒输送仪生产厂生产的颗粒输送仪,其运动规律属于变速直线运动,且速度v 单位:m/s 与时间t 单位:s 满足函数关系式v t =错误!某公司拟购买一台颗粒输送仪,要求1 min 行驶的路程超过7 673 m,问这家颗粒输送仪生产厂生产的颗粒输送仪能否被列入拟挑选的对象之一 定积分与微积分基本定理复习讲义答案前测:1.D 2.A 3.错误! 4.错误!π 5.错误!-2ln 2 例1: 1 错误!. 2 2. 3 错误!. 4 错误!e 4-错误!e 2+ln 2. 5 错误!.变式1:解: 1 |x -1|=错误!故错误!错误!|x -1|d x =错误!错误! 1-x d x +错误!错误! x -1 d x =错误!错误!错误!+错误!错误!错误!=错误!+错误!=1. 2 20π⎰错误!d x =20π⎰|sin x -cos x |d x =40π⎰ cos x -sin x d x +24ππ⎰ sin x -cos x d x = sin x +cos x 40π+ -cos x -sin x 24ππ=错误!-1+ -1+错误! =2错误!-2.例2: 自主解答 错误!错误!错误!d x 表示y =错误!与x =0,x =1及y =0所围成的图形的面积由y =错误!得 x -1 2+y 2=1 y ≥0 ,又∵0≤x ≤1,∴y =错误!与x =0,x =1及y =0所围成的图形为错误!个圆,其面积为错误!. ∴错误!错误!错误!d x =错误!.互动:解:错误!错误!错误!d x 表示圆 x -1 2+y 2=1在第一象限内部分的面积,即半圆的面积,所以 错误!错误!错误!d x =错误!.变式2. 错误!-1 例3.C 互动:错误!. 变式3.D 例4: 自主解答 a =- m/s 2,v 0=72 km/h =20 m/s.设t s 后的速度为v ,则v =20-.令v =0,即20- t =0得t =50 s .设列车由开始制动到停止所走过的路程为s ,则s =错误!错误!v d t =错误!错误! 20-d t = 20t -错误!错误!=20×50-×502=500 m ,即列车应在进站前50 s 和进站前500 m 处开始制动.变式4.46典例: 解析 由题意可得f x =错误!所以y =xf x =错误!与x 轴围成图形的面积为120⎰10x 2d x +112⎰ 10x -10x 2 d x =错误!x 3120+错误!112错误!=错误!. 答案 错误! 变式5. 1.A 2. 错误!检测题答案 CBCCAD 7.4+2ln 2 8.错误! 9.错误!10.解: 1 错误!. 2 错误!+ln 错误!. 3 错误!e -错误!.11.解:抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与x 轴所围图形的面积S =错误!错误! x -x 2 d x =错误!错误!错误!=错误!. 又错误! 由此可得,抛物线y =x -x 2与y =kx 两交点的横坐标为x 3=0,x 4=1-k ,所以,错误!=错误!错误! x -x 2-kx d x =错误!错误!错误!=错误! 1-k 3.又知S =错误!,所以 1-k 3=错误!,于是k =1- 错误!=1-错误!.12.解:设直线OP 的方程为y =kx ,点P 的坐标为 x ,y ,则错误!错误! kx -x 2 d x =错误!错误! x 2-kx d x ,即错误!错误!错误!=错误!错误!错误!,解得错误!kx 2-错误!x 3=错误!-2k -错误!,解得k =错误!,即直线OP 的方程为y =错误!x ,所以点P 的坐标为错误!. 备选题:1.解析:由题图可知,v t =错误!因此该物体在错误! s ~6 s 间运动的路程为s =612⎰v t d t =112⎰2t d t +错误!错误!2d t +错误!错误!错误!d t =t 2112+2t |错误!+错误!错误!错误!=错误! m . 答案:错误! m 2.解: 1 31-⎰ 3x 2-2x +1 d x = x 3-x 2+x 31-=24.2 错误!错误!错误!d x =错误!错误!x d x +错误!错误!错误!d x +错误!错误!错误!d x=错误!x2错误!错误!+ln x错误!错误!-错误!错误!错误!=错误! e2-1 + ln e-ln 1 -错误!=错误!e2-错误!+错误!.3.解:由错误!得交点A 1,1 由错误!得交点B 3,-1 .故所求面积S=错误!错误!错误!d x+错误!错误!错误!d x =错误!错误!错误!+错误!错误!错误!=错误!+错误!+错误!=错误!.4.解:由变速直线运动的路程公式,可得s=错误!错误!t2d t+错误!错误! 4t+60 d t+错误!错误!140d t=错误!t3错误!错误!+ 2t2+60t错误!错误!+140t错误!错误!=7 133 错误! m <7 676 m .∴这家颗粒输送仪生产厂生产的颗粒输送仪不能被列入拟挑选的对象之一.。
定积分与微积分基本定理讲义
定积分与微积分基本定理讲义一、知识梳理1.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑n i =1f (ξi )Δx =∑n i =1b -a n f (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作ʃb a f (x )d x ,即ʃb a f (x )d x =lim n →∞∑n i =1 b -a nf (ξi ).在ʃb a f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.2.定积分的性质(1)ʃb a kf (x )d x =k ʃb a f (x )d x (k 为常数);(2)ʃb a [f 1(x )±f 2(x )]d x =ʃb a f 1(x )d x ±ʃb a f 2(x )d x ;(3)ʃb a f (x )d x =ʃc a f (x )d x +ʃb c f (x )d x (其中a <c <b ). 3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么ʃb a f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.为了方便,常把F (b )-F (a )记作F (x )|b a ,即ʃb a f (x )d x =F (x )|b a =F (b )-F (a ).注意:1.定积分应用的常用结论当曲边梯形位于x 轴上方时,定积分的值为正;当曲边梯形位于x 轴下方时,定积分的值为负;当位于x 轴上方的曲边梯形与位于x 轴下方的曲边梯形面积相等时,定积分的值为零.2.若函数f (x )在闭区间[-a ,a ]上连续,则有(1)若f (x )为偶函数,则ʃa -a f (x )d x =2ʃa 0f (x )d x .(2)若f (x )为奇函数,则ʃa -a f (x )d x =0.题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)设函数y =f (x )在区间[a ,b ]上连续,则ʃb a f (x )d x =ʃb a f (t )d t .( )(2)若函数y =f (x )在区间[a ,b ]上连续且恒正,则ʃb a f (x )d x >0.( )(3)若ʃb a f (x )d x <0,那么由y =f (x ),x =a ,x =b 以及x 轴所围成的图形一定在x 轴下方.( )(4)曲线y =x 2与y =x 所围成图形的面积是ʃ10(x 2-x )d x .( )题组二:教材改编2.ʃe +121x -1d x =________.3.ʃ0-11-x 2d x =________. 4.[汽车以v =(3t +2)m/s 作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的位移是________ m. 题组三:易错自纠5.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( )A .2 2B .4 2C .2D .46.若ʃT 0x 2d x =9,则常数T 的值为________.7.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则ʃ1-1f (x )d x 的值为________. 三、典型例题题型一:定积分的计算1.定积分ʃ1-1(x 2+sin x )d x =______.2.ʃ1-1e |x |d x 的值为( )A .2B .2eC .2e -2D .2e +23.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],2-x ,x ∈(1,2],则ʃ20f (x )d x 等于( ) A.34B.45C.56 D .不存在思维升华:运用微积分基本定理求定积分时要注意以下几点:(1)对被积函数要先化简,再求积分.(2)若被积函数为分段函数的定积分,依据定积分“对区间的可加性”,先分段积分再求和.(3)对于含有绝对值符号的被积函数,要先去掉绝对值符号再求积分.题型二:定积分的几何意义命题点1:利用定积分的几何意义计算定积分典例 (1)计算:ʃ313+2x -x 2 d x =________.(2)若ʃm -2-x 2-2x d x =π4,则m =________. 命题点2:求平面图形的面积典例由曲线xy =1,直线y =x ,y =3所围成的封闭平面图形的面积为________.思维升华:(1)根据定积分的几何意义可计算定积分.(2)利用定积分求平面图形面积的四个步骤①画出草图,在直角坐标系中画出曲线或直线的大致图象;②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;③把曲边梯形的面积表示成若干个定积分的和;④计算定积分,写出答案.跟踪训练 (1)定积分ʃ309-x 2d x 的值为________. (2)如图所示,由抛物线y =-x 2+4x -3及其在点A (0,-3)和点B (3,0)处的切线所围成图形的面积为______.题型三:定积分在物理中的应用典例 一物体作变速直线运动,其v -t 曲线如图所示,则该物体在12s ~6 s 间的运动路程为____ m.思维升华:定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =ʃb a v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =ʃb a F (x )d x .跟踪训练 一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向作直线运动,则由x =1运动到x =2时,F (x )做的功为( )A. 3 JB.233 JC.433J D .2 3 J答案 C 四、反馈练习1.π220sin d 2x x 等于( ) A .0 B.π4-12C.π4-14D.π2-1 2.ʃ1-1(1-x 2+x )d x 等于( )A .πB.π2 C .π+1 D .π-13.已知函数y =f (x )的图象为如图所示的折线ABC ,则ʃ1-1[(x +1)f (x )]d x 等于( )A .2B .-2C .1D .-1 5.设f (x )=⎩⎪⎨⎪⎧ x 2,x ∈[0,1],1x ,x ∈(1,e](其中e 为自然对数的底数),则ʃe 0f (x )d x 的值为( ) A.43B.54C.65D.76 6.设a =ʃ10cos x d x ,b =ʃ10sin x d x ,则下列关系式成立的是( )A .a >bB .a +b <1C .a <bD .a +b =17.定积分ʃ20|x -1|d x 等于( ) A .1 B .-1 C .0 D .28.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t (t 的单位:s ,v 的单位:m/s)行驶至停止,则在此期间汽车继续行驶的距离(单位:m)是( )A .1+25ln 5B .8+25ln 113C .4+25ln 5D .4+50ln 2 9.π20π2sin()d 4x x +=⎰ ________. 10.由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为________. 11.设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.12.已知二次函数y =f (x )的图象如图所示,则它与x 轴所围成的面积为________.13.由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( ) A.13B.310C.14D.1514.若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e x d x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 115.ʃ1-1(1-x 2+e x -1)d x =______. 16.若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则ʃ20f (x )d x =________.。
定积分第一节定积分的概念及性质-25页PPT精品文档
性质1 a b [f(x ) g (x )d ] x a b f(x ) d x a b g (x ) d.x
性质2
b
b
a kf ( x)dx ka f ( x)dx
(k 为常数).
性质3 假 设 a<c<b
a bf(x )d x a cf(x )d x c bf(x )d.x
部分路程值
某时刻的速度
n
(2)求和 s v(i )Dti
i1
(3)取极限 m D t 1 ,a D t2 , x ,D tn } {
n
路程的精确值 slim 0i1v(i)Dti
二、定积分定义
a x 0 < x 1 < x 2 < < x n b ,
任一种分法 任取
b
n
a
f
(x)dx
lim
0 i1
f
(xi )Dxi
积分下限 被 积 函 数
被积 积分 表变 达量
积 分 和
式
定积分仅与被积函数及积分区间有关 , 而与积分 变量用什么字母表示无关 , 即
b
f (x)dx
a
b f (t ) dt
b
f (u)du
a
a
定积分存在的条件
定理1. 定理2.
(4)取极限:设max{Dx1, Dx2,, Dxn}, 曲边梯形的面积为
n
x A l 0 i 1 f ( i ) D x i i m
2 (求变速直线运动的路程)
设某物体作直线运动,已知速度vv(t)是 时间间隔[T1,T2]上t 的一个连续函数,且 v(t)0,求物体在这段时间内所经过的路程.
定积分的概念课件
区间可加性
总结词
定积分的区间可加性是指定积分在区间上的 值等于该区间内各小区间的定积分之和。
详细描述
定积分的区间可加性表明,对于任意两个不 相交的区间$[a, b]$和$[c, d]$,有
$int_{a}^{b}f(x)dx+int_{c}^{d}f(x)dx=int_ {a}^{d}f(x)dx$。这意味着可以将一个大区 间分割成若干个小区间,然后求各小区间的 定积分,再将它们相加,得到整个大区间的
体积计算
规则体积
对于规则的立体图形,如长方体、圆柱体、圆锥体等 ,可以直接利用定积分的值来计算其体积。例如,对 于圆柱体,其体积可以通过定积分$int_{a}^{b} 2pi r(h) dr$来计算。
曲顶体积
对于曲顶的立体图形,如球、球缺等,也可以利用定 积分来计算其体积。通过将曲顶立体分割成若干小锥 体,然后求和这些小锥体的体积,最后利用极限思想 得到整个曲顶立体的体积。
定积分的性质
02
线性性质
总结词
定积分的线性性质是指定积分具有与加法和数乘运算类似的性质。
详细描述
定积分的线性性质允许我们将一个被积函数与常数相加或相乘,其结果等于将相应的常数加到或乘到 该函数的定积分上。即,对于两个函数的定积分,有$int (k_1f+k_2g) dx = k_1int f dx + k_2int g dx$,其中$k_1$和$k_2$是常数。
应用
无穷区间上的积分在解决一些实际问题时非常有用,例如 求某些物理量(如质量、面积等)的无穷累加和。
一致收敛性
定义
01
一致收敛性是函数序列的一种收敛性质,它描述了函数序列在
某个区间上的一致收敛性。
数学《定积分的应用》讲义
第十章 定积分的应用1 平面图形的面积一、直角坐标系下平面图形连续曲线()(0)y f x =≥直线,x a x b ==和x 轴所围成的曲边梯形面积为S=()bbaaf x dx ydx =⎰⎰;若()y f x =在[,]a b 上不是非负的, 则上述围成图形的面积为S=|()|||bbaaf x dx y dx =⎰⎰.一般地,1) 由上下两根连续曲线2()y f x =和1()y f x =以及直线,x a x b ==所围成平面图形面积为 21S=()()ba f x f x dx -⎰.2) 由两条曲线1()y f x =,2()y f x =围成的平面图形面积为21S=()()ba f x f x dx -⎰,其中,x a x b ==与曲线1()y f x =与2()y f x =所有交点中横坐标最小值和最大值.例 1 求曲线1, 0, 2xy x y x =-==围成的平面图形面积.例 2 求由抛物线2y x =直线230x y --=所围成的平面图形面积.设[,]a b 上的曲边梯形的曲边由方程()x t χ=,()y y t =,t αβ≤≤,()a χα=,()b χβ=. 又设()0t χ'>(())t χ↑,于是存在反函数1t=()x χ-, 则曲边方程为[]1()(()),,y y t y x x a b χ-==∈.从而,曲边梯形面积为1(())ba S y x dx χ-=⎰()'()y t t dt βαχ=⎰y dx βα=⎰例 3 求由摆线(sin ),(1cos )(0)x a t t y a t a =-=->的一拱与x 轴所围成的平面图形面积.例 4 求椭圆22221x y a b+=所围成图形面积.二、极坐标下平面图形的面积设曲线C 由极坐标方程() [,]r r θθαβ=∈给出,其中()r θ在[,]αβ上连续,2βαπ-≤下求由曲线C 与两射线,θαθβ==所围成的平面图形(称之为扇形)面积.221121()21()21()2i i i n ni i i i i A r A A r A r d βαξθξθθθ==∆≈∆=∆≈⋅∆⇒=∑∑⎰例 5 求由双纽线22cos 2r a θ=所围成平面图形的面积.(35cos 20,[,][,]4444ππππθθ≥∈-或)[ 简单介绍微元法:x 的范围a≤x≤b微元 dx, ds=f(x)dx (△s ≈f(x)△x )⇒()ba S f x dx =⎰ 微元 d θ 21()2dA r d θθ=21()2A r d βαθθ=⎰ ]“化曲为直”,“以直代曲”.三、微元法若令()()xa x f t dt Φ=⎰,则当f 为连续函数时,()()x f x 'Φ=或()()d x f x dx Φ=,且()0, ()()baa b f x dx Φ=Φ=⎰.(现在把问题倒过来) 如求的量Φ是分布在某区间[,]a x 上的, 或说其是x 的函数()x Φ=Φ,[,]x a b ∈,且当x=b 时,()b Φ就是最终所求值.任取小区间[,][,]x x x a b +∆⊂,若能把Φ的微小增量∆Φ近似表示为x ∆的线性形式 ()f x x ∆Φ≈∆其中f 为某一连续函数,且0x ∆→时,()()f x x o x ∆Φ-∆=∆, 即 ()d f x dx Φ=从而只要把()ba f x dx ⎰积分出来就是所求结果.上述方法称为微元法. 使用微元法时要求:i)所求量Φ关于分布区间是代数可加的 ()f x x ∆Φ≈∆ii)微元法的关键是正确给出∆Φ的近似表达式,在一般情形下,要严格检验()f x x ∆Φ-∆是否为x ∆的高阶无穷小.2211() ()22A y x dA y dxA r dA r d θθθθ∆≈∆=∆≈∆=2. 由平行截面面积求体积一、已知平行截面面积() () ()ba a xb v A x xdv A x dx v A x dx≤≤∆≈∆=⇒=⎰祖暅原理:夫幂势相同,则积不容异.[亦可通过分割,求和取极限方法得到]例 1 由两个圆柱面222x y a +=和222x z a +=所围成立体体积.例 2 求由椭球面2222221x y z a b c++=所围成立体(椭球)的体积.二、旋转体设f 为[,]a b 上的连续函数(f(x)≥0),则曲线y=f(x)绕x 轴旋转一周得到的旋转体V ,易证V 的体积为2()ba V f x dx π=⎰例 3 求圆锥体的体积公式.例 4 求圆222(),(0)x y R r r R +-≤<<绕x 轴旋转一周所得到的环状立体体积.1) 22[[rrrrV R dx R dx ππ--=--⎰⎰222) ()2rrV A x dx r R π-==⎰例 5 sin ,0y x x π=≤≤,绕x 轴(y 轴)旋转所得立体体积.220sin 2V xdx πππ==⎰1()V A y dy =⎰22()[(arcsin )(arcsin )]A y y y ππ=--3 平面曲线的弧长1、弧长的定义设平面曲线c AB =,在A,B 上取点011,,,n n A P P P P B -==构成AB 的一个分割,记作T ,11i i i i P P P P --≈,11ni i i s PP -=≈∑,11||||max i i i nT P P -≤≤=,11()ni i i s T P P -==∑.定义 1 对于曲线c 上无论怎样的分割T ,如果存在有限数s ,使0lim ()T s T s →=,那么称曲线c 是可求长的,并把极限s 定义为曲线c 的弧长.2、弧长的计算设曲线方程(),y f x a x b =≤≤, 由微元法, ds ==as ⇒=⎰进一步, 若曲线c 的方程为[](),(),,x x t y y t t αβ==∈,则ds ==s βα=⎰(提出光滑曲线概念) ,x y ''连续定义 2 设平面曲线c 由参数方程 [](),(),,x x t y y t t αβ==∈ (*)给出.若()x t ,()y t 在[],αβ上有连续导数,22()()0x t y t ''+≠,则称c 为一条光滑曲线.定理 设曲线c 由参数方程(*)给出,若c 为一条光滑曲线,则c 是可求长的,且 弧长为s βα=⎰.例 1 求摆线一拱(sin ),(1cos ),(0)x a t t y a t a =-=->一拱的弧长.(202sin 2ts a dt π=⎰)例 2 求悬链线2x xe e y -+=,从x a =-到x a =一段的弧长.若曲线c 由极坐标方程[](),,r r θθαβ=∈给出,则[]()cos ,()sin ,,x r y r θθθθθαβ==∈从而 ()()cos ()sin ,x r r θθθθθ''=- ()()sin ()cos y r r θθθθθ''=+. 故 2222()()()()x y r r θθθθ'''+=+则当()r θ'在[],αβ上连续,且()r θ与()r θ'不同时为0时,此极坐标曲线为一光滑曲线. 此时弧长公式为s βαθ=⎰.例 3 求心形线(1cos ),(0)r a a θ=+⋅>的弧长.弧长01lim ni T i s s →==∆∑, ()()()222i i i s x y ∆=∆+∆ ,1i i i x x x -∆=-,1()()()i i i i i y f x f x f x ξ-'∆=-=∆, 11n ni i i i s x ==⇒∆=∑as ⇒=⎰(f '连续)下面反过来求弧长微分dS . 考察从A 到AB 上一点(,)M x y 的弧长()s x ,则()as x =⎰()ds S x dx'⇒==ds ⇒=几何意义 ds 为s ∆的线性主要部分直线段MP 之长就和曲线MM '之长很接近(相差一个高阶无穷小). 若[](),,r r θθαβ=∈, 则s βαθ=⎰.4 旋转曲面的面积设平面光滑曲线C 的方程为()y f x =,[],x a b ∈,(()0)f x ≥此段曲线绕x 轴旋转一周得到一旋转曲面.下面求其面积.[]()()S f x f x x π∆≈++∆[]2()f x y x π=+∆由于0y ∆→→(0)x ∆→(2()2(()f x y x f x x o x ππ⇒+∆-=∆2(dS f x π⇒=2(ba S f x π⇒=⎰若曲线C 由参数方程(),()x x t y y t ==,[],t αβ∈,且()0y t ≥,则曲线C 绕x 轴旋转所得的旋转曲面的面积为2(S y t βαπ=⎰.例 1 求圆222x y R +=在[][]12,,x x R R ⊂-上的弧段绕x 轴旋转所得球带的面积.例2求内摆线33==绕x轴旋转所得旋转曲面的面积.x a t y a tcos,sin5 定积分在物理中的某些应用一、液体静压力例1如图所示为一管道的圆形闸门,半径为3米. 问水面齐及直径时, 闸门所受到的水的静压力有多大?二、引力例2一根长为l的均匀细杆,质量为M, 在其中垂线上相距细杆为a处有一质量为m的质点,试求细杆对质点的万有引力.三、功与平均功率例3一圆锥形水池,池口直径30米,深10米,池中盛满水,试求将全部池水抽出池外所作的功.例 4 在地面上将质量为m 的物体沿着轨线((),(),())t x t y t z t →举起,()a t b ≤≤,(t 为时间,,,x y z 为空间笛卡尔坐标) 要求在时间段[],a b 内克服重力做的功.这样所做的功只依赖于(),()r a r b ,即只依赖于物体在初始时刻和结束时刻离地球中心的距离.令()GMU r r =,从而将质量为m 的物体从半径为0r 的球面上任一点移动到半径为1r 的球面上任一点,克服重力所做的功01,01(()())r r W m U r U r =-,称()U r 为牛顿位势. 设R 为地球半径,则2()gR U r r =,2()GMg R=.现将质量为m 的物体从地球表面飞到距地心无限远的地方, 所需的功为,lim R r r W →+∞,即22,lim ()R r gR gR W W m mgR R r∞→+∞==-=. 由能量守恒定律,要求初速度0v 至少为2012mv mgR =.0v =. ——第二宇宙速度264()P。
定积分的概念 课件
定积分的概念
1.定积分的概念 如果函数 f(x)在区间[a,b]上连续,用分点 a=x0<x1 <…<xi-1<xi<…<xn=b,将区间[a,b]等分成 n 个小 区间,在每个小区间[xi-1,xi]上任取一点 ξi(i=1,2,…, n),作和 sn=f(x1)Δx+f(x2)Δx+…+f(xi)Δx+…f(xn)Δ x,当 n→∞时,上述和式无限接近某个常数,
(3)当曲边梯形的面积在 x 轴上方、x 轴下方均存在 时,如图③所示,则∫baf(x)dx=S 上-S 下,若 S 上=S 下, 则∫baf(x)dx=0.
温馨提示 在利用定积分的几何意义求定积分时, 要特别注意曲边梯形所在的位置,以此为依据确定积分 值的符号.
4.定积分的性质 (1)∫bakf(x)dx=_k_∫__ba_f(_x_)_d_x_ (k 为常数); (2)∫ba[f1(x)±f2(x)]dx=_∫__baf_1_(x_)_d_x_±__∫__ba_f2_(_x_)d_x__; (3)∫baf(x)dx=∫__caf_(_x_)d__x_+__∫__bcf_(_x_)d_x_,其中 a<c<b.
(2)∫21xdx 表示的是图②中阴影部分所示的梯形的面 积,由于这个梯形的面积为32,所以∫21xdx=32.
(3)在平面上 y= 9-x2表示的几何图形 为以原点为圆心,以 3 为半径的上半圆,如图 ③所示,其面积 S=12·π·32=92π.
由定积分的几何意义,知∫3-3 9-x2dx=92π.
温馨提示 注意积分结果的符号问题.因为定积分∫
baf(x)dx 是介于 x 轴、函数 f(x)的图象以及直线 x=a,x= b 之间的各部分面积的代数和,在 x 轴上方的取正号,在 x 轴下方的取负号.
最新定积分的概念1教学讲义PPT课件
b f ( x ) d x c f ( x ) d x b f ( x ) d x 。
aa c
Oa
bx
特 别 地 , 当 a b 时 , 有 b f ( x ) d x 0 。 a
定积分的几何意义:
当f(x)0时,由yf (x)、xa、xb 与 x 轴所围成的
曲边梯形位于 x 轴的下方,
a x0 x1 x2 xi1 xi xn b 将区间[a,b] 等分成 n 个小区间,每个小区间长度为 x
(
x
b
n
a
),在每个小区间 xi1
,
xi
上取一点
i i 1,2, ,n ,作和式:
Sn
n i 1
f (i )x
n i 1
ba n
f (i )
如果 x 无限接近于 0(亦即 n )时,上述和式 Sn
定积分的概念1
一、定积分的定义
从求曲边梯形面积S的过程中可以看出,通过“四 步曲”:
①分割--------- ②近似代替----------
③求和---------- ④取极限得到解决.
如小 果矩 形 当面 n积 ∞和 时S ,=i n S1的f(无i) 限x接近i n 1某f(个i)常b 数 na ,
y f(x)
a
bx
积分上限
n
b
f ( x)dx I
a
lim
n
i 1
f (i )xi
被
被
积
积分下限
积
积
分
函
表
变
数
达
量
式
说明:
(1) 定积分是一个数值, 它只与被积函数及积分区间有关, 而与积分变量的记法无关,即
定积分讲义
设 ,
.
三、定积分定义
1.定义设函数 在 上有界,在 中任意插入若干个分点 把区间 分成 个小区间,各小区间的长度依次记为 , ,在各小区间上任取一点 ( ),作乘积 , ,并作和 ,
记 ,如果不论对 怎样的分法,也不论在小区间 上点 怎样的取法,只要当 时,和 总趋于确定的极限 ,我们称这个极限 为函数 在区间 上的定积分,记为
课程安排:2学期,周学时 4 , 共 96 学时.
主要内容:定积分的计算
要求:听课 、复习 、 作业
本次课题(或教材章节题目):第五章 定积分 第一节 定积分的概念与性质
教学要求:
1.了解定积分的概念
2.掌握定积分的性质
重 点:定积分的性质
难 点:
1.定积分的概念
2.定积分的性质
教学手段及教具:讲授为主
要求:听课 、复习 、 作业
本次课题(或教材章节题目):第六章 定积分的应用 第一节 定积分的元素法
第二节 定积分在几何学上的应用
教学要求:
1.了解定积分的元素法
2.会用元素法求解平面图形面积
重 点:
元素法求解平面图形面积
难 点:
元素法求解平面图形面积
教学手段及教具:讲授为主
讲授内容及时间分配:
1 复习定积分的概念 10分钟
本次课题(或教材章节题目):第五章 定积分 第三节 定积分的换元积分法及分部积分法
教学要求:
利用分部积分法求解多种形式积分
重 点:
分部积分法
难 点:
分部积分法
教学手段及教具:讲授为主
讲授内容及时间分配:
1 复习 15分钟
2 分部积分法 25分钟
3 例题及练习 50分钟
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、复习定积分的定义
二、定积分的元素法
步骤:
1、在区间划分的基础上找出能够很大程度上取代局部部分量的线性近似值,即寻找微分表达式
2、计算x x f F b
a d )(⎰= 三、定积分的应用——求平面图形的面积
1、由曲线)0)(()(≥=x f x f y 及直线a x =与b x =( b a < )与x 轴所围成的曲边梯形面积A
2、由曲线)(x f y =与)(x g y =及直线a x =,b x =( b a < )且)()(x g x f ≥所围成的图形面A
四、例题
例1. 计算抛物线x y 22=与直线4-=x y 所围成的图形面积.
解:1、先画所围的图形简图
解方程 ⎩⎨⎧-==4
22x y x y ,得交点:)2,2(- 和 )4,8(.
2、选择积分变量并定区间
选取x 为积分变量,则80≤≤x
3、给出面积元素
在20≤≤x 上, dx x dx
x x dA 22])2(2[=--=
在82≤≤x 上, dx x x dx
x x dA )24(])4(2[-+=--=
4、列定积分表达式
28
3322202422214332x x x x ⎛⎡⎤=++- ⎢⎥⎝⎣⎦=18
另解:若选取y 为积分变量,则 42≤≤-y。