高考数学培优专题55讲

合集下载

2025年新人教版高考数学一轮复习讲义 第一章 培优点1 柯西不等式与权方和不等式

2025年新人教版高考数学一轮复习讲义  第一章 培优点1 柯西不等式与权方和不等式

2025年新人教版高考数学一轮复习讲义第一章培优点1 柯西不等式与权方和不等式题型一 柯西不等式1.二维形式的柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2(a,b,c,d∈R,当且仅当ad=bc时,等号成立).2.二维形式的柯西不等式的变式3.二维形式的柯西不等式的向量形式|α·β|≤|α||β|(当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立).例1 已知x,y∈R,3x2+2y2≤6,求2x+y的最值.方法一 由柯西不等式得方法二 由柯西不等式得思维升华掌握柯西不等式及其变式的结构,常用巧拆常数、重新安排某些项的次序、改变结构、添项等方法.跟踪训练1 设a=(1,-2),b=(x,y),若x2+y2=16,则a·b的最大值为________.∵a=(1,-2),b=(x,y),∴a·b=x-2y.由柯西不等式的向量形式可得[12+(-2)2](x2+y2)≥(x-2y)2,即5×16≥(x-2y)2,当且仅当b=k a,题型二 权方和不等式例2 (1)若x>0,y>0,=2,则6x+5y的最小值为__________.(2)已知正数x,y,z满足x+y+z=1,则的最小值为____.思维升华(1)权方和不等式的结构始终要求分子的次数比分母的次数多1,出现定值是解题的关键.(2)关于齐次分式,将分子变为平方式,再用权方和不等式.27跟踪训练2 (1)已知正数x,y满足x+y=1,则的最小值为______.(2)已知a+b+c=1,且a,b,c>0,则的最小值为√A.1B.3C.6D.9能力提升1.实数x,y满足3x2+4y2=12,则z=2x+的最小值是√A.-5B.-6C.3D.4123456∵实数x,y满足3x2+4y2=12,√3.若实数x+2y+3z=1,则x2+y2+z2的最小值为√36 4.已知正数x,y,z满足x+y+z=1,则的最小值为______.8本课结束。

高考培优课程秋季数学讲义:三角函数-图像与性质【讲师版】

高考培优课程秋季数学讲义:三角函数-图像与性质【讲师版】

高三数学三角函数-图像与性质学生姓名授课日期教师姓名授课时长本讲义目的在于让同学从根本上了解三角函数的图像与性质,了解图像变换与解析式变换之间的对应关系,利用图像解决与三角函数有关的问题,并在此基础上发散思维,解决三角函数与其他知识融合的综合问题。

知识点一:由图像写解析式,突破识图难点;由性质写解析式,达到对条件的全面理解。

知识点二:通过解决图象与性质融合的新题目,既积累解题经验,又消除“怕新”“怕繁”的心理,提升思维品质与解题能力,适应各种变化。

知识点三:通过结合图象解决与三角函数有关的问题(如方程、不等式),发展用图象思考问题的能力。

知识点四:通过建立三角函数模型,体验建模的程序,发展应用意识和能力。

知识点五:通过解决三角函数与其他知识融合的综合问题,感悟知识之间的联系,体验解题过程的复杂性,发展综合运用能力。

【题目来源】【题目】已知定义域为R的函数f(x)=Asin(ωx+φ)(A>0,ω>0)的一段图象如图所示.(1)求f(x)的解析式;(2)若g(x)=cos3x,h(x)=f(x)•g(x),求函数h(x)的单调递增区间.【答案】【解析】:【知识点】由图像写解析式,突破识图难点;由性质写解析式,达到对条件的全面理解。

【适用场合】 当堂例题 【难度系数】3【题目来源】【题目】 求下列函数的最小正周期(1))23πsin(x y -=;(2))4π2πtan(+=x y ;x y 2cos )3(2=; (4)y =2sin 2x +2sin x cos x ;(5)y =|sin x |.【答案】π,2, 2π=T ,π,π 【解析】: (1)π|2|π2=-=T .(2)22ππ==T .(3)214cos 2124cos 1+=+=x x y ,所以2π=T . (4)1)4π2sin(212cos 2sin 2sin 22cos 12+-=+-=+-⨯=x x x x x y ,所以T =π.(5)y=|sin x|的图象为下图,可得,T=π.【知识点】三角函数的周期性【适用场合】当堂例题【难度系数】3【题目来源】【题目】(2000全国,5)函数y=-xc os x的部分图象是()【答案】D【解析】:因为函数y=-xcosx是奇函数,它的图象关于原点对称,所以排除A、C,当x∈(0,2π)时,y=-xcosx<0。

高考培优课程数学讲义:排列组合的经典模型及其应用【学生版】

高考培优课程数学讲义:排列组合的经典模型及其应用【学生版】

高考培优数学“排列组合的经典模型及其应用”讲义编号:排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?经典方法知识的讲解已结合在下面的例题中。

排列组合中的经典方法(★★☆☆☆)我竟然不知道以下经典方法,太恐怖了!1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.A、60种B、48种C、36种D、24种2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有()A、4441284C C C种 B、44412843C C C种 C、4431283C C A种 D、444128433C C CA种6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为()A、480种B、240种C、120种D、96种7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。

2024年高三培优讲义5-抽象函数赋值与构造

2024年高三培优讲义5-抽象函数赋值与构造

专题1-5 抽象函数赋值与构造一、抽象函数的赋值法赋值法是求解抽象函数问题最基本的方法,复制规律一般有以下几种: 1、……-2,-1,0,1,2……等特殊值代入求解; 2、通过的变换判定单调性;3、令式子中出现及判定抽象函数的奇偶性;4、换为确定周期性. 二、判断抽象函数单调性的方法:(1)凑:凑定义或凑已知,利用定义或已知条件得出结论;(2)赋值:给变量赋值要根据条件与结论的关系.有时可能要进行多次尝试. ①若给出的是“和型”抽象函数,判断符号时要变形为:或;()()12−f x f x ()f x ()−f x x +x T () =+y x f ()()()()111212)(x f x x x f x f x f −+−=−()()()()221212)(x x x f x f x f x f +−−=−②若给出的是“积型”抽象函数,判断符号时要变形为:或. 三、常见的抽象函数模型1、可看做的抽象表达式;2、可看做的抽象表达式(且);3、可看做的抽象表达式(且);4、可看做的抽象表达式.2022新高考2卷T8 1.已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++−==,则221()k f k ==∑( )A .3−B .2−C .0D .12023新高考1卷T112.(多选)已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则( ).A .()00f =B .()10f =C .()f x 是偶函数D .0x =为()f x 的极小值点2023·山东青岛·统考三模() =xy f ()()()112112x f x x x f x f x f −⎪⎪⎭⎫ ⎝⎛⋅=−()()()⎪⎪⎭⎫⎝⎛⋅−=−212212x x x f x f x f x f ()()()+=+f x y f x f y ()=f x kx ()()()+=f x y f x f y ()=xf x a 0>a 1≠a ()()()=+f xy f x f y ()log =a f x x 0>a 1≠a ()()()=f xy f x f y ()=af x x 重点题型·归类精讲1.设()f x 为定义在整数集上的函数,()11f =,()20f =,()10f −<,对任意的整数,x y 均有()()()()()11f x y f x f y f x f y +=−+−.则()55f =______.2023·山东滨州·三模2.(多选)已知连续函数()f x 对任意实数x 恒有()()()f x y f x f y +=+,当0x >时,()0f x <,(1)2f =-,则以下说法中正确的是( ) A .f (0)=0B .f (x )是R 上的奇函数C .f (x )在[-3,3]上的最大值是6D .不等式()232()(3)4f x f x f x −<+的解集为213xx ⎧⎫<<⎨⎬⎩⎭安徽省皖江名校联盟2024届高三上学期10月第二次联考3.已知函数不是常数函数,且满足以下条件:①,其中;②,则( )A .0B .1C .2D .4.(多选)已知定义在R 上的函数()f x 满足()()()()()()()()2,02,01f xy f x f y f x f y f f f =−−+<≠,且()0f x >,则( ) A .()01f =B .()12f −=C .()()2f x f x −=D .()()f x f x −=5.已知函数及其导函数的定义域均为,对任意的,恒有,则下列说法正确的个数是( )①;②必为奇函数;③;④若,则.A .1B .2C .3D .42023·浙江嘉兴·统考模拟6.已知函数的定义域为,且,,则的值是( )A .9B .10C .11D .12(),y f x x =∈R ()()()()f a b f a b f a f b ++−=,a b ∈R ()10f =()2026f −=2−()f x ()f x 'R ,R x y ∈()()()()2f x y f x y f x f y ++−=()00f =()f x '()()00f x f +≥1(1)2f =202311()2n f n ==∑()f x R ()()()()31,00,f x x f x x ⎛⎫=∈−∞+∞ ⎪⎝⎭()()()2f x f y xy f x y ++=+()3f2023届江苏连云港校考7.已知函数,任意,满足,且,则的值为( )A .B .0C .2D .48.已知,都是定义在上的函数,对任意x ,y 满足,且,则下列说法正确的是( )A .B .函数的图象关于点对称C .D .若,则2023绍兴·高二期末9.已知函数的定义域为R ,且,为奇函数,,则( ) A . B . C .0 D .10.(多选)已知函数()f x 的定义域为R ,()()()f x y f x f y +=+,则( )A .()00f =B .()f x 是奇函数 C .0x =为()f x 的极小值点D .若()11f =,则()20232023f =11.(多选)设()f x 是定义在R 上的函数,对,x y ∀∈R ,有()()()()22f x y f x y f x f y +−−=++,且()00f ≠,则( )A .()()0f x f x −−=B .()()40f x f x +−=C .()()()()02420242f f f f ++++=−()f x x y R ∈,()()()()22f x y f x y f x f y +−=−()()1220f f ==,()()()1290f f f +++2−()f x ()g x R ()()()()()f x y f x g y g x f y −=−()()210f f −=≠()01f =()21g x +()1,0()()110g g +−=()11f =()202311n f n ==∑()f x ()()()28f x f x f ++=()21f x +1122f ⎛⎫= ⎪⎝⎭22112k kf k =⎛⎫−= ⎪⎝⎭∑11−12−212D .()()()()222212320244048f f f f ++++=12.(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,对任意的,R x y ∈,恒有()()()()2f x y f x y f x f y ++−=,则下列说法正确的有( )A .()00f =B .()f x '必为奇函数C .()()00f x f +≥D .若1(1)2f =,则202311()2n f x ==∑13.已知函数()f x 的定义域为R ,满足()()()()f x y f x y f x f y ++−=⋅,且12f ,则( )A .()02f =B .()f x 为奇函数C .()()()()12320232f f f f +++⋅⋅⋅⋅⋅⋅+=−D .()22f x −≤≤14.(多选)已知定义域为R 的函数()f x 对任意实数,x y 都有()()()()2f x y f x y f x f y ++−=,且102f ⎛⎫= ⎪⎝⎭,则以下结论一定正确的有( )A .()01f =−B .()f x 是偶函数C .()f x 关于1,02⎛⎫⎪⎝⎭中心对称D .()()()1220230f f f +++=15.函数()f x 的定义域为R ,且()()()21f x f x f x +=−+−,()()2f x f x =−,()3651f =−,则()20231k f k ==∑ .16.已知函数()f x 满足:1(1),4()()()()(,R)4f f x f y f x y f x y x y ==++−∈,则()2023f = .17.已知函数()f x 定义域为R ,满足()()()()()11,f f x y f x y f x f y =++−=,则()8f = .18.设()f x 为定义在整数集上的函数,()11f =,()20f =,()10f −<,对任意的整数,x y 均有()()()()()11f x y f x f y f x f y +=−+−.则()55f = .19.(2024届厦门一中校考)若定义域为R 的奇函数()f x 满足()(1)(1)f x f x f x =++−,且(1)2f =,则(2024)f = .20.函数()f x 的定义域为R ,对任意,x y ∈R ,恒有()()222x y x y f x f y f f +−⎛⎫⎛⎫+=⋅⎪ ⎪⎝⎭⎝⎭,若()112f =,则()1f −= ,()20221n f n ==∑ .深圳市宝安区2024届高三上学期10月调研数学试题21.已知函数()f x 的定义域为R ,且()()()()22f x y f x y f x f y +−=−,()13f =,322f x ⎛⎫+ ⎪⎝⎭为偶函数,则( ) A .()f x 为偶函数 B .()23f = C .()()33f x f x +=−−D .()202313k f k ==∑专题1-5 抽象函数赋值与构造一、抽象函数的赋值法赋值法是求解抽象函数问题最基本的方法,复制规律一般有以下几种: 1、……-2,-1,0,1,2……等特殊值代入求解; 2、通过的变换判定单调性;3、令式子中出现及判定抽象函数的奇偶性;4、换为确定周期性. 二、判断抽象函数单调性的方法:(1)凑:凑定义或凑已知,利用定义或已知条件得出结论;(2)赋值:给变量赋值要根据条件与结论的关系.有时可能要进行多次尝试. ①若给出的是“和型”抽象函数,判断符号时要变形为:或;()()12−f x f x ()f x ()−f x x +x T () =+y x f ()()()()111212)(x f x x x f x f x f −+−=−()()()()221212)(x x x f x f x f x f +−−=−②若给出的是“积型”抽象函数,判断符号时要变形为:或. 三、常见的抽象函数模型1、可看做的抽象表达式;2、可看做的抽象表达式(且);3、可看做的抽象表达式(且);4、可看做的抽象表达式.2022新高考2卷T8 1.已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++−==,则221()k f k ==∑( )A .3−B .2−C .0D .1【答案】A【分析】法一:根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【详解】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++−=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +−=,即()()f y f y =−,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++−==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=−−,()()14f x f x −=−−,故()()24f x f x +=−,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =−=−=−,()()()321112f f f =−=−−=−,()()()4221f f f =−==−,()()()5111f f f =−==,()()602f f ==,所以一个周期内的()()()1260f f f +++=.由于22除以6余4,() =xy f ()()()112112x f x x x f x f x f −⎪⎪⎭⎫ ⎝⎛⋅=−()()()⎪⎪⎭⎫⎝⎛⋅−=−212212x x x f x f x f x f ()()()+=+f x y f x f y ()=f x kx ()()()+=f x y f x f y ()=xf x a 0>a 1≠a ()()()=+f xy f x f y ()log =a f x x 0>a 1≠a ()()()=f xyf x f y ()=af x x所以()()()()()221123411213k f k f f f f ==+++=−−−=−∑.故选:A .[方法二]:【最优解】构造特殊函数由()()()()f x y f x y f x f y ++−=,联想到余弦函数和差化积公式()()cos cos 2cos cos x y x y x y ++−=,可设()cos f x a x ω=,则由方法一中()()02,11f f ==知2,cos 1a a ω==,解得1cos 2ω=,取3πω=,所以()2cos3f x x π=,则()()()()2cos 2cos 4cos cos 333333f x y f x y x y x y x y f x f y ππππππ⎛⎫⎛⎫++−=++−== ⎪ ⎪⎝⎭⎝⎭,所以()2cos 3f x xπ=符合条件,因此()f x 的周期263T ππ==,()()02,11f f ==,且()()()()()21,32,41,51,62f f f f f =−=−=−==,所以(1)(2)(3)(4)(5)(6)0f f f f f f +++++=,由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=−−−=−∑.故选:A .【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.2023新高考1卷T112.(多选)已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则( ).A .()00f =B .()10f =C .()f x 是偶函数D .0x =为()f x 的极小值点【答案】ABC【分析】方法一:利用赋值法,结合函数奇遇性的判断方法可判断选项ABC ,举反例()0f x =即可排除选项D.方法二:选项ABC 的判断与方法一同,对于D ,可构造特殊函数2ln ,0()0,0x x x f x x ⎧≠=⎨=⎩进行判断即可.【详解】方法一:因为22()()()f xy y f x x f y =+,对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确.对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确. 对于C ,令1x y ==−,(1)(1)(1)2(1)f f f f =−+−=−,则(1)0f −=,令21,()()(1)()y f x f x x f f x =−−=+−=,又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确,对于D ,不妨令()0f x =,显然符合题设条件,此时()f x 无极值,故D 错误. 方法二:因为22()()()f xy y f x x f y =+,对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确.对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确. 对于C ,令1x y ==−,(1)(1)(1)2(1)f f f f =−+−=−,则(1)0f −=, 令21,()()(1)()y f x f x x f f x =−−=+−=,又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确,对于D ,当220x y ≠时,对22()()()f xy y f x x f y =+两边同时除以22x y ,得到2222()()()f xy f x f y x y x y=+, 故可以设2()ln (0)f x x x x =≠,则2ln ,0()0,0x x x f x x ⎧≠=⎨=⎩,当0x >肘,2()ln f x x x =,则()212ln (2ln 1)x x x x xf x x =+⋅=+', 令()0f x '<,得120e x −<<;令0fx,得12e x −>;故()f x 在120,e −⎛⎫ ⎪⎝⎭上单调递减,在12e ,−⎛⎫+∞ ⎪⎝⎭上单调递增,因为()f x 为偶函数,所以()f x 在12,0e −⎛⎫− ⎪⎝⎭上单调递增,在12,e −⎛⎫ ⎪⎝∞⎭−上单调递减,显然,此时0x =是()f x 的极大值,故D 错误.故选:ABC .2023·山东青岛·统考三模1.设()f x 为定义在整数集上的函数,()11f =,()20f =,()10f −<,对任意的整数,x y 均有()()()()()11f x y f x f y f x f y +=−+−.则()55f =______.重点题型·归类精讲【答案】1−【分析】采用赋值的方式可求得()()0,1f f −,令1y =和y x =−可证得()f x 的对称轴和奇偶性,由此可推导得到()f x 的周期性,利用周期性可求得函数值.【详解】令1x y ==,则()()()()()()21001200f f f f f f =+==,()00f ∴=;令2x =,1y =−,则()()()()22212111f f f f =+−=−=,又()10f −<,()11f ∴−=−;令1y =,则()()()()()()10111f x f x f f x f f x +=+−=−,f x 关于直线1x =对称;令y x =−,则()()()()()()()()01110f f x f x f x f x f x f x f x =++−−=+−+=⎡⎤⎣⎦, ()10f x +=不恒成立,()()0f x f x ∴+−=恒成立,f x 为奇函数,()()()2f x f x f x +=−=−,()()()42f x f x f x ∴+=−+=,f x 是周期为4的周期函数,()()()55414111f f f ∴=⨯−=−=−.故答案为:1−.2023·山东滨州·三模2.(多选)已知连续函数()f x 对任意实数x 恒有()()()f x y f x f y +=+,当0x >时,()0f x <,(1)2f =-,则以下说法中正确的是( ) A .f (0)=0B .f (x )是R 上的奇函数C .f (x )在[-3,3]上的最大值是6D .不等式()232()(3)4f x f x f x −<+的解集为213xx ⎧⎫<<⎨⎬⎩⎭【答案】ABC【分析】根据函数()f x 对任意实数x 恒有()()()f x y f x f y +=+,令0x y ==,可得(0)0f =,判断奇偶性和单调性,即可判断选项;【详解】解:对于A ,函数()f x 对任意实数x 恒有()()()f x y f x f y +=+, 令0x y ==,可得(0)0f =,A 正确;对于B ,令x y =−,可得(0)()()0f f x f x =+−=,所以()()f x f x =−−,所以()f x 是奇函数;B 正确;对于C ,令x y <,则()()()()()f y f x f y f x f y x −=+−=−, 因为当x >0时,f (x )<0,所以()0f y x −<,即()()0f y f x −<, 所以()f x 在()()0,,,0+∞−∞均递减, 因为()0f x <,所以()f x 在R 上递减;12f ,可得(1)2f −=;令1y =,可得()()12f x f x +=− ()24f =−,()36f =−;()3(3)6f f =−−=,()f x ∴在[3−,3]上的最大值是6,C 正确;对于D ,由不等式2(3)2()(3)4f x f x f x −<+的可得2(3)()()(3)4f x f x f x f x <+++, 即2(3)(23)4f x f x x <++,4(2)f =−,2(3)(23)(2)f x f x x f ∴<++−,则2(3)(52)f x f x <−,2352x x ∴>−,解得:23x <或1x >; D 不对;故选:ABC . 安徽省皖江名校联盟2024届高三上学期10月第二次联考3.已知函数不是常数函数,且满足以下条件:①,其中;②,则( )A .0B .1C .2D .【答案】D(),y f x x =∈R ()()()()f a b f a b f a f b ++−=,a b ∈R ()10f =()2026f −=2−【分析】先令,得到,再令,得到,根据函数的周期性得到函数的周期为,即可求解.【详解】由题意令,得,又不是常数函数, 所以,再令,得, 即,则, 即,故, 所以函数的周期为,所以, 故选:D.4.(多选)已知定义在R 上的函数()f x 满足()()()()()()()()2,02,01f xy f x f y f x f y f f f =−−+<≠,且()0f x >,则( ) A .()01f = B .()12f −= C .()()2f x f x −= D .()()f x f x −=【答案】ABD【分析】由已知,利用赋值法计算判断得解.【详解】定义在R 上的函数()f x 满足()()()()()2f xy f x f y f x f y =−−+,令0x y ==,得()()()20[0]202f f f =−+,而()02f <,则()01f =,A 正确;令x y ==1,得()()()21[1]212f f f =−+,而()()01f f ≠,则()12f =, 令1x y ==−,得()()()21[1]212f f f =−−−+,即()()2[1]21f f −=−,而()0f x >,即()10f −>,则()12f −=,B 正确;令1y =−,得()()()()()112f x f f x f f x −=−−−−+,即有()()()222f x f x f x −=−−+,因此()()f x f x −=,C 错误,D 正确. 故选:ABD5.已知函数及其导函数的定义域均为,对任意的,恒有,则下列说法正确的个数是( )0b =()02f =1b =()()2f a f a +=−()y f x =40b =()()()20f a f a f =()y f x =()02f =1b =()()()()111f a f a f a f ++−=()()110f a f a ++−=()()2f a f a +=−()()2f a f a −=−()()4f a f a =+()y f x =4()()()()202624506202f f f f −=+⨯==−=−()f x ()f x 'R ,R x y ∈()()()()2f x y f x y f x f y ++−=①;②必为奇函数;③;④若,则.A .1B .2C .3D .4【答案】C【分析】利用赋值法可判断①;利用赋值法结合函数奇偶性定义判断②;赋值,令,得出,变量代换可判断③;利用赋值法求出部分函数值,推出其值具有周期性,由此可计算,判断④,即可得答案.【详解】令,则由可得,故或,故①错误;当时,令,则,则,故,函数既是奇函数又是偶函数;当时,令,则,所以,则,即,则为奇函数,综合以上可知必为奇函数,②正确;令,则,故.由于,令,即,即有,故③正确; 对于D ,若,令 ,则,则, 令,则,即,令,则,即, 令,则,即, 令,则,即,令,则,即, 令,则,即, 令,则,即,,()00f =()f x '()()00f x f +≥1(1)2f =202311()2n f n ==∑y x =()()200f x f +≥()f n 20231()n f n =∑0x y ==()()()()2f x y f x y f x f y ++−=()()22020f f =(0)0f =()01f =(0)0f =0y =()()2()(0)0f x f x f x f +==()0f x =()0f x '=()f x '(0)1f =0x =()()2(0)()f y f y f f y +−=()()−=f y f y ()()f y f y −''−=()()f y f y −='−'()f x '()f x 'y x =()()()2202f x f f x +=()()200f x f +≥x ∈R 2,R t x t =∈()()00f t f +≥()()00f x f +≥()112f =1,0x y ==()()()()11210+=f f f f (0)1f =1x y ==()()()22021f f f +=()()1121,222f f +=∴=−2,1x y ==()()()()31212f f f f =+()113,(3)122f f +=−∴=−3,1x y ==()()()()42231f f f f +=()1141,(4)22f f −=−∴=−4,1x y ==()()()()53241f f f f +=()1151,(5)22f f −=−∴=5,1x y ==()()()()64251f f f f +=()116,(6)122f f −=∴=6,1x y ==()()()()75261f f f f +=()1171,(7)22f f +=∴=7,1x y ==()()()()86271f f f f +=()1181,(8)22f f +=∴=−由此可得的值有周期性,且6个为一周期,且 ,故,故④正确, 即正确的是②③④, 故选:C.2023·浙江嘉兴·统考模拟6.已知函数的定义域为,且,,则的值是( )A .9B .10C .11D .12【答案】D【分析】由赋值法先得,再由与关系列式求解. 【详解】中令,则,中令,,则,又中令,则,所以,中,令,则,再令,,则. 故选:D2023届江苏连云港校考7.已知函数,任意,满足,且,则的值为( )A .B .0C .2D .4【答案】C【分析】抽象函数利用特殊值的思路可以得到函数在取奇数和偶数的时候的规律,然后可以得到函数值的和.【详解】令,,则,所以;令,,则,所以;令,则,所以,(),N f n n *∈(1)(2)(3)(4)(5)(6)0f f f f f f +++++=()202311337[(1)(2)(3)(4)(5)(6)](1)2n f n f f f f f f f ==⨯++++++=∑()f x R ()()()()31,00,f x x f x x ⎛⎫=∈−∞+∞ ⎪⎝⎭()()()2f x f y xy f x y ++=+()3f ()00f =()1f ()1f −()()()2f x f y xy f x y ++=+0x y ==()00f =()()()2f x f y xy f x y ++=+1x =1y =−()()()11200f f f +−−==()31f x x f x ⎛⎫= ⎪⎝⎭=1x −()10f −=()12f =()()()2f x f y xy f x y ++=+1x y ==()()22126f f =+=1x =2y =()()()312426412f f f =++=++=()f x x y R ∈,()()()()22f x y f x y f x f y +−=−()()1220f f ==,()()()1290f f f +++2−()f x 2x =1y =()()()()223121f f f f =−()32f =−3x =2y =()()()()2251324f f f f =−=()52f =2y =()()()222f x f x f x +−=()72f =−()92f =.令,,则①,令,,则②,令,,则③,假设,那么由③可知,将,代入②式发现与矛盾,所以不成立,.同理可得当x 为偶数时,. 所以原式=.故选:C.8.已知,都是定义在上的函数,对任意x ,y 满足,且,则下列说法正确的是( )A .B .函数的图象关于点对称C .D .若,则【答案】D【分析】利用赋值法结合题目给定的条件可判断AC ,取可判断B ,对于D ,通过观察选项可以推断很可能是周期函数,结合的特殊性及一些已经证明的结论,想到令和时可构建出两个式子,两式相加即可得出,进一步得出是周期函数,从而可求的值.【详解】解:对于A ,令,代入已知等式得,得,故A 错误;对于B ,取,满足及, 因为,所以的图象不关于点对称, 所以函数的图象不关于点对称,故B 错误;对于C ,令,,代入已知等式得, 可得,结合得,,()()()2112kf k k Z +=−⋅∈3x =1y =()()420f f =4x =2y =()()()2624f f f =5x =1y =()()640f f =()40f ≠()60f =()20f =()60f =()40f ≠()40f ≠()40f =()0f x =()()()()138925f f f f ++++=()f x ()g x R ()()()()()f x y f x g y g x f y −=−()()210f f −=≠()01f =()21g x +()1,0()()110g g +−=()11f =()202311n f n ==∑()()2π2πsin,cos 33f x xg x x ==()f x ()()()(),f x g y g x f y 1y =−1y =()()()11f x f x f x ++−=−()f x ()20231n f n =∑0x y ==()()()()()000000f f g g f =−=()00f =()()2π2πsin,cos 33f x xg x x ==()()()()()f x y f x g y g x f y −=−()()210f f −=≠()3cos 2π10g ==≠()g x ()3,0()21g x +()1,00y =1x =()()()()()11010f f g g f =−()()()()110100f g g f ⎡⎤−=−=⎣⎦()10f ≠()100g −=()01g =再令,代入已知等式得,将,代入上式,得,所以函数为奇函数. 令,,代入已知等式,得, 因为,所以,又因为,所以, 因为,所以,故C 错误;对于D ,分别令和,代入已知等式,得以下两个等式:,,两式相加易得,所以有, 即:,有:, 即:,所以为周期函数,且周期为3,因为,所以,所以,, 所以, 所以,故D 正确.故选:D.【点评】:对于含有的抽象函数的一般解题思路是:观察函数关系,发现可利用的点,以及利用证明了的条件或者选项;抽象函数一般通过赋值法来确定、判断某些关系,特别是有双变量,需要双赋值,可以得到一个或多个关系式,进而得到所需的关系,此过程中的难点是赋予哪些合适的值,这就需要观察题设条件以及选项来决定.2023绍兴·高二期末9.已知函数的定义域为R ,且,为奇函数,,则( ) 0x =()()()()()00f y f g y g f y −=−()00f =()01g =()()f y f y −=−()f x 1x =1y =−()()()()()21111f f g g f =−−−()()11f f −=−()()()()2111f f g g =−+⎡⎤⎣⎦()()()221f f f =−−=−()()()()1111f f g g −=−+⎡⎤⎣⎦()10f ≠()()111g g +−=−1y =−1y =()()()()()111f x f x g g x f +=−−−()()()()()111f x f x g g x f −=−()()()11f x f x f x ++−=−()()()21f x f x f x ++=−+()()()12f x f x f x =−+−+()()()()()()11120f x f x f x f x f x f x −+=++−−+−+=()()12f x f x −=+()f x ()11f =()21f −=()()221f f =−−=−()()300f f ==()()()1230f f f ++=()()()()()()()2023111232023202311n f n f f f f f f ===++++===∑,x y ,x y ()f x ()()()28f x f x f ++=()21f x +1122f ⎛⎫= ⎪⎝⎭22112k kf k =⎛⎫−= ⎪⎝⎭∑A .B .C .0D .【答案】B【分析】根据即可得出周期为4,赋值可求出.进而由为奇函数,可推得函数关于点对称,由已知可求出,,,然后即可求得,.进而即可根据周期性得出函数值,求出,即可得出,代入数值,即可得出答案.【详解】由,则, 所以,,周期为4,所以.由,令,则有,所以,. 因为为奇函数,所以,所以,,所以函数关于点对称, 所以,. 令,则.令可得,,所以,所以, 所以,有,即有.令,则有;令,则.综上,,,,. 所以,,所以,. 11−12−212()()()28f x f x f ++=()f x ()20f =()21f x +()y f x =()1,03122f ⎛⎫=− ⎪⎝⎭()00f =()80f =5122f ⎛⎫=− ⎪⎝⎭2721f ⎛⎫=⎪⎝⎭()()()()135741442443444402222m f m m f m m f m m f m ⎛⎫⎛⎫⎛⎫⎛⎫+++++++++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2211132122222k kf k f f =⎛⎫⎛⎫⎛⎫−=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑()()()28f x f x f ++=()()()428f x f x f +++=()()4f x f x +=()f x ()()()840f f f ==()()()28f x f x f ++=0x =()()()()2080f f f f +==()20f =()21f x +()()2121f x f x −+=−+()()11f x f x −+=−+()y f x =()1,0()()2f x f x −=−12x =311222f f ⎛⎫⎛⎫=−=− ⎪ ⎪⎝⎭⎝⎭0x =()()200f f =−=()00f =()80f =()()()280f x f x f ++==()()2f x f x +=−12x =511222f f ⎛⎫⎛⎫=−=− ⎪ ⎪⎝⎭⎝⎭32x =731222f f ⎛⎫⎛⎫=−= ⎪ ⎪⎝⎭⎝⎭1114222f m f ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭3314222fm f ⎛⎫⎛⎫+==− ⎪ ⎪⎝⎭⎝⎭5514222f m f ⎛⎫⎛⎫+==− ⎪ ⎪⎝⎭⎝⎭7714222f m f ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭()()()()13574144244344442222m f m m f m m f m m f m ⎛⎫⎛⎫⎛⎫⎛⎫+++++++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()()11114142434402222m m m m ⎛⎫⎛⎫=+⨯++⨯−++⨯−++⨯= ⎪ ⎪⎝⎭⎝⎭2211111321212222212222222k kf k fff f =⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫−=−+−=+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∑1112122222⎛⎫=⨯+⨯−=− ⎪⎝⎭故选:B.10.(多选)已知函数()f x 的定义域为R ,()()()f x y f x f y +=+,则( )A .()00f =B .()f x 是奇函数 C .0x =为()f x 的极小值点 D .若()11f =,则()20232023f =【答案】ABD【分析】利用赋值法,令0x y ==判断A 得正误;令y x =−,结合奇函数的定义判断B 的正误;举例判断C 的正误;令1y =,则()()11f x f x +=+,再利用累加法即可判断D 的正误. 【详解】令0x y ==,则()()()000f f f =+,所以()00f =,故A 正确; 令y x =−,则()()()0f x x f x f x −=+−=,所以()f x 是奇函数,故B 正确;令()f x x =,其定义域为R ,且()()()f x y f x f y +=+满足题意,因为函数()f x x =为R 上的增函数,所以0x =不是()f x 的极小值点,故C 错误;令1y =,则()()11f x f x +=+,即()()11f x f x +−=,()()()()()()()2023202320222022202120212020f f f f f f f ⎡⎤⎡⎤⎡⎤=−+−+−⎣⎦⎣⎦⎣⎦ ()()()21111112023f f f ++−+=++++=⎡⎤⎣⎦,故D 正确.故选:ABD.11.(多选)设()f x 是定义在R 上的函数,对,x y ∀∈R ,有()()()()22f x y f x y f x f y +−−=++,且()00f ≠,则( )A .()()0f x f x −−=B .()()40f x f x +−=C .()()()()02420242f f f f ++++=− D .()()()()222212320244048f f f f ++++=【答案】ACD【分析】利用赋值法判断函数的奇偶性和周期性,再结合假设法、函数的周期性逐一判断即可. 【详解】A :在()()()()22f x y f x y f x f y +−−=++中,令0x y ==,则有()()20220f f =⇒=,在()()()()22f x y f x y f x f y +−−=++中,令0x =,则有()()()()()()2200f y f y f f y f x f x −−=+=⇒−−=, 因此本选项正确;B :若()()40f x f x +−=成立,即有()()04f f =, 在()()()()22f x y f x y f x f y +−−=++中,令2x y ==,则有()()()()()24044000f f f f f −=⇒=⇒=,这与()00f ≠相矛盾,所以假设不成立,因此本选项不正确; C :在()()()()22f x y f x y f x f y +−−=++中, 以x −代y ,得()()()()0222f f x f x f x −=+−+,以x 代y ,得()()()2202f x f f x −=+,上面两个等式相加,得()()()()()()222202220f x f x f x f x f x f x ⎡⎤+++−+=⇒+++−+=⎣⎦()20f x ⇒+=,或()()220f x f x ++−+=,当()20f x +=时,则有()00f =,显然与()00f ≠矛盾,因此()()220f x f x ++−+=,于是有()()()()()()44()8f x f x f x f x f x f x f x =−−⇒+=−−=−⇒+=, 因此函数()f x 的周期为8,由()()()202060f f f =⇒−=⇒=, 由()()()()440f x f x f f =−−⇒=−, 在()()()()22f x y f x y f x f y +−−=++中,令2,1x y ==,得()()()()()()()()31433103f f f f f f f f −=⇒−=−,令1x y ==,得()()()()()2220330f f f f f −=⇒=−,由()()()()22031f x f x f f ++−+=⇒=−,于是有()()()()()()()()()()2331033023331f f f f f f f f f f ⎧−=−⎪=−⇒=⎨⎪=−⎩, 因为()()2300f f =−≠,所以由()()()3223332f f f =⇒=,于是()02f =−,因此()()()()02460f f f f +++=,()()()()()()02420242530202402f f f f f f ++++=⨯+==−,因此本选项正确;D :在()()()()22f x y f x y f x f y +−−=++中,令()2N x y n n *==−∈,所以有()()()2240f n f f n −−=,因此有:()()()()22221232024f f f f ++++()()()()()()()()()()2000204040440f f f f f f f f f f =−−+−+−+−++−⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦因为()02f =−,()()220f f −==,()()()()02460f f f f +++=, 函数()f x 的周期为8,所以()()()()22221232024f f f f ++++()050620240f ⎡⎤=⨯+⋅−⎣⎦020*******=+⨯=,因此本选项正确, 故选:ACD.12.(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,对任意的,R x y ∈,恒有()()()()2f x y f x y f x f y ++−=,则下列说法正确的有( )A .()00f =B .()f x '必为奇函数C .()()00f x f +≥D .若1(1)2f =,则202311()2n f x ==∑【答案】BCD【分析】赋值法求()0f 的值,判断A ;赋值法结合导数以及函数奇偶性的定义,判断B ;赋值法结合换元法判断C ;利用赋值法求得(),N f n n *∈的值有周期性,即可求得()20231n f n =∑的值,判断D.【详解】对于A ,令0x y ==,则由()()()()2f x y f x y f x f y ++−=可得()()22020f f =,故(0)0f =或()01f =,故A 错误;对于B ,当(0)0f =时,令0y =,则()()2()(0)0f x f x f x f +==,则()0f x =, 故()0f x '=,函数()f x '既是奇函数又是偶函数;当(0)1f =时,令0x =,则()()2(0)()f y f y f f y +−=,所以()()−=f y f y , 则()()f y f y −''−=,即()()f y f y −='−',则()f x '为奇函数, 综合以上可知()f x '必为奇函数,B 正确;对于C ,令y x = ,则()()()2202f x f f x +=,故()()200f x f +≥.由于x ∈R ,令2,R t x t =∈,即()()00f t f +≥,即有()()00f x f +≥,故C 正确;对于D ,若()112f =,令1,0x y == ,则()()()()11210+=f f f f ,则(0)1f = ,令1x y ==,则()()()22021f f f +=,即()()1121,222f f +=∴=−,令2,1x y ==,则()()()()31212f f f f =+,即()113,(3)122f f +=−∴=−, 令3,1x y ==,则()()()()42231f f f f +=,即()1141,(4)22f f −=−∴=−, 令4,1x y ==,则()()()()53241f f f f +=,即()1151,(5)22f f −=−∴=,令5,1x y ==,则()()()()64251f f f f +=,即()116,(6)122f f −=∴=, 令6,1x y ==,则()()()()75261f f f f +=,即()1171,(7)22f f +=∴=,由此可得(),N f n n *∈的值有周期性,且6个为一周期,且(1)(2)(3)(4)(5)(6)0f f f f f f +++++= , 故()202311337[(1)(2)(3)(4)(5)(6)](1)2n f n f f f f f f f ==⨯++++++=∑,故D 正确, 故选:BCD.13.已知函数()f x 的定义域为R ,满足()()()()f x y f x y f x f y ++−=⋅,且12f ,则( )A .()02f =B .()f x 为奇函数C .()()()()12320232f f f f +++⋅⋅⋅⋅⋅⋅+=−D .()22f x −≤≤【答案】ACD【分析】A.通过赋值,求()0f 的值;B.赋值0x =,即可判断函数的奇偶性;C.赋值1y =,利用函数()()()1f x f x g x −+=的周期性,即可求和;D.通过多次赋值,可证明()24f x ≤,即可判断.【详解】A.令1,0x y ==,有()()()()1110f f f f +=⋅,得()02f =,A 正确;B.令0x =,得()()()()0f y f y f f y +−=⋅,()02f =,则()()−=f y f y ,函数的定义域为R ,所以函数为偶函数,故B 错误;C.令1y =,得()()()()111f x f x f x f ++−=⋅,即()()()()110f x f x f x f x +++−+=⎡⎤⎡⎤⎣⎦⎣⎦, 设()()()1f x f x g x −+=,则()()10g x g x ++=,所以()()()21g x g x g x +=−+=,所以函数()g x 的周期为2,()()()101220g f f =+=−=,()()()3230g f f =+=,…,()()()2023202220230g f f =+=,所以()()()()()0123...20230f f f f f +++++=,()02f =, 所以()()()()123...20232f f f f ++++=−,故C 正确, D.由()()()()f x y f x y f x f y ++−=⋅,()02f =,12f ,令12x y ==,得()()211002f f f ⎛⎫+== ⎪⎝⎭,所以102f ⎛⎫= ⎪⎝⎭, 将y 换成x ,得()()()220f x f f x +=,①,将,x y 换成12x +,得()()212102f x f f x ⎛⎫++=+ ⎪⎝⎭,②,将x 换成122x +,y 换成12,得()()112122022f x f x f x f ⎛⎫⎛⎫++=+⋅= ⎪ ⎪⎝⎭⎝⎭,③, ①+②-③,得()()2212042f f x f x ⎛⎫=++= ⎪⎝⎭,则()24f x ≤,得()22f x −≤≤,故D 正确.故选:ACD【点睛】关键点睛:本题关键的方法是赋值法,尤其是D 选项,通过三次赋值,找到等式间的关系,再可进行判断.14.(多选)已知定义域为R 的函数()f x 对任意实数,x y 都有()()()()2f x y f x y f x f y ++−=,且102f ⎛⎫= ⎪⎝⎭,则以下结论一定正确的有( )A .()01f =−B .()f x 是偶函数C .()f x 关于1,02⎛⎫⎪⎝⎭中心对称D .()()()1220230f f f +++=【答案】BC【分析】根据赋值法,可判断()01f =或()00f =,进而判断A ,根据赋值法结合奇偶性的定义可判断C ,根据偶函数即可判断对称性,根据对称性以及奇偶性可得函数的周期性,进而可判断CD. 【详解】令0x y ==,则()()()()()0020000f f f f f +=⇒=或()01f =,故A 错误, 若()01f =时,令0x =,则=20=f y fy f y f fy f y ,此时()f x 是偶函数,若()00f =时,令0y =,则=20=0f x f x f x f f x ,此时()f x 既是偶函数又是奇函数;因此B 正确,令12x =,则()111112=0=022222f y f y f f y f y f y ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++−=⇒++− ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以()f x 关于1,02⎛⎫ ⎪⎝⎭中心对称,故C 正确,由()f x 关于1,02⎛⎫⎪⎝⎭中心对称可得=1f x f x,结合()f x 是偶函数,所以=1=1=2=2f x f x f x f x f x ,所以()f x 的周期为2,令12x y ==,则()()11102=022f f f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,故12=10=0f f f f ,进而()()()()()122022101112=0f f f f f ⎡⎤+++=⨯+⎣⎦,而()2023(1)(0)f f f ==−,由A 选项知()00f =或()01f =,所以()()()1220230f f f +++=或1−,故D 错误.故选:BC15.函数()f x 的定义域为R ,且()()()21f x f x f x +=−+−,()()2f x f x =−,()3651f =−,则()20231k f k ==∑ .【答案】2【分析】根据给定条件,探讨函数()f x 的周期,再结合()()2f x f x =−求出(1),(2),(3)f f f 即可求解作答. 【详解】函数()f x 的定义域为R ,由()()()21f x f x f x +=−+−,得(3)(2)(1)(1)()(1)()f x f x f x f x f x f x f x +=−+−+=++−+=,因此函数()f x 是以3为周期的周期函数,且()(1)(2)0f x f x f x ++++=,即(1)(2)(3)0f f f ++=, 由()3651f =−,得(2)1f =−,又()()2f x f x =−,(3)(0)(2)1f f f ===−,从而(1)(2)(3)2f f f =−−=,所以20231()674(2(1)(2)3[((1]1)))k f f k f f f f =+=⨯=++=∑.故答案为:216.已知函数()f x 满足:1(1),4()()()()(,R)4f f x f y f x y f x y x y ==++−∈,则()2023f = .【答案】14【分析】由已知等式联想到三角公式()()cos cos 2cos cos x y x y x y ++−=,构造函数()1cos 23xf x π=求解. 【详解】由已知等式联想到三角公式()()cos cos 2cos cos x y x y x y ++−=, 注意它们结构相似,通过尝试和调整,构造函数()1cos 23x f x π=,则()111cos 234f π==, ()()()()11cos cos 23323311cos cos 4cos cos 4,332323x y x y f x y f x y x y x y f x f y ππππ⎛⎫⎛⎫++−=++− ⎪ ⎪⎝⎭⎝⎭ππππ==⋅⋅=故函数()1cos 23xf x π=满足题意,而函数()f x 是周期2π6π3T ==的函数,()()()120233376114f f f ∴=⨯+==. 故答案为:14.【点睛】:抽象函数可以选择构造函数(特例构造法),此题主要是联想到三角公式()()cos cos 2cos cos x y x y x y ++−=,并且还要根据1(1)4f =构造出合适的函数()1cos 23x f x π=,再由周期性解决问题,达到富有创造力的解题效果。

高考数学专题培优20讲(含答案)

高考数学专题培优20讲(含答案)

培优点一 函数的图象与性质1.单调性的判断例1:(1)函数()212log (4)f x x -=的单调递增区间是( )A .(0,)+∞B .(0),-∞C .(2,)+∞D .(),2-∞-(2)223y x x +-+=的单调递增区间为________. 【答案】(1)D ;(2)(],1-∞-,[]0,1【解析】(1)因为12log y t =,0t >在定义域上是减函数,所以求原函数的单调递增区间,即求函数24t x =-的单调递减区间,结合函数的定义域,可知所求区间为(),2-∞-. (2)由题意知,当0x ≥时,222314()y x x x =-+=--++;当0x <时,222314()y x x x =-+=-+-+,二次函数的图象如图.由图象可知,函数223y x x +-+=在(],1-∞-,[]0,1上是增函数.2.利用单调性求最值例2:函数1y x x =+-________. 【答案】1【解析】易知函数1y x x =+-[1,)+∞上为增函数,∴1x =时,min 1y =.3.利用单调性比较大小、解抽象函数不等式例3:(1)已知函数()f x 的图象向左平移1个单位后关于y 轴对称,当211x x >>时,()()2121()0f x f x x x -⋅-⎡⎤⎣⎦<恒成立,设12a f ⎛⎫=- ⎪⎝⎭,()2b f =,()3c f =,则a ,b ,c 的大小关系为 ( ) A .c a b >> B .c b a >>C .a c b >>D .b a c >>(2)定义在R 上的奇函数()y f x =在(0,)+∞上递增,且102f ⎛⎫= ⎪⎝⎭,则满足19log 0f x ⎛⎫> ⎪⎝⎭的x 的集合为________________.【答案】(1)D ;(2)1|0133x x x ⎧⎫<<<<⎨⎬⎭⎩或【解析】(1)根据已知可得函数()f x 的图象关于直线=1x 对称,且在(1,)+∞上是减函数,因为1522a f f ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭,且52<<32,所以b a c >>.(2)由题意知102f ⎛⎫= ⎪⎝⎭,102f ⎛⎫= ⎪⎝⎭,由19log 0f x ⎛⎫> ⎪⎝⎭得191log 2x >或191log 02x -<<解得103x <<或13x <<.4.奇偶性例4:已知偶函数()f x 在区间[0,)+∞上单调递增,则满足1(21)3f x f ⎛⎫-< ⎪⎝⎭的x 的取值范围是( )A .12,33⎛⎫ ⎪⎝⎭B .12,33⎡⎫⎪⎢⎣⎭C .12,23⎛⎫ ⎪⎝⎭D .12,23⎡⎫⎪⎢⎣⎭【答案】A【解析】因为()f x 是偶函数,所以其图象关于y 轴对称,又()f x 在[0,)+∞上单调递增,1(21)3f x f ⎛⎫-< ⎪⎝⎭,所以1|21|3x -<,所以1233x <<.5.轴对称例5:已知定义域为R 的函数()y f x =在[]0,7上只有1和3两个零点,且()2y f x =+与()7y f x =+都是偶函数,则函数()y f x =在[]0,2013上的零点个数为( )A .404B .804C .806D .402【答案】C 【解析】()2f x +,()7f x +为偶函数()()22f x f x ∴+=-+,()()77f x f x +=-+,()f x ∴关于2x =,7x =轴对称,()f x ∴为周期函数,且()27210T =⋅-=,∴将[]0,2013划分为[)[)[)[]0,1010,202000,20102010,2013()f x 关于2x =,7x =轴对称()()4f x f x ∴=-,()()14f x f x =- ()()160f f ==,()()()814860f f f =-==,()()()34310f f f =-==∴在[)0,10中只含有四个零点,而[)[)[)0,1010,202000,2010共201组所以2014804N =⨯=;在[]2010,2013中,含有零点()()201110f f ==,()()201330f f ==共两个,所以一共有806个零点6.中心对称例6:函数()f x 的定义域为R ,若()1f x +与()1f x -都是奇函数,则( ) A .()f x 是偶函数B .()f x 是奇函数C .()()2f x f x =+D .()3f x +是奇函数【答案】D【解析】从已知条件入手可先看()f x 的性质,由()1f x +,()1f x -为奇函数分别可得到:()()11f x f x +=--+,()()11f x f x -=---,所以()f x 关于()1,0,()1,0-中心对称,双对称出周期可求得()2114T =⋅--=⎡⎤⎣⎦,所以C 不正确,且由已知条件无法推出一定符合A ,B .对于D 选项,因为4T =,所以()()()511f x f x f x +=+=--+,进而可推出()f x 关于()3,0中心对称,所以()3f x +为()f x 图像向左平移3个单位,即关于()0,0对称,所以()3f x +为奇函数,D 正确.7.周期性的应用例7:已知()f x 是定义在R 上的偶函数,()g x 是定义在R 上的奇函数,且()()1g x f x =-, 则()()20172019f f +的值为( ) A .1- B .1 C .0 D .无法计算【答案】C【解析】由题意,得(()1)g x f x ---=,∵()f x 是定义在R 上的偶函数,()g x 是定义在R 上的奇函数,∴()()g x g x -=-,()()f x f x -=,∴()()11f x f x =--+, ∴()(2)f x f x +=-,∴()()4f x f x =+,∴()f x 的周期为4, ∴()20171f f =(),()()20193(1)f f f ==-, 又∵()1100()f f g -===(),∴()()201720190f f +=.一、选择题1.若函数()2||f x x a =+的单调递增区间是[3,)+∞,则a 的值为( ) A .2- B .2C .6-D .6【答案】C【解析】由图象易知函数()2||f x x a =+的单调增区间是,2a ⎡⎫-+∞⎪⎢⎣⎭,令=32a -,∴6a =-.2.已知函数2(og 1)l y ax =-在()1,2上是增函数,则实数a 的取值范围是( ) A .(]0,1 B .[]1,2C .[1,)+∞D .[2,)+∞【答案】C【解析】要使2(og 1)l y ax =-在()1,2上是增函数,则0a >且10a -≥,即1a ≥. 3.设函数()()()ln 1ln 1f x x x =-+-,则()f x 是( ) A .奇函数,且在(0,1)内是增函数 B .奇函数,且在(0,1)内是减函数 C .偶函数,且在(0,1)内是增函数 D .偶函数,且在(0,1)内是减函数 【答案】A【解析】易知()f x 的定义域为()1,1-,且()()()ln 1l (n 1)f x x x f x -+-=-=-,则()y f x =为对点增分集训奇函数,又ln 1ln 1()()y x y x =+=--与在(0,1)上是增函数,所以()()()ln 1ln 1f x x x =-+-在(0,1)上是增函数.4.已知函数()y f x =的图象关于1x =对称,且在(1,)+∞上单调递增,设12a f ⎛⎫=- ⎪⎝⎭,()2b f =,()3c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .a b c <<【答案】B【解析】∵函数图象关于1x =对称,∴1522a f f ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭,又()y f x =在(1,)+∞上单调递增,∴5(2)(3)2f f f ⎛⎫<< ⎪⎝⎭,即b a c <<,故选B .5.已知()f x 是奇函数,()g x 是偶函数,且()2(11)f g -+=,())114(f g -=+,则()1g 等于( ) A .4 B .3 C .2 D .1【答案】B【解析】由已知得()()11f f -=-,()()11g g -=,则有()()()()112114f g f g -+=⎧⎪⎨+=⎪⎩解得()13g =,故选B .6.函数1()cos (0)f x x x x x x ⎛⎫=--π≤≤π≠ ⎪⎝⎭且的图象可能为( )【答案】D【解析】因为11()cos()cos ()f x x x x x f x x x ⎛⎫⎛⎫-=-+-=--=- ⎪ ⎪⎝⎭⎝⎭,x -π≤≤π且0x ≠,所以函数()f x 为奇函数,排除A ,B .当x =π时,1()cos 0f x ⎛⎫=π-π< ⎪π⎝⎭,排除C ,故选D .7.奇函数()f x 的定义域为R ,若()1f x +为偶函数,且()12f =,则()()45f f +的值为( ) A .2 B .1 C .1- D .2-【答案】A【解析】∵()1f x +为偶函数,∴1()()1f x f x -=++,则(()2)f x f x +-=, 又()y f x =为奇函数,则()2()()f x f x f x -=+-=,且()00f =. 从而()2(()4)f x f x f x -+=+=,()y f x =的周期为4. ∴()()()()4501022f f f f +=+=+=,故选A .8.函数()f x 的图象向右平移1个单位,所得图象与曲线e x y =关于y 轴对称,则()f x 的解析式为( ) A .()1e x f x += B .()1e x f x -= C .()1e x f x -+= D .()1e x f x --=【答案】D【解析】与e x y =的图象关于y 轴对称的函数为e x y -=.依题意,()f x 的图象向右平移一个单位,得e x y -=的图象.∴()f x 的图象由e x y -=的图象向左平移一个单位得到.∴()1)1(e e x x f x +---==.9.使2)og (l 1x x <+-成立的x 的取值范围是( ) A .()1,0- B .[)1,0-C .()2,0-D .[)2,0-【答案】A【解析】在同一坐标系内作出2(log )y x -=,1y x =+的图象,知满足条件的,0()1x ∈-,故选A .10.已知偶函数()f x 对于任意R x ∈都有()()1f x f x +=-,且()f x 在区间[]0,1上是单调递增的,则()65f -.,1()f -,()0f 的大小关系是( ) A .()0 6.5()()1f f f <-<- B .()6.5()()01f f f -<<- C .()()(60)1.5f f f -<-< D .()10()( 6.5)f f f -<<-【答案】A【解析】由()()1f x f x +=-,得()1(()2)f x f x f x -+=+=,∴函数()f x 的周期是2. ∵函数()f x 为偶函数,∴ 6.50.5()()(0.)5f f f -=-=,()()11f f -=.∵()f x 在区间[]0,1上是单调递增的,∴()()00.5(1)f f f <<,即()0 6.5()()1f f f <-<-. 11.对任意的实数x 都有()()()221f x f x f -=+,若(1)y f x =-的图象关于1x =对称,且()02f =,则()()20152016f f +=( ) A .0 B .2C .3D .4【答案】B【解析】(1)y f x =-的图象关于1x =对称,则函数()y f x =的图象关于0x =对称, 即函数()f x 是偶函数,令1x =-,则()121(12)()f f f --=+-, ∴()()()11210f f f -==,即()10f =,则()()2(210)f x f x f -=+=,即()2()f x f x +=,则函数的周期是2,又()02f =, 则()()()()2015201610022f f f f +=+=+=.12.已知函数()e 1x f x =-,()243g x x x =-+-,若存在()()f a g b =,则实数b 的取值范围为( ) A .[0,3]B .(1,3)C.2⎡⎣ D.(2+【答案】D【解析】由题可知()e 11x f x =->-,()2243211()g x x x x -=---++≤=, 若()()f a g b =,则(),1(]1g b -∈,即2431b b -->-+,即2420b b +<-,解得22b <+b的取值范围为(2+,故选D .二、填空题13.设函数()10010x x x f x >⎧⎪==⎨⎪-<⎩,()21()g x x f x -=,则函数()g x 的递减区间是_______.【答案】[0,1)【解析】由题意知()22111g x x x x x x ⎧>⎪==⎨⎪-<⎩,函数的图象如图所示的实线部分, 根据图象,()g x 的减区间是[0,1).14.若函数()R ()f x x ∈是周期为4的奇函数,且在[0,2]上的解析式为()()101sin 12x x x xx f x ⎧-≤≤⎪=⎨π<≤⎪⎩,则294146f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭________. 【答案】516【解析】由于函数()f x 是周期为4的奇函数,所以294137373724244646435si 64n 161666f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=⨯-+⨯-=-+-=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭π-⎝⎭⎝⎭⎝⎭+=⎝⎭.15.设函数()||f x x a =+,()1g x x =-,对于任意的R x ∈,不等式()()f x g x ≥恒成立,则实数a 的取 值范围是________. 【答案】[)1,-+∞【解析】如图作出函数()||f x x a =+与()1g x x =-的图象,观察图象可知:当且仅当1a -≤,即1a ≥-时,不等式()()f x g x ≥恒成立,因此a 的取值范围是[)1,-+∞.16.设定义在R 上的函数()f x 同时满足以下条件:①()0()f x f x +-=;②()()2f x f x =+;③当01x ≤≤时,()21x f x =-,则()1351(2)222f f f f f ⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭________.【解析】依题意知:函数f (x )为奇函数且周期为2,∴()1351(2)222f f f f f ⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()1111(0)222f f f f f ⎛⎫⎛⎫⎛⎫=++-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()1111(0)222f f f f f ⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()11021102121212f f f ⎛⎫=++=-++= ⎪⎝⎭--三、解答题17.已知函数()ln(2)af x x x=+-,其中a 是大于0的常数. (1)求函数()f x 的定义域;(2)当4()1,a ∈时,求函数()f x 在[2,)+∞上的最小值; (3)若对任意,[)2x ∈+∞恒有()0f x >,试确定a 的取值范围. 【答案】(1)见解析;(2)ln 2a;(3)(2,)+∞.【解析】(1)由20a x x+->,得220x x ax -+>,当1a >时,220x x a +>-恒成立,定义域为(0,)+∞, 当1a =时,定义域为0{|}1x x x >≠且,当01a <<时,定义域为{|011x x x <<>.(2)设()2a g x x x=+-,当4()1,a ∈,,[)2x ∈+∞时,∴222()10a x ag x x x -'=-=>.因此()g x 在[2,)+∞上是增函数,∴()f x 在[2,)+∞上是增函数.则min ()(2)ln 2af x f ==. (3)对任意,[)2x ∈+∞,恒有()0f x >.即21ax x+->对,[)2x ∈+∞恒成立. ∴23a x x >-.令()23h x x x =-,,[)2x ∈+∞.由于239()24h x x ⎛⎫=--+ ⎪⎝⎭在[2,)+∞上是减函数,∴()()max 22h x h ==.故2a >时,恒有()0f x >.因此实数a 的取值范围为(2,)+∞.18.设()f x 是定义域为R 的周期函数,最小正周期为2,且()1()1f x f x =+-,当10x -≤≤时,()f x x =-.(1)判定()f x 的奇偶性;(2)试求出函数()f x 在区间[]1,2-上的表达式.【答案】(1)()f x 是偶函数;(2)()[]()[]1,00,121,2x x xx x x f x ⎧-∈-⎪=∈⎨⎪-+∈⎩. 【解析】(1)∵()1()1f x f x =+-,∴(()2)f x f x =+-.又()2()f x f x +=,∴()()f x f x -=.又()f x 的定义域为R ,∴()f x 是偶函数. (2)当1[]0,x ∈时,1,[]0x --∈,则()()f x f x x =-=;进而当12x ≤≤时,120x -≤-≤,()2()2()2f x f x x x ==-=---+. 故()[]()[]1,00,121,2x x xx x x f x ⎧-∈-⎪=∈⎨⎪-+∈⎩.培优点二 函数零点1.零点的判断与证明例1:已知定义在()1,+∞上的函数()ln 2f x x x =--, 求证:()f x 存在唯一的零点,且零点属于()3,4. 【答案】见解析 【解析】()111x f x x x-'=-=,()1,x ∈+∞,()0f x '∴>,()f x ∴在()1,+∞单调递增,()31ln30f =-<,()42ln 20f =->,()()340f f ∴<,()03,4x ∴∃∈,使得()00f x =因为()f x 单调,所以()f x 的零点唯一.2.零点的个数问题例2:已知函数()f x 满足()()3f x f x =,当[)1,3x ∈,()ln f x x =,若在区间[)1,9内, 函数()()g x f x ax =-有三个不同零点,则实数a 的取值范围是( ) A .ln 31,3e ⎛⎫⎪⎝⎭B .ln 31,93e ⎛⎫ ⎪⎝⎭C .ln 31,92e ⎛⎫ ⎪⎝⎭D .ln 3ln 3,93⎛⎫ ⎪⎝⎭【答案】B 【解析】()()()33x f x f x f x f ⎛⎫=⇒= ⎪⎝⎭,当[)3,9x ∈时,()ln 33x x f x f ⎛⎫== ⎪⎝⎭,所以()ln 13ln 393xx f x xx ≤<⎧⎪=⎨≤<⎪⎩,而()()g x f x ax =-有三个不同零点⇔()y f x =与y ax =有三个不同交点,如图所示,可得直线y ax =应在图中两条虚线之间,所以可解得:ln3193ea <<3.零点的性质例3:已知定义在R 上的函数()f x 满足:()[)[)2220,121,0x x f x xx ⎧+∈⎪=⎨-∈-⎪⎩,且()()2f x f x +=,()252x g x x +=+,则方程()()f x g x =在区间[]5,1-上的所有实根之和为( ) A .5- B .6- C .7- D .8-【答案】C【解析】先做图观察实根的特点,在[)1,1-中,通过作图可发现()f x 在()1,1-关于()0,2中心对称,由()()2f x f x +=可得()f x 是周期为2的周期函数,则在下一个周期()3,1--中,()f x 关于()2,2-中心对称,以此类推。

高考培优课程秋季数学讲义:函数-数形结合、化归等思想【讲师版】

高考培优课程秋季数学讲义:函数-数形结合、化归等思想【讲师版】

高考培优 数学讲义函数-数形结合、化归等思想学生姓名 授课日期 教师姓名授课时长知识定位数形结合的思想常常能有效地判断函数方程系数所满足的关系,这要求学生对函数表达式所隐含的图像性质有深刻的认识和理解,建立代数式和几何图形之间的联系从而解题。

化归思想则考察了学生对问题本质的观察能力,许多问题看似复杂、难处理,而一旦找到问题关键往往就能化繁为简。

总之,这些内容要求学生能把代数和几何等看似不相关的知识点串通起来,能熟练掌握并灵活运用各种知识点。

实战中这类题目往往会分布在试卷的各个板块中,小题大题都有出现,所以学生必须重视这块内容。

知识梳理1、系数中有变量的函数的恒成立问题转换变量考虑,比如关于x 的二次函数22ax x a +-看成关于a 的一次函数2(x 2)a x -+。

2、带系数的二次函数2(x)f ax bx c =++的零点的分布情况可以转化为对特别的i x 满足(x )i f 与0的某种大小关系,从而得到关于二次函数系数,,a b c 之间的关系。

3、遇到带根号的式子尝试换元法或三角代换的方式把根号去掉,便于求解值域或恒成立等问题。

4、函数带有平方和开根的形式可以尝试用距离公式的几何含义去解题。

5、求分式函数的值域等问题时有时会用到斜率的几何性质来巧妙地解题。

总的来说,此类题目没有固定的形式,学生必须在平时学习过程中多做积累。

例题精讲【试题来源】【题目】求(x)213f x x =+-+的值域。

【答案】41[,)8-+∞ 【解析】令30t x =+≥,则23x t =-,于是原式221412(t 3)1t 2(t )48=-+-=--,从而解得值域为41[,)8-+∞【知识点】换元法 【适用场合】当堂例题 【难度系数】2【试题来源】【题目】已知二次函数22(2)(2m 1)x m 340m x m --++-+= 的两根符号相反,求m 的取值范围。

【答案】m<2【解析】记22f(x)(2)(2m 1)x m 34m x m =--++-+。

2025高考数学培优25讲1.不等式拓展

2025高考数学培优25讲1.不等式拓展

第1章不等式拓展1.1赫尔德不等式一、【题型总结】▲适用题型:已知22Ax By +的值,求mx ny +的取值范围,或者已知mx ny +的值,求22Ax By +的最值或者求+▲方法原理:赫尔德不等式高中常用形式:(其中,,(1,2,,)i i i a b c i n = 非负)一:()()()3112233a b a b a b +++≥二:()()()3111222333a b c a b c a b c ++++++≥三:()()()111121212,n n n a b z m a a a b b b z z z +++++++++共个字母m≥+ ,取等条件:111::::::(2,,)i i i a b z a b z i n == ,2m =时,赫尔德不等式即柯西不等式.二、【典型例题】1.(全国·高三专题)设x y ,是正实数且满足1x y +=,则2218x y+最小值.2.(全国·高三专题)设x y ,是正实数且满足221x y +=,则18x y+最小值.三、【习题检测】1.(杭州质检)已知x y ,是正实数且满足143x y +=,则222y x +最小值.2.(全国·高三专题)已知0a >,0b >,3382a b +=,则2a b +的最大值为.3.(全国·高三专题)若0,2x π⎛⎫∈ ⎪⎝⎭,则2764sin cos αα+最小值.1.2柯西不等式1.2.1整式类型一、【题型总结】▲适用题型:已知22Ax By +的值,求mx ny +的取值范围,或者已知mx ny +的值,求22Ax By +的最值或者求+▲方法原理:1.二维柯西不等式:设a ,b ,c ,d 均为实数,有22222()()()a b c d ac bd ++≥+当且仅当a bc d=时等号成立;向量法证明:()()22222,,,,cos 1cos ()()()m a b n c d m n m n m n ac bd a b c d ac bd θθ⎧==≤⎪⎪⇒=≤⎪⎨⎪⇒+≤⎪⎪⇒++≥+⎩;取等时向量共线,即a b c d =;代数法证明:()()()2222222222222222222222()22()0a b c d ac bd a c a d b c b d a c acbd b d a d b c acbd ad bc ⎧⎪⎪⎨⎪⎪++-+=+++-++=+-=⎩-≥易知取等条件是ad bc =,解答题用到柯西不等式,即可证明;2.n 维柯西不等式:222222222123123112233(......)(......)(......)n n n n a a a a b b b b a b a b a b a b ++++++++≥++++,其中字母值域均为R ,当且仅当312123......n na a a ab b b b ====时等号成立,n 维向量证明(不作要求);二、【典型例题】1.(福建·高考真题)设,a b R ∈,2226a b +=,则a b +的最小值是()A.-B.3-C.3-D.72-2.(江苏·高考真题)若,,x y z 为实数,且226x y z ++=,求222x y z ++的最小值为.3.(湖南·高考真题)设,x y R ∈,则222211(4)x y y x++的最小值为.4.(全国·高三专题)已知0x >,y ∈R ,且2530x xy x y +-+=+的最大值为()C.D.5.(全国·高三专题)设,a b R ∈,且2210a b +=,则a b -的取值范围为______.6.(全国·高三专题)已知a ,b ,0c >,且1a b c ++=,的最大值为()A.3B.C.18D.97.(湖北·高考真题)设,,,,,a b c x y z 是正数,且22210a b c ++=,22240x y z ++=,20ax by cz ++=,则a b c x y z++=++()A.14B.13C.12D.34三、【习题检测】1.(全国·高三专题)已知1,1x y >->-,且(1)(1)4x y ++=,则xy 的最大值是.2.(全国·高三专题)已知,,x y z ∈R ,且225x y z -+=,则222(5)(1)(3)x y z ++-++的最小值是.3.(陕西·高考真题)设,,,a b m n R ∈,且225,5a b ma nb +=+=,的最小值为.4.(浙江湖州·高三期末)已知x ,y ∈R ,且3x y +=,+的最小值是.5.(全国·高三专题)已知实数,x y 满足()22241,x y y -+=则2x y +的最大值为.6.(重庆卷)已知正数,x y 满足5x y +=的最大值为.7.(全国·高三专题)对于0c >,当非零实数a ,b 满足2222a ab b c -+=且使||a b +最大时,345a b c-+的最小值为.8.(2024·高三·山东青岛·期中)柯西不等式(Caulhy-Schwarz Lnequality)是法国数学家柯西与德国数学家施瓦茨分别独立发现的,它在数学分析中有广泛的应用.现给出一个二维柯西不等式:()()()22222a b c d ac bd ++≥+,当且仅当a bc d=时等号成立.根据柯西不等式可以得知函数()f x =的最大值为()A.B.C.12D.209.(2024·浙江·模拟预测)已知0x >,y ∈R ,且2530x xy x y +-+=值为()C.D.10.(2024·江西宜春·三模)已知0x >,0y >,且满足2249630x y xy ++-=,则23x y +的最大值为.1.2.2分式类型一、【题型总结】▲适用题型:一般出现变量和以及变量的倒数和等类型可以考虑;▲方法原理:模型一:2222222()()()m n a b m n a b++≥+;例如:211()()a b a b ++≥=4;模型二:2[()(1)]()1a b a bx x x x x x+=+-+≥--1二、【典型例题】1.(浙江·高考真题)若正数,x y 满足35x y xy +=,则34x y +的最小值是()A.245B.285C.5D.62.(陕西·高考真题)设,x y 为正数,则14()()x y x y++的最小值为()A.6B.9C.12D.153.(河南开封·高二阶段)已知a ,b ,c 均为正数,若1a b c ++=,则111a b c ++的最小值为()A.9B.8C.3D.134.(全国·高三专题)已知1a b c ++=,且,,0a b c >,则222a b b c a c+++++的最小值为()A.1B.3C.6D.95.(天津·耀华中学一模)已知正实数a ,b 满足1a b +=,则121aa b ++的最小值为.6.(浙江台州·高三期末)已知正实数,a b 满足21a b +=,则4432a b b a+的最小值为.三、【习题检测】1.(山东·高考真题)若直线1(00)x ya b a b+=>,>过点(1,2),则2a b +的最小值为.2.(全国·高三专题)已知a ,b ,c 均为非负数,且494a b c ++=,则111111a b c +++++的最小值为.3.(全国·高三专题)设x ,y ,z的最大值是.4.(全国·高三专题)已知,x y R ∈,且222,x y x y +=≠,则2211()()x y x y ++-的最小值是.5.(天津·耀华中学模拟预测)已知实数0a >,0b >,121a b +=,则4312a ba b +--的最小值是.6.(全国·高三专题)已知正数,,x y z 满足321x y z ++=,则24242x y y z x y++++的最小值为.7.(2024·高三·天津南开·期中)已知正实数a ,b 满足1a b +=,则121a ab ++的最小值为.1.2.3待定系数类型一、【题型总结】▲适用题型:直接使用柯西发现系数不匹配则可以考虑;▲方法原理:待定系数:()()()2222222101a b m m a b ma m ⎡⎤⎡⎤+=+-+≥+<<⎣⎦⎣⎦比如已知正数,a b 满足1381a b +=,则2a 解题思路:()()()()()()()()()222222241401112222131333138188511213855343255552138155a b m m a b ma m m a b a m a a b a b m a a b a a b a b b ⎧⎡⎤⎡⎤+=+-+≥+<<⎪⎣⎦⎣⎦⎪⎨⎪=⎪⎩+≥++++=⇒⇒=+≥+=⎧=⎫⎪=⎪⎪⇒⎬⎨⎪⎪+==⎭⎪⎩柯西待定系数化简结果对比中,系数为计算答案时125a ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎪⎪⎪⇒+⎨⎪⎪⎪⎪⎪⎪⎪⎩⎩最小值为取等二、【典型例题】1.(全国·高三专题)已知正数,a b 满足341ab +=,则a +的最小值为.2.设a ,b ,c 为正数,且2221a b c ++=,则()a a b c ++的最大值为()A.312+B.212+C.32D.223.(2024·浙江·一模)若()2s s in i c n os x y y x +++=,则sin x 的最小值是()A.0B.2C.3-D.12三、【习题检测】1.(全国·高三专题)已知实数0x >,0y >,3x y +=,+的最小值是.2.(全国·高三专题)已知正数,a b 满足8a +=,则32a b +的最大值为.3.(全国·高三专题)若a ,b 是正实数,且121a b+=,则a b ++的最小值为.4.若实数a ,b ,c ,d 满足1ab bc cd da +++=,则2222234a b c d +++的最小值为()A.1B.2C.3D.以上答案都不对1.3权方和不等式1.3.1分式类型一、【题型总结】▲适用题型:结构中有22a b x y +和x y +时,也就是柯西不等式中分式类型的题目可以考虑;▲方法原理:由柯西不等式可知222()()()a b x y a b x y++≥+,则,,,0a b x y >时,222()a b a b x y x y ++≥+当a bx y =时,等号成立.同理2222(),a b c a b c x y z x y z ++++≥++当a b cx y z ==时,等号成立.二、【典型例题】1.(山东·高考真题)若直线1x ya b+=()0,0a b >>过点12(,),则2a b +的最小值为.2.(浙江·高考真题)若正数,x y 满足35x y xy +=,则43y x +的最小值是()A.245B.285C.5D.6三、【习题检测】1.(2024·吉林白山·一模)权方和不等式作为基本不等式的一个变化,在求二元变量最值时有很广泛的应用,其表述如下:设正数a ,b ,x ,y ,满足()222a b a b x y x y++≥+,当且仅当a b x y =时,等号成立.则函数()31610133f x x x x ⎛⎫=+<< ⎪-⎝⎭的最小值为()A.16B.25C.36D.492.已知x >0,y >0,且11121x y y +=++,则x +2y 的最小值为.3.已知1,1a b >>,则2211a b b a +--的最小值是.1.3.2合理配凑类型一、【题型总结】▲适用题型:结构中有分式,但是直接用权方和时系数不匹配需要进行配凑,或者需要先进行变形处理;▲方法原理:1.考虑分式上下同时扩大或者缩小;比如:()2,,,0p q a b p qa b ma nb=⎧⎪+>⎪+⎨⎪=⎪⎩2.考虑分子分母同除以相同字母构造目标结构;比如:()()2221111114,,11111112112111111a bm a ba b a b ma b a ba b⎧++=>+=+≥=⎪---⎛⎫⎪---+⎪⎪⎝⎭⎨⎪=⎪--⎪⎩若,则当且仅当时取等3.系数不匹配时还可以考虑待定系数法处理;比如已知()min119233,0345a b a ba b a b⎛⎫+=>+⎪++⎝⎭求(1)待定系数:令()()()()923345345a b m a b n a b m n a m n b+=+++=+++(2)对比,a b系数,计算,m n:()()39292323435345233m n ma b a b a bm n n+==⎧⎧⇒⇒+=+++=⎨⎨+==⎩⎩(3)权方和公式计算答案:()()211252634523435333a b a b a b a b++=+≥=++++,()()234359233a b a ba b⎧=⎪++⎨⎪+=⎩当且仅当时取等;二、【典型例题】1.(全国·高三专题)若,x y R+∈,且21x y+=,则22212x yx y+++的最小值为.2.(全国·高三专题)已知正数,,x y z满足321x y z++=,则24242x yy z x y++++的最小值为.3.(全国·高三专题)若正数a,b满足111a b+=,则411a ba b+--的最小值为.三、【习题检测】1.(天津联考)已知实数0x>,1y>-,且1x y+=,则2231x yx y+++的最小值为.2.(天津南开·三模)已知0a >,0b >,1a b +=,则1132a b a b+++的最小值为.3.(全国·高三专题)已知1a >,1b >,则2211a b b a --+的最小值为.4.(金太阳百校联考)已知正数,x y 满足434x y +=,则11321y xy xy ⎛⎫+ ⎪++⎝⎭的最小值为.1.3.3构造指数差1类型一、【题型总结】▲适用题型:结构中有分式,但是直接权方和不等式发现指数不匹配;▲方法原理:权方和不等式拓展:若0,0,0.i i a b m >>>则()()111112121212()()()()()()m m m m n n mm m m n n a a a a a a b b b b b b ++++++++++≥+++ ,当仅当1212n na a ab b b === 时,等号成立.它的特点是分子的幂比分母的幂多一次.常见变形比如:()()()()33322211122222222211111111x y x y x y x y ⎧+⎪+=+≥⎪⎪+⎨⎪⎪=⎪⎩当且仅当时取等二、【典型例题】1.(2024·四川·模拟预测)“权方和不等式”是由湖南理工大学杨克昌教授于上世纪80年代初命名的.其具体内容为:设0,0,,0n n a b n m >>∈>N *,则()()11111123312123123m m m m m n n m m m m mn n a a a a a a a a b b b b b b b b +++++++++++++≥++++ ,当且仅当312123n na a a ab b b b ==== 时,等号成立.根据权方和不等式,若0,2x ⎛⎫∈ ⎪⎝⎭π,当1x x +sin cos 取得最小值时,x 的值为()A.12πB.6πC.3πD.512π2.(全国·高三专题)设x y ,是正实数且满足1x y +=,则2218x y +最小值.3.(全国·高三专题)设x y ,是正实数且满足221x y +=,则18x y+最小值.三、【习题检测】1.(杭州质检)已知x y ,是正实数且满足143x y +=,则222y x +最小值.2.(全国·高三专题)已知0a >,0b >,3382a b +=,则2a b +的最大值为.3.(全国·高三专题)若0,2x π⎛⎫∈ ⎪⎝⎭,则2764sin cos αα+最小值.4.已知122,0,1x y x y>+=的最小值是.5.求()f x =的最大值为.。

高考数学培优---取对数

高考数学培优---取对数

高考数学培优---取对数【方法点拨】取对数是最易为学生所忽视的运算,当已知中出现复杂的指数式时,取对数往往就起到了”柳暗花明”的作用.【典型题示例】例1已知函数2210()0x x mx x e f x e mx x ⎧+<⎪=⎨⎪+>⎩,,,,若函数()f x 有四个不同的零点,则实数m 的取值范围是 .【答案】2(,)4e -∞- 【解析】2210()0x x mx x e f x e mx x ⎧+<⎪=⎨⎪+>⎩,,,是偶函数,问题转化为2=0x e mx +,即2=x e mx -(0x >)有两个零点 易知0m <,两边均为曲线,较难求解.两边取自然对数,()=ln 2ln x m x -+,即()ln 2ln x m x --=问题即为:()()ln g x x m =--与()2ln h x x =有两个交点先考察直线y x b =+与()2ln h x x =相切,即只有一点交点的“临界状态”设切点为00(,2ln )x x ,则002()1h x x '==,解得02x =,此时切点为(2,2ln 2) 代入2ln 22b =-再求()()ln g x x m =--与()2ln h x x =有两个交点时,m 的取值范围由图象知,当()()ln g x x m =--在直线y x b =+下方时,满足题意故()ln 2ln 22m b --<=-,解之得24e m <-,此时也符合0m < 所以实数m 的取值范围是2(,)4e -∞-. 点评:取对数的目的在于“化双曲为一直一曲”,简化了运算、难度,取对数不影响零点的个数.例2 设正实数x ,则()2ln ln x x f x x=的值域为_____.【答案】[0,1e ]【分析】所求函数结构是商的形式,分子、分母又是指对运算,让人“雾里看花”一头雾水,无从下手.联想到“取对数”、“换元”,就可以“拨开浓雾终见日”了.【解析】当lnx ≠0时,两边取对数得:()()()2ln 2ln y ln ln ln n ln ln 2l x x xx x ==-- 令lnx =t ∴设2()ln y ln 2g t t t =-= ∵22((1))()21t t g t t t t-+='=- ∴当01t <<时,0()g t '>;当1t >时,0()g t '< ∴max ()(1)1g t g ==-, ∴ln y 1≤-,10<y e ≤又lnx ≠0时,0y = ∴()2ln ln x x f x x=的值域为[0,1e ], ∴函数()2ln ln x x f x x=的值域为[0,1e ].例3 已知实数1x ,2x 满足131x x e e =,()522ln 2x x e -=,则12x x =______. 【答案】5e【分析】由已知条件考虑将两个等式转化为统一结构形式,令222ln 2,t x t x e+-==,得到3t te e =,研究函数()x f x xe =的单调性,求出1,x t 关系,即可求解.【解法一】对131x x e e =两边取自然对数得:11ln 3x x +=, 对()522ln 2x x e -=两边取自然对数得:()22ln ln ln 25x x +-= (※) 为使两式结构相同,将(※)进一步变形为:()()22ln 2ln ln 23x x -+-=设()ln f x x x =+,则1()10f x x'=+> 所以()f x 在(0,)+∞单调递增,()3f x =的解只有一个.∴12ln 2x x =-, ∴()51222ln 2x x x x e =-= 【解析二】实数1x ,2x 满足131x x e e =,()522ln 2x x e -=, 2120,x x e >>,222ln 20,t x t x e +-=>=,则3t te e =,()(0),()(1)0(0)x x f x xe x f x x e x '=>=+>>,所以()f x 在(0,)+∞单调递增,而31()()f x f t e ==,5121222ln 2,(ln 2)x t x x x x x e ∴==-∴=-=.点评:两种解法实质相同,其关键是对已知等式进行变形,使其“结构相同”,然后构造函数,利用函数的单调性,利用是同一方程求解.【巩固训练】1.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( )A. a <b <cB. b <a <cC. b <c <aD. c <a <b 2. 设实数0m >,若对任意的x e ≥,不等式2ln 0m x x x me -≥恒成立,则m 的最大值是( ).1.A e .3e B .C e .2D e 3.若存在正实数x ,y ,z 满足223310y z yz +≤,且ln ln ey x z z -=,则x y的最小值为 . 4.若函数()x f x a =(0a >且1a ≠)的定义域[m ,n ] 上的值域是[m 2,n 2](1<m <n ),则实数a 的取值范围是 .5. 若函数2()x f x a x =-(1a >)有且只有三个零点,则实数a 的取值范围是 .6.已知变量12,(0,)x x m ∈(0m >),且12x x <,若2112x x x x <恒成立,则实数m 的最大值是 .。

2025年新人教版高考数学一轮复习讲义 第三章 培优点6 极值点偏移

2025年新人教版高考数学一轮复习讲义  第三章 培优点6 极值点偏移

2025年新人教版高考数学一轮复习讲义第三章培优点6 极值点偏移极值点偏移是指函数在极值点左右的增减速度不一样,导致函数图象不具有对称性,极值点偏移问题常常出现在高考数学的压轴题中,这类题往往对思维要求较高,过程较为烦琐,计算量较大,解决极值点偏移问题,有对称化构造函数法和比值代换法,二者各有千秋,独具特色.1.极值点偏移的概念已知函数y=f(x)是连续函数,在区间(a,b)内只有一个极值点x0,f(x1)=f(x2),且x0在x1与x2之间,由于函数在极值点左右两侧的变化速度不同,使得极值点偏向变化速度快的一侧,常常有x0≠ ,这种情况称为极值点偏移.2.极值点偏移问题的一般题设形式(1)函数f(x)存在两个零点x1,x2且x1≠x2,求证:x1+x2>2x0(x0为函数f(x)的极值点);(2)函数f(x)中存在x1,x2且x1≠x2,满足f(x1)=f(x2),求证:x1+x2>2x0(x0为函数f(x)的极值点);题型一 对称化构造函数例1 (2023·唐山模拟)已知函数f(x)=x e2-x.(1)求f(x)的极值;因为f(x)=x e2-x,所以f′(x)=(1-x)e2-x,由f′(x)>0,解得x<1;由f′(x)<0,解得x>1,所以f(x)在(-∞,1)上单调递增,在(1,+∞)上单调递减,又f(1)=e,所以f(x)在x=1处取得极大值e,无极小值.(2)若a>1,b>1,a≠b,f(a)+f(b)=4,证明:a+b<4.由(1)可知,f(x)在(1,+∞)上单调递减,f(2)=2,且a>1,b>1,a≠b,f(a)+f(b)=4,不妨设1<a<2<b,要证a+b<4,只需证b<4-a,而b>2,2<4-a<3,且f(x)在(1,+∞)上单调递减,所以只需证f(b)>f(4-a),即证4-f(a)>f(4-a),即证f(a)+f(4-a)<4.即证当1<x<2时,f(x)+f(4-x)<4,令F(x)=f(x)+f(4-x),1<x<2,则F′(x)=f′(x)-f′(4-x)=(1-x)e2-x-e x-2(x-3),令h(x)=(1-x)e2-x-e x-2(x-3),1<x<2,则h′(x)=e2-x(x-2)-e x-2(x-2)=(x-2)(e2-x-e x-2),因为1<x<2,所以x-2<0,e2-x-e x-2>0,所以h′(x)<0,即h(x)在(1,2)上单调递减,则h(x)>h(2)=0,即F′(x)>0,所以F(x)在(1,2)上单调递增,所以F(x)<F(2)=2f(2)=4,即当1<x<2时,f(x)+f(4-x)<4,所以原命题成立.思维升华对称化构造函数法构造辅助函数(1)对结论x1+x2>2x0型,构造函数F(x)=f(x)-f(2x0-x).(1)若f(x)≥0,求a的取值范围;由题意知函数f(x)的定义域为(0,+∞).可得函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以f(x)min=f(1)=e+1-a.又f(x)≥0,所以e+1-a≥0,解得a≤e+1,所以a的取值范围为(-∞,e+1].(2)证明:若f(x)有两个零点x1,x2,则x1x2<1.方法一 不妨设x 1<x 2,1211e 11x x x x ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭1e xx令g (x )=e x +x - -1(x >0),1e xx 11e ex x +x =e x +1+ (x >0),11e 1x x ⎛⎫- ⎪⎝⎭所以当x ∈(0,1)时,g ′(x )>0,所以当x ∈(0,1)时,g (x )<g (1)=0,所以当x ∈(0,1)时,F ′(x )>0,所以F(x)在(0,1)上单调递增,所以F(x)<F(1),方法二 (同构法构造函数化解等式)不妨设x 1<x 2,由f (x 1)=f (x 2)=0,得 -ln x 1+x 1= -ln x 2+x 2,11e x x 22e x x 即 +x 1-ln x 1= +x 2-ln x 2.11ln e x x -22ln e x x -因为函数y=e x+x在R上单调递增,所以x1-ln x1=x2-ln x2成立.构造函数h(x)=x-ln x(x>0),所以函数g(x)在(0,+∞)上单调递增,所以当x>1时,g(x)>g(1)=0,所以h(x)在(0,1)上单调递减,题型二 比值代换例2 (2024·沧州模拟)已知函数f(x)=ln x-ax-1(a∈R).若方程f(x)+2=0有两个实根x1,x2,且x2>2x1,求证:.(参考数据:ln 2≈0.693,ln 3≈1.099)由题意知f(x)+2=ln x-ax+1=0,则有ln x1+2ln x2>5ln 2-3,于是φ(t)在(2,+∞)上单调递增,所以g′(t)>0,即函数g(t)在(2,+∞)上单调递增,于是g(t)>g(2)=5ln 2.思维升华比值代换法是指通过代数变形将所证的双变量不等式通过代换t=化为单变量的函数不等式,利用函数单调性证明.(1)讨论f(x)的单调性;当a≤0时,f′(x)>0恒成立,f(x)在(0,+∞)上单调递增;当a>0时,令f′(x)>0,解得x>a,令f′(x)<0,解得0<x<a,故f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,综上,当a≤0时,f(x)在(0,+∞)上单调递增;当a>0时,f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.(2)若f(x)有两个不相同的零点x1,x2,设f(x)的导函数为f′(x).证明:x1f′(x1)+x2f′(x2)>2ln a+2.由(1)知,当a≤0时,f(x)在(0,+∞)上单调递增,故f(x)至多有一个零点,不符合要求,故a>0,要想f(x)有两个不相同的零点x1,x2,则f(a)=1+ln a<0,要证x1f′(x1)+x2f′(x2)>2ln a+2,即证ln(x1x2)>2ln a,因为y=ln x在(0,+∞)上单调递增,所以只需证x1x2>a2,不妨设0<x1<x2,故h(t)>h(1)=1-1-2ln 1=0,能力提升1.(2023·洛阳联考)已知函数g(x)=ln x-bx,若g(x)有两个不同的零点x1,x2.(1)求实数b的取值范围;由φ′(x)>0,得0<x<e;由φ′(x)<0,得x>e.所以函数φ(x)在(0,e)上单调递增,在(e,+∞)上单调递减.又φ(1)=0,且当x→+∞时,φ(x)→0;当x→0时,φ(x)→-∞,由于g(x)有两个不同的零点,则直线y=b与函数φ(x)的图象在(0,+∞)上有两个不同的交点.(2)求证:ln x1+ln x2>2.方法一 (比值代换法)由(1)知,不妨设1<x2<e<x1,由g(x1)=g(x2)=0,得ln x1-bx1=0,ln x2-bx2=0,两式相减得ln x1-ln x2=b(x1-x2),两式相加得ln x1+ln x2=b(x1+x2).欲证ln x1+ln x2>2,只需证b(x1+x2)>2,所以h (t )在(1,+∞)上单调递增,所以h (t )>h (1)=0,故ln x 1+ln x 2>2,得证.方法二 (对称化构造法)由(1)知,不妨设1<x 1<e<x 2,令t 1=ln x 1,t 2=ln x 2,则0<t 1<1<t 2, ,1212e et t t t欲证ln x1+ln x2>2,即证t1+t2>2.所以k(t)在(0,1)上单调递增,在(1,+∞)上单调递减.当t2≥2时,易得t1+t2>2;当0<t1<1<t2<2时,要证t1+t2>2,即证1>t1>2-t2>0,即证k(t1)>k(2-t2).因为k(t1)=k(t2),所以即证k(t2)>k(2-t2).构造函数K(t)=k(t)-k(2-t)(1<t<2),易得K(1)=0,因为1-t<0,且-t<t-2,所以e-t<e t-2,即K′(t)>0.所以K(t)在(1,2)上单调递增,K(t)>K(1)=0(1<t<2).所以K(t2)>0,即k(t2)>k(2-t2).故ln x1+ln x2>2,得证.2.(2023·聊城模拟)已知函数f(x)=ln x+ (a∈R),设m,n为两个不相等的正数,且f(m)=f(n)=3.(1)求实数a的取值范围;即a=3x-x ln x有两个不相等的正根,令函数h(x)=3x-x ln x,x>0,则h′(x)=2-ln x,令h′(x)=0,得x=e2;令h′(x)>0,得0<x<e2;令h′(x)<0,得x>e2,所以函数h(x)=3x-x ln x的单调递增区间为(0,e2),单调递减区间为(e2,+∞),令h(x)=0,得x=e3,且h(e2)=e2,当x→0时,h(x)→0,作出函数h(x)=3x-x ln x的图象,如图所示,要使a=3x-x ln x有两个不相等的正根,则函数y=a与函数h(x)=3x-x ln x有两个交点,由图知0<a<e2,故实数a的取值范围为{a|0<a<e2}.(2)证明:a2<mn<a e2.函数f(x)的定义域为(0,+∞),由(1)知,0<a<e2,若0<x<a,f′(x)<0,f(x)在(0,a)上单调递减,若x>a,f′(x)>0,f(x)在(a,+∞)上单调递增.由题意,不妨设0<m<a<n,先证明mn>a2,所以g(x)在(0,a)上单调递增,所以当0<x<a时,g(x)<g(a)=0,所以ln a=ln m+ln(3-ln m),。

培优提能课(五) 解析几何 2023高考数学二轮复习课件

培优提能课(五)   解析几何 2023高考数学二轮复习课件
联立yx=2+k2xy+2=y04-kx0,消元可得(1+2k2)x2+4k(y0-kx0)x+2(y0-kx0)2-4 =0,
由题意,Δ=0,即[4k(y0-kx0)]2-4(1+2k2)[2(y0-kx0)2-4]=0 且 x02+2y20
=4, 整理得(x20-4)k2-2x0y0k+y20-2=0.
3.
因为点 B,B′关于 x 轴对称,所以 B′-38+34kk2,4
3k2-3 3+4k2
3,
所以直线 PB′的方程为 y=
3-4
3k2-3 3+4k2
8 3k
3 x+
3=43kx+
3,
3+4k2

y=0,得
x=-4
33k,所以
M-4
33k,0.
令 y=kx+
3=0,得
x=-
k3,所以
N-
k3,0.
目录
02
提能2 隐圆问题
目录
隐圆问题在近几年各地模考和高考的填空题和解答题中都出现过,难 度为中、高档题.在题设中没有明确给出圆的相关信息,而是隐含在题目 中,要通过分析、转化,发现圆(或圆的方程),从而最终利用圆的知识来 求解,我们称这类问题为“隐圆”问题.
目录
角度一 利用圆的定义(垂直)确定隐圆
所以|BM|=
1+2xy002x0(x204+-42yy2020)+x0
= x20+8 4y20,
目录
|AM|=
1+-2xy002x0(x204+-42yy2002)-x0
= 2x|02x+0y40|y20,
即 S△ABM=12|AM||BM|=x820|+x0y40y|02≤2, 当且仅当xx0202= +42yy2200, =4,即 x02=38,y02=23时取等号. 故△ABM面积的最大值为2.

届高考人教B版数学一轮复习方案课时作业第55讲随机数与几

届高考人教B版数学一轮复习方案课时作业第55讲随机数与几

届高考人教B版数学一轮复习方案课时作业第55讲随机数与几2022年届高考人教B版数学一轮复习方案课时作业第55讲随机数与几何概型Word版含答案]课时作业(五十五) [第55讲随机数与几何概型](时间:35分钟分值:80分)基础热身1.在线段[0,3]上任投一点,则此点坐标小于1的概率为( ) 111A. B. D.1 2342.[2022年九江六校三联] 在一球内有一边长为1的内接正方体,一动点在球内运动,则此点落在正方体内部的概率为( )A.__ C. D.π2ππ3π3.[2022年大连4月测试] 一个路口的红绿灯,红灯的时间为30秒,绿灯的时间为40秒,黄灯的时间为5秒,当某人到达路口时看见的是红灯的概率是( )1234A. B. D. 55554.[2022年鸡西三模] 欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3 cm的圆,中间有边长为1 cm的正方形孔,若你随机向铜钱上滴一滴油,则油(油滴大小忽略不计)正好落入孔中的概率是( )A. 能力提升→→→5.已知P是△ABC所在平面内一点,PB+PC+2PA=0,先向△ABC内随机掷点,则点落在△PBC内的概率是( ) 1121A. B. D. 43326.在区间(0,π]上随机取一个数x,则事件“sinx+3c osx≤1”发生的概率为( ) 1112A. B. D. 432317.[2022年信阳二模] 在面积为S的△ABC内随机取一点M,则△MBC的面积S△MBC≤S2的概率为( )1123A. B. D.32349π94π4 C. D. 44π99π2022年届高考人教B版数学一轮复习方案课时作业第55讲随机数与几何概型Word版含答案]8.[2022年韶关调研] 已知Ω={(x,y)|x+y≤6,x≥0,y≥0},A={(x,y)|x≤4,y≥0,x-2y≥0},若向区域Ω上随机投一点P,则点P落入区域A的概率为( )1214A. B. D. 99399.[2022年郑州一中质检] 在棱长为2的正方体ABCD-A1B1C1D1中,点O为底面ABCD的中心,在正方体ABCD-A1B1C1D1内随机取一点P,则点P到点O的距离大于1的概率等于________.x-4x≤0,2210.若不等式组-1≤y≤2,表示的平面区域为M,(x-4)+y≤1表示的平面区域为x-y-1≥0N,现随机向区域M内抛一点,则该点落在平面区域N内的概率是________.11.[2022年琼海二模] 一只蚂蚁在边长为4的正三形内爬行,某时刻此蚂蚁距三角形三个顶点的距离均超过1的概率为________.12.(13分)某班主任统计本班50名学生放学回家后学习时间的数据,用条形图表示(如图K55-1).(1)求该班学生每天在家学习时间的平均值;(2)该班主任用分层抽样方法(按学习时间分五层)选出10个学生谈话,求在学习时间为1 h的学生中选出的人数;(3)假设学生每天在家学习时间为18时至23时,已知甲每天连续学习2 h,乙每天连续学习3 h,求22时甲、乙都在学习的概率.2图K55-1难点突破13.(12分)设有关于x的一元二次方程x+2ax+b=0.(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.222022年届高考人教B版数学一轮复习方案课时作业第55讲随机数与几何概型Word版含答案]课时作业(五十五)【基础热身】11.B [解析] 点坐标小于1的区间长度为132.D [解析] 由已知可得球的半径为r=__π,球的体积为V=π×=,正方2322体体积V1=1,所以概率P=.故选D.V3π3.B [解析] 某人到达路口看到红灯的概率是P=44.D [解析] 概率为P==D.329ππ2【能力提升】→→→5.D [解析] 根据PB+PC+2PA=0知,点P是△ABC的BC 边上中线的中点,故△PBC1的面积等于△ABC面积的D.2π π16.C [解析] 由sinx+3cosx≤1得sin x≤,当x∈(0,π]x3 22 ππ-21≤π,所以所求概率为P==.故选C.π-0212=故选B.30+40+557.D [解析] 如图,点D,E分别是AB,AC的中点,连接DE,在阴影区域内任取一点1S四边形BCED3M,则有S△MBC≤S.所以所求概率P==.故选D.2S△ABC4118.B [解析] 分别画出两个集合表示的区域可知SΩ=×6×6=18,SA=×4×2=4,22由几何概型概率计算可得P=SA42,选B. SΩ189π22π9.1-[解析] 因为正方体的体积为8,而半球的体积为×1×π=P__π8-3π到点O的距离大于1的概率为=1-8122022年届高考人教B版数学一轮复习方案课时作业第55讲随机数与几何概型Word版含答案]ππ[解析] 如图所示:P=. __×(1+4)×3212π×1211.1-3π[解析] 如图,当蚂蚁在图示三个半径为1的扇形区域外时满足条件,241π23__1233π由几何概型公式得1-1-__4×2212.解:(1)平均学习时间为20×1+10×2+10×3+5×4=1.8 h.5010(2)20×=4.50(3)设甲开始学习的时刻为x,乙开始学习的时刻为y,试验的全部结果所构成的区域为Ω={(x,y)|18≤x≤21,18≤y≤20},面积SΩ=2×3=6.事件A表示“22时甲、乙正在学习”,所构成的区域为A={(x,y)|20≤x≤21,19≤y≤20},面积为SA=1×1=1,这是一个几何概型,所以P(A)=SA1=. SΩ6[点评] 根据以上的解法,我们把此类问题的解决总结为以下四步:(1)设变量.从问题情景中,发现哪两个量是随机的,从而设为变量x,y.(2)集合表示.用(x,y)表示每次试验结果,则可用相应的集合分别表示出试验全部结果Ω和事件A所包含试验结果.一般来说,两个集合都是几个二元一次不等式的交集.(3)作出区域.把以上集合所表示的平面区域作出来,先作不等式对应的直线,然后取一特殊点验证哪侧是符合条件的区域.计算求解.根据几何概型的概率公式,易从平面图形中两个面积的比求得.【难点突破】13.解:设事件A为“方程x+2ax+b=0有实根”.当a≥0,b≥0时,方程x+2ax+b=0有实根的充要条件为a≥b.22222022年届高考人教B版数学一轮复习方案课时作业第55讲随机数与几何概型Word版含答案](1)基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a的取值,第二个数表示b的取值.93事件A中包含9个基本事件,事件A发生的概率为P(A)=124(2)试验的全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2}.构成事件A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b}.12。

高考培优课程数学讲义:一元二次函数、二次方程及二次不等式的关系【学生版】

高考培优课程数学讲义:一元二次函数、二次方程及二次不等式的关系【学生版】

高考培优 数学“一元二次函数、二次方程及二次不等式的关系”讲义编号:本讲义从以下两方面展开:1. 一元二次方程与一元二次不等式的基本解法有关一元二次方程与一元二次不等式的求解,是高考与会考考察内容的基础之一。

该部分内容或许不会独立形成题目,却是求解其他问题的基本工具。

这一部分内容,相对来说比较简单,却是最基本与最基础的,需要熟练掌握。

2. 利用一元二次函数的性质求解有关一元二次方程与一元二次不等式的问题一元二次函数是在高考以及会考当中是十分常考的一种函数,原因在于其性质比较容易研究,也相对简单。

因此,这部分内容也是基础的内容。

其主要问题大多在于一些含参数不等式(等式)恒成立(有解)条件的研究。

1. (★★★☆)已知函数2()f x x bx c =++,,b c R ∈,对于任意的x R ∈,不等式2()x b f x +≤恒成立,证明当0x ≥时,2()()f x x c ≤+2. (★★☆☆)已知不等式()22454(1)30m m x m x +---+>恒成立,求实数m 的取值范围。

知识点一:一元二次方程与一元二次不等式的基本解法✧ 子知识点一:一元二次不等式的基本解法。

一般地,对于一元二次不等式20(0)ax bx c a ++>≠,其解集有如下形式:这个表格是求解一元二次不等式问题的基础,是需要学生牢牢掌握的。

✧ 子知识点二:注意有关含参数的一元二次方程与一元二次不等式求解时的讨论。

知识点二:利用一元二次函数的性质求解有关一元二次方程与一元二次不等式的问题✧ 子知识点一:要学会利用一元二次方程的解与相应的一元二次不等式的解集之间的内在联系。

具体可以参见知识点一中的表格。

✧ 子知识点二:一元二次方不等式(方程)的恒成立问题。

一元二次不等式恒大于0,那么可知对应的二次函数开口向上且无实数零点;类似地,一元二次不等式恒小于0,那么可知对应的二次函数开口向下且无实数零点。

不过这道题需要注意的是,该不等式虽然形如一元二次不等式,但是不一定就是一元二次不等式。

2024版高考数学压轴培优教程

2024版高考数学压轴培优教程

2024版高考数学压轴培优教程
《2024版高考数学压轴培优教程》是一本为高中生学习数学提供帮助的书籍,主要内容包括圆锥曲线和导数等。

1. 圆锥曲线:圆锥曲线是高考数学的重要内容之一,该部分主要介绍了圆锥曲线的定义、性质和解题方法。

通过学习这部分内容,学生可以更深入地理解圆锥曲线的本质,掌握解题技巧,提高解题速度和准确性。

2. 导数:导数是高中数学中另一个重要的概念,该部分主要介绍了导数的定义、性质和计算方法,以及导数在解决实际问题中的应用。

学习导数可以帮助学生更好地理解函数的性质,掌握研究函数的方法,同时也可以为后续学习微积分等课程打下基础。

总的来说,这本书是为了帮助学生更好地掌握高考数学中的重点和难点,提高数学成绩,为高考做好充分的准备。

高考数学重难点培优讲义之导数小题典型题型(含答案解析)

高考数学重难点培优讲义之导数小题典型题型(含答案解析)

导数小题【题型1 函数切线问题】 (4)【题型2 导数中函数的单调性问题】 (4)【题型3 导数中函数的极值问题】 (5)【题型4 导数中函数的最值问题】 (6)【题型5 函数零点(方程根)个数问题】 (7)【题型6 利用导数解不等式】 (9)【题型7 导数中的不等式恒成立问题】 (10)【题型8 任意存在性问题】 (10)【题型9 函数零点嵌套问题】 (11)【题型10 双变量问题】 (13)导数是高考数学的必考内容,是高考常考的热点内容,主要涉及导数的运算及几何意义,利用导数研究函数的单调性,函数的极值和最值问题等,考查分类讨论、数形结合、转化与化归等思想.从近三年的高考情况来看,导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小;利用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题,解题时要灵活求解.【知识点1 切线方程的求法】1.求曲线“在”某点的切线方程的解题策略:①求出函数y=f(x)在x=x0处的导数,即曲线y=f(x)在点(x0,f(x0))处切线的斜率;②在已知切点坐标和切线斜率的条件下,求得切线方程为y=y0+f'(x0)(x-x0).2.求曲线“过”某点的切线方程的解题通法:①设出切点坐标T(x0,f(x0))(不出现y0);②利用切点坐标写出切线方程:y=f(x0)+f'(x0)(x-x0);③将已知条件代入②中的切线方程求解.【知识点2 导数中函数单调性问题的解题策略】1.确定函数单调区间的步骤;(1)确定函数f(x)的定义域;(2)求f'(x);(3)解不等式f'(x)>0,解集在定义域内的部分为单调递增区间;(4)解不等式f'(x)<0,解集在定义域内的部分为单调递减区间.2.含参函数的单调性的解题策略:(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)若导函数为二次函数式,首先看能否因式分解,再讨论二次项系数的正负及两根的大小;若不能因式分解,则需讨论判别式△的正负,二次项系数的正负,两根的大小及根是否在定义域内.3.根据函数单调性求参数的一般思路:(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.(2)f(x)为增(减)函数的充要条件是对任意的x∈(a,b)都有f'(x)≥0(f'(x)≤0),且在(a,b)内的任一非空子区间上,f'(x)不恒为零,应注意此时式子中的等号不能省略,否则会漏解.(3)函数在某个区间上存在单调区间可转化为不等式有解问题.【知识点3 函数的极值与最值问题的解题思路】1.运用导数求函数f(x)极值的一般步骤:(1)确定函数f(x)的定义域;(2)求导数f'(x);(3)解方程f'(x)=0,求出函数定义域内的所有根;(4)列表检验f'(x)在f'(x)=0的根x0左右两侧值的符号;(5)求出极值.2.根据函数极值求参数的一般思路:已知函数极值,确定函数解析式中的参数时,要注意:根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解.3.利用导数求函数最值的解题策略:(1)利用导数求函数f(x)在[a,b]上的最值的一般步骤:①求函数在(a,b)内的极值;②求函数在区间端点处的函数值f(a),f(b);③将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.(2)求函数在无穷区间(或开区间)上的最值的一般步骤:求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.【知识点4 导数的综合应用】1.导数中函数的零点(方程的根)的求解策略(1)利用导数研究方程根(函数零点)的技巧①研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.②根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置.③利用数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.(2)已知函数零点个数求参数的常用方法①分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.②分类讨论法:结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围.2.导数中恒成立、存在性问题的求解策略恒成立(或存在性)问题常常运用分离参数法,转化为求具体函数的最值问题.如果无法分离参数,可以考虑对参数或自变量进行分类讨论,利用函数性质求解,常见的是利用函数单调性求解函数的最大、最小值;当不能用分离参数法或借助于分类讨论解决问题时,还可以考虑利用函数图象来求解,即利用数形结合思想解决恒成立(或存在性)问题,此时应先构造函数,结合函数图象,利用导数来求解.【题型1 函数切线问题】【例1】(2023·全国·模拟预测)若曲线y=(1−x)e x有两条过点A(a,0)的切线,则a的取值范围是()A.(−∞,−1)∪(3,+∞)B.(−3,1)C.(−∞,−3)D.(−∞,−3)∪(1,+∞)【变式1-1】(2023·陕西咸阳·校考模拟预测)已知函数f(x)=1e x−1,则曲线y=f(x)在点(−1,f(−1))处的切线方程为()A.e x+y+1=0B.e x−y+1=0C.e x+y−1=0D.e x−y−1=0【变式1-2】(2023·四川雅安·统考一模)若直线y=kx与曲线y=ln x相切,则k=()A.1e2B.2e2C.1eD.2e【变式1-3】(2023·四川凉山·统考一模)函数f(x)=12x2+alnx在区间(1,2)的图象上存在两条相互垂直的切线,则a的取值范围为()A.(−2,1)B.(−2,−1)C.(−2,0)D.(−3,−2)【题型2 导数中函数的单调性问题】【例2】(2023·吉林长春·长春吉大附中实验学校校考模拟预测)下列函数中,既是偶函数,又在区间(0,+∞)上单调递增的是()A.y=1x2B.y=e−2x C.y=−x2+1D.y=lg|x|【变式2-1】(2023·陕西商洛·统考一模)已知函数f(x)=2(x−1)e x−x2−ax在R上单调递增,则a的最大值是()A.0B.1eC.e D.3【变式2-2】(2023·全国·模拟预测)已知x=ln56,y=2425ln45,z=−16,则()A.y<x<z B.y<z<x C.z<x<y D.x<y<z【变式2-3】(2023·河南·模拟预测)已知函数f(x)=e x(x+a)x在(0,+∞)上单调递增,则实数a的取值范围是()A.[0,+∞)B.(−∞,−4]C.(−∞,−4]∪[0,+∞)D.[−4,0]【题型3 导数中函数的极值问题】【例3】(2023·四川成都·校考模拟预测)已知函数f(x)=x3−2ax2+a2x+1在x=1处有极小值,则a的值为()A.1B.3C.1或3D.−1或3【变式3-1】(2023·全国·模拟预测)函数f(x)=2x−tanx−π在区间(−π2,π2)的极大值、极小值分别为()A .π2+1,−π2+1 B .−π2+1,−3π2+1 C .3π2−1,−π2+1D .−π2−1,−3π2+1【变式3-2】(2023·甘肃兰州·校考一模)已知函数f (x )=e x +x 22−lnx 的极值点为x 1,函数ℎ(x )=lnx 2x的最大值为x 2,则( )A .x 1>x 2B .x 2>x 1C .x 1≥x 2D .x 2≥x 1【变式3-3】(2023·广东广州·广州校考模拟预测)设函数f (x )=sin (ωx +π5)(ω>0),已知f (x )在[0,2π]有且仅有5个零点,下述四个结论错误的是( )A .ω的取值范围是[125,2910)B .f (x )在(0,π10)单调递增C .若x =3π25是f (x )在(0,2π)上的第一个极值点,则ω=165;D .若x =3π25是f (x )在(0,2π)上的第一个极值点,y =−52x +4π5是f (x )的切线【题型4 导数中函数的最值问题】【例4】(2023·陕西宝鸡·统考二模)函数f (x )=x 2+(a −1)x −3lnx 在(1,2)内有最小值,则实数a 的取值范围为( )A .(−32,2)B .[−32,2]C .(−43,2)D .(−43,1]【变式4-1】(2023·广西南宁·统考模拟预测)若函数f(x)=2x3−ax2+1(a∈R)在(0,+∞)内有且仅有一个零点,则f(x)在[−1,1]上的最大值与最小值的和为()A.1B.−4C.−3D.5【变式4-2】(2023·广东湛江·校考模拟预测)已知函数f(x)=e x+x3+(a−3)x+1在区间(0,1)上有最小值,则实数a的取值范围是()A.(-e,2)B.(-e,1-e)C.(1,2)D.(−∞,1−e)【变式4-3】(2023·浙江嘉兴·校考模拟预测)已知函数f(x)=xlnx,g(x)=x e x,若存在t>0,使得f(x1)= g(x2)=t成立,则x1−2x2的最小值为()A.2−ln4B.2+ln4C.e−ln2D.e+ln2【题型5 函数零点(方程根)个数问题】,若函数g(x)=【例5】(2023·辽宁大连·大连二十四中校考模拟预测)已知函数f(x)={x3+2x2+x,x≥0−2x,x<0f(x)−|kx2−4x|,(k∈R)恰有4个零点,则k的取值范围()A.(−∞,−1)∪(2√5,+∞)B.(−∞,−√5)∪(0,2)C.(−∞,0)∪(0,2+2√2)D.(−∞,0)∪(2+2√5,+∞)【变式5-1】(2023·海南省直辖县级单位·校联考二模)已知函数f(x)={e x,x≥0−3x,x<0,若函数g(x)=f(−x)−f(x),则函数g(x)的零点个数为()A.1B.3C.4D.5【变式5-2】(2023·陕西商洛·陕西校考模拟预测)已知函数f(x)={x e x,x<0−x2+2x,x≥0,若关于x的方程f2(x)−(2+t)f(x)+2t=0有3个不同的实数根,则实数t的取值范围为()A.(−∞,−1e )B.(−1e,0)C.[−1e,1]D.(−e,2)【变式5-3】(2023·四川泸州·泸县五中校考模拟预测)已知函数f(x)=(x2−2x)e x,若方程f(x)=a有3个不同的实根x1,x2,x3(x1<x2<x3),则ax2−2的取值范围为()A.[−1e ,0)B.[−2e,0)C.(−√2e−√2,0)D.(−√2e−√2,√2e√2)【题型6 利用导数解不等式】【例6】(2023·陕西榆林·校考模拟预测)已知定义在(0,+∞)上的函数f (x )满足f ′(x )−f (x )x−1>0,且f (1)=1,则不等式f (e x )−(x +1)e x >0的解集为( )A .(0,+∞)B .(1,+∞)C .(−∞,0)D .(−∞,1)【变式6-1】(2023·全国·模拟预测)若函数f(x)为偶函数,且当x ≥0时,f(x)=x 3+2x 2+3.若f(−9)≥f (a 2−2a +1),则实数a 的取值范围为( )A .[−2√3,4]B .[−4,2]C .[−2,4]D .[−4,2√3]【变式6-2】(2023·陕西西安·校联考模拟预测)设函数f ′(x )是函数f(x)(x ∈R )的导函数,f (3)=e 3,且f ′(x )−f (x )>0恒成立,则不等式f (x )−e x >0的解集为( )A .(0,3)B .(1,3)C .(−∞,3)D .(3,+∞)【变式6-3】(2023·四川达州·统考一模)已知f (x )=lnx −ax 3,g (x )=x e x −lnx −x −34,若不等式f (x )g (x )>0的解集中只含有两个正整数,则a 的取值范围为( )A .[ln327,ln28) B .(ln327,ln28) C .[ln232,ln327) D .(ln232,ln327)【题型7 导数中的不等式恒成立问题】【例7】(2023·全国·模拟预测)已知函数f(x)=ln(√x2+1+x)+e x−e−x−2x+3,若f(a e x)+f(lna−lnx)>6对于x∈(0,+∞)恒成立,则实数a的取值范围是.【变式7-1】(2023·陕西咸阳·咸阳校考模拟预测)已知f(x),g(x)分别是定义域为R的偶函数和奇函数,且f(x)+g(x)=e x,若关于x的不等式2f(x)−ag2(x)≥0在(0,ln2)上恒成立,则实数a的最大值是.【变式7-2】(2023·陕西咸阳·武功校考模拟预测)已知f(x)是定义在(0,+∞)上的可导函数,若xf′(x)−f(x)=xe x ,f(1)=−1e,且x≥1时,f(x e x)≤f(x+lnx−a)恒成立,则a的取值范围是.【变式7-3】(2023·宁夏石嘴山·平罗中学校考模拟预测)已知函数f(x)=e x+ax−2,其中a∈R,若对于任意的x1,x2∈[2,+∞),且x1<x2,都有x2f(x1)−x1f(x2)<a(x1−x2)成立,则实数a的取值范围是.【题型8 任意存在性问题】【例8】(2023·四川乐山·统考二模)若存在x0∈[−1,2],使不等式x0+(e2−1)lna≥2ae x0+e2x0−2成立,则a 的取值范围是( )A .[12e ,e 2]B .[1e2,e 2]C .[1e2,e 4]D .[1e,e 4]【变式8-1】(2023·四川南充·统考三模)已知函数f(x)=13x 3,g(x)=e x −12x 2−x ,∃x 1,x 2∈[1,2]使|g (x 1)−g (x 2)|>k |f (x 1)−f (x 2)|(k 为常数)成立,则常数k 的取值范围为( )A .(−∞,e −2]B .(−∞,e −2)C .(−∞,e 2−34] D .(−∞,e 2−34)【变式8-2】(2023·四川成都·石室中学校考模拟预测)已知函数f (x )=x 2e x,x >0.若存在实数a ∈[0,1],使得f (2−1m )≤a 3−12a 2−2a +e −1成立,则正实数m 的取值范围为( )A .(12,1] B .[12,1]C .(0,1)D .(0,1]【变式8-3】(2023·贵州·校联考二模)已知函数f (x )=x e x +2a ,g (x )=eln x x,对任意x 1∈[1,2],∃x 2∈[1,3],都有不等式f (x 1)≥g (x 2)成立,则a 的取值范围是( )A .[−e 2,+∞)B .[1−e 2,+∞)C .[−e2,+∞)D .[12−e 2,+∞)【题型9 函数零点嵌套问题】【例9】(2023·四川成都·石室中学校考一模)已知函数f (x )=(ln x )2−a2x ln x +aex 2有三个零点x 1、x 2、x 3且x 1<x 2<x 3,则2lnx 1x 1+lnx 2x 2+lnx 3x 3的取值范围是( )A.(−1e2−e ,0)B.(−1e2,0)C.(−12e,0)D.(−2e,0)【变式9-1】(2023·四川成都·四川校考模拟预测)已知a>1,x1,x2,x3为函数f(x)=a x−x2的零点,x1< x2<x3,若x1+x3=2x2,则()A.x3x2<2ln a B.x3x2=2ln aC.x3x2>2ln a D.x3x2与2ln a大小关系不确定【变式9-2】(2023·河南郑州·统考模拟预测)已知函数f(x)=e x−1x +xe x−1+x+a,若f(x)=0有3个不同的解x1,x2,x3且x1<x2<x3,则2e x1x1+e x2x2+e x3x3的取值范围是()A.(e,+∞)B.[2e,+∞)C.(−8e,+∞)D.(e,2e)【变式9-3】(2023·江西南昌·统考二模)已知正实数a使得函数f(x)=(e x−ax)(x−alnx)有且只有三个不同零点x1,x2,x3,若x1<x2<x3,则下列x1,x2,x3的关系式中,正确的是()A.x1+x3=2x2B.x1+x2=√ax3C.x1x3=√a2x22D.x1x3=x22【题型10 双变量问题】【例10】(2023下·福建福州·高二校考期中)已知函数f(x)=(x−2)e x,若f(x1)=f(x2),且x1≠x2,x1⋅x2> 0,则()A.x1>12B.x2<32C.x1x2>1D.x1+x2<2【变式10-1】(2023·广西河池·校联考模拟预测)若实数x,y满足4lnx+2ln(2y)≥x2+8y−4,则()A.xy=√24B.x+y=√2C.x+2y=1+√2D.x2y=1【变式10-2】(2023下·河南信阳高二淮滨高中校考阶段练习)设函数f(x)=e x(x−ae x)(其中e为自然对数的底数)恰有两个极值点x1,x2(x1<x2),则下列说法中正确的是()A.0<a<13B.0<x2<1C.−12<f(0)<0D.f(x1)+f(x2)>0【变式10-3】(2023·全国·高三专题练习)已知a>b>0,blna=alnb,有如下四个结论:①b<e;②b>e;③∃a,b满足a⋅b<e2;④a⋅b>e2.则正确结论的序号是()A.①③B.②③C.①④D.②④1.(2023·全国·统考高考真题)曲线y =e x x+1在点(1,e2)处的切线方程为( )A .y =e4xB .y =e2xC .y =e 4x +e4D .y =e 2x +3e42.(2023·全国·统考高考真题)已知函数f (x )=a e x −lnx 在区间(1,2)上单调递增,则a 的最小值为( ). A .e 2 B .eC .e −1D .e −23.(2023·全国·统考高考真题)函数f (x )=x 3+ax +2存在3个零点,则a 的取值范围是( ) A .(−∞,−2) B .(−∞,−3) C .(−4,−1) D .(−3,0)4.(2022·全国·统考高考真题)当x =1时,函数f(x)=alnx +bx 取得最大值−2,则f ′(2)=( )A .−1B .−12C .12D .15.(2022·全国·统考高考真题)已知a=3132,b=cos14,c=4sin14,则()A.c>b>a B.b>a>c C.a>b>c D.a>c>b6.(2022·全国·统考高考真题)已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为36π,且3≤l≤3√3,则该正四棱锥体积的取值范围是()A.[18,814]B.[274,814]C.[274,643]D.[18,27]7.(2021·全国·统考高考真题)若过点(a,b)可以作曲线y=e x的两条切线,则()A.e b<a B.e a<bC.0<a<e b D.0<b<e a8.(2023·全国·统考高考真题)已知函数f(x)的定义域为R,f(xy)=y2f(x)+x2f(y),则().A.f(0)=0B.f(1)=0C.f(x)是偶函数D.x=0为f(x)的极小值点9.(2023·全国·统考高考真题)若函数f(x)=alnx+bx +cx2(a≠0)既有极大值也有极小值,则().A.bc>0B.ab>0C.b2+8ac>0D.ac<010.(2022·全国·统考高考真题)已知函数f(x)=x3−x+1,则()A.f(x)有两个极值点B.f(x)有三个零点C.点(0,1)是曲线y=f(x)的对称中心D.直线y=2x是曲线y=f(x)的切线11.(2023·全国·统考高考真题)设a∈(0,1),若函数f(x)=a x+(1+a)x在(0,+∞)上单调递增,则a的取值范围是.12.(2022·全国·统考高考真题)已知x=x1和x=x2分别是函数f(x)=2a x−ex2(a>0且a≠1)的极小值点和极大值点.若x1<x2,则a的取值范围是.导数小题【题型1 函数切线问题】 (3)【题型2 导数中函数的单调性问题】 (4)【题型3 导数中函数的极值问题】 (6)【题型4 导数中函数的最值问题】 (9)【题型5 函数零点(方程根)个数问题】 (12)【题型6 利用导数解不等式】 (16)【题型7 导数中的不等式恒成立问题】 (19)【题型8 任意存在性问题】 (22)【题型9 函数零点嵌套问题】 (25)【题型10 双变量问题】 (30)导数是高考数学的必考内容,是高考常考的热点内容,主要涉及导数的运算及几何意义,利用导数研究函数的单调性,函数的极值和最值问题等,考查分类讨论、数形结合、转化与化归等思想.从近三年的高考情况来看,导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小;利用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题,解题时要灵活求解.【知识点1 切线方程的求法】1.求曲线“在”某点的切线方程的解题策略:①求出函数y=f(x)在x=x0处的导数,即曲线y=f(x)在点(x0,f(x0))处切线的斜率;②在已知切点坐标和切线斜率的条件下,求得切线方程为y=y0+f'(x0)(x-x0).2.求曲线“过”某点的切线方程的解题通法:①设出切点坐标T(x0,f(x0))(不出现y0);②利用切点坐标写出切线方程:y=f(x0)+f'(x0)(x-x0);③将已知条件代入②中的切线方程求解.【知识点2 导数中函数单调性问题的解题策略】1.确定函数单调区间的步骤;(1)确定函数f(x)的定义域;(2)求f'(x);(3)解不等式f'(x)>0,解集在定义域内的部分为单调递增区间;(4)解不等式f'(x)<0,解集在定义域内的部分为单调递减区间.2.含参函数的单调性的解题策略:(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)若导函数为二次函数式,首先看能否因式分解,再讨论二次项系数的正负及两根的大小;若不能因式分解,则需讨论判别式△的正负,二次项系数的正负,两根的大小及根是否在定义域内.3.根据函数单调性求参数的一般思路:(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.(2)f(x)为增(减)函数的充要条件是对任意的x∈(a,b)都有f'(x)≥0(f'(x)≤0),且在(a,b)内的任一非空子区间上,f'(x)不恒为零,应注意此时式子中的等号不能省略,否则会漏解.(3)函数在某个区间上存在单调区间可转化为不等式有解问题.【知识点3 函数的极值与最值问题的解题思路】1.运用导数求函数f(x)极值的一般步骤:(1)确定函数f(x)的定义域;(2)求导数f'(x);(3)解方程f'(x)=0,求出函数定义域内的所有根;(4)列表检验f'(x)在f'(x)=0的根x0左右两侧值的符号;(5)求出极值.2.根据函数极值求参数的一般思路:已知函数极值,确定函数解析式中的参数时,要注意:根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解.3.利用导数求函数最值的解题策略:(1)利用导数求函数f(x)在[a,b]上的最值的一般步骤:①求函数在(a,b)内的极值;②求函数在区间端点处的函数值f(a),f(b);③将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.(2)求函数在无穷区间(或开区间)上的最值的一般步骤:求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.【知识点4 导数的综合应用】1.导数中函数的零点(方程的根)的求解策略(1)利用导数研究方程根(函数零点)的技巧①研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.②根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置.③利用数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.(2)已知函数零点个数求参数的常用方法①分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.②分类讨论法:结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围.2.导数中恒成立、存在性问题的求解策略恒成立(或存在性)问题常常运用分离参数法,转化为求具体函数的最值问题.如果无法分离参数,可以考虑对参数或自变量进行分类讨论,利用函数性质求解,常见的是利用函数单调性求解函数的最大、最小值;当不能用分离参数法或借助于分类讨论解决问题时,还可以考虑利用函数图象来求解,即利用数形结合思想解决恒成立(或存在性)问题,此时应先构造函数,结合函数图象,利用导数来求解.【题型1 函数切线问题】【例1】(2023·全国·模拟预测)若曲线y=(1−x)e x有两条过点A(a,0)的切线,则a的取值范围是()A.(−∞,−1)∪(3,+∞)B.(−3,1)C.(−∞,−3)D.(−∞,−3)∪(1,+∞)【解题思路】根据题意,由导数的几何意义表示出切线方程,然后列出不等式代入计算,即可得到结果.【解答过程】设切点为(x0,(1−x0)e x0),由已知得y′=−xe x,则切线斜率k=−x0e x0,切线方程为y−(1−x0)e x0=−x0e x0(x−x0).∵直线过点A(a,0),∴−(1−x0)e x0=−x0e x0(a−x0),化简得x02−(a+1)x0+1=0.∵切线有2条,∴Δ=(a+1)2−4>0,则a的取值范围是(−∞,−3)∪(1,+∞),故选:D.【变式1-1】(2023·陕西咸阳·校考模拟预测)已知函数f(x)=1e x−1,则曲线y=f(x)在点(−1,f(−1))处的切线方程为()A.ex+y+1=0B.ex−y+1=0C.ex+y−1=0D.ex−y−1=0【解题思路】先由导数求切线的斜率,再求出切点,结合点斜式方程写出即可.【解答过程】由f(x)=1e x −1,得f′(x)=−1e x,所以f′(−1)=−e,又f(−1)=e−1,故曲线y=f(x)在点(−1,f(−1))处的切线的方程为y−(e−1)=−e(x+1),即ex+y+1=0.故选:A.【变式1-2】(2023·四川雅安·统考一模)若直线y=kx与曲线y=lnx相切,则k=()A.1e2B.2e2C.1eD.2e【解题思路】利用导数的几何意义计算即可.【解答过程】设切点为(x0,lnx0),则由题意可知f′(x)=1x ⇒f′(x0)=1x0=k,所以{1x0=kkx0=lnx0⇒{x0=ek=1e.故选:C.【变式1-3】(2023·四川凉山·统考一模)函数f(x)=12x2+alnx在区间(1,2)的图象上存在两条相互垂直的切线,则a的取值范围为()A.(−2,1)B.(−2,−1)C.(−2,0)D.(−3,−2)【解题思路】利用导数的几何意义结合导函数的单调性计算即可.【解答过程】由f(x)=12x2+alnx⇒f′(x)=x+ax(x>0),不妨设这两条相互垂直的切线的切点为(x1,f(x1)),(x2,f(x2)),且f′(x1)⋅f′(x2)=−1若a≥0,则f′(x)>0恒成立,不符合题意,可排除A项;所以a<0,此时易知y=f′(x)单调递增,要满足题意则需{f′(1)=1+a<0 f′(2)=2+a2>0f′(1)f′(2)=(1+a)(2+a2)<−1⇒a∈(−3,−2).故选:D.【题型2 导数中函数的单调性问题】【例2】(2023·吉林长春·长春吉大附中实验学校校考模拟预测)下列函数中,既是偶函数,又在区间(0,+∞)上单调递增的是()A.y=1x2B.y=e−2x C.y=−x2+1D.y=lg|x|【解题思路】求导判断函数单调性,并结合偶函数的定义逐一判断即可.【解答过程】对于A选项:当x∈(0,+∞)时,y=1x2的导函数为y′=−2x3<0,所以y=1x2在x∈(0,+∞)时单调递减,故A选项不符合题意;对于B选项:当x∈(0,+∞)时,y=e−2x的导函数为y=−2e−2x<0,所以y=e−2x在x∈(0,+∞)时单调递减,故B选项不符合题意;对于C选项:当x∈(0,+∞)时,y=−x2+1的导函数为y′=−2x<0,所以y=−x2+1在x∈(0,+∞)时单调递减,故C选项不符合题意;对于D选项:当x∈(0,+∞)时,y=lg|x|=lgx的导函数为y′=1x⋅ln10>0,所以y=1x2在x∈(0,+∞)时单调递增,又函数y=lg|x|的定义域为(−∞,0)∪(0,+∞),且f(x)=lg|x|=lg|−x|=f(−x),故D选项符合题意.故选:D.【变式2-1】(2023·陕西商洛·统考一模)已知函数f(x)=2(x−1)e x−x2−ax在R上单调递增,则a的最大值是()A.0B.1eC.e D.3【解题思路】结合导数,将f(x)在R上单调递增转化为f′(x)=2xe x−2x−a≥0恒成立,再参变分离,转化为a≤2xe x−2x恒成立,即求出2xe x−2x的最小值即可得.【解答过程】由题意可得f′(x)=2xe x−2x−a,因为f(x)在R上单调递增,所以f′(x)=2xe x−2x−a≥0恒成立,即a≤2xe x−2x恒成立,设g(x)=2xe x−2x,则g′(x)=(2x+2)e x−2,令ℎ(x)=(2x+2)e x−2,则ℎ′(x)=(2x+4)e x,当x<−2时,ℎ′(x)<0,x>−2时,ℎ′(x)>0,故ℎ(x)在(−∞,−2)为减函数,在(−2,+∞)上为增函数,故ℎ(x)min=ℎ(−2)<0,但ℎ(0)=0,x→−∞时,ℎ(x)→−2,故当x<0时,g′(x)<0,当x>0时,g′(x)>0,则g(x)在(−∞,0)上单调递减,在(0,+∞)上单调递增,故g(x)min=g(0)=0,即a≤0.故选:A.【变式2-2】(2023·全国·模拟预测)已知x=ln56,y=2425ln45,z=−16,则()A.y<x<z B.y<z<x C.z<x<y D.x<y<z【解题思路】设函数f (x )=xlnx ,利用函数单调性,比较x ,y 的大小,再结合lnx ≤x −1,比较x ,z 的大小.【解答过程】设f (x )=xlnx (x >0),则f ′(x )=lnx +1>0 ⇒ x >1e,所以函数f (x )在(1e,+∞)上为增函数.又1e <45<56所以f (45)<f (56)即2425ln 45<ln 56 ⇒ x >y ; 设g (x )=lnx −x +1,则g ′(x )=1x −1=1−x x>0 ⇒ 0<x <1,故g (x )在(0,1)上递增,在(1,+∞)上递减.所以g (x )≤g (1)=0,故lnx −x +1≤0 ⇒ lnx ≤x −1(当x =1时取“=”) 所以ln 56≤56−1=−16,即x <z .故选:A.【变式2-3】(2023·河南·模拟预测)已知函数f (x )=e x (x+a )x在(0,+∞)上单调递增,则实数a 的取值范围是( )A .[0,+∞)B .(−∞,−4]C .(−∞,−4]∪[0,+∞)D .[−4,0]【解题思路】由导函数f ′(x)≥0在(0,+∞)上恒成立可得. 【解答过程】f ′(x )=e x (x 2+ax−a )x 2,因为函数f (x )=e x (x+a )x在(0,+∞)上单调递增,所以当x ∈(0,+∞)时,f ′(x )=e x (x 2+ax−a )x 2≥0恒成立,即当x ∈(0,+∞)时,g (x )=x 2+ax −a ≥0恒成立,因为对称轴为x =−a2,当a >0时,x =−a 2<0,g (0)=−a <0,所以当x ∈(0,+∞)时,g (x )=x 2+ax −a ≥0不恒成立,不符题意;当a ≤0时,x =−a2≥0,当x ∈(0,+∞)时,g (x )=x 2+ax −a ≥0恒成立,则Δ=a 2+4a ≤0,解得−4≤a ≤0. 故选:D .【题型3 导数中函数的极值问题】【例3】(2023·四川成都·校考模拟预测)已知函数f (x )=x 3−2ax 2+a 2x +1在x =1处有极小值,则a 的值为( )A .1B .3C .1或3D .−1或3【解题思路】由f (x )在x =1处有极小值可知,f ′(1)=0解出a 的值,并根据单调性验证. 【解答过程】因为f (x )=x 3−2ax 2+a 2x +1,所以f ′(x )=3x 2−4ax +a 2,因为函数f (x )=x 3−2ax 2+a 2x +1在x =1处有极小值, 所以f ′(1)=3−4a +a 2=0,解得a =1或a =3, 当a =1时,f ′(x )=3x 2−4x +1=(3x −1)(x −1), 当f ′(x )>0时,x <13或x >1,当f ′(x )<0时,13<x <1, f (x )在x =1处取到极小值,符合题意;当a =3时,f ′(x )=3x 2−12x +9=3(x −1)(x −3), 当f ′(x )>0时,x <1或x >3,当f ′(x )<0时,1<x <3, f (x )在x =1处取到极大值,不符合题意; 综上:a 的值为1. 故选:A.【变式3-1】(2023·全国·模拟预测)函数f(x)=2x −tanx −π在区间(−π2,π2)的极大值、极小值分别为( )A .π2+1,−π2+1B .−π2+1,−3π2+1 C .3π2−1,−π2+1D .−π2−1,−3π2+1【解题思路】求出f ′(x ),由f ′(x)<0、f ′(x)>0可得答案. 【解答过程】由题意,得f ′(x)=2−(sinx cosx)′=2−1cos 2x =2cos 2x−1cos 2x,当x ∈(−π2,−π4)∪(π4,π2)时,2cos 2x −1<0,f ′(x)<0; 当x ∈(−π4,π4)时,2cos 2x −1>0,f ′(x)>0.所以f(x)在(−π2,−π4)上单调递减,在(−π4,π4)上单调递增,在(π4,π2)上单调递减. 当x =−π4时,f(x)取得极小值,为f (−π4)=−3π2+1;当x =π4时,f(x)取得极大值,为f (π4)=−π2−1. 故选:D .【变式3-2】(2023·甘肃兰州·校考一模)已知函数f (x )=e x +x 22−lnx 的极值点为x 1,函数ℎ(x )=lnx 2x的最大值为x 2,则( )A .x 1>x 2B .x 2>x 1C .x 1≥x 2D .x 2≥x 1【解题思路】根据题目条件求出x1∈(14,12),x2=12e<14,即可判断.【解答过程】f(x)=e x+x22−lnx的定义域为(0,+∞),f′(x)=e x+x−1x 在(0,+∞)上单调递增,且f(12)=e12−32>0,f(14)=e14−154<0,所以∃x1∈(14,12),e x1+x1−1x1=0,所以当0<x<x1时f′(x)<0,当x>x1时f′(x)>0,即f(x)在(0,x1)上单调递减,在(x1,+∞)上单调递增,则f(x)在x=x1处取得极小值且x1∈(14,12 ).ℎ(x)=lnx2x 的定义域为(0,+∞),由ℎ′(x)=2−2lnx4x2=1−lnx2x2,当x∈(0,e)时,ℎ′(x)>0,当x∈(e,+∞)时,ℎ′(x)<0,故ℎ(x)=lnx2x 在x=e处取得极大值,也是最大值,ℎ(x)max=ℎ(e)=lne2e=12e,即x2=12e <14.所以x1>x2.故选:A.【变式3-3】(2023·广东广州·广州校考模拟预测)设函数f(x)=sin(ωx+π5)(ω>0),已知f(x)在[0,2π]有且仅有5个零点,下述四个结论错误的是()A.ω的取值范围是[125,29 10)B.f(x)在(0,π10)单调递增C.若x=3π25是f(x)在(0,2π)上的第一个极值点,则ω=165;D.若x=3π25是f(x)在(0,2π)上的第一个极值点,y=−52x+4π5是f(x)的切线【解题思路】选项A,利用函数有5个零点,根据整体思想,可得答案;选项B,根据正弦函数的单调性,利用整体思想,结合选项A,求其最值,可得答案;选项C,根据正弦函数零点的计算公式,建立方程,可得答案;选项D,先求直线与三角函数的公共点,根据导数的几何意义,可得答案.【解答过程】∵f(x)=sin(ωx+π5)(ω>0),在[0,2π]有且仅有5个零点,∴0≤x≤2π,π5≤ωx+π5≤2πω+π5,则5π≤2πω+π5<6π,125≤ω<2910,A正确;当0<x<π10时,π5<ωx+π5<ωπ10+π5,当ω=2910时,ωπ10+π5=29π100+20π100=49π100<π2,B 正确;若x =3π25是f (x )在(0,2π)上的第一个极值点,ω3π25+π5=π2,ω=52,C 错误;由C 得f (x )=sin (52x +π5),直线y =−52x +4π5过定点M (8π25,0),点M 在f (x )上,f ′(x )=52cos (52x +π5)=−52,f ′(8π25)=−52, 所以直线y =−52x +4π5是f (x )的切线,D 正确.故选:C.【题型4 导数中函数的最值问题】【例4】(2023·陕西宝鸡·统考二模)函数f (x )=x 2+(a −1)x −3lnx 在(1,2)内有最小值,则实数a 的取值范围为( )A .(−32,2) B .[−32,2] C .(−43,2)D .(−43,1]【解题思路】求出f ′(x)=2x 2+(a−1)x−3x,设g(x)=2x 2+(a −1)x −3,得出g(x)=0有一正根一负根,因此题意说明正根在区间(1,2)内,从而由{g(1)<0g(2)>0得参数范围.【解答过程】f ′(x)=2x +(a −1)−3x =2x 2+(a−1)x−3x,设g(x)=2x 2+(a −1)x −3,因为Δ=(a −1)2+24>0,因此g(x)=0有两个不同实根, 又g(0)=−3<0,因此g(x)=0两根一正一负, 由题意正根在(1,2)内,所以{g(1)=2+(a −1)−3<0g(2)=8+2(a −1)−3>0 ,解得−32<a <2,故选:A .【变式4-1】(2023·广西南宁·统考模拟预测)若函数f(x)=2x 3−ax 2+1(a ∈R)在(0,+∞)内有且仅有一个零点,则f(x)在[−1,1]上的最大值与最小值的和为( )A .1B .−4C .−3D .5【解题思路】分类参数可得a =2x +1x 2(x >0),构造函数ℎ(x )=2x +1x 2(x >0),利用导数求出函数ℎ(x )的单调区间及极值,作出其大致函数图象,结合函数图象求出a ,再利用导数求出函数f (x )在[−1,1]上的最值即可.【解答过程】函数f(x)=2x3−ax2+1(a∈R)在(0,+∞)内有且仅有一个零点,即方程f(x)=2x3−ax2+1=0在(0,+∞)内有且仅有一个实根,分离参数可得a=2x+1x2(x>0),令ℎ(x)=2x+1x2(x>0),则函数y=ℎ(x),y=a只有一个交点,ℎ′(x)=2−2x3=2(x3−1)x3,当0<x<1时,ℎ′(x)<0,当x>1时,ℎ′(x)>0,所以函数ℎ(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以ℎ(x)min=ℎ(1)=3,又当x→0时,ℎ(x)→+∞,当x→+∞时,ℎ(x)→+∞,如图,作出函数ℎ(x)=2x+1x2(x>0)的大致图像,由图可知a=3,所以f(x)=2x3−3x2+1,则f′(x)=6x2−6x=6x(x−1),当−1<x<0时,f′(x)>0,当0<x<1时,f′(x)<0,所以函数f(x)在(−1,0)上单调递增,在(0,1)上单调递减,又f(−1)=−4,f(0)=1,f(1)=0,所以f(x)在[−1,1]上的最大值为1,最小值为−4,所有f(x)在[−1,1]上的最大值与最小值之和为1−4=−3.故选:C.【变式4-2】(2023·广东湛江·校考模拟预测)已知函数f(x)=e x +x 3+(a −3)x +1在区间(0,1)上有最小值,则实数a 的取值范围是( )A .(-e ,2)B .(-e ,1-e )C .(1,2)D .(−∞,1−e)【解题思路】f ′(x )在(0,1)上递增,根据f (x )在(0,1)上有最小值,可知f (x )有极小值点,也即最小值点,由此列不等式来求得a 的取值范围.【解答过程】∵f ′(x )=e x +3x 2+(a −3)在区间(0,1)上单调递增,由题意只需 {f ′(0)<0f ′(1)>0 ⇒{a −2<0e +a >0⇒−e <a <2, 这时存在x 0∈(0,1),使得f(x)在区间(0,x 0)上单调递减,在区间[x 0,1)上单调递增,即函数f(x)在区间(0,1)上有极小值也即是最小值. 所以a 的取值范围是(−e,2). 故选:A.【变式4-3】(2023·浙江嘉兴·校考模拟预测)已知函数f (x )=xlnx ,g (x )=xe x ,若存在t >0,使得f (x 1)=g (x 2)=t 成立,则x 1−2x 2的最小值为( )A .2−ln4B .2+ln4C .e −ln2D .e +ln2【解题思路】由题设知f(x 1)=f(e x 2)=t ,研究f(x)的单调性及最值,画出函数图象,数形结合确定y =t >0、f(x)的交点个数得x 1=e x 2,进而将目标式化为x 1−2x 2=x 1−2lnx 1且x 1>1,构造函数研究最小值即可.【解答过程】由题设x 1lnx 1=x 2e x 2=e x 2lne x 2=t ,即f(x 1)=f(e x 2)=t ,由f ′(x)=1+lnx ,则(0,1e )上f ′(x)<0,f(x)递减;(1e ,+∞)上f ′(x)>0,f(x)递增; f(x)≥f(1e )=−1e ,且f(1)=0,f(x)图象如下:由图知:t ∈(0,+∞)时,x 1=e x 2,即x 2=lnx 1且x 1>1,所以x 1−2x 2=x 1−2lnx 1, 令ℎ(x)=x −2lnx 且x ∈(1,+∞),则ℎ′(x)=1−2x =x−2x,。

2024年高考数学复习培优讲义专题3-原函数与导函数混合还原问题(含解析)

2024年高考数学复习培优讲义专题3-原函数与导函数混合还原问题(含解析)

专题1-3 原函数与导函数混合还原问题常见函数的构造模型1.对于)()(x g x f '>',构造)()()(x g x f x h −=模型2.对于不等式()k x f >'()0≠k ,构造函数()()b kx x f x g +−=. 模型3.对于不等式()()0'>+x f x f ,构造函数())(x f e x g x = 拓展:对于不等式()()0'>+x kf x f ,构造函数())(x f e x g kx=模型4.对于不等式()()0'>−x f x f ,构造函数()x e)(x f x g =模型5.对于不等式()()0'>+x f x xf ,构造函数()()x xf x g = 拓展:对于不等式()()0'>+x nf x xf ,构造函数())(x f x x g n = 模型6.对于不等式()()0'>−x f x xf ,构造函数()()x x f x g =()0≠x 拓展:对于不等式()()0'>−x nf x xf ,构造函数()n xx f x g )(=模型7.对于0)()(>'x f x f ,分类讨论:(1)若0)(>x f ,则构造);(ln )(x f x h =(2)若0)(<x f ,则构造)](ln[)(x f x h −=模型8.对于()ln ()0(0)f x af x '+><,构造()()x h x a f x =. 模型9.对于()()ln 0(0)f x f x x x'+><,构造()()ln h x f x x =. 模型10.(1)对于()()tan (()()tan )f x f x x f x f x x ''><或,即()cos ()sin 0(0)f x x f x x '−><, 构造()()cos h x f x x =.对于()cos ()sin 0(0)f x x f x x '+><,构造()()cos f x h x x=. 模型11.(1)()sin ()cos [()sin ]f x x f x x f x x ''+= (2)2()sin ()cos ()[]sin sin f x x f x x f x x x'−'= 解题思路利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是: (1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别题型一 由导函数不等式构造函数解不等式2024届·重庆市第八中学高三上学期入学测试T81.若函数()f x 为定义在R 上的偶函数,当(),0x ∈−∞时,()2'>f x x ,则不等式 ()()()()3123331f x f x x −−>−+的解集为( )A .1,3⎛⎫−∞− ⎪⎝⎭B .()()1,1,3−∞−⋃+∞C .()1,+∞D .1,13⎛⎫− ⎪⎝⎭2023·南京二模T82.已知函数()f x 是定义在R 上的可导函数,其导函数为()f x '.若对任意x ∈R 有()1f x '>,()()110f x f x ++−=,且()02f =−,则不等式()11f x x −>−的解集为( )A .()0,∞+B .()1,+∞C .()2,+∞D .()3,+∞3.已知定义在()0,∞+上的函数()f x 的导函数为()f x ',若()2f x '<,且()45f =,则不等式()222log log 3f x x >−的解集是 .4.已知()f x 是定义在R 上的奇函数,其导函数为(),f x '且当0x >时,()()ln 0f x f x x x'⋅+>,则不等式()()210xf x −<的解集为( )A .()1,1-B .(),1()0,1∞⋃--C .,11,()()∞⋃∞--+D .1,0),()(1⋃∞-+5.已知函数()f x 的定义域为(),0∞−,其导函数()'f x 满足()()'20xf x f x −>,则不等式()()()22023202310f x x f +−+−<的解集为( )A .(2024,2023)−−B .(2024,0)−C .(,2023)−∞−D .(,2024)−∞−重点题型·归类精讲2023·广州2023届综合能力测试(一)T156.已知函数()f x 的定义域为(0,)+∞,其导函数为()f x ',若()10xf x '−<.(e)2f =,则关于x 的不等式1)(e x f x <+的解集为__________.2023届广州大学附属中学高三上学期第一次月考T87.设()f x '是函数()f x 的导函数,且()()()3R f x f x x '>∈,1e 3f ⎛⎫= ⎪⎝⎭(e 为自然对数的底数),则不等式()3ln f x x <的解集为( )A .e 0,3⎛⎫⎪⎝⎭B .1e ,e 3⎛⎫ ⎪⎝⎭C .()30,eD .3e ,e 3⎛⎫ ⎪⎝⎭2023届长郡中学月考(六)·118.设函数()f x 在R 上存在导函数()f x ',对任意的x ∈R 有2()()f x f x x +−=,且在[0,)+∞上()f x x '>,若(2)2()2f a a f a −+>+,则实数a 的可能取值为( ) A. 1− B. 0C. 1D. 2广州华南师大附中高三第一次月考·79.设函数()f x '是奇函数()()f x x R ∈的导函数,()10f −=,当0x >时,()()0xf x f x '−>则使得()0f x >成立的x 的取值范围是().(,1)(1,0)A −∞−⋃−B.(0,1)∪(1,+∞) ().,1(0,1)C −∞−⋃D.(-1,0)∪(1,+∞)2022武汉高二下期中·710.定义在R 上的函数()f x 满足()()1f x f x '>−,()f x '是()f x 的导函数,且()06f =,则不等式()e 51x f x >+(其中e 为自然对数的底数)的解集为( ).A. ()(),01,−∞⋃+∞B. ()(),03,−∞+∞C. ()0,∞+D. ()3,+∞11.已知函数()f x 的导函数为()f x ',且满足()()0f x f x +'>在R 上恒成立,则不等式()2e 21xf x +>()2e 3x f x −−的解集是 .12.已知函数()f x 的定义域是(-5,5),其导函数为()f x ',且()()2f x xf x '+>,则不等式()()()()23231124x f x x f x x −−−−−>−的解集是 .安徽省蚌埠市2023届高三上学期第一次质检13.已知函数()f x 的定义域是11,22f ⎛⎫= ⎪⎝⎭R ,若对于任意的x ∈R 都有()40f x x '+<,则当[]0,2απ∈时,不等式()sin cos20f αα−<的解集为( )A .5,66ππ⎛⎫ ⎪⎝⎭B .5,33ππ⎛⎫ ⎪⎝⎭C .50,,266πππ⎛⎫⎛⎫⋃ ⎪⎪⎝⎭⎝⎭ D .50,,233πππ⎛⎫⎛⎫⋃ ⎪⎪⎝⎭⎝⎭14.已知函数()f x 是定义在R 上的可导函数,其导函数为()f x '.若()05f =,且()()2f x f x '−>,则使不等式()3e 2xf x ≤+成立的x 的值可能为( )A .-2B .-1C .12−D .2题型二 由导函数不等式构造函数比大小广东省四校2024届高三上学期10月联考(二)数学试题15.已知函数()f x 满足()()ln 0xf x x f x '+>(其中()f x '是()f x 的导数),若12e a f ⎛⎫= ⎪⎝⎭,()e b f =,()2e c f =,则下列选项中正确的是( ) A .42c b a << B .24b c a <<C .24a b c <<D .42a c b <<江苏南通市部分学校3月模拟·T816.已知()f x 是可导的函数,且()()2f x f x '≤,对于x R ∈恒成立,则下列不等关系正确的是( )A .()()()()2404001,12021e f f e f f >> B .()()()()2404001,12021e f f e f f <>C .()()()()2404001,12021e f f e f f >< D .()()()()2404001,12021e f f e f f <<2024届湖南师范大学附属中学月考(一)·T717.已知函数()f x 的定义域为R ,设()f x 的导数是()f x ',且()()sin 0f x f x x '⋅+>恒成立,则( )A .ππ22f f ⎛⎫⎛⎫<− ⎪ ⎪⎝⎭⎝⎭B .ππ22f f ⎛⎫⎛⎫>− ⎪ ⎪⎝⎭⎝⎭C .ππ22f f ⎛⎫⎛⎫<− ⎪ ⎪⎝⎭⎝⎭D .ππ22f f ⎛⎫⎛⎫>− ⎪ ⎪⎝⎭⎝⎭18.已知偶函数()f x 的定义域为R ,导函数为()f x ',若对任意[0,)x ∞∈+,都有()()20f x x xf '+>恒成立,则下列结论正确的是( ) A .()00f < B .()()931f f −< C .()42(1f f >−) D .()()12f f <19.设定义在[)0,∞+上的函数()0f x ≠恒成立,其导函数为()f x ',若()()()()1ln 10f x x f x x '−++<,则( )A .()()2130f f >>B .()()2130f f <<C .()()2310f f >>D .()()2310f f <<20.设()f x 是定义在R 上的函数,其导函数为()f x ',满足()()0f x xf x '−>,若()41a f =,()22b f =,()4c f =,则( )A .a b c >>B .c a b >>C .b c a >>D .c b a >>2023届菏泽市二模T821.已知定义在R 上的函数()f x 的导函数为()f x ',满足()()0,01f x f >=,且()()222e x f x f x ++=−,当1x >时,()()f x f x '>,则( )A .()11e f −−<B .e 11e e f ⎛⎫> ⎪⎝⎭C .()22e f > D .()ee ef >河南省洛阳市六校高三上10月联考·1022.设定义在[)0,∞+上的函数()0f x ≠恒成立,其导函数为()f x ',若()()()()1ln 10f x x f x x '−++<,则( ) A .()()2130f f >> B .()()2130f f << C .()()2310f f >> D .()()2310f f <<23.定义在(0,)2π上的函数()f x ,()f x '是它的导函数,且恒有()()tan f x f x x '<⋅成立,则( ).A 3()2()43ππ>B .(1)2()sin16f f π<⋅C 2()()64f ππ>D 3()()63f ππ<2022湖北六校高二下期中·1124.(多选)已知函数f (x )的定义域是(0,+∞),其导函数是f '(x ),且满足1ln '( >)()0x f x f x x⋅+⋅,则下列说法正确的是( ) A .10f e ⎛⎫> ⎪⎝⎭B .10f e ⎛⎫< ⎪⎝⎭C .f (e )>0D .f (e )<025.已知定义在R 上的函数()(),f x g x 的导函数都存在,若()()()()10f x g x f x g x x <'+',且()()()()2211f g f g −为整数,则()()()()2211f g f g −的可能取值的最大值为 .题型三 由导函数不等式构造函数结合奇偶性解不等式经典例题26.设函数'f x ()是奇函数()()f x x ∈R 的导函数(1)0f −=,当x >0时,xf '(x )﹣f (x )<0,则使得f (x )<0成立的x 的取值范围为 .深圳第二高级中学高二下期中T1527.已知()f x 为定义在R 上的奇函数,且f (2)0=,当0x >时,()()0xf x f x '+>恒成立,不等式()0f x <的解集为_______________.28.已知函数()f x 是R 上的奇函数,()20f =,对()0,x ∀∈+∞,()()0f x xf x '+>成立,则()()10x f x −≥的解集为 .2023届广东佛山高三上学期期末T1629.已知()f x 是定义在(,0)(0,)−∞+∞上的奇函数,()f x '是()f x 的导函数,当0x >时,()2()0xf x f x '+>,若(2)0f =,则不等式2()0x f x >的解集是________.2023·湖北省·一模T1630.已知函数()f x 及其导函数()f x '的定义域均为R ,且满足()()2,0f x f x x x =−−>时,()10f x '+>.若不等式()()ln ln f x a f x a +>−在[)2,−+∞上恒成立,则a 的取值范围是__________,2023淄博市二模T831.已知定义在()3,3−上的函数()f x 满足42()e ()0,(1)e ,()x f x f x f f x '+−==为()f x 的导函数,当[0,3)x ∈时,()2()f x f x '>,则不等式24e (2)e x f x −<的解集为( )A .(2,1)−B .(1,5)C .(1,)+∞D .(0,1)广东省梅州市2022-2023学年高二下学期期末32.已知()f x 是定义在R 上的偶函数,当0x >时,有()2()0xf x f x '+<恒成立,则( ) A .14(1)2f f ⎛⎫> ⎪⎝⎭B .(2)(3)94f f < C .119423f f⎛⎫⎛⎫>− ⎪ ⎪⎝⎭⎝⎭D .19(1)3f f ⎛⎫−<− ⎪⎝⎭2023届第七次百校大联考T833.已知定义在R 上的偶函数()y f x =的导函数为()y f x =',当0x >时,()()0xf x f x x'+>,且(2)1f =,则不等式2(21)21f x x −<−的解集为 ( ) A .13,,22⎛⎫⎛⎫−∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭B .3,2⎛⎫+∞ ⎪⎝⎭C .13,22⎛⎫⎪⎝⎭D .1113,,2222⎛⎫⎛⎫−⋃ ⎪ ⎪⎝⎭⎝⎭2023届梅州二模T834.设函数()f x 在R 上存在导数()f x ',对任意的x ∈R ,有()()22f x f x x −+=,且在()0,∞+上()2f x x '<.若(3)()96f a f a a −−≥−,则实数a 的取值范围为( )A. 3,2⎡⎫+∞⎪⎢⎣⎭B. 3,2⎛⎤−∞ ⎥⎝⎦C. 3,32⎡⎤⎢⎥⎣⎦D. [)3,+∞2023届湖南湘考王3月模拟T835.设定义在R 上的函数()f x 满足2()()f x f x x −+=,且当0x ≤时,'()f x x <,其中'()f x 为函数()f x 的导数,则不等式1()(1)2f x f x x −−≥−的解集是( )A .(1]−∞,B .[1)+∞,C .1[)2+∞,D .1(]2−∞,2023届邵阳三模T836.定义在R 上的可导函数f (x )满足()()()e e x xf x f x x −−−=+,且在()0,∞+上有()10e xx f x −'+<若实数a 满足()()222222e e2e 0a a a f a f a a a −−−−−−+−++≥,则a 的取值范围为( ) A .2,23⎡⎤−⎢⎥⎣⎦B .[)2,+∞C .[)2,2,3⎛⎤−∞−⋃+∞ ⎥⎝⎦D .(],2−∞2023届广东佛山·华南师大附中南海实验强化考(三)T837.设函数()f x 在R 上存在导函数()f x ',对任意的实数x 都有()()24f x x f x =−−,当(),0x ∈−∞时,()142f x x '+<.若()()142f m f m m +≤−++,则实数m 的取值范围是( ) A .1,2⎡⎫−+∞⎪⎢⎣⎭B .3,2⎡⎫−+∞⎪⎢⎣⎭C .[)1,−+∞D .[)2,−+∞,0)(0,)+∞上的奇函数,()0x f x ⋅>的解集为 .辽宁省名校联盟2023届高考模拟调研卷数学(三)T839.已知函数f (x )为定义在R 上的偶函数,当()0,x ∈+∞时,()2'>f x x ,()24f =,则不等式()2312xf x x x x −+>+的解集为( )A .()()103−⋃+∞,, B .()()1,13,−+∞C .()(),10,3−∞−D .()1,3−40.已知定义在R 上的连续偶函数()y f x =的导函数为()y f x '=,当0x >时,()()0f x f x x'+<,且(2)3f =−,则不等式6(21)21f x x −−<−的解集为( ) A .13,,22⎛⎫⎛⎫−∞+∞ ⎪ ⎪⎝⎭⎝⎭B .13,22⎛⎫ ⎪⎝⎭C .3,2⎛⎫+∞ ⎪⎝⎭D .1113,,2222⎛⎫⎛⎫−⋃ ⎪ ⎪⎝⎭⎝⎭题型四 由等式构造函数2024届山西大学附属中学10月月考T1141.(多选)已知函数()f x 的定义域为ππ,22⎛⎫− ⎪⎝⎭,其导函数为()f x '.若()()sin cos x f x x f x x '⎡⎤+=⎣⎦,且()00f =,则( )A .()f x 是增函数B .()f x 是减函数C .()f x 有最大值D .()f x 没有极值河北省石家庄市部分学校2023届高三联考(二)42.设函数()f x 在R 上存在导数()f x ',对任意的x ∈R ,有()()2sin f x f x x −−=,且在[)0,∞+上()cos f x x '>.若()πcos sin 2f f t t t t ⎛⎫− ⎝−⎭−>⎪.则实数t 的取值范围为( )A .π,4⎛⎫−∞ ⎪⎝⎭ B .π,4⎛⎫+∞ ⎪⎝⎭ C .ππ,42⎛⎫⎪⎝⎭ D .π,2⎛⎫+∞ ⎪⎝⎭山东省德州市2022-2023学年高二下学期期末43.(多选)R 上的函数()f x 满足()()e xf x f x ='+,且()01f =,则下列说法正确的是( )A .()f x 在2x =−处取得极小值B .()f x 有两个零点C .若0x ∀>,()f x k >恒成立,则1k <D .若1x ∃,2R x ∈,12x x ≠,()()12f x f x =,则124x x +<−44.(多选)已知()f x '为函数()f x 的导函数,若()()2ln x f x xf x x '+=,()112f =,则下列结论错误的是 A .()xf x 在()0,∞+上单调递增 B .()xf x 在()0,∞+上单调递减 C .()xf x 在()0,∞+上有极大值12D .()xf x 在()0,∞+上有极小值12专题1-3 原函数与导函数混合还原问题常见函数的构造模型1.对于)()(x g x f '>',构造)()()(x g x f x h −=模型2.对于不等式()k x f >'()0≠k ,构造函数()()b kx x f x g +−=. 模型3.对于不等式()()0'>+x f x f ,构造函数())(x f e x g x = 拓展:对于不等式()()0'>+x kf x f ,构造函数())(x f e x g kx = 模型4.对于不等式()()0'>−x f x f ,构造函数()xe )(x f x g =模型5.对于不等式()()0'>+x f x xf ,构造函数()()x xf x g =拓展:对于不等式()()0'>+x nf x xf ,构造函数())(x f x x g n=模型6.对于不等式()()0'>−x f x xf ,构造函数()()x x f x g =()0≠x 拓展:对于不等式()()0'>−x nf x xf ,构造函数()nx x f x g )(=模型7.对于0)()(>'x f x f ,分类讨论:(1)若0)(>x f ,则构造);(ln )(x f x h =(2)若0)(<x f ,则构造)](ln[)(x f x h −=模型8.对于()ln ()0(0)f x af x '+><,构造()()x h x a f x =. 模型9.对于()()ln 0(0)f x f x x x'+><,构造()()ln h x f x x =. 模型10.(1)对于()()tan (()()tan )f x f x x f x f x x ''><或,即()cos ()sin 0(0)f x x f x x '−><, 构造()()cos h x f x x =.对于()cos ()sin 0(0)f x x f x x '+><,构造()()cos f x h x x=. 模型11.(1)()sin ()cos [()sin ]f x x f x x f x x ''+= (2)2()sin ()cos ()[]sin sin f x x f x x f x x x'−'= 解题思路利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是: (1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别题型一 由导函数不等式构造函数解不等式2024届·重庆市第八中学高三上学期入学测试T81.若函数()f x 为定义在R 上的偶函数,当(),0x ∈−∞时,()2'>f x x ,则不等式 ()()()()3123331f x f x x −−>−+的解集为( )A .1,3⎛⎫−∞− ⎪⎝⎭B .()()1,1,3−∞−⋃+∞C .()1,+∞D .1,13⎛⎫− ⎪⎝⎭【答案】D重点题型·归类精讲【分析】根据不等式的结构,构造函数()()2g x f x x =−,判断其奇偶性及单调性,解不等式即可. 【详解】令()()2g x f x x =−,因为()f x 为偶函数,即()()f x f x −=,故()()g x g x −=,()g x 为偶函数,当(),0x ∈−∞时,()2'>f x x ,则()()()20,g x f x x g x =−>''在(),0∞−上单调递增,因为()()()()3123331f x f x x −−>−+,即()()2231(31)22f x x f −−−>−,所以()()312g x g −>,故312x −<,解113−<<x ,所以不等式的解集为1,13⎛⎫− ⎪⎝⎭.2023·南京二模T82.已知函数()f x 是定义在R 上的可导函数,其导函数为()f x '.若对任意x ∈R 有()1f x '>,()()110f x f x ++−=,且()02f =−,则不等式()11f x x −>−的解集为( )A .()0,∞+B .()1,+∞C .()2,+∞D .()3,+∞【答案】D【分析】构造()()g x f x x =−,确定函数单调递增,计算()22f =,()20g =,转化得到()()12g x g −>,根据单调性得到答案.【详解】设()()g x f x x =−,则()()10g x f x ''=−>恒成立,故函数在R 上单调递增.()()110f x f x ++−=,则()()200f f +=,即()22f =,故()()2220=−=g f .()11f x x −>−,即()10g x −>,即()()12g x g −>,故12x −>,解得3x >.3.已知定义在()0,∞+上的函数()f x 的导函数为()f x ',若()2f x '<,且()45f =,则不等式()222log log 3f x x >−的解集是 .【答案】()1,16【分析】构造函数()()23g x f x x =−+,由导数确定其单调性,题设不等式化为2(log )(4)g x g >,再利用单调性变形求解.【详解】令()()23g x f x x =−+,则()()20g x f x ''=−<, ∴()g x 在(0,)+∞上是减函数, (4)(4)830g f =−+=,不等式()222log log 3f x x >−化为22(log )2log 3f x x >−,即22(log )2log 30f x x −+>,也即为2(log )(4)g x g >, 所以20log 4x <<,116x <<. 故答案为:(1,16),4.已知()f x 是定义在R 上的奇函数,其导函数为(),f x '且当0x >时,()()ln 0f x f x x x'⋅+>,则不等式()()210xf x −<的解集为( )A .()1,1-B .(),1()0,1∞⋃--C .,11,()()∞⋃∞--+D .1,0),()(1⋃∞-+【答案】B【分析】构造新函数()()ln g x f x x =,利用导数确定()g x 的单调性,从而可得0x >时()f x 的正负,利用奇函数性质得出0x <时()f x 的正负,然后分类讨论解不等式. 【详解】设()()ln g x f x x =,则()()()ln 0f x g x f x x x''=+>,所以()g x 在(0,)+∞上递增, 又(1)0g =,所以1x >时,()()ln (1)0g x f x x g =>=,此时ln 0x >,所以()0f x >,01x <<时,()()ln (1)0g x f x x g =<=,此时,ln 0x <,所以()0f x >,所以(0,1)(1,)x ∈+∞时,()0f x >,因为()f x 是奇函数,所以(,1)(1,0)x ∈−∞−−时,()0f x <,由2(1)()0x f x −<得210()0x f x ⎧−>⎨<⎩或210()0x f x ⎧−<⎨>⎩,所以1x <−或01x <<.关键点点睛:本题考查用导数解不等式,关键是构造新函数()()ln g x f x x =,利用导数确定单调性后,得出()0f x >的解.5.已知函数()f x 的定义域为(),0∞−,其导函数()'f x 满足()()'20xf x f x −>,则不等式()()()22023202310f x x f +−+−<的解集为( )A .(2024,2023)−−B .(2024,0)−C .(,2023)−∞−D .(,2024)−∞−【答案】A【分析】由题可得当(),0x ∈−∞时,()()20xf x f x −>,构造函数2()()f x g x x =,可判断()g x 在(,0)−∞上的单调性,进而可将不等式转化为(2023)(1)g x g +<−,利用()g x 的单调性,可求出不等式的解集. 【详解】由题意知,当(,0)x ∈−∞时,'()2()0xf x f x −>, 设2()()f x g x x =, 则2'''43()2()()2()()0x f x xf x xf x f x g x x x −−==<,所以()g x 在(,0)−∞上单调递减,不等式2(2023)(2023)(1)0f x x f +−+−<等价于()22(2023)(1)(2023)1f x f x +−<+−,即为(2023)(1)g x g +<−,所以2023120230x x +>−⎧⎨+<⎩,解得20242023x −<<−. 故选:A.2023·广州2023届综合能力测试(一)T156.已知函数()f x 的定义域为(0,)+∞,其导函数为()f x ',若()10xf x '−<.(e)2f =,则关于x 的不等式1)(e x f x <+的解集为__________.【答案】(1,)+∞【解析】令函数()()ln ,0g x f x x x =−>,则1()1()()0xf x g x f x x x'−''=−=<,因此函数()g x 在(0,)+∞上单调递减,(e)(e)ln e 1g f =−=,因此1))))(e 1(e (e (e x x x f x g f x g −<+<⇔<⇔,即e e x >,解得1x >,所以不等式1)(e x f x <+的解集为(1,)+∞.2023届广州大学附属中学高三上学期第一次月考T87.设()f x '是函数()f x 的导函数,且()()()3R f x f x x '>∈,1e 3f ⎛⎫= ⎪⎝⎭(e 为自然对数的底数),则不等式()3ln f x x <的解集为( )A .e 0,3⎛⎫ ⎪⎝⎭B .1e ,e 3⎛⎫ ⎪⎝⎭C .()30,eD .3e ,e 3⎛⎫ ⎪⎝⎭【分析】构造函数()()3exf xg x =,由已知可得函数()g x 在R 上为增函数,不等式()3ln f x x <即为()1ln 3g x g ⎛⎫< ⎪⎝⎭,根据函数的单调性即可得解.【详解】解:令()()3e xf xg x =,则()()()33exf x f xg x '−'=, 因为()()()3R f x f x x '>∈, 所以()()()330e xf x f xg x '−'=>,所以函数()g x 在R 上为增函数,不等式()3ln f x x <即不等式()3ln <1>0f x x x ⎧⎪⎨⎪⎩,又()()()3ln 3ln ln ln e x f x f x g x x ==,11313e f g ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭,所以不等式()3ln f x x <即为()1ln 3g x g ⎛⎫< ⎪⎝⎭,即1ln 3x <,解得30e x <<, 所以不等式()3ln f x x <的解集为(3e .2023届长郡中学月考(六)·118.设函数()f x 在R 上存在导函数()f x ',对任意的x ∈R 有2()()f x f x x +−=,且在[0,)+∞上()f x x '>,若(2)2()2f a a f a −+>+,则实数a 的可能取值为( ) A. 1− B. 0C. 1D. 2【答案】AB 【解析】【分析】构建2()()2x g x f x =−,根据题意分析可得:()g x 为奇函数,在R 上单调递增,利用单调性解不等式即可得结果.【详解】222()()()()()022x x f x f x x f x f x −+−=⇔−+−−=令2()()2x g x f x =−,即()()0g x g x +−=,则()g x 为奇函数,当0x ≥时,()()0g x f x x ''=−>,则()g x 在区间[0,)+∞上单调递增, 故()g x 在区间(],0−∞上单调递增,则()g x 在R 上单调递增,∵(2)2()2f a a f a −+>+⇔22(2)(2)()22a af a f a −−−>−,即()(2)g a g a −>,∴2a a −>,解得1a <, 故A 、B 正确,C 、D 错误.广州华南师大附中高三第一次月考·79.设函数()f x '是奇函数()()f x x R ∈的导函数,()10f −=,当0x >时,()()0xf x f x '−>则使得()0f x >成立的x 的取值范围是().(,1)(1,0)A −∞−⋃−B.(0,1)∪(1,+∞) ().,1(0,1)C −∞−⋃D.(-1,0)∪(1,+∞)【答案】 D2022武汉高二下期中·710.定义在R 上的函数()f x 满足()()1f x f x '>−,()f x '是()f x 的导函数,且()06f =,则不等式()e 51x f x >+(其中e 为自然对数的底数)的解集为( ).A. ()(),01,−∞⋃+∞B. ()(),03,−∞+∞C. ()0,∞+D. ()3,+∞【答案】C 【解析】【分析】构造函数()1()exf xg x −=,(R)x ∈,研究()g x 的单调性,结合原函数的性质和函数值,即可求解. 【详解】设()1()exf xg x −=,(R)x ∈,则2e ()e ()(()11()e [)]e x x x xf x f x f x f xg x −''−−+'==, ()()1f x f x '>−, ()()10f x f x '∴−+>,()0g x '∴>,()y g x ∴=在定义域R 上单调递增,()5e 1x f x >+,()06f =,即()1(0)15e e x f x f −−>=, ()(0)g x g ∴>,0x ∴>,∴不等式的解集为(0,)+∞11.已知函数()f x 的导函数为()f x ',且满足()()0f x f x +'>在R 上恒成立,则不等式()2e 21xf x +>()2e 3x f x −−的解集是 .【答案】2,3⎛⎫+∞ ⎪⎝⎭【分析】构造函数()()e x g x f x =,再将()2e 21x f x +>()2e 3xf x −−转化为()()213g x g x +>−,进而根据()g x 的单调性求解即可.【详解】令()()e x g x f x =,则()()()e 0x g x f x f x ''+>⎡⎤⎣⎦=,所以()g x 在R 上单调递增, 由()2e 21x f x +>()2e 3x f x −−,得()()213e 21e 3x xf x f x +−+>−,即()()213g x g x +>−,所以213x x +>−,解得23x >. 所以不等式()2e 21x f x +>()2e 3xf x −−的解集是2,3⎛⎫+∞ ⎪⎝⎭.12.已知函数()f x 的定义域是(-5,5),其导函数为()f x ',且()()2f x xf x '+>,则不等式()()()()23231124x f x x f x x −−−−−>−的解集是 .【答案】()2,4【分析】设()()2g x xf x x =−,根据()()2f x xf x '+>,得到()0g x '>,从而()g x 是()5,5−上的增函数,将不等式()()()()23231124x f x x f x x −−−−−>−转化为()()()()()()23232231121x f x x x f x x −−−−>−−−−,即()()231g x g x −>−求解.【详解】解:设()()2g x xf x x =−, 则()()()2g x f x xf x =+'−'. 因为()()2f x xf x '+>, 所以()0g x '>,则()g x 是()5,5−上的增函数.不等式()()()()23231124x f x x f x x −−−−−>−等价于,()()()()()()23232231121x f x x x f x x −−−−>−−−−,即()()231g x g x −>−,则5235,515,231,x x x x −<−<⎧⎪−<−<⎨⎪−>−⎩解得24x <<. 故答案为:()2,4安徽省蚌埠市2023届高三上学期第一次质检13.已知函数()f x 的定义域是11,22f ⎛⎫= ⎪⎝⎭R ,若对于任意的x ∈R 都有()40f x x '+<,则当[]0,2απ∈时,不等式()sin cos20f αα−<的解集为( )A .5,66ππ⎛⎫ ⎪⎝⎭B .5,33ππ⎛⎫ ⎪⎝⎭C .50,,266πππ⎛⎫⎛⎫⋃ ⎪⎪⎝⎭⎝⎭D .50,,233πππ⎛⎫⎛⎫⋃ ⎪⎪⎝⎭⎝⎭【分析】构造函数()()221g x f x x =+−,求导得()g x 在R 上是减函数,由题知()1sin 2g g α⎛⎫< ⎪⎝⎭,所以1sin 2α>,计算得解.【详解】令()()221g x f x x =+−,则()()()40,g x f x x g x =+<''在R 上是减函数.2111210222g f ⎛⎫⎛⎫⎛⎫=+⨯−= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以()()()2sin sin 2sin 1sin cos20g f f ααααα=+−=−<得1sin 2α>,又[]0,2απ∈,所以5,66αππ⎛⎫⎪⎝⎭∈. 14.已知函数()f x 是定义在R 上的可导函数,其导函数为()f x '.若()05f =,且()()2f x f x '−>,则使不等式()3e 2xf x ≤+成立的x 的值可能为( )A .-2B .-1C .12−D .2【分析】根据已知条件构造函数()()2exf x F x −=,要求解的不等式可化为()()0F x F ≤,判断F (x )单调性即可求解.【详解】设()()2e xf x F x −=,则()()()2exf x f x F x '−+'=, ∵()()2f x f x '−>,∴()()20f x f x '−+<, ∴()0F x '<,即()F x 在定义域R 上单调递减. ∵()05f =,∴()03F =,∴不等式()3e 2xf x ≤+等价于()23exf x −≤,即()()0F x F ≤,解得0x ≥,结合选项可知,只有D 符合题意.题型二 由导函数不等式构造函数比大小广东省四校2024届高三上学期10月联考(二)数学试题15.已知函数()f x 满足()()ln 0xf x x f x '+>(其中()f x '是()f x 的导数),若12e a f ⎛⎫= ⎪⎝⎭,()e b f =,()2e c f =,则下列选项中正确的是( ) A .42c b a << B .24b c a << C .24a b c << D .42a c b <<【答案】C【分析】构造函数()()ln (0)g x f x x x =>,由题意可得(0,)∀∈+∞x ,()0g x '>,所以()g x 在(0,)+∞上递增,然后由1220e e e <<<可得答案.【详解】因为()()ln 0xf x x f x '+>(0x >), 所以()()1ln 0f x x f x x'+>,所以[()ln ]0f x x '>, 令()()ln (0)g x f x x x =>,则(0,)∀∈+∞x ,()0g x '>, 所以()g x 在(0,)+∞上递增,因为1220e e e <<<, 所以122(e )(e)(e )g g g <<,所以112222(e )ln e (e)ln e (e )ln e f f f <<,所以1221(e )(e)2(e )2f f f <<,所以122a b c <<,所以24a b c <<江苏南通市部分学校3月模拟·T816.已知()f x 是可导的函数,且()()2f x f x '≤,对于x R ∈恒成立,则下列不等关系正确的是( )A .()()()()2404001,12021e f f e f f >>B .()()()()2404001,12021e f f e f f <>C .()()()()2404001,12021e f f e f f >< D .()()()()2404001,12021e f f e f f <<【答案】A 【解析】令()()2xf xg x e =,则()()()()()()2222222x x xxf x e e f x f x f xg x e e ''⋅−⋅−'==,()()2f x f x '≤,20x e >,()0g x '∴≤,()g x ∴在R 上单调递减, ()()01g g ∴>,()()12021g g >,即()()0201f f e e >,()()2404212021f f e e >,()()201e f f ∴>,()()404012021e f f >.17.已知函数()f x 的定义域为R ,设()f x 的导数是()f x ',且()()sin 0f x f x x '⋅+>恒成立,则( )A .ππ22f f ⎛⎫⎛⎫<− ⎪ ⎪⎝⎭⎝⎭B .ππ22f f ⎛⎫⎛⎫>− ⎪ ⎪⎝⎭⎝⎭C .ππ22f f ⎛⎫⎛⎫<− ⎪ ⎪⎝⎭⎝⎭D .ππ22f f ⎛⎫⎛⎫>− ⎪ ⎪⎝⎭⎝⎭【分析】设()()22cos g x f x x =−,得到()0g x '>,得到()g x 为增函数,得到22ππ22f f ⎛⎫⎛⎫>− ⎪ ⎪⎝⎭⎝⎭,即可求解.【详解】设()()22cos g x f x x =−,则()()()22sin 0g x f x f x x ''=⋅+>,故()y g x =在定义域R 上是增函数,所以ππ22g g ⎛⎫⎛⎫>− ⎪ ⎪⎝⎭⎝⎭,即22ππ22f f ⎛⎫⎛⎫>− ⎪ ⎪⎝⎭⎝⎭,所以22f f ππ⎛⎫⎛⎫>− ⎪ ⎪⎝⎭⎝⎭.18.已知偶函数()f x 的定义域为R ,导函数为()f x ',若对任意[0,)x ∞∈+,都有()()20f x x xf '+>恒成立,则下列结论正确的是( ) A .()00f < B .()()931f f −<C .()42(1f f >−)D .()()12f f <【答案】C【详解】令0x =,则2(0)00,(0)0f f +>∴>,则A 错误; 令2()()g x x f x =,则2()2()()g x xf x x f x ''=+, 当0x >时,由()()20f x xf x '+>,22()()0xf x x f x '∴+>,则()g x 在(0,)+∞上单调递增, 又因为偶函数()f x 的定义域为R ,∴2()()g x x f x =为偶函数,()g x 在(0,)+∞上单调递增, ()(3)3(1)g g g ∴−=>,9(3)(1)f f −>,故B 错误;(2)(1)g g ∴>−,4(2)(1)f f >−,故C 正确;由题意,不妨假设()0f x c =>(c 为常数)符合题意,此时()()12f f c ==,故D 错误.19.设定义在[)0,∞+上的函数()0f x ≠恒成立,其导函数为()f x ',若()()()()1ln 10f x x f x x '−++<,则( )A .()()2130f f >>B .()()2130f f <<C .()()2310f f >>D .()()2310f f <<【答案】B【分析】构造函数ln(1)()()x g x f x +=,根据题意可得()0g x '<,从而根据单调性可得0(1)(3)g g >>,进而得出结果.【详解】由题意,在[)0,∞+上的函数()0f x ≠恒成立,构造函数ln(1)()()x g x f x +=,则()()2()ln(1)1()f x f x x xg x f x '−++'=,∵[)0,∞+上()()()()()1ln ()ln(1)0111f x x f x x f x f x x x x −+'−+'+=<++,即()0g x '<, ∴()g x 在[)0,∞+上单调递减,而(0)0g =,故0(1)(3)g g >> ∴ln 2ln 42ln 20(1)(3)(3)f f f >>=,可得2(1)(3)0f f <<.20.设()f x 是定义在R 上的函数,其导函数为()f x ',满足()()0f x xf x '−>,若()41a f =,()22b f =,()4c f =,则( )A .a b c >>B .c a b >>C .b c a >>D .c b a >>【答案】A【分析】依题意令()()f x g x x=,进而根据题意得()g x 在R 上单调递减,故()()()24124f f f >>,进而得答案.【详解】解:因为()f x 满足()()0f x xf x '−<,令()()f x g x x=,则()()()20xf x f x g x x'−'=<,所以()g x 在R 上单调递减,所以()()()124g g g >>,即()()()24124f f f >>,所以()()()41224f f f >>.所以c b a <<.2023届菏泽市二模T821.已知定义在R 上的函数()f x 的导函数为()f x ',满足()()0,01f x f >=,且()()222e x f x f x ++=−,当1x >时,()()f x f x '>,则( )A .()11e f −−<B .e 11e e f ⎛⎫> ⎪⎝⎭C .()22e f > D .()ee ef >【答案】D【分析】设()()xf xg x =e ,由1x >时,()()f x f x '>可得()g x 在()1,+∞上单调递增,由()()222e x f x f x ++=−,可得()()2g x g x +=−.A 选项,比较()1g −与()2g 大小即可判断选项正误;B 选项,比较1e g ⎛⎫⎪⎝⎭与()2g 大小即可判断选项正误;C 选项,比较1与()2g 大小即可判断选项正误;D 选项,比较()e g 与()2g 大小即可判断选项正误;【详解】因()()f x f x '>,则()()()()()200e e e e e x x xxx f x f x f x f x f x '⎡⎤''−−>⇒=>⎢⎥⎢⎥⎣⎦, 则函数()()xf xg x =e 在()1,+∞上单调递增;因()()()()()()22222e 2e e x xx f x f x g x g x f x f x ++−+−⇒=⇒++=−−=,则()()()00201ef g g ===.A 选项,()()()()()111132111e e f g g g f −−−−=>=⇒>⇒−>,故A 错误;B 选项,注意到11221e e <<−<,则()11221e e g g g ⎛⎫⎛⎫=−<= ⎪ ⎪⎝⎭⎝⎭11111e ee e e ef f ⎛⎫⎪⎛⎫⎝⎭⇒<⇒< ⎪⎝⎭,故B 错误; C 选项,()()()2222112e ef g f =⇒=⇒=,故C 错误; D 选项,()()()()211e ee e e e ef g g f >=⇒>⇒>,故D 正确.河南省洛阳市六校高三上10月联考·1022.设定义在[)0,∞+上的函数()0f x ≠恒成立,其导函数为()f x ',若()()()()1ln 10f x x f x x '−++<,则( ) A .()()2130f f >> B .()()2130f f << C .()()2310f f >> D .()()2310f f <<【答案】B【解析】由题意,在[)0,∞+上的函数()0f x ≠恒成立,构造函数ln(1)()()x g x f x +=,则()()2()ln(1)1()f x f x x xg x f x '−++'=,∵[)0,∞+上()()()()()1ln ()ln(1)0111f x x f x x f x f x x x x −+'−+'+=<++,即()0g x '<, ∴()g x 在[)0,∞+上单调递减,而(0)0g =,故0(1)(3)g g >> ∴ln 2ln 42ln 20(1)(3)(3)f f f >>=,可得2(1)(3)0f f <<. 23.定义在(0,)2π上的函数()f x ,()f x '是它的导函数,且恒有()()tan f x f x x '<⋅成立,则( ). A 3()2()43ππ>B .(1)2()sin16f f π<⋅C 2()()64f ππ>D 3()()63f ππ<【答案】D【分析】由已知条件构造函数()()sin f x g x x =,求导后结合已知可得()g x 在(0,)2π上为增函数,从而可比较出大小【详解】()cos ()sin f x x f x x '⋅<⋅,()cos ()sin 0f x x f x x '⋅−⋅<, 设()()sin f x g x x =,则2()sin ()cos ()0sin f x x f x x g x x'⋅−⋅'=>, 则()g x 在(0,)2π上为增函数,对于A ,因为0432πππ<<<,所以()()43g g ππ<,即()()34sin sin43f f ππππ<3()2()43ππ,所以A 错误,对于B 因为0162ππ<<<,所以()(1)6g g π<,即()(1)6sin1sin 6f f ππ<,得(1)2()sin16f f π>⋅,所以B 错误, 对于C ,因为0642πππ<<<,所以()()64g g ππ<,即()()64sin sin 64f f ππππ<2()()64f ππ<,所以C 错误, 对于D ,因为0632πππ<<<,所以()()63g g ππ<,即()()63sin sin 63f f ππππ<3()()63f ππ<,所以D 正确, 2022湖北六校高二下期中·1124.(多选)已知函数f (x )的定义域是(0,+∞),其导函数是f '(x ),且满足1ln '( >)()0x f x f x x⋅+⋅,则下列说法正确的是( ) A .10f e ⎛⎫> ⎪⎝⎭B .10f e ⎛⎫< ⎪⎝⎭C .f (e )>0D .f (e )<0【解答】解:令g (x )=f (x )lnx (x >0), 则g ′(x )=1ln ()()0x f x f x x'⋅+⋅>, ∴g (x )在区间(0,+∞)上单调递增,又g (1)=f (1)ln 1=0, ∴当0<x <1时,g (x )<0,当x >1时,g (x )>0, 而1e∈(0,1),e ∈(0,+∞),因此111()()ln0 <g f e e e=,g (e )=f (e )lne >0, ∴>1()0 f e,f (e )>0,故AC 正确,BD 错误;故选:AC .25.已知定义在R 上的函数()(),f x g x 的导函数都存在,若()()()()10f x g x f x g x x <'+',且()()()()2211f g f g −为整数,则()()()()2211f g f g −的可能取值的最大值为 .【答案】14【分析】构建()()()25h x f x g x x =−,根据题意利用导数可得()h x 在R 上单调递减,由()()12h h >,结合题意分析求解.【详解】因为()()()()10f x g x f x g x x <'+',设函数()()()25h x f x g x x =−,则()()()()()100h x f x g x f x g x x '=+''−<,所以()h x 在R 上单调递减,则()()12h h >,即()()()()2211512252f g f g −⨯>−⨯,整理得()()()()221115f g f g −<, 又因为()()()()2211f g f g −为整数,所以()()()()2211f g f g −的可能取值的最大值为14. 故答案为:14.题型三 由导函数不等式构造函数结合奇偶性解不等式经典例题26.设函数'f x ()是奇函数()()f x x ∈R 的导函数(1)0f −=,当x >0时,xf '(x )﹣f (x )<0,则使得f (x )<0成立的x 的取值范围为 .【解答】解:令g (x )=()f x x(x >0), 因为x >0时,xf '(x )﹣f (x )<0,所以g ′(x )=2()()f x x f x x '−<0,故g (x )在(0,+∞)上单调递减, 因为f (x )为奇函数,所以g (x )为偶函数,根据偶函数对称性可知,g (x )在(﹣∞,0)上单调递减, 由g (﹣1)=﹣f (﹣1)=0,g (1)=f (1)=﹣f (﹣1)=0, 因为f (x )<0, 所以xg (x )<0,可转化为0 >0()x g x ⎧⎨<⎩或,0 <0()x g x ⎧⎨>⎩ 解得x >1或﹣1<x <0,故答案为:(﹣1,0)∪(1,+∞)。

2025年新人教版高考数学一轮复习讲义 第五章 培优点8 等和(高)线定理与奔驰定理

2025年新人教版高考数学一轮复习讲义  第五章 培优点8 等和(高)线定理与奔驰定理

2025年新人教版高考数学一轮复习讲义第五章培优点8 等和(高)线定理与奔驰定理1.等和(高)线定理①当等和线恰为直线AB时,k=1;②当等和线在O点和直线AB之间时,k∈(0,1);③当直线AB在O点和等和线之间时,k∈(1,+∞);④当等和线过O点时,k=0;⑤若两等和线关于O点对称,则定值k1,k2互为相反数;⑥定值k的变化与等和线到O点的距离成正比.2.奔驰定理由于这个定理对应的图象和奔驰车的标志很相似,所以我们把它称为“奔驰定理”.这个定理对于利用平面向量解决平面几何问题,尤其是解决跟三角形的面积和“四心”相关的问题,有着决定性的基石作用.题型一 利用等和线求基底系数和的值√∵E为线段AO的中点,方法二 (等和线法)如图,AD为值是1的等和线,过点E作AD的平行线,设λ+μ=k,思维升华利用等和线求基底系数和的步骤(1)确定值为1的等和线;(2)平移该线,作出满足条件的等和线;(3)从长度比或点的位置两个角度,计算满足条件的等和线的值.由题意作图如图.方法二 (等和线法)设AF与BC的延长线交于点H,易知AF=FH,题型二 利用等和线求基底系数和的最值(范围)√相交于点E,与直线AC相交于点F,思维升华求解步骤:(1)确定值为1的等和线;(2)平移(旋转或伸缩)该线,结合动点允许存在的区域,分析何处取得最大值和最小值;(3)从长度比或点的位置两个角度,计算最大值和最小值.[1,3]作一系列与BD平行的直线与圆弧相交,当点C与点B重合时,3x+y取得最小值1;当点C与点A重合时,3x+y取得最大值3,故3x+y的取值范围是[1,3].题型三 奔驰定理√∴S△BOC∶S△AOC∶S△AOB=1∶2∶m.解得m=4.思维升华利用平面向量“奔驰定理”解题时,要严格按照定理的格式,注意定理中的点P为△ABC内一点;定理中等式左边三个向量的系数之比对应三个三角形的面积之比.√由奔驰定理可得S△ABC∶S△PBC=(4+6+9)∶4=19∶4.能力提升√√方法一 (常规方法)如图,连接AM并延长交BC于D,则D为BC的中点,方法二 (等和线法)BC是值为1的等和线,过M作BC的平行线,√方法一 (常规方法)方法二 (等和线法)如图,BC为值是1的等和线,过N作BC的平行线,设λ+μ=k,√A.2∶1B.3∶2C.3∶1D.5∶3根据奔驰定理得,S△P B C∶S△PA C∶S△PA B=1∶2∶3,所以S△ABC∶S△APC=3∶1.A.[0,1]B.[0,2]C.[0,3]D.[0,4]√如图,过点P作GH∥BC,分别交AC,AB的延长线于点G,H,∵△BCD与△ABC的面积之比为2∶1,∴AC′=3AC,AB′=3AB,综上,λ+μ的取值范围是[0,3].√方法一 (常规方法)设圆O的半径为1,由已知可设OB为x轴的正半轴,O为坐标原点,建立直角坐标系(图略),方法二 (等和线法)设λ+μ=k,如图,当C位于点A或点B时,A,B,C三点共线,所以k=λ+μ=1,所以λ+μ∈[1,2].如图,BC是值为1的等和线,过点O作BC的平行线,延长AO交BC于点M,由题设知O为△ABC的重心,1方法一 如图,设AC的中点为M,BC的中点为N.所以O为线段MN的中点,所以S△AOC=1.5根据奔驰定理可得S△OBC∶S△OAC∶S△OAB=1∶3∶5,[3,4]如图,直线BF为k=1的等和线,当P在△CDE内(包括边界)时,直线EC是最近的等和线,设正六边形的边长为2,则AN=3,AM=1,AD=4,故α+β∈[3,4].本课结束。

2025年新人教版高考数学一轮复习讲义 第三章 培优点3 洛必达法则

2025年新人教版高考数学一轮复习讲义  第三章 培优点3 洛必达法则
12
则 h′(x)=-x+x212<0, 所以h(x)在(0,+∞)上单调递减,
所以h(x)<h(0)=0,
即g′(x)<0,g(x)在(0,+∞)上单调递减,
所以 g(x)max=lim g(0), x→0
所以 a≥g(x)max=lim x→0
g(0)=lim x条件符合,洛必达法则可连续多次使用,直到求出极限为止.
lim
x→a
gfxx=lxi→ma
gf′′xx=lxi→ma
gf″″xx,如满足条件,可继续使用洛必达法则.
0 题型一 用洛必达法则处理 型函数
0
例 1 设函数 f(x)=2+sincoxs x.如果对任何 x≥0,都有 f(x)≤ax,求 a 的取值 范围.
而lim x→0
g(x)=lim x→0
sin x x2+cos x
=lim x→0
cos x 2+cos x-xsin
x=13.
另一方面,当x∈[π,+∞)时,
g(x)=x2+sincoxs x≤1x≤1π<13,
因此 a≥13.
思维升华
用洛必达法则处理00型函数的步骤:(1)分离变量;(2)出现00型式子;(3)运用 洛必达法则求值.
ln 2x+x 1=12,
故 m≥12, 综上所述,m 的取值范围是12,+∞.
∞ 题型二 用洛必达法则处理 型函数

例2 已知函数f(x)=ax-a-xln x.若当x∈(0,1)时,f(x)≥0恒成立,求实 数a的取值范围.
依题意,ax-a-xln x≥0恒成立,
即a(x-1)≥xln x恒成立, 又 x-1<0,∴a≤xx-ln 1x恒成立, 令 φ(x)=xx-ln 1x,x∈(0,1),∴φ′(x)=x-x1--1ln2 x, 令g(x)=x-1-ln x,x∈(0,1), ∴g′(x)=1-1x<0,

高考数学重难点培优讲义之基本不等式求最值典型题型(含答案解析)

高考数学重难点培优讲义之基本不等式求最值典型题型(含答案解析)

基本不等式求最值【题型1 直接法求最值】 (2)【题型2 配凑法求最值】 (3)【题型3 常数代换法求最值】 (3)【题型4 消元法求最值】 (4)【题型5 构造不等式法求最值】 (5)【题型6 多次使用基本不等式求最值】 (6)【题型7 实际应用中的最值问题】 (6)【题型8 与其他知识交汇的最值问题】 (9)基本不等式是高考热点问题,是常考常新的内容,是高中数学中一个重要的知识点.题型通常为选择题或填空题,但它的应用范围很广,涉及到函数、三角函数、平面向量、立体几何、解析几何、导数等内容,它在高考中常用于大小判断、求最值、求最值范围等.在高考中经常考察运用基本不等式求函数或代数式的最值,具有灵活多变、应用广泛、技巧性强等特点.在复习中切忌生搬硬套,在应用时一定要紧扣“一正二定三相等”这三个条件灵活运用.【知识点1 利用基本不等式求最值的方法】1.利用基本不等式求最值的几种方法(1)直接法:条件和问题间存在基本不等式的关系,可直接利用基本不等式来求最值.(2)配凑法:利用配凑法求最值,主要是配凑成“和为常数”或“积为常数”的形式.(3)常数代换法:主要解决形如“已知x+y=t(t为常数),求的最值”的问题,先将转化为,再用基本不等式求最值.(4)消元法:当所求最值的代数式中的变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.(5)构造不等式法:构建目标式的不等式求最值,在既含有和式又含有积式的等式中,对和式或积式利用基本不等式,构造目标式的不等式求解.【知识点2 基本不等式的实际应用】1.基本不等式的实际应用的解题策略(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值.(2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数的最值时,若等号取不到,则可利用函数的单调性求解.【题型1 直接法求最值】【例1】(2023上·北京·高一校考阶段练习)已知a>0,则a+1+1的最小值为()aA.2B.3C.4D.5【变式1-1】(2023·北京东城·统考一模)已知x>0,则x−4+4的最小值为()xA.-2B.0C.1D.2√2【变式1-2】(2023上·山东·高一统考期中)函数y=x2−x+9(x>0)的最小值为()xA.1B.3C.5D.9【变式1-3】(2023下·江西·高三校联考阶段练习)(3+1)(1+4x2)的最小值为()x2A.9√3B.7+4√2C.8√3D.7+4√3【题型2 配凑法求最值】【例2】(2023·浙江·校联考模拟预测)已知a>1,则a+16a−1的最小值为()A.8B.9C.10D.11【变式2-1】(2023上·吉林·高一校考阶段练习)已知x>3,则y=2x−3+2x的最小值是()A.6B.8C.10D.12【变式2-2】(2023上·海南省直辖县级单位·高三校联考阶段练习)设x>2,则函数y=4x−1+4x−2,的最小值为()A.7B.8C.14D.15【变式2-3】(2023上·辽宁·高一校联考期中)若x>0,y>0且满足x+y=xy,则2xx−1+4yy−1的最小值为()A.6+2√6B.4+6√2C.2+4√6D.6+4√2【题型3 常数代换法求最值】【例3】(2023上·内蒙古通辽·高三校考阶段练习)已知a>0,b>0,若2a +3b=1,则2a+b3的最小值是()A.8B.9C.10D.11【变式3-1】(2023·河南·校联考模拟预测)已知正实数a,b,点M(1,4)在直线xa +yb=1上,则a+b的最小值为()A.4B.6C.9D.12【变式3-2】(2023上·重庆·高一统考期末)若正实数x,y满足2x+8y−xy=0,则2x+y的最大值为()A.25B.16C.37D.19【变式3-3】(2023·重庆·统考一模)已知a,b为非负实数,且2a+b=1,则2a2a+1+b2+1b的最小值为()A.1B.2C.3D.4【题型4 消元法求最值】【例4】(2023上·江苏·高一校联考阶段练习)已知正数x,y满足3x−4=9y,则x+8y的最小值为.【变式4-1】(2023上·安徽池州·高一统考期中)已知x,y∈R+,若2x+y+xy=7,则x+2y的最小值为.【变式4-2】(2023上·山东淄博·高一校考阶段练习)已知正实数a,b,且2a+b+6=ab,则a+2b的最小值为.【变式4-3】(2023·上海崇明·统考一模)已知正实数a, b, c, d满足a2 −ab+1=0,c2 +d2 =1,则当(a−c)2 +(b−d)2取得最小值时,ab=.【题型5 构造不等式法求最值】【例5】(2023下·河南·高三校联考阶段练习)已知2a+b=ab(a>0,b>0),下列说法正确的是()A.ab的最大值为8B.1a−1+2b−2的最小值为2C.a+b有最小值3+√2D.a2−2a+b2−4b有最大值4【变式5-1】(2022上·山东青岛·高一青岛二中校考期中)已知x>0,y>0,且x+y+xy−3=0;则下列结论正确的是()A.xy的最小值是1B.x+y的最小值是2C.x+4y的最小值是8D.x+2y的最大值是4√2−3【变式5-2】(2023上·江苏·高一专题练习)下列说法正确的是()A.若x>2,则函数y=x+1x−1的最小值为3B.若x>0,y>0,3x +1y=5,则5x+4y的最小值为5C.若x>0,y>0,x+y+xy=3,则xy的最小值为1D.若x>1,y>0,x+y=2,则1x−1+2y的最小值为3+2√2【变式5-3】(2023上·广东中山·高三校考阶段练习)设正实数x,y满足x+2y=3,则下列说法错误的是()A.yx +3y的最小值为4B.xy的最大值为98C.√x+√2y的最大值为2D.x2+4y2的最小值为92【题型6 多次使用基本不等式求最值】【例6】(2023·河南·校联考模拟预测)已知正实数a,b,满足a+b≥92a +2b,则a+b的最小值为()A.5B.52C.5√2D.5√22【变式6-1】(2023·山东菏泽·统考一模)设实数x,y满足x+y=1,y>0,x≠0,则1|x|+2|x|y的最小值为()A.2√2−1B.2√2+1C.√2−1D.√2+1【变式6-2】(2023·河北衡水·衡水市第二中学校考模拟预测)已知实数x,y,z>0,满足xy+zx =2,则当4y+1z取得最小值时,y+z的值为()A.1B.32C.2D.52【变式6-3】(2023上·辽宁大连·高一期末)若a>0,b>0,a+b=1,则a2+3aba+2b +2b+1−1b的最大值为()A.√2B.2−√2C.3−√2D.3−2√2【题型7 实际应用中的最值问题】【例7】(2023上·四川眉山·高一校联考期中)如图,高新区某居民小区要建一座八边形的休闲场所,它的主体造型平面图是由两个相同的矩形ABCD和EFGH构成的面积为400m2的十字形地域.计划在正方形MNPQ上建一座花坛,造价为8400元/m2;在四个相同的矩形(图中阴影部分)上铺花岗岩地坪,造价为420元/m2;再在四个空角(图中四个三角形)上铺草坪,造价为160元/m2.设总造价为y(单位:元),AD长为x(单位:m).(1)用x表示AM的长度,并求x的取值范围;(2)当x为何值时,y最小?并求出这个最小值.【变式7-1】(2023上·山东·高一校联考期中)某校地势较低,一遇到雨水天气校园内会有大量积水,不但不方便师生出行,还存在严重安全问题.为此学校决定利用原水池改建一个深3米,底面面积16平方米的长方体蓄水池.不但能解决积水问题,同时还可以利用蓄水灌溉学校植被.改建及蓄水池盖儿固定费用800元,由招标公司承担.现对水池内部地面及四周墙面铺设公开招标.甲工程队给出的报价如下:四周墙面每平方米150元,地面每平方米400元.设泳池宽为x米.(2≤x≤6)(1)当宽为多少时,甲工程队报价最低,并求出最低报价.元(a>0)(整体报价中含固定费用).若无论(2)现有乙工程队也要参与竞标,其给出的整体报价为900a(x+2)x宽为多少米,乙工程队都能竞标成功,试求a的取值范围.【变式7-2】(2023上·江苏苏州·高一校考阶段练习)因新冠疫情零星散发,某实验中学为了保障师生安全,同时考虑到节省费用,拟借助校门口一侧原有墙体建造一间高为4米、底面积为24平方米、背面靠墙体的.因此室的后长方体形状的隔离室.隔离室的正面需开一扇安全门,此门高为2米,且此门高为此门底的13背面靠墙,故无需建墙费用,但需粉饰.现学校面向社会公开招标,甲工程队给出的报价:正面为每平方米360元,左右两侧面为每平方米300元,已有墙体粉饰为每平方米100元,屋顶和地面以及安全门报价共计12000元.设隔离室的左右两侧面的底边长度均为x米(1≤x≤5).(1)记y为甲工程队整体报价,求y关于x的关系式;元,问是否存在实数t,使得(2)现有乙工程队也要参与此隔离室建造的竞标,其给出的整体报价为4800t(x+1)x无论左右两侧底边长为多少,乙工程队都能竞标成功(注:整体报价小者竞标成功),若存在,求出t满足的条件;若不存在,请说明理由.【变式7-3】(2023上·重庆·高一校考阶段练习)为宜传2023年杭州亚运会,某公益广告公司拟在一张面积为36000cm2的矩形海报纸(记为矩形ABCD,如图)上设计四个等高的宣传栏(栏面分别为两个等腰三角形和两个全等的直角三角形),为了美观,要求海报上所有水平方向和竖直方向的留空宽度均为10cm,设DC=x cm.(1)将四个宣传栏的总面积y表示为x的表达式,并写出x的范围;(2)为充分利用海报纸空间,应如何选择海报纸的尺寸(AD和CD分别为多少时),可使用宣传栏总面积最大?并求出此时宣传栏的最大面积.【题型8 与其他知识交汇的最值问题】【例8】(2023上·安徽·高三校联考阶段练习)记△ABC的内角A,B,C的对边分别为a,b,c,满足c+bcos2A= 2acosAcosB(A≤B).(1)求A;(2)若角A的平分线交BC于D点,且AD=1,求△ABC面积的最小值.【变式8-1】(2023上·安徽铜陵·高二校联考期中)已知圆C的圆心在坐标原点,面积为9π.(1)求圆C的方程;(2)若直线l,l′都经过点(0,2),且l⊥l′,直线l交圆C于M,N两点,直线l′交圆C于P,Q两点,求四边形PMQN 面积的最大值.【变式8-2】(2023上·江苏盐城·高一校考阶段练习)已知在定义域内单调的函数f(x)满足f(f(x)+1−2x+1恒成立.ln x)=23(1)设f(x)+1−ln x=k,求实数k的值;2x+1(2)解不等式f(7+2x)>−2x+ln(−ex);2x+1(3)设g(x)=f(x)−ln x,若g(x)≥mg(2x)对于任意的x∈[1,2]恒成立,求实数m的取值范围.【变式8-3】(2023下·湖南长沙·高三长沙一中校考阶段练习)如图,在长方体ABCD−A1B1C1D1中,点P是长方形A1B1C1D1内一点,∠APC是二面角A−PD1−C的平面角.(1)证明:点P在A1C1上;(2)若AB=BC,求直线PA与平面PCD所成角的正弦的最大值.1.(2022·全国·统考高考真题)若x,y满足x2+y2−xy=1,则()A.x+y≤1B.x+y≥−2C.x2+y2≤2D.x2+y2≥12.(2020·山东·统考高考真题)已知a>0,b>0,且a+b=1,则()A.a2+b2≥12B.2a−b>12C.log2a+log2b≥−2D.√a+√b≤√23.(2020·全国·统考高考真题)设O为坐标原点,直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点,若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.324.(2021·天津·统考高考真题)若a>0,b>0,则1a +ab2+b的最小值为.5.(2020·天津·统考高考真题)已知a>0,b>0,且ab=1,则12a +12b+8a+b的最小值为.6.(2020·江苏·统考高考真题)已知5x2y2+y4=1(x,y∈R),则x2+y2的最小值是.7.(2019·天津·高考真题)设x>0,y>0,x+2y=5,则√xy的最小值为. 8.(2017·江苏·高考真题)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是.基本不等式求最值【题型1 直接法求最值】 (2)【题型2 配凑法求最值】 (3)【题型3 常数代换法求最值】 (4)【题型4 消元法求最值】 (6)【题型5 构造不等式法求最值】 (8)【题型6 多次使用基本不等式求最值】 (11)【题型7 实际应用中的最值问题】 (13)【题型8 与其他知识交汇的最值问题】 (17)基本不等式是高考热点问题,是常考常新的内容,是高中数学中一个重要的知识点.题型通常为选择题或填空题,但它的应用范围很广,涉及到函数、三角函数、平面向量、立体几何、解析几何、导数等内容,它在高考中常用于大小判断、求最值、求最值范围等.在高考中经常考察运用基本不等式求函数或代数式的最值,具有灵活多变、应用广泛、技巧性强等特点.在复习中切忌生搬硬套,在应用时一定要紧扣“一正二定三相等”这三个条件灵活运用.(1)直接法:条件和问题间存在基本不等式的关系,可直接利用基本不等式来求最值.(2)配凑法:利用配凑法求最值,主要是配凑成“和为常数”或“积为常数”的形式.(3)常数代换法:主要解决形如“已知x+y=t(t为常数),求的最值”的问题,先将转化为,再用基本不等式求最值.(4)消元法:当所求最值的代数式中的变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.(5)构造不等式法:构建目标式的不等式求最值,在既含有和式又含有积式的等式中,对和式或积式利用基本不等式,构造目标式的不等式求解.【知识点2 基本不等式的实际应用】1.基本不等式的实际应用的解题策略(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值.(2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数的最值时,若等号取不到,则可利用函数的单调性求解.【题型1 直接法求最值】【例1】(2023上·北京·高一校考阶段练习)已知a>0,则a+1a+1的最小值为()A.2B.3C.4D.5【解题思路】用基本不等式求解即可.【解答过程】因为a>0,所以a+1a +1≥2√a⋅1a+1=3,当且仅当a=1a即a=1时取等号;故选:B.【变式1-1】(2023·北京东城·统考一模)已知x>0,则x−4+4x的最小值为()A.-2B.0C.1D.2√2【解题思路】由基本不等式求得最小值.【解答过程】∵x>0,∴x+4x −4≥2√x×4x−4=0,当且仅当x=4x即x=2时等号成立.故选:B.【变式1-2】(2023上·山东·高一统考期中)函数y=x2−x+9x(x>0)的最小值为()A.1B.3C.5D.9【解题思路】利用均值不等式求最小值即可.【解答过程】y=x2−x+9x =x+9x−1≥2√x⋅9x−1=5,当且仅当x=9x,即x=3时等号成立,故选:C.【变式1-3】(2023下·江西·高三校联考阶段练习)(3+1x2)(1+4x2)的最小值为()A.9√3B.7+4√2C.8√3D.7+4√3【解题思路】依题意可得(3+1x2)(1+4x2)=7+1x2+12x2,再利用基本不等式计算可得.【解答过程】(3+1x2)(1+4x2)=7+1x2+12x2≥7+2√1x2⋅12x2=7+4√3,当且仅当1x2=12x2,即x4=112时,等号成立,故(3+1x2)(1+4x2)的最小值为7+4√3.故选:D.【题型2 配凑法求最值】【例2】(2023·浙江·校联考模拟预测)已知a>1,则a+16a−1的最小值为()A.8B.9C.10D.11【解题思路】运用基本不等式的性质进行求解即可.【解答过程】因为a>1,所以由a+16a−1=a−1+16a−1+1≥2√(a−1)⋅16a−1+1=9,当且仅当a−1=16a−1时取等号,即a=5时取等号,故选:B.【变式2-1】(2023上·吉林·高一校考阶段练习)已知x>3,则y=2x−3+2x的最小值是()A.6B.8C.10D.12【解题思路】利用基本不等式求和的最小值,注意取值条件.【解答过程】由x−3>0,则y=2x−3+2(x−3)+6≥2√2x−3⋅2(x−3)+6=10,当且仅当x=4时等号成立,故最小值为10.故选:C.【变式2-2】(2023上·海南省直辖县级单位·高三校联考阶段练习)设x>2,则函数y=4x−1+4x−2,的最小值为()A.7B.8C.14D.15【解题思路】利用基本不等式求解.【解答过程】因为x>2,所以x−2>0,所以y=4x−1+4x−2=4(x−2)+4x−2+7≥2√4(x−2)⋅4x−2+7=15,当且仅当4(x−2)=4x−2,即x=3时等号成立,所以函数y=4x−1+4x−2的最小值为15,故选:D.【变式2-3】(2023上·辽宁·高一校联考期中)若x>0,y>0且满足x+y=xy,则2xx−1+4yy−1的最小值为()A.6+2√6B.4+6√2C.2+4√6D.6+4√2【解题思路】结合条件等式,利用基本不等式求和的最小值.【解答过程】若x>0,y>0且满足x+y=xy,则有1x +1y=1,所以x>1,y>1,2x x−1+4yy−1=2(x−1)+2x−1+4(y−1)+4y−1=6+2x−1+4y−1≥6+2√2x−1⋅4y−1=6+2√8xy−(x+y)+1=6+4√2,当且仅当2x−1=4y−1,即x=1+√22,y=1+√2时等号成立.所以2xx−1+4yy−1的最小值为6+4√2.故选:D.【题型3 常数代换法求最值】【例3】(2023上·内蒙古通辽·高三校考阶段练习)已知a>0,b>0,若2a +3b=1,则2a+b3的最小值是()A.8B.9C.10D.11【解题思路】利用基本不等式“1”的应用即可求解.【解答过程】由题意得a>0,b>0,2a +3b=1,所以2a+b3=(2a+b3)(2a+3b)=4+1+2b3a+6ab≥5+2√2b3a×6ab=9,当且仅当2b3a =6ab时,即a=3,b=9,取等号,故B项正确.故选:B.【变式3-1】(2023·河南·校联考模拟预测)已知正实数a ,b ,点M (1,4)在直线x a+yb=1上,则a +b 的最小值为( )A .4B .6C .9D .12【解题思路】根据题意可得1a+4b=1,结合基本不等式运算求解. 【解答过程】由题意得1a +4b =1,且a >0,b >0, 故a +b =(a +b )⋅(1a +4b )=5+ba +4a b≥5+2√b a ×4a b=9,当且仅当ba =4a b,即a =3,b =6时,等号成立.故选:C.【变式3-2】(2023上·重庆·高一统考期末)若正实数x ,y 满足2x +8y −xy =0,则2x+y 的最大值为( )A .25B .16C .37D .19【解题思路】根据等式计算得出1,再结合常值代换求和的最值,计算可得最大值. 【解答过程】∵x >0,y >0,2x +8y −xy =0,∴2y +8x =1, x +y=(x +y )(2y +8x )=2x y+8+2+8y x≥2√2x y×8y x+10=18,∴2x+y ≤218=19. 故选:D.【变式3-3】(2023·重庆·统考一模)已知a ,b 为非负实数,且2a +b =1,则2a 2a+1+b 2+1b的最小值为( )A .1B .2C .3D .4【解题思路】首先根据题意求出0≤a <12,0<b ≤1,然后将原式变形得2a 2a+1+b 2+1b=2a+1+1b−1,最后利用1的妙用即可求出其最值.【解答过程】∵2a +b =1,且a ,b 为非负实数,b ≠0, 则a ≥0,b >0则b =1−2a >0,解得0≤a <12,2a =1−b ≥0,解得0<b ≤1,∴2a2a+1+b2+1b=2(a+1)2−4(a+1)+2a+1+b2+1b=2(a+1)−4+2a+1+b+1b=(2a+b−2)+2a+1+1b=2a+1+1b−12 a+1+1b=42a+2+1b=13[(2a+2)+b]⋅(42a+2+1b)=13(5+4b2a+2+2a+2b)≥13(5+2√4b2a+2⋅2a+2b)=3,当且仅当4b2a+2=2a+2b即2a+2=2b,2a+b=1时,即b=1,a=0时等号成立,故(2a+1+1b−1)min=2,故选:B.【题型4 消元法求最值】【例4】(2023上·江苏·高一校联考阶段练习)已知正数x,y满足3x−4=9y,则x+8y的最小值为12 .【解题思路】根据指数方程,得出x,y的关系式,运用消元法将所求式化成关于y的关系式,再利用基本不等式求解.【解答过程】由3x−4=9y,可得x−4=2y,即x=2y+4,代入x+8y中,可得2y+4+8y =2y+8y+4≥2√2y⋅8y+4=12,当且仅当y=2,x=8所以x+8y的最小值为12.故答案为:12.【变式4-1】(2023上·安徽池州·高一统考期中)已知x,y∈R+,若2x+y+xy=7,则x+2y的最小值为6√2−5.【解题思路】根据题意,化简得到x+2y=x2−3x+14x+1,设t=x+1,求得x2−3x+14x+1=t+18t−5,结合基本不等式,即可求解.【解答过程】由x,y∈R+,且2x+y+xy=7,可得y=7−2xx+1,则x+2y=x+2×7−2xx+1=x2−3x+14x+1,设t=x+1,可得x=t−1且t>1,可得x2−3x+14x+1=t2−5t+18t=t+18t−5≥2√t⋅18t−5=6√2−5,当且仅当t=18t时,即t=3√2时,等号成立,所以x+2y的最小值为6√2−5.故答案为:6√2−5.【变式4-2】(2023上·山东淄博·高一校考阶段练习)已知正实数a,b,且2a+b+6=ab,则a+2b的最小值为13 .【解题思路】根据基本不等式即可求解.【解答过程】由2a+b+6=ab可得a=b+6b−2>0,由于b>0,所以b>2,故a+2b=b+6b−2+2b=8b−2+2(b−2)+5,由于b>2,所以8b−2+2(b−2)≥2√16=8,当且仅当b=4时等号成立,故a+2b=8b−2+2(b−2)+5≥13,故a+2b的最小值为13,故答案为:13.【变式4-3】(2023·上海崇明·统考一模)已知正实数a, b, c, d满足a2−ab+1=0,c2+d2=1,则当(a−c)2+(b−d)2取得最小值时,ab=√22+1.【解题思路】将(a−c)2+(b−d)2转化为(a,b)与(c,d)两点间距离的平方,进而转化为(a,b)与圆心(0,0)的距离,结合基本不等式求得最小值,进而分析求解即可.【解答过程】可将(a−c)2+(b−d)2转化为(a,b)与(c,d)两点间距离的平方,由a2−ab+1=0,得b=a+1a,而c2+d2=1表示以(0,0)为圆心,1为半径的圆,(c,d)为圆上一点,则(a,b)与圆心(0,0)的距离为:√a2+b2=√a2+(a+1a )2=√2a2+1a2+2≥√2√2a2⋅1a2+2=√2√2+2,当且仅当2a2=1a2,即a=±√124时等号成立,此时(a,b)与圆心(0,0)的距离最小,即(a,b)与(c,d)两点间距离的平方最小,即(a −c)2+(b −d)2取得最小值. 当a =√124时,ab =a 2+1=√22+1,故答案为:√22+1.【题型5 构造不等式法求最值】【例5】(2023下·河南·高三校联考阶段练习)已知2a +b =ab(a >0,b >0),下列说法正确的是( )A .ab 的最大值为8B .1a−1+2b−2的最小值为2 C .a +b 有最小值3+√2 D .a 2−2a +b 2−4b 有最大值4【解题思路】根据基本不等式运用的三个条件“一正、二定、三相等”,可知ab ≥8,所以A 错误;将原式化成(a −1)(b −2)=2,即可得1a−1+2b−2=1a−1+(a −1)≥2,即B 正确;不等式变形可得2b+1a=1,利用基本不等式中“1”的妙用可知a +b ≥3+2√2,C 错误;将式子配方可得a 2−2a +b 2−4b =(a −1)2+(b −2)2−5,再利用基本不等式可得其有最小值−1,无最大值,D 错误. 【解答过程】对于A 选项,ab =2a +b ≥2√2ab ,即√ab ≥2√2,故ab ≥8, 当且仅当a =2,b =4时等号成立,故ab 的最小值为8,A 错误; 对于B 选项,原式化为(a −1)(b −2)=2,b =2a a−1>0,故a −1>0;a =b b−2>0,故b −2>0;所以1a−1+2b−2=1a−1+(a −1)≥2,当且仅当a =2,b =4时等号成立,B 正确;对于C 选项,原式化为2b +1a =1,故a +b =(a +b )(2b +1a )=2a b+1+2+ba ≥3+2√2,当且仅当a =√2+1,b =2+√2时等号成立,C 错误;对于D 选项,a 2−2a +b 2−4b =(a −1)2+(b −2)2−5≥2(a −1)(b −2)−5=−1, 当且仅当a =1+√2,b =2+√2时等号成立,故有最小值−1,D 错误. 故选:B.【变式5-1】(2022上·山东青岛·高一青岛二中校考期中)已知x>0,y>0,且x+y+xy−3=0;则下列结论正确的是()A.xy的最小值是1B.x+y的最小值是2C.x+4y的最小值是8D.x+2y的最大值是4√2−3【解题思路】利用基本不等式得x+y+xy−3≥(√xy+3)(√xy−1)、x+y+xy−3≤(x+y)24+(x+y)−3分别求xy、x+y的最值,注意取等条件;由题设有x=3−yy+1且0<y<3代入x+4y、x+2y,结合基本不等式求最值,注意取等条件.【解答过程】由x+y+xy−3≥xy+2√xy−3=(√xy+3)(√xy−1),当且仅当x=y=1时等号成立,即(√xy+3)(√xy−1)≤0,又x>0,y>0,故0<√xy≤1,仅当x=y=1时等号成立,所以0<xy≤1,故xy的最大值是1,A错误;由x+y+xy−3≤(x+y)24+(x+y)−3,当且仅当x=y=1时等号成立,所以(x+y)24+(x+y)−3≥0,即(x+y+6)(x+y−2)≥0,又x>0,y>0,则x+y≥2,仅当x=y=1时等号成立,故x+y的最小值是2,B正确;由x+y+xy−3=0,x>0,y>0,可得x=3−yy+1,且0<y<3,所以x+4y=3−yy+1+4y=4y2+3y+3y+1=4(y+1)2−5(y+1)+4y+1=4(y+1)+4y+1−5≥2√4(y+1)⋅4y+1−5=3,当且仅当y+1=1,即y=0、x时等号成立,故x+4y>3,C错误;同上,x+2y=3−yy+1+2y=2y2+y+3y+1=2(y+1)2−3(y+1)+4y+1=2(y+1)+4y+1−3≥2√2(y+1)⋅4y+1−3=4√2−3,当且仅当y+1=√2,即y=√2−1、x=2√2−1时等号成立,故x+2y≥4√2−3,D错误;故选:B.【变式5-2】(2023上·江苏·高一专题练习)下列说法正确的是()A.若x>2,则函数y=x+1x−1的最小值为3B.若x>0,y>0,3x +1y=5,则5x+4y的最小值为5C.若x>0,y>0,x+y+xy=3,则xy的最小值为1D.若x>1,y>0,x+y=2,则1x−1+2y的最小值为3+2√2【解题思路】选项A:将函数变形再利用基本不等式进行判断最值即可,选项B:由基本不等式进行判断即可,选项C:结合换元法与基本不等式求最值进行判断即可,选项D:对式子进行变形得到1+yx−1+2(x−1)y+2,再利用基本不等式进行判断即可.【解答过程】解:选项A:y=x+1x−1=x−1+1x−1+1⩾2√x−1·1x−1+1=3,当且仅当(x−1)2=1时可以取等号,但题设条件中x>2,故函数最小值取不到3,故A错误;选项B:若x>0,y>0,3x +1y=5,则5x+4y=15(3x+1y)(5x+4y)=15(19+5xy+12yx)⩾15(19+2√5xy·12yx)=19+4√155,当且仅当5xy=12yx时不等式可取等号,故B错误;选项C:3−xy=x+y⩾2√xy⇒xy+2√xy−3⩽0当且仅当x=y时取等号,令√xy=t(t⩾0),t2+2t−3⩽0,解得−3⩽t⩽1,即0<√xy⩽1,故xy的最大值为1,故C错误;选项D:x+y=2,(x−1)+y=1,1 x−1+2y=(1x−1+2y)·[(x−1)+y]=1+yx−1+2(x−1)y+2⩾3+2√yx−1·2(x−1)y=3+2√2,当且仅当y=√2x−√2时取等号,又因为x+y=2,故{x=√2y=2−√2时等号成立,即1x−1+2y最小值可取到3+2√2,故D正确.故选:D.【变式5-3】(2023上·广东中山·高三校考阶段练习)设正实数x,y满足x+2y=3,则下列说法错误的是()A.yx +3y的最小值为4B.xy的最大值为98C.√x+√2y的最大值为2D.x2+4y2的最小值为92【解题思路】根据基本不等式以及“1”的妙用判断各选项.【解答过程】对于A,yx +3y=yx+x+2yy=yx+xy+2≥2√yxxy+2=4,当且仅当x=y=1时取等号,故A正确;对于B,xy=12⋅x⋅2y≤12×(x+2y2)2=12×94=98,当且仅当x=2y,即x=32,y=34时取等号,故B正确;对于C,(√x+√2y)2=x+2y+2√2xy≤3+2√2×98=3+3=6,则√x+√2y≤√6,当且仅当x=2y,即x=32,y=34时,故C错误;对于D,x2+4y2=(x+2y)2−4xy≥9−4×98=92,当且仅当x=32,y=34时取等号,故D正确.故选:C.【题型6 多次使用基本不等式求最值】【例6】(2023·河南·校联考模拟预测)已知正实数a,b,满足a+b≥92a +2b,则a+b的最小值为()A.5B.52C.5√2D.5√22【解题思路】先根据基本不等式求出(92a +2b)(a+b)≥252.然后即可根据不等式的性质得出(a+b)2≥(9 2a +2b)(a+b)≥252,列出两个等号同时成立的条件,即可得出答案.【解答过程】由已知可得,a>0,b>0,a+b>0.因为(92a +2b)(a+b)=92+2+9b2a+2ab≥2√9b2a×2ab+132=6+132=252,当且仅当9b2a =2ab,即2a=3b时等号成立.所以,(a+b)2≥(92a +2b)(a+b)≥252,当且仅当{2a=3ba+b=92a+2b,即{a=3√22b=√2时,两个等号同时成立.所以,a+b≥3√22+√2=5√22.故选:D.【变式6-1】(2023·山东菏泽·统考一模)设实数x,y满足x+y=1,y>0,x≠0,则1|x|+2|x|y的最小值为()A.2√2−1B.2√2+1C.√2−1D.√2+1【解题思路】分为x>0与x<0,去掉绝对值后,根据“1”的代换,化简后分别根据基本不等式,即可求解得出答案.【解答过程】当x>0时,1|x|+2|x|y=x+yx+2xy=yx+2xy+1≥2√yx⋅2xy+1=2√2+1,当且仅当yx =2xy,即x=√2−1,y=2−√2时等号成立,此时有最小值2√2+1;当x<0时,1|x|+2|x|y=x+y−x+−2xy=y−x+−2xy−1≥2√y−x⋅−2xy−1=2√2−1.当且仅当y−x =−2xy,即x=−1−√2,y=2+√2时等号成立,此时有最小值2√2−1.所以,1|x|+2|x|y的最小值为2√2−1.故选:A.【变式6-2】(2023·河北衡水·衡水市第二中学校考模拟预测)已知实数x,y,z>0,满足xy+zx =2,则当4y+1z取得最小值时,y+z的值为()A.1B.32C.2D.52【解题思路】两次应用基本不等式,根据两次不等式等号成立的条件列方程求解即可.【解答过程】因为实数x,y,z>0,满足xy+zx=2,所以xy+zx =2≥2√xy×zx=2√yz⇒yz≤1,当且仅当z=yx2时,yz=1,所以4y +1z≥2√4y×1z=2√4yz≥2√41=4,当且仅当4y=1z且yz=1时,等号成立;所以当yz=1且4y =1z时,4y+1z取得最小值4,此时解得{y=2z=12⇒y+z=52,故选:D.【变式6-3】(2023上·辽宁大连·高一期末)若a>0,b>0,a+b=1,则a2+3aba+2b +2b+1−1b的最大值为()A.√2B.2−√2C.3−√2D.3−2√2【解题思路】由已知可得a2+3aba+2b +1b+1=3−2b−1b+1,进而有a2+3aba+2b+2b+1−1b=3−2b−1b,结合基本不等式求最大值,注意取值条件.【解答过程】由题设,a2+3aba+2b +1b+1=a(a+3b)+1b+1=a(2b+1)+1b+1,而a=1−b>0,b>0,所以a(2b+1)+1b+1=2+b−2b2b+1=1+1−2b2b+1=1+2(1−b2)−1b+1=3−2b−1b+1,所以a2+3aba+2b +2b+1−1b=3−2b−1b且0<b<1,又2b+1b ≥2√2b⋅1b=2√2,当且仅当b=√22时取等号,所以a2+3aba+2b +2b+1−1b≤3−2√2,当且仅当a=1−√22,b=√22时取等号,即目标式最大值为3−2√2.故选:D.【题型7 实际应用中的最值问题】【例7】(2023上·四川眉山·高一校联考期中)如图,高新区某居民小区要建一座八边形的休闲场所,它的主体造型平面图是由两个相同的矩形ABCD和EFGH构成的面积为400m2的十字形地域.计划在正方形MNPQ 上建一座花坛,造价为8400元/m2;在四个相同的矩形(图中阴影部分)上铺花岗岩地坪,造价为420元/m2;再在四个空角(图中四个三角形)上铺草坪,造价为160元/m2.设总造价为y(单位:元),AD长为x(单位:m).(1)用x表示AM的长度,并求x的取值范围;(2)当x为何值时,y最小?并求出这个最小值.【解题思路】(1)由题意可得矩形AMQD的面积,即可得出AM=400−x24x;(2)先表示出总造价y,再由基本不等式求解即可.【解答过程】(1)由题意可得,矩形AMQD的面积为S AMQD=400−x24,因此AM=400−x24x,∵AM>0,∴0<x<20.(2)y=8400x2+420×(400−x2)+160×4×12×(400−x24x)2=8000x2+3200000x2+152000,0<x<20,由基本不等式y ≥2√8000x 2×3200000x 2+152000=472000,当且仅当8000x 2=3200000x 2,即x =2√5时,等号成立,故当x =2√5时,总造价y 最小,最小值为472000元.【变式7-1】(2023上·山东·高一校联考期中)某校地势较低,一遇到雨水天气校园内会有大量积水,不但不方便师生出行,还存在严重安全问题.为此学校决定利用原水池改建一个深3米,底面面积16平方米的长方体蓄水池.不但能解决积水问题,同时还可以利用蓄水灌溉学校植被.改建及蓄水池盖儿固定费用800元,由招标公司承担.现对水池内部地面及四周墙面铺设公开招标.甲工程队给出的报价如下:四周墙面每平方米150元,地面每平方米400元.设泳池宽为x 米.(2≤x ≤6) (1)当宽为多少时,甲工程队报价最低,并求出最低报价. (2)现有乙工程队也要参与竞标,其给出的整体报价为900a (x+2)x元(a >0)(整体报价中含固定费用).若无论宽为多少米,乙工程队都能竞标成功,试求a 的取值范围.【解题思路】(1)根据题意,列出函数关系式,结合基本不等式代入计算,即可得到结果; (2)根据题意,列出不等式,分离参数,再结合基本不等式代入计算,即可得到结果. 【解答过程】(1)设甲工程队的总造价为y 元,则 y =150×2(x +16x)×3+400×16+800 =900(x +16x )+7200≥900×2√x ⋅16x+7200 =14400当且仅当x =16x时,即x =4时等号成立.即当宽为4m 时,甲工程队的报价最低,最低为14400元. (2)由题意可得900(x +16x)+7200>900a (x+2)x.对∀x ∈[2,6]恒成立.即a <x 2+8x+16x+12令y =x 2+8x+16x+2=(x +2)+4x+2+4∵2≤x ≤6,∴4≤x +2≤8. 令t =x +2,t ∈[4,8],则y=t+4t+4在[4,8]上单调递增.且t=4时,y min=9.∴0<a<9.即a的取值范围为(0,9).【变式7-2】(2023上·江苏苏州·高一校考阶段练习)因新冠疫情零星散发,某实验中学为了保障师生安全,同时考虑到节省费用,拟借助校门口一侧原有墙体建造一间高为4米、底面积为24平方米、背面靠墙体的长方体形状的隔离室.隔离室的正面需开一扇安全门,此门高为2米,且此门高为此门底的13.因此室的后背面靠墙,故无需建墙费用,但需粉饰.现学校面向社会公开招标,甲工程队给出的报价:正面为每平方米360元,左右两侧面为每平方米300元,已有墙体粉饰为每平方米100元,屋顶和地面以及安全门报价共计12000元.设隔离室的左右两侧面的底边长度均为x米(1≤x≤5).(1)记y为甲工程队整体报价,求y关于x的关系式;(2)现有乙工程队也要参与此隔离室建造的竞标,其给出的整体报价为4800t(x+1)x元,问是否存在实数t,使得无论左右两侧底边长为多少,乙工程队都能竞标成功(注:整体报价小者竞标成功),若存在,求出t满足的条件;若不存在,请说明理由.【解题思路】(1)根据题意分别计算正面和侧面以及其它各面的费用,相加,可得答案;(2)由题意可得不等关系240(184x +10x)−3120>4800t(x+1)x,对任意x∈[1,5]都成立,进而转化t<10x2−13x+18420(x+1)恒成立,采用换元法,结合基本不等式求得答案.【解答过程】(1)由题意,隔离室的左右两侧的长度均为x米(1≤x≤5),则底面长为24x米,正面费用为360(4×24x−2×6),故y=360(4×24x −2×6)+4×24x×100+2×300×4x+1200=240(184x+10x)−3120,1≤x≤5.(2)由题意知, 240(184x +10x)−3120>4800t(x+1)x,对任意x∈[1,5]都成立,即t<10x2−13x+18420(x+1)对任意x∈[1,5]恒成立,令k=x+1,则x=k−1,k∈[2,6],。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档