智能化制造的内涵和系统架构探究
智能制造系统的架构与实现技术研究
智能制造系统的架构与实现技术研究智能制造系统是一种利用智能化技术、先进的制造工艺、高度集成的信息技术和先进的自动化设备等多种手段来实现对制造过程的全面控制和优化的综合性制造系统。
在当前制造业快速发展的背景下,智能制造系统已经成为制造业向智能化制造方向转型的趋势之一。
那么,智能制造系统的架构和实现技术是什么呢?下面就让我们来一一探究。
一、智能制造系统架构的基本框架智能制造系统架构可以分为三个层次:感知层、控制层和应用层。
感知层:感知层是智能制造系统中最基础的层次。
它主要采用传感器等手段收集制造过程中的各种数据,如温度、压力、振动等,通过物联网等技术将数据传输到控制层,为后续的制造过程提供数据支持。
控制层:控制层是智能制造系统中较为重要的层次。
它接收感知层传来的数据,并进行分析和处理,形成一套稳定的控制策略,指导设备的自动化运行,确保制造过程的安全、高效和稳定。
应用层:应用层是智能制造系统中最高层次的层次。
它为制造过程提供上层应用支持,如ERP、MES等应用系统,以实现集成化的生产管理,从而提高制造过程的效率、质量和可靠性。
二、智能制造系统的实现技术智能制造系统的实现技术包括传感技术、智能控制技术、云计算和大数据技术、人工智能等多种手段的综合应用。
传感技术:传感技术是智能制造系统中最基础也是最重要的技术之一。
通过各种传感器,可以检测制造过程中各种数据,为后续控制和应用提供大量的有用信息。
智能控制技术:智能控制技术在智能制造系统中发挥着至关重要的作用。
通过对传感技术采集到的数据进行分析和处理,制定出一套智能化的控制策略,指导自动化设备的运行,从而为制造过程提供更高效、更稳定的支持。
云计算和大数据技术:云计算和大数据技术是现代智能制造系统不可或缺的技术手段。
这两种技术可以帮助制造企业更好地管理和分析制造过程中产生的海量数据,大幅度提高制造过程的效率和质量。
人工智能:人工智能技术是智能制造系统中的一项新兴技术,它采用机器学习、自然语言处理等技术手段,模拟人类的智能思考方式,从而在智能制造系统中实现更高水平的自主决策和运行。
智能制造的原理、系统架构与实践
智能制造以智能加工与装配为核心,同时覆盖面向智能加工与装配的设计、服务及管理等多个环节。
智能工厂中的全部活动可以从产品设计、生产制造及供应链三个维度来描述。
在这些维度中,如果所有活动均能在网络空间中得到充分的数据支持、过程优化与验证,同时在物理系统中能够实时地得以执行并与网络空间进行深度交互,这样的工厂可称为智能工厂。
1. 智能工厂的基本特征与传统的数字化工厂、自动化工厂相比,智能工厂具备以下几个突出特征。
(1)制造系统的集成化作为一个高端的智能制造系统,智能工厂表现出了鲜明的系统工程属性。
具有自循环特性的各技术环节与单元按照功能需求组成不同规模、不同层级的系统,系统内所有元素均是互相关联的。
在智能工厂中,制造系统的集成主要体现在两个方面,具体内容如图所示。
(2)决策过程的智能化传统的人机交互中,作为决策主体的人有支配“机器”的行为,而智能制造中的“机器”因拥有扩展人类智能的能力,使人与“机器”共同组成决策主体,在同一信息物理系统中实施交互。
信息的种类以及交流的方法更加丰富,从而使人机交互与融合达到前所未有的深度。
制造业自动化的本质是人类在设备加工动作执行之前,将制造指令、逻辑判断准则等预先转换为设备可识别的代码,并将其输入制造设备中。
此时,制造设备可根据代码自动执行制造动作,从而节省了此前在制造机械化过程中人类的劳动。
在这个过程中,人是决策过程的唯一主体,制造设备仅仅是根据输入的指令自动地执行制造过程,而并不具备如判断、思维等高级智能化的行为能力。
在智能工厂中,“机器”具有不同程度的感知、分析与决策能力,它们与人共同构成决策主体。
在“机器”的决策过程中,人向制造设备输入决策规则,“机器”基于这些规则与制造数据自动执行决策过程,这样可将由人为因素造成的决策失误降至最低。
与此同时,在决策过程中形成的知识可作为后续决策的原始依据,使决策知识库得到不断优化与拓展,进而不断提升智能制造系统的智能化水平。
智能制造系统的架构与实现
智能制造系统的架构与实现智能制造是指通过数字化、网络化和智能化手段,实现生产过程的自动化和智能化。
智能制造系统是实现智能制造的关键技术之一,它由多个子系统组成,包括生产计划系统、生产执行系统、物料管理系统等。
本文将介绍智能制造系统的架构和实现技术。
一、智能制造系统的架构智能制造系统可以分为以下三层:1. 应用层应用层是整个智能制造系统的顶层,负责与用户交互,提供包括生产计划、生产调度、生产执行等在内的各种生产管理功能。
在应用层中,用户可以通过图形界面来进行生产计划编制、生产任务下发、生产进度查询等操作。
2. 控制层控制层是将生产任务转化为实际加工操作的核心部分,主要包括生产设备控制、机器视觉、工艺控制等系统。
在控制层中,涉及到多种技术,如PLC编程、机器视觉算法、CAD/CAM技术等。
控制层的主要作用是从上游的应用层接收生产任务,然后将任务分解成可执行的指令,送到各个加工设备的控制系统中。
3. 感知层感知层是整个智能制造系统的底层,是通过各种传感器和测量设备获取实时生产数据的核心部分。
在感知层中,涉及到传感器选型、设备接口类型、数据传输协议等技术。
感知层采集到的各种生产数据,比如温度、湿度、工件尺寸等,会不断上传到控制层,用于实时的生产控制和过程优化。
二、智能制造系统的实现技术智能制造系统的实现离不开多种技术的支持,包括以下四个方面:1. 数据采集技术数据采集技术是实现智能制造的基础。
在感知层中使用了多种传感器和测量设备,通过这些设备可以采集到多种生产过程数据,比如温度、湿度、振动等。
数据采集技术需要针对实际生产场景进行定制化设计,比如压力传感器的选择、数据传输协议的设计等。
2. 数据处理技术为了实现对生产数据的分析和处理,需要使用多种数据处理技术,包括数据挖掘、机器学习、深度学习等技术。
数据处理技术的目标是将原始的生产数据转化为有用的信息,帮助企业优化生产过程、提高产品质量。
3. 自动化控制技术自动化控制技术是实现智能制造的另一个关键技术。
智能制造的基本概念和架构
智能制造的基本概念和架构
x
这篇文章主要介绍了智能制造的基本概念和架构。
智能制造是一种制造技术的抽象概念,它通过整合信息化技术、机器人技术、自动控制与传感技术来实现高效制造的核心环节。
它涵盖了整个制造过程,旨在提高制造安全性、可靠性和灵活性,并实现资源节约和绿色制造。
智能制造是以制造技术为基础,以现代信息技术为核心,以智能技术为支撑,以管理技术为结合,把信息技术和制造技术有机结合起来的新技术理念。
智能制造的架构可以分为三个主要的类别:一是智能制造系统、二是智能制造技术,三是智能制造服务。
智能制造系统是建立在计算机网络基础之上的一个复杂的系统,它以系统集成为基础,以智能优化和控制为目标,实现制造设备与网络、机械、电气、控制、计算机、传感器等元件交互,通过信息技术实现现代制造工艺与机器控制的实现。
智能制造技术是智能制造的基础,它包括模式识别、机器学习、智能控制、仿真、网络技术、多媒体技术、工业认知技术等。
智能制造服务是智能制造运行的一个核心,它以认知和指导作为支撑,以科学和成功的企业经验为指导,以实时的诊断、控制和决策为核心,以改进和创新的研究为结果。
从总体上来看,智能制造旨在利用有效的技术和技术方法,提升制造性能,缩短制造时间,提高产品质量,提升产品可靠性,并实现资源节约和绿色制造的目标。
智能制造系统架构与关键技术研究
智能制造系统架构与关键技术研究随着现代工业的迅速发展,以及人工智能和大数据技术的不断成熟,智能制造系统已经成为了制造业的重要发展方向。
智能制造系统能够实现生产流程的自动化和智能化,提高生产效率和质量,降低成本,为企业提供了极大的竞争优势。
本文将讨论智能制造系统的架构和一些关键技术的研究。
一、智能制造系统的架构智能制造系统是由若干个子系统组成的,这些子系统各司其职,共同协作完成生产任务。
智能制造系统的核心是工厂自动化系统(FAS),FAS既要满足生产的自动化要求,同时还需要具备智能化的能力,以便能够智能地协调各个子系统之间的交互,从而保证生产的高效性和质量性。
在智能制造系统中,通常还包括生产计划系统(APS)、物料和库存管理系统、质量控制系统、维修保养系统等,这些系统与FAS进行信息的交换和共享,共同实现生产过程的自动化和智能化。
另外,智能制造系统还需要将生产现场与企业的信息系统进行连接,以保证生产与管理的高效协同和决策支持。
二、智能制造系统的关键技术1. 机器人技术机器人技术是智能制造系统的核心技术之一,它能够实现生产流程的自动化和智能化。
在智能制造系统中,机器人可以执行各种操作,包括焊接、搬运、喷涂、装配等,提高生产效率和质量,减少人工操作的风险和疲劳。
目前,机器人技术正在不断发展,出现了许多能够实现自主决策和协作的新型机器人,例如协作机器人和自主移动机器人。
这些机器人能够更好地适应生产现场的复杂环境,并为智能制造系统提供更加高效的自动化解决方案。
2. 大数据技术在智能制造系统中,大数据技术可以帮助企业进行生产数据的收集和分析,以实现生产过程的优化和智能化。
通过大数据技术的支持,企业能够更加全面地了解生产过程中的各种参数和指标,从而做出更加明智的决策。
另外,大数据技术还可以为智能制造系统提供一些新的功能,例如智能预测、自动调整等,进一步提高生产效率和质量。
3. 传感器技术传感器技术是智能制造系统的一个重要组成部分,它可以实现对生产过程中各种参数的实时监测和感知。
智能制造系统的架构设计及应用研究
智能制造系统的架构设计及应用研究现代工业的发展大部分依赖于科技的推进,而智能制造技术是其中最为重要的组成部分之一。
智能制造系统是基于信息技术的制造模式,其核心是数据采集、分析、挖掘和应用,不仅能提高单个企业的生产效率,还可以整合各个领域的资源,促进全球制造业的协同发展。
然而,由于智能制造涉及到众多的技术和环节,因此需要进行系统化的架构设计和应用研究。
智能制造系统的架构设计智能制造系统的架构设计是指针对智能制造的机电一体化、信息化和智能化等方面进行系统化的规划和设计,以提高整个智能制造系统的效率和效益。
智能制造系统的架构设计主要包括以下几个方面:1. 数据采集和存储。
智能制造系统需要将现场生产的实时数据进行采集和存储,以便后续的数据挖掘和应用。
数据采集和存储系统需要考虑数据规模和频率、传输速度和可靠性等因素。
2. 数据处理和分析。
智能制造系统需要通过数据处理和分析,将采集到的海量数据转化为有用的信息,以便后续的决策和控制。
数据处理和分析系统需要考虑数据的准确性和及时性、数据的处理速度和效率等因素。
3. 控制和决策。
智能制造系统需要通过控制和决策系统,将分析得到的信息转化为指令,控制和调度生产流程,并提出生产优化的方案。
控制和决策系统需要考虑决策速度和准确性、控制精度和灵活性等因素。
4. 通讯和交互。
智能制造系统需要通过通讯和交互系统,实现各个环节之间的信息交流和协同,以便实现整个生产系统的一体化管理。
通讯和交互系统需要考虑通讯速度和稳定性、用户的界面和友好性等因素。
智能制造系统的应用研究智能制造系统的应用研究是指以智能制造系统为基础,针对具体的生产和工艺进行研究,设计出具有高效、可靠、环保和智能的生产工艺流程和设备。
智能制造系统的应用研究主要包括以下几个方面:1. 制造过程优化。
智能制造系统需要通过数据采集和分析,对制造过程进行优化和改进,提高生产效率、降低生产成本、提高产品质量。
2. 资源整合和效益提升。
智能制造中的人工智能总体架构与系统设计
智能制造中的人工智能总体架构与系统设计随着科技的不断发展,人工智能在各个领域的应用越来越广泛,其中智能制造是一个重要的应用领域。
智能制造通过将人工智能技术与制造业相结合,实现生产过程的智能化和自动化,提高生产效率和产品质量。
本文将探讨智能制造中的人工智能总体架构与系统设计。
一、智能制造中的人工智能总体架构智能制造中的人工智能总体架构包括数据采集与处理、智能决策与优化、智能控制与执行三个主要模块。
1. 数据采集与处理数据采集与处理是智能制造中的基础环节,通过传感器和物联网技术,实时获取生产过程中的各种数据,如温度、压力、湿度等。
这些数据经过预处理和清洗后,可以用于后续的数据分析和决策。
2. 智能决策与优化在智能制造中,通过人工智能技术对采集到的数据进行分析和挖掘,从而实现智能决策和优化。
例如,可以利用机器学习算法对生产过程中的数据进行建模和预测,提前发现潜在的问题并采取相应的措施。
同时,还可以通过优化算法对生产过程进行优化,提高生产效率和资源利用率。
3. 智能控制与执行智能控制与执行是智能制造中的关键环节,通过将人工智能技术与自动化控制相结合,实现生产过程的智能化和自动化。
例如,可以利用机器学习算法对生产设备进行故障预测和维护,提前发现设备故障并采取相应的措施,避免生产中断和损失。
二、智能制造中的系统设计智能制造中的系统设计需要考虑到不同环节之间的协同与集成,以及系统的可扩展性和灵活性。
1. 协同与集成在智能制造中,不同环节之间的协同与集成是实现智能化生产的关键。
例如,数据采集与处理模块需要与智能决策与优化模块进行数据交互,以实现实时的数据分析和决策。
同时,智能决策与优化模块还需要与智能控制与执行模块进行数据交互,以实现智能化的控制和执行。
2. 可扩展性与灵活性智能制造系统需要具备良好的可扩展性和灵活性,以适应不同规模和需求的生产。
例如,系统设计应考虑到不同生产设备的接入和集成,以及不同生产过程的变化和调整。
制造业智能制造系统的架构设计与实现
制造业智能制造系统的架构设计与实现智能制造系统是指通过计算机和自动化技术,将生产过程中的各个环节进行智能化集成,实现生产过程的高效、高质量和智能化管理。
在制造业智能化转型的背景下,设计和实现一个合理的智能制造系统架构至关重要。
本文将介绍制造业智能制造系统的架构设计与实现,并探讨该架构的重要性及优势。
1. 智能制造系统的架构设计智能制造系统的架构设计需要考虑多个因素,包括硬件设备、软件平台、通信网络等。
下面将从以下几个方面介绍智能制造系统的架构设计。
1.1 硬件设备智能制造系统的硬件设备包括生产设备、传感器、执行器等。
在架构设计中,需要考虑设备之间的连接方式与通信协议,以及设备的可升级性和兼容性。
此外,还需要考虑设备的运行稳定性和故障处理能力。
1.2 软件平台智能制造系统的软件平台主要包括生产管理系统、数据分析系统和控制系统等。
在架构设计中,需要考虑软件平台的可扩展性和灵活性,以及不同系统之间的数据交互和协同工作能力。
同时,还需要考虑软件平台的安全性和实时性要求。
1.3 通信网络智能制造系统的通信网络是各个设备和系统之间进行数据传输和通信的基础。
在架构设计中,需要考虑通信网络的带宽和稳定性,以及设备之间的连接方式和通信协议。
同时,还需要考虑网络安全和数据隐私保护的需求。
2. 智能制造系统的实现步骤智能制造系统的实现步骤包括需求分析、系统设计、系统开发和系统测试等。
下面将从以下几个方面介绍智能制造系统的实现步骤。
2.1 需求分析需求分析是智能制造系统实现的第一步,通过与企业的合作和交流,了解企业的生产流程和需求,明确系统的功能和性能要求。
同时,还需要考虑系统的可扩展性和升级性,以满足未来的发展需求。
2.2 系统设计系统设计是智能制造系统实现的关键步骤,根据需求分析的结果,设计系统的功能模块和组件,并确定各个模块之间的交互方式和数据流程。
同时,还需考虑系统的稳定性和安全性,以及用户友好的界面设计。
2.3 系统开发系统开发是将系统设计转化为实际可运行的软件和硬件的过程。
智能制造中的人工智能总体架构与系统设计
智能制造中的人工智能总体架构与系统设计在智能制造领域,人工智能(Artificial Intelligence, AI)的应用正变得愈发重要。
人工智能的总体架构与系统设计是实现智能制造的核心要素之一。
本文将分析智能制造中的人工智能总体架构,并探讨相关的系统设计。
一、智能制造中的人工智能总体架构在智能制造中,人工智能总体架构是设计和部署智能制造系统的基础。
一种常见的人工智能总体架构是深度学习(Deep Learning)架构,该架构包括数据采集、数据存储、数据预处理、模型训练和模型推理等关键环节。
1. 数据采集:智能制造系统需要收集各种类型的数据,包括生产数据、传感器数据、设备状态数据等。
数据采集可以通过传感器网络、物联网技术等手段实现。
2. 数据存储:采集到的数据需要进行存储和管理,以便后续的数据处理和分析。
传统的数据库系统或分布式存储系统可以用来存储大规模的数据。
3. 数据预处理:采集到的原始数据通常需要进行预处理,包括数据清洗、数据过滤、数据转换等操作。
数据预处理的目标是提取有效的数据特征,减少噪声对模型训练的影响。
4. 模型训练:在智能制造系统中,模型训练是一个关键的环节。
通过使用机器学习和深度学习算法,可以利用大规模的数据进行模型的训练和优化。
模型训练可以使用分布式计算环境加速处理速度。
5. 模型推理:在训练好的模型上,可以进行模型的推理和预测。
模型推理可以帮助智能制造系统实现实时的生产优化、质量控制等功能。
二、智能制造系统设计智能制造系统的设计是实现智能制造的关键一环。
设计一个高效可靠的智能制造系统需要考虑以下几个方面:1. 系统架构:智能制造系统的架构应该能够适应多样化的生产场景和数据要求。
合理的架构设计可以提高系统的可扩展性和灵活性。
2. 数据集成与共享:在智能制造系统中,不同的数据源和数据格式需要进行集成和共享。
通过使用统一的数据标准和数据接口,可以实现数据的高效交换与共享。
3. 实时响应与决策:智能制造系统需要能够实时响应各种生产变化,并做出相应的决策。
智能制造的内涵及其系统架构探究
一、智能制造的内涵一概念关于智能制造的研究大致经历了三个阶段:起始于20世纪80年代人工智能在制造领域中的应用;智能制造概念正式提出;发展于20世纪90年代智能制造技术、智能制造系统的提出 ; 成熟于21世纪以来新一代信息技术条件下的“智能制造Smart Manufacturing”..世纪80年代:概念的提出..1998年;美国赖特Paul Kenneth Wright 、伯恩David Alan Bourne正式出版了智能制造研究领域的首本专着制造智能Smart Manufacturing;就智能制造的内涵与前景进行了系统描述;将智能制造定义为“通过集成知识工程、制造软件系统、机器人视觉和机器人控制来对制造技工们的技能与专家知识进行建模;以使智能机器能够在没有人工干预的情况下进行小批量生产”..在此基础上;英国技术大学Williams教授对上述定义作了更为广泛的补充;认为“集成范围还应包括贯穿制造组织内部的智能决策支持系统”..麦格劳 - 希尔科技词典将智能制造界定为;采用自适应环境和工艺要求的生产技术;最大限度的减少监督和操作;制造物品的活动..——20世纪90年代:概念的发展..20世纪90年代;在智能制造概念提出不久后;智能制造的研究获得欧、美、日等工业化发达国家的普遍重视;围绕智能制造技术IMT与智能制造系统IMS开展国际合作研究..1991年;日、美、欧共同发起实施的“智能制造国际合作研究计划”中提出:“智能制造系统是一种在整个制造过程中贯穿智能活动;并将这种智能活动与智能机器有机融合;将整个制造过程从订货、产品设计、生产到市场销售等各个环节以柔性方式集成起来的能发挥最大生产力的先进生产系统”..——21世纪以来:概念的深化..21世纪以来;随着物联网、大数据、云计算等新一代信息技术的快速发展及应用;智能制造被赋予了新的内涵;即新一代信息技术条件下的智能制造Smart Manufacturing..2010年9月;美国在华盛顿举办的“21世纪智能制造的研讨会”指出;智能制造是对先进智能系统的强化应用;使得新产品的迅速制造;产品需求的动态响应以及对工业生产和供应链网络的实时优化成为可能..德国正式推出工业4.0战略;虽没明确提出智能制造概念;但包含了智能制造的内涵;即将企业的机器、存储系统和生产设施融入到虚拟网络—实体物理系统CPS..在制造系统中;这些虚拟网络—实体物理系统包括智能机器、存储系统和生产设施;能够相互独立地自动交换信息、触发动作和控制..综上所述;智能制造是将物联网、大数据、云计算等新一代信息技术与先进自动化技术、传感技术、控制技术、数字制造技术结合;实现工厂和企业内部、企业之间和产品全生命周期的实时管理和优化的新型制造系统..二特征智能制造的特征在于实时感知、优化决策、动态执行等三个方面:一是数据的实时感知..智能制造需要大量的数据支持;通过利用高效、标准的方法实时进行信息采集、自动识别;并将信息传输到分析决策系统;二是优化决策..通过面向产品全生命周期的海量异构信息的挖掘提炼、计算分析、推理预测;形成优化制造过程的决策指令..三是动态执行..根据决策指令;通过执行系统控制制造过程的状态;实现稳定、安全的运行和动态调整..三构成1、智能产品装备智能产品是发展智能制造的基础与前提;由物理部件、智能部件和联接部件构成..智能部件由传感器、微处理器、数据存储装置、控制装置和软件以及内置操作和用户界面等构成;联接部件由接口、有线或无线联接协议等构成;物理部件由机械和电子零件构成..智能部件能加强物理部件的功能和价值;而联接部件进一步强化智能部件的功能和价值;使信息可以在产品、运行系统、制造商和用户之间联通;并让部分价值和功能脱离物理产品本身存在..智能产品具有监测、控制、优化和自主等四个方面的功能..监测是指通过传感器和外部数据源;智能产品能对产品的状态、运行和外部环境进行全面监测;在数据的帮助下;一旦环境和运行状态发生变化;产品就会向用户或相关方发出警告..控制是指可以通过产品内置或产品云中的命令和算法进行远程控制..算法可以让产品对条件和环境的特定变化做出反应;优化是指对实时数据或历史记录进行分析;植入算法;从而大幅提高产品的产出比、利用率和生产效率;自主是指将检测;控制和优化功能融合到一起;产品就能实现前所未有的自动化程度..2、智能生产智能生产是指以智能制造系统为核心;以智能工厂为载体;通过在工厂和企业内部、企业之间以及产品全生命周期形成以数据互联互通为特征的制造网络;实现生产过程的实时管理和优化..智能生产涵盖产品、工艺设计、工厂规划的数字设计与仿真;底层智能装备、制造单元、自动化生产线;制造执行系统;物流自动化与管理等企业管理系统等..3、智能服务通过采集设备运行数据;并上传至企业数据中心企业云;系统软件对设备实时在线监测、控制;并经过数据分析提早进行设备维护..例如维斯塔斯通过在风机的机舱、轮毂、叶片、塔筒及地面控制箱内;安装传感器、存储器、处理器以及SCADA系统;实现对风机运行的实时监控..还通过在风力发电涡轮中内置微型控制器;可以在每一次旋转中控制扇叶的角度;从而最大限度捕捉风能;还可以控制每一台涡轮;在能效最大化的同时;减少对邻近涡轮的影响..维斯塔斯通过对实时数据进行处理预测风机部件可能产生的故障;以减少可能的风机不稳定现象;并使用不同的工具优化这些数据;达到风机性能的最优化..四作用发展智能制造的核心是提高企业生产效率;拓展企业价值增值空间;主要表现在以下几个方面:一是缩短产品的研制周期..通过智能制造;产品从研发到上市、从下订单到配送时间可以得以缩短..通过远程监控和预测性维护为机器和工厂减少高昂的停机时间;生产中断时间也得以不断减少..二是提高生产的灵活性..通过采用数字化、互联和虚拟工艺规划;智能制造开启了大规模批量定制生产乃至个性化小批量生产的大门..三是创造新价值..通过发展智能制造;企业将实现从传统的“以产品为中心”向“以集成服务为中心”转变;将重心放在解决方案和系统层面上;利用服务在整个产品生命周期中实现新价值..二、国外智能制造系统架构自美国20世纪80年代提出智能制造的概念后;一直受到众多国家的重视和关注;纷纷将智能制造列为国家级计划并着力发展..目前;在全球范围内具有广泛影响的是德国“工业4.0”战略和美国工业互联网战略..一德国2013年4月;德国在汉诺威工业博览会上正式推出了“工业4.0”战略;其核心是通过信息物理系统CPS实现人、设备与产品的实时连通、相互识别和有效交流;构建一个高度灵活的个性化和数字化的智能制造模式..在这种模式下;生产由集中向分散转变;规模效应不再是工业生产的关键因素;产品由趋同向个性的转变;未来产品都将完全按照个人意愿进行生产;极端情况下将成为自动化、个性化的单件制造;用户由部分参与向全程参与转变;用户不仅出现在生产流程的两端;而且广泛、实时参与生产和价值创造的全过程..德国工业4.0战略提出了三个方面的特征:一是价值网络的横向集成;即通过应用CPS;加强企业之间在研究、开发与应用的协同推进;以及在可持续发展、商业保密、标准化、员工培训等方面的合作;二是全价值链的纵向集成;即在企业内部通过采用CPS;实现从产品设计、研发、计划、工艺到生产、服务的全价值链的数字化;三是端对端系统工程;即在工厂生产层面;通过应用CPS;根据个性化需求定制特殊的IT结构模块;确保传感器、控制器采集的数据与ERP管理系统进行有机集成;打造智能工厂..2013年12月;德国电气电子和信息技术协会发表了德国“工业4.0”标准化路线图;其目标是制定出一套单一的共同标准;形成一个标准化的、具有开放性特点的标准参考体系;最终达到通过价值网络实现不同公司间的网络连接和集成..德国“工业4.0”提出的标准参考体系是一个通用模型;适用于所有合作伙伴公司的产品和服务;提供了“工业4.0”相关的技术系统的构建、开发、集成和运行的框架;意图是将不同业务模型的企业采用的不同作业方法统一为共同的作业方法..二美国1、工业互联网“工业互联网”的概念最早由通用电气于2012年提出;与工业4.0的基本理念相似;倡导将人、数据和机器连接起来;形成开放而全球化的工业网络;其内涵已经超越制造过程以及制造业本身;跨越产品生命周期的整个价值链..工业互联网和“工业4.0”相比;更加注重软件、网络和大数据;目标是促进物理系统和数字系统的融合;实现通信、控制和计算的融合;营造一个信息物理系统的环境..工业互联网系统由智能设备、智能系统和智能决策三大核心要素构成;数据流、硬件、软件和智能的交互..由智能设备和网络收集的数据存储之后;利用大数据分析工具进行数据分析和可视化;由此产生的“智能信息”可以由决策者必要时进行实时判断处理;成为大范围工业系统中工业资产优化战略决策过程的一部分..——智能设备:将信息技术嵌入装备中;使装备成为可智能互联产品..为工业机器提供数字化仪表是工业互联网革命的第一步;使机器和机器交互更加智能化;这得益于以下三个要素:一是部署成本:仪器仪表的成本已大幅下降;从而有可能以一个比过去更经济的方式装备和监测工业机器..二是微处理器芯片的计算能力:微处理器芯片持续发展已经达到了一个转折点;即使得机器拥有数字智能成为可能..三是高级分析:“大数据”软件工具和分析技术的进展为了解由智能设备产生的大规模数据提供了手段..——智能系统:将设备互联形成的一个系统..智能系统包括各种传统的网络系统;但广义的定义包括了部署在机组和网络中并广泛结合的机器仪表和软件..随着越来越多的机器和设备加入工业互联网;可以实现跨越整个机组和网络的机器仪表的协同效应..智能系统的构建整合了广泛部署智能设备的优点..当越来越多的机器连接在一个系统中;久而久之;结果将是系统不断扩大并能自主学习;而且越来越智能化..——智能决策:大数据和互联网基础上实时判断处理..当从智能设备和系统收集到了足够的信息来促进数据驱动型学习的时候;智能决策就发生了;从而使一个小机组网络层的操作功能从运营商传输到数字安全系统..2014年3月;美国通用电气、IBM、思科、英特尔和AT&T五家行业龙头企业联手组建了工业互联网联盟IIC;其目的是通过制定通用标准;打破技术壁垒;使各个厂商设备之间可以实现数据共享;利用互联网激活传统工业过程;更好地促进物理世界和数字世界的融合..工业互联网联盟已经已经开始起草工业互联网通用参考架构;该参考架构将定义工业物联网的功能区域、技术以及标准;用于指导相关标准的制定;帮助硬件和软件开发商创建与物联网完全兼容的产品;最终目的是实现传感器、网络、计算机、云计算系统、大型企业、车辆和数以百计其他类型的实体得以全面整合;推动整个工业产业链的效率全面提升..2、智能制造2011年6月24日美国智能制造领导联盟Smart Manufacturing Leadership Coalition;SMLC发表了实施21世纪智能制造报告..报告认为智能制造是先进智能系统强化应用、新产品制造快速、产品需求动态响应、以及工业生产和供应链网络实时优化的制造..智能制造的核心技术是网络化传感器、数据互操作性、多尺度动态建模与仿真、智能自动化、以及可扩展的多层次的网络安全..该报告给出了智能制造企业框架..智能制造企业将融合所有方面的制造;从工厂运营到供应链;并且使得对固定资产、过程和资源的虚拟追踪横跨整个产品的生命周期..最终结果;将是在一个柔性的、敏捷的、创新的制造环境中;优化性能和效率;并且使业务与制造过程有效串联在一起..图1 美国智能制造企业框架三、对我国智能制造系统架构的设想借鉴德国、美国智能制造的发展经验;我国的智能制造系统架构;应该是一个通用的制造体系模型;其作用是为智能制造的技术系统提供构建、开发、集成和运行的框架;其目标是指导以产品全生命周期管理形成价值链主线的企业;实现研发、生产、服务的智能化;通过企业间的互联和集成建立智能化的制造业价值网络;形成具有高度灵活性和持续演进优化特征的智能制造体系..一基本架构智能制造系统是供应链中的各个企业通过由网络和云应用为基础构建的制造网络实现相互链接所构成的..企业智能制造系统的构成是由企业计算与数据中心、企业管控与支撑系统、为实现产品全生命周期管理集成的各类工具共同构成;智能制造系统具有可持续优化的特征..智能制造系统可分为五层;第一层是生产基础自动化系统;第二层是生产执行系统;第三层是产品全生命周期管理系统;第四层是企业管控与支撑系统;第五层是企业计算与数据中心私有云..图2 智能制造系统架构二具体构成1、生产基础自动化系统层主要包括生产现场设备及其控制系统..其中生产现场设备主要包括传感器、智能仪表、PLC、机器人、机床、检测设备、物流设备等..控制系统主要包括适用于流程制造的过程控制系统;适用于离散制造的单元控制系统和适用于运动控制的数据采集与监控系统..2、制造执行系统层制造执行系统包括不同的子系统功能模块计算机软件模块;典型的子系统有制造数据管理系统、计划排程管理系统、生产调度管理系统、库存管理系统、质量管理系统、人力资源管理系统、设备管理系统、工具工装管理系统、采购管理系统、成本管理系统、项目看板管理系统、生产过程控制系统、底层数据集成分析系统、上层数据集成分解系统等..3、产品全生命周期管理系统层产品全生命周期管理系统层;横向上可以主要分为研发设计、生产和服务三个环节..研发设计环节功能主要包括产品设计、工艺仿真、生产仿真;仿真和现场应用能够对产品设计进行反馈;促进设计提升;在研发设计环节产生的数字化产品原型是生产环节的输入要素之一..生产环节涵盖了上述的生产基础自动化系统层和制造执行系统层包括的内容..服务环节通过网络实现的功能主要有实时监测、远程诊断和远程维护;应用大数据对监测数据进行分析;形成和服务有关的决策;指导诊断和维护工作;新的服务记录将被采集到数据系统..4、企业管控与支撑系统层企业管控与支撑系统包括不同的子系统功能模块;典型的子系统有:战略管理、投资管理、财务管理、人力资源管理、资产管理、物资管理、销售管理、健康安全与环保管理等..5、企业计算与数据中心层主要包括网络、数据中心设备、数据存储和管理系统、应用软件;为企业实现智能制造提供计算资源、数据服务以及具体的应用功能;能够提供可视化的应用界面..如为识别用户需求建设的面向用户的电子商务平台、为建立产品研发设计平台、制造执行系统运行平台、服务平台等都需要以企业计算与数据中心为基础;可以实现各类型的应用软件实现交互和有序工作;各子系统实现全系统信息共享..。
智能制造系统架构分析
智能制造系统架构分析一、智能制造系统架构智能制造系统架构通过生命周期、系统层级和智能功能三个维度构建完成,主要解决智能制造标准体系结构和框架的建模研究。
1、生命周期生命周期是由设计、生产、物流、销售、服务等一系列相互联系的价值创造活动组成的链式集合。
生命周期中各项活动相互关联、相互影响。
不同行业的生命周期构成不尽相同。
2、系统层级系统层级自下而上共五层,分别为设备层、控制层、车间层、企业层和协同层。
智能制造的系统层级体现了装备的智能化和互联网协议(IP)化,以及网络的扁平化趋势。
(1)设备层级包括传感器、仪器仪表、条码、射频识别、机器、机械和装置等,是企业进行生产活动的物质技术基础;(2)控制层级包括可编程逻辑控制器(PLC)、数据采集与监视控制系统(SCADA)、分布式控制系统(DCS)和现场总线控制系统(FCS)等;(3)车间层级实现面向工厂/车间的生产管理,包括制造执行系统(MES)等;(4)企业层级实现面向企业的经营管理,包括企业资源计划系统(ERP)、产品生命周期管理(PLM)、供应链管理系统(SCM)和客户关系管理系统(CRM)等;(5)协同层级由产业链上不同企业通过互联网络共享信息实现协同研发、智能生产、精准物流和智能服务等。
3、智能功能智能功能包括资源要素、系统集成、互联互通、信息融合和新兴业态等五层。
(1)资源要素包括设计施工图纸、产品工艺文件、原材料、制造设备、生产车间和工厂等物理实体,也包括电力、燃气等能源。
此外,人员也可视为资源的一个组成部分。
(2)系统集成是指通过二维码、射频识别、软件等信息技术集成原材料、零部件、能源、设备等各种制造资源。
由小到大实现从智能装备到智能生产单元、智能生产线、数字化车间、智能工厂,乃至智能制造系统的集成。
(3)互联互通是指通过有线、无线等通信技术,实现机器之间、机器与控制系统之间、企业之间的互联互通。
(4)信息融合是指在系统集成和通信的基础上,利用云计算、大数据等新一代信息技术,在保障信息安全的前提下,实现信息协同共享。
智能制造架构及其技术研究
智能制造架构及其技术研究一、前言随着科技的不断发展,智能制造逐渐成为新的制造业发展方向。
智能制造是指利用信息技术、自动化技术和现代管理思想等手段,实现制造过程的智能化、自动化和柔性化,从而提高制造效率、降低成本、提高产品质量和增强市场竞争力的一种新型制造理念。
为了实现智能制造,需要一个完整的智能制造架构,并且需要借助先进的技术来支撑它的实现。
二、智能制造架构智能制造架构是智能制造所要依托的基础设施,是实现智能制造的关键。
智能制造架构一般分为四层:物理层、设备层、控制层和应用层。
1、物理层物理层是指整个智能制造过程中所有物理设备和流程,包括工厂、机器、设备、传感器等。
物理层是实现智能制造必须存在的基础。
2、设备层设备层是指物理层中各种设备之间的通信和数据交换平台。
设备层是实现智能制造的核心,它可以将生产线上的各个设备通过网络技术进行互联互通,实现数据的共享和交流。
3、控制层控制层是指智能制造过程中的控制系统,包括PLC、DCS等实时控制系统。
控制层在制造过程中实现自动检测、故障诊断和自适应控制等功能,使得制造过程更加智能化和高效化。
4、应用层应用层是智能制造的最上层,也是用户接口。
应用层主要负责整合各个控制层,将数据进行加工分析,并将分析结果反馈到制造过程中,以便为用户提供更智能化的服务。
三、智能制造技术实现智能制造离不开高端技术的支撑,下面列出了几种比较常见的技术。
1、智能传感技术传感器和智能传感器技术是实现智能制造的基础。
智能传感器可以获取生产过程中各种关键参数,比如物流、能源消耗、设备运行状态等数据,这些数据可以进一步用于制造过程优化和决策。
2、云计算技术云计算技术可用于处理制造中大量的数据和信息。
将传感器得到的数据上传到云端进行处理和存储,可以更加方便地进行数据分析和决策。
3、自适应制造技术自适应制造技术是指根据制造过程的状态和所需的产量等因素自动调整生产环境和生产参数的技术。
自适应制造技术可以使得制造过程更加灵活和高效。
智能制造体系架构探究
智能制造体系架构探究摘要:在我国建设“工业4.0”的大背景下,新一次的工业革命正如火如荼的展开。
智能制造作为新一代制造模式的典型代表,自20世纪80年代第一次提出,就收到了学术界和工业企业的广泛重视。
但是现阶段工业界并没有建立起非常成功的智能制造体系,主要原因是对于智能制造内部原理的研究并不透彻,同时对于智能制造的发展趋势把握不准。
本文立足于智能制造体系的本质,通过对现阶段国内外智能制造体系架构的研究,提出了未来一段时间内该体系发展的趋势。
关键字:智能制造体系;整体架构;功能特征;柔性化1 前言智能制造是最新的制造模式之一,具有广阔的发展前景,智能制造从本质上说是一个智能化的信息处理系统,对外操控机器人的动作,完成产品的制造和加工。
该系统属于一种开放性的体系,原料、信息和能量都是开放的。
智能制造是新世纪制造业振兴的发展方向,是我国实现制造业跨越的必经之路。
2 智能制造系统研究现状2.1 智能制造系统内涵分析智能制造体系是上世纪八十年代有先进的工业化国家率先提出的,主要包含只能制造技术和智能制造系统两部分。
总体来看,智能制造体系指的是应用集成工程的思想,通过制造软件专家系统、机器人视觉和控制等先进技术,最终达到智能装配生产线上的机器人能够在人工不进行干预的情况下完场生产任务。
智能制造的目的是人的脑力活动转化为制造机器人的智能化思维。
智能化制造体系的物理基础是智能化机器人,所必需的设备包括智能加工机床、工具和设备的智能化输送平台以及装配设备等。
2.2 智能制造体系国内外研究现状智能制造在上世纪八十年代提出之后,在国际范围内形成了三个主要的研究中心,分别是美国、欧洲和日本。
最初的内涵指的是智能机床,智能机床能够完场熟练机械师操作普通机床完成的所有功能,具有一定的智能性。
后来的智能制造概念得到发展和延伸,进而形成了一种开放性的操作系统,日本于1990年完成了世界范围内第一个智能制造工厂,融合了人工智能技术的机器人同时具备视觉的触觉功能。
基于智能制造的系统架构设计研究
基于智能制造的系统架构设计研究智能制造是当前工业制造业的重要趋势之一,大量的企业和研究机构都在探索和研究智能制造的理论和实践。
其中,智能制造的系统架构设计是智能制造技术实现的重要基础。
本文将会探讨基于智能制造的系统架构设计研究。
一、智能制造系统架构设计的定义智能制造系统架构设计是指为了实现智能制造而设计的系统架构模型,它是智能制造技术实现的基础。
智能制造系统的功能需要通过系统架构设计进行划分,将不同的功能划分为不同的模块,并在不同模块之间构建适当的接口,实现各个功能模块间的数据流和控制流传递,从而实现整个智能制造系统的协同集成。
二、智能制造系统架构设计的原则1. 模块化:智能制造系统架构应该采用模块化的设计原则,分解成多个互相独立的子系统,便于系统的部署和维护。
2. 统一:智能制造系统架构应该采用统一的数据标准和接口标准,以确保不同的组成部分之间的协同工作。
3. 灵活性:智能制造系统架构应该具有灵活性和可扩展性,以便将来添加或调整系统的功能。
4. 安全:智能制造系统架构应该考虑系统安全问题,确保其在不同的级别的网络中的安全工作。
5. 自适应:智能制造系统架构应该具有自适应性,以克服不断变化的生产环境和生产需求,满足多样化的用户需求。
三、智能制造系统架构设计的实现1. 底层支撑模块底层支撑模块是智能制造系统的基础部分,包括信息化平台、网络通信、数据库等内容。
这些组成部分是智能制造系统解决方案的基石。
2. 数据采集模块数据采集模块包括现场设备和传感器的数据采集,通过现场采集的数据进行处理和分析,从而推出优化方案。
3. 数据处理模块数据处理模块是智能制造系统的核心部分,包括模型设计、算法优化、数据分析等内容。
这些模块是因素分析、生产优化和质量控制的基础。
4. 控制指导模块控制指导模块是智能制造系统的主要功能之一,是智能制造系统为客户自动完成工作制定计划、智能指导操作流程、协调资源配给、 re 优化的基础。
智能制造的内涵及其系统架构探究
一、智能制造的内涵(一)概念关于智能制造的研究大致经历了三个阶段:起始于20世纪80年代人工智能在制造领域中的应用,智能制造概念正式提出,发展于20世纪90年代智能制造技术、智能制造系统的提出,成熟于21世纪以来新一代信息技术条件下的“智能制造(Smart Manufacturing)”。
世纪80年代:概念的提出。
1998年,美国赖特(Paul Kenneth Wright )、伯恩(David Alan Bourne)正式出版了智能制造研究领域的首本专著《制造智能》(Smart Manufacturing),就智能制造的内涵与前景进行了系统描述,将智能制造定义为“通过集成知识工程、制造软件系统、机器人视觉和机器人控制来对制造技工们的技能与专家知识进行建模,以使智能机器能够在没有人工干预的情况下进行小批量生产”。
在此基础上,英国技术大学Williams教授对上述定义作了更为广泛的补充,认为“集成范围还应包括贯穿制造组织内部的智能决策支持系统”。
麦格劳 - 希尔科技词典将智能制造界定为,采用自适应环境和工艺要求的生产技术,最大限度的减少监督和操作,制造物品的活动。
——20世纪90年代:概念的发展。
20世纪90年代,在智能制造概念提出不久后,智能制造的研究获得欧、美、日等工业化发达国家的普遍重视,围绕智能制造技术(IMT)与智能制造系统(IMS)开展国际合作研究。
1991年,日、美、欧共同发起实施的“智能制造国际合作研究计划”中提出:“智能制造系统是一种在整个制造过程中贯穿智能活动,并将这种智能活动与智能机器有机融合,将整个制造过程从订货、产品设计、生产到市场销售等各个环节以柔性方式集成起来的能发挥最大生产力的先进生产系统”。
——21世纪以来:概念的深化。
21世纪以来,随着物联网、大数据、云计算等新一代信息技术的快速发展及应用,智能制造被赋予了新的内涵,即新一代信息技术条件下的智能制造(Smart Manufacturing)。
智能制造系统的架构设计和实现
智能制造系统的架构设计和实现随着工业技术的不断发展和升级,智能制造技术逐渐受到人们的重视和关注。
智能制造系统是以人工智能为核心的高科技生产方式。
它带来了更高效率、更低成本、更高质量和更强可靠性的工业生产方式。
然而,智能制造系统的设计和实现并非容易的工作,需要考虑多个方面的因素,包括技术、硬件和软件方面的内容。
本文将着重探讨智能制造系统的架构设计和实现。
一、智能制造系统的构成智能制造系统是由多个基础模块组合而成的。
这些模块由软件和硬件组成,具有不同的功能和目的。
1. 控制层智能制造系统的控制层是系统的最基础的模块,具有指导生产和记录数据的作用。
它通过传感器测量生产过程中的数据,然后通过控制系统对这些数据进行处理分析,得到结论。
其中,控制系统也需要多个层次的架构,包括 PLC、PC、SCADA 和 DCS 等。
2. 原始信息层原始信息层充当数据采集和处理的过渡层。
它由传感器和其他数据采集设备组成,它们负责监视实际生产过程的数据,并将这些数据传输到控制系统进行处理。
3. 业务逻辑层智能制造系统的业务逻辑层是控制层和数据存储层之间的重要连接点。
它负责管理控制系统以及制造过程中所涉及到的业务逻辑。
例如,它可以通过PLC控制系统来实现多路配送操作、增强生产效率等。
4. 数据存储层数据存储层是智能制造系统中的最后一层。
它负责存储所有由上述各层生成的数据,包括仪表读数、控制指令、报告、生产计划等。
这些数据可以用于后期的数据分析,以制定更好的生产计划和优化生产过程。
以上四个层次是智能制造系统构成的基础。
系统还需要考虑生产线的配置、自动化程度、3D 视觉检测设备以及其他硬件设备等因素。
二、智能制造系统的架构设计在进行智能制造系统架构设计时,需要考虑其可用性、可靠性、可扩展性和性能之间的平衡。
以下是一些架构设计的最佳实践:1. 面向服务的架构(SOA)传统的基于网络的应用程序可能采用分层架构或者集成架构来实现不同层之间的数据交互。
智能制造中的人工智能总体架构与系统设计
智能制造中的人工智能总体架构与系统设计智能制造是指将人工智能技术应用于制造业中,提升生产效率、产品质量和企业竞争力的一种现代化生产方式。
人工智能作为智能制造的核心技术之一,对于实现高效智能的生产过程和智能化的产品具有重要意义。
本文将探讨智能制造中的人工智能总体架构与系统设计。
一、智能制造中的人工智能总体架构智能制造中的人工智能总体架构由数据采集与预处理、智能决策与优化以及执行与控制三个层次构成。
1. 数据采集与预处理层数据采集与预处理层负责采集生产过程中的各种数据,并对数据进行预处理与清洗,以提高数据的质量和可用性。
该层通常包括传感器、设备接口和数据采集系统等组成,通过实时监测和采集设备数据,形成智能制造系统中的数据池。
采集到的数据将作为后续智能决策与优化的依据。
2. 智能决策与优化层智能决策与优化层是整个智能制造系统中人工智能的核心部分,主要通过数据分析、模型建立、决策推理等技术,对采集到的数据进行处理和分析,实现对生产过程的智能决策和优化。
该层的任务是基于历史数据和实时数据,运用机器学习、深度学习等人工智能技术,建立数据模型,并通过模型的训练和优化,实现对生产过程的智能调控和优化。
3. 执行与控制层执行与控制层负责将智能决策与优化层的结果转化为具体的生产控制指令,对生产过程进行控制与执行。
该层通常包括工控设备、机器人、自动化控制系统等,通过与生产设备的集成,实现对生产过程的实时监控与控制。
执行与控制层的任务是将智能决策与优化层的结果反馈给生产设备,实现生产过程的智能化和自动化。
二、智能制造中的人工智能系统设计智能制造中的人工智能系统设计需要考虑以下几个方面:1. 数据集成与处理在智能决策与优化层中,需要将采集到的各种数据进行集成与处理,以实现对生产过程的综合分析与决策。
设计人工智能系统时,需要考虑数据集成的方式和数据处理的算法,保证数据的准确性和完整性。
2. 模型建立与优化针对不同的生产过程和需求,需要建立相应的数据模型,并通过优化算法对模型进行训练和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、智能制造的内涵(一)概念关于智能制造的研究大致经历了三个阶段:起始于20世纪80年代人工智能在制造领域中的应用,智能制造概念正式提出,发展于20世纪90年代智能制造技术、智能制造系统的提出,成熟于21世纪以来新一代信息技术条件下的“智能制造(Smart Manufacturing)”。
世纪80年代:概念的提出。
1998年,美国赖特(Paul Kenneth Wright )、伯恩(David Alan Bourne)正式出版了智能制造研究领域的首本专著《制造智能》(Smart Manufacturing),就智能制造的内涵与前景进行了系统描述,将智能制造定义为“通过集成知识工程、制造软件系统、机器人视觉和机器人控制来对制造技工们的技能与专家知识进行建模,以使智能机器能够在没有人工干预的情况下进行小批量生产”。
在此基础上,英国技术大学Williams教授对上述定义作了更为广泛的补充,认为“集成范围还应包括贯穿制造组织内部的智能决策支持系统”。
麦格劳 - 希尔科技词典将智能制造界定为,采用自适应环境和工艺要求的生产技术,最大限度的减少监督和操作,制造物品的活动。
——20世纪90年代:概念的发展。
20世纪90年代,在智能制造概念提出不久后,智能制造的研究获得欧、美、日等工业化发达国家的普遍重视,围绕智能制造技术(IMT)与智能制造系统(IMS)开展国际合作研究。
1991年,日、美、欧共同发起实施的“智能制造国际合作研究计划”中提出:“智能制造系统是一种在整个制造过程中贯穿智能活动,并将这种智能活动与智能机器有机融合,将整个制造过程从订货、产品设计、生产到市场销售等各个环节以柔性方式集成起来的能发挥最大生产力的先进生产系统”。
——21世纪以来:概念的深化。
21世纪以来,随着物联网、大数据、云计算等新一代信息技术的快速发展及应用,智能制造被赋予了新的内涵,即新一代信息技术条件下的智能制造(Smart Manufacturing)。
2010年9月,美国在华盛顿举办的“21世纪智能制造的研讨会”指出,智能制造是对先进智能系统的强化应用,使得新产品的迅速制造,产品需求的动态响应以及对工业生产和供应链网络的实时优化成为可能。
德国正式推出工业4.0战略,虽没明确提出智能制造概念,但包含了智能制造的内涵,即将企业的机器、存储系统和生产设施融入到虚拟网络—实体物理系统(CPS)。
在制造系统中,这些虚拟网络—实体物理系统包括智能机器、存储系统和生产设施,能够相互独立地自动交换信息、触发动作和控制。
综上所述,智能制造是将物联网、大数据、云计算等新一代信息技术与先进自动化技术、传感技术、控制技术、数字制造技术结合,实现工厂和企业内部、企业之间和产品全生命周期的实时管理和优化的新型制造系统。
(二)特征智能制造的特征在于实时感知、优化决策、动态执行等三个方面:一是数据的实时感知。
智能制造需要大量的数据支持,通过利用高效、标准的方法实时进行信息采集、自动识别,并将信息传输到分析决策系统;二是优化决策。
通过面向产品全生命周期的海量异构信息的挖掘提炼、计算分析、推理预测,形成优化制造过程的决策指令。
三是动态执行。
根据决策指令,通过执行系统控制制造过程的状态,实现稳定、安全的运行和动态调整。
(三)构成1、智能产品(装备)智能产品是发展智能制造的基础与前提,由物理部件、智能部件和联接部件构成。
智能部件由传感器、微处理器、数据存储装置、控制装置和软件以及内置操作和用户界面等构成;联接部件由接口、有线或无线联接协议等构成;物理部件由机械和电子零件构成。
智能部件能加强物理部件的功能和价值,而联接部件进一步强化智能部件的功能和价值,使信息可以在产品、运行系统、制造商和用户之间联通,并让部分价值和功能脱离物理产品本身存在。
智能产品具有监测、控制、优化和自主等四个方面的功能。
监测是指通过传感器和外部数据源,智能产品能对产品的状态、运行和外部环境进行全面监测;在数据的帮助下,一旦环境和运行状态发生变化,产品就会向用户或相关方发出警告。
控制是指可以通过产品内置或产品云中的命令和算法进行远程控制。
算法可以让产品对条件和环境的特定变化做出反应;优化是指对实时数据或历史记录进行分析,植入算法,从而大幅提高产品的产出比、利用率和生产效率;自主是指将检测,控制和优化功能融合到一起,产品就能实现前所未有的自动化程度。
2、智能生产智能生产是指以智能制造系统为核心,以智能工厂为载体,通过在工厂和企业内部、企业之间以及产品全生命周期形成以数据互联互通为特征的制造网络,实现生产过程的实时管理和优化。
智能生产涵盖产品、工艺设计、工厂规划的数字设计与仿真,底层智能装备、制造单元、自动化生产线,制造执行系统,物流自动化与管理等企业管理系统等。
3、智能服务通过采集设备运行数据,并上传至企业数据中心(企业云),系统软件对设备实时在线监测、控制,并经过数据分析提早进行设备维护。
例如维斯塔斯通过在风机的机舱、轮毂、叶片、塔筒及地面控制箱内,安装传感器、存储器、处理器以及SCADA系统,实现对风机运行的实时监控。
还通过在风力发电涡轮中内置微型控制器,可以在每一次旋转中控制扇叶的角度,从而最大限度捕捉风能,还可以控制每一台涡轮,在能效最大化的同时,减少对邻近涡轮的影响。
维斯塔斯通过对实时数据进行处理预测风机部件可能产生的故障,以减少可能的风机不稳定现象,并使用不同的工具优化这些数据,达到风机性能的最优化。
(四)作用发展智能制造的核心是提高企业生产效率,拓展企业价值增值空间,主要表现在以下几个方面:一是缩短产品的研制周期。
通过智能制造,产品从研发到上市、从下订单到配送时间可以得以缩短。
通过远程监控和预测性维护为机器和工厂减少高昂的停机时间,生产中断时间也得以不断减少。
二是提高生产的灵活性。
通过采用数字化、互联和虚拟工艺规划,智能制造开启了大规模批量定制生产乃至个性化小批量生产的大门。
三是创造新价值。
通过发展智能制造,企业将实现从传统的“以产品为中心”向“以集成服务为中心”转变,将重心放在解决方案和系统层面上,利用服务在整个产品生命周期中实现新价值。
二、国外智能制造系统架构自美国20世纪80年代提出智能制造的概念后,一直受到众多国家的重视和关注,纷纷将智能制造列为国家级计划并着力发展。
目前,在全球范围内具有广泛影响的是德国“工业4.0”战略和美国工业互联网战略。
(一)德国2013年4月,德国在汉诺威工业博览会上正式推出了“工业4.0”战略,其核心是通过信息物理系统(CPS)实现人、设备与产品的实时连通、相互识别和有效交流,构建一个高度灵活的个性化和数字化的智能制造模式。
在这种模式下,生产由集中向分散转变,规模效应不再是工业生产的关键因素;产品由趋同向个性的转变,未来产品都将完全按照个人意愿进行生产,极端情况下将成为自动化、个性化的单件制造;用户由部分参与向全程参与转变,用户不仅出现在生产流程的两端,而且广泛、实时参与生产和价值创造的全过程。
德国工业4.0战略提出了三个方面的特征:一是价值网络的横向集成,即通过应用CPS,加强企业之间在研究、开发与应用的协同推进,以及在可持续发展、商业保密、标准化、员工培训等方面的合作;二是全价值链的纵向集成,即在企业内部通过采用CPS,实现从产品设计、研发、计划、工艺到生产、服务的全价值链的数字化;三是端对端系统工程,即在工厂生产层面,通过应用CPS,根据个性化需求定制特殊的IT结构模块,确保传感器、控制器采集的数据与ERP管理系统进行有机集成,打造智能工厂。
2013年12月,德国电气电子和信息技术协会发表了《德国“工业4.0”标准化路线图》,其目标是制定出一套单一的共同标准,形成一个标准化的、具有开放性特点的标准参考体系,最终达到通过价值网络实现不同公司间的网络连接和集成。
德国“工业4.0”提出的标准参考体系是一个通用模型,适用于所有合作伙伴公司的产品和服务,提供了“工业4.0”相关的技术系统的构建、开发、集成和运行的框架,意图是将不同业务模型的企业采用的不同作业方法统一为共同的作业方法。
(二)美国1、工业互联网“工业互联网”的概念最早由通用电气于2012年提出,与工业4.0的基本理念相似,倡导将人、数据和机器连接起来,形成开放而全球化的工业网络,其内涵已经超越制造过程以及制造业本身,跨越产品生命周期的整个价值链。
工业互联网和“工业4.0”相比,更加注重软件、网络和大数据,目标是促进物理系统和数字系统的融合,实现通信、控制和计算的融合,营造一个信息物理系统的环境。
工业互联网系统由智能设备、智能系统和智能决策三大核心要素构成,数据流、硬件、软件和智能的交互。
由智能设备和网络收集的数据存储之后,利用大数据分析工具进行数据分析和可视化,由此产生的“智能信息”可以由决策者必要时进行实时判断处理,成为大范围工业系统中工业资产优化战略决策过程的一部分。
——智能设备:将信息技术嵌入装备中,使装备成为可智能互联产品。
为工业机器提供数字化仪表是工业互联网革命的第一步,使机器和机器交互更加智能化,这得益于以下三个要素:一是部署成本:仪器仪表的成本已大幅下降,从而有可能以一个比过去更经济的方式装备和监测工业机器。
二是微处理器芯片的计算能力:微处理器芯片持续发展已经达到了一个转折点,即使得机器拥有数字智能成为可能。
三是高级分析:“大数据”软件工具和分析技术的进展为了解由智能设备产生的大规模数据提供了手段。
——智能系统:将设备互联形成的一个系统。
智能系统包括各种传统的网络系统,但广义的定义包括了部署在机组和网络中并广泛结合的机器仪表和软件。
随着越来越多的机器和设备加入工业互联网,可以实现跨越整个机组和网络的机器仪表的协同效应。
智能系统的构建整合了广泛部署智能设备的优点。
当越来越多的机器连接在一个系统中,久而久之,结果将是系统不断扩大并能自主学习,而且越来越智能化。
——智能决策:大数据和互联网基础上实时判断处理。
当从智能设备和系统收集到了足够的信息来促进数据驱动型学习的时候,智能决策就发生了,从而使一个小机组网络层的操作功能从运营商传输到数字安全系统。
2014年3月,美国通用电气、IBM、思科、英特尔和AT&T五家行业龙头企业联手组建了工业互联网联盟(IIC),其目的是通过制定通用标准,打破技术壁垒,使各个厂商设备之间可以实现数据共享,利用互联网激活传统工业过程,更好地促进物理世界和数字世界的融合。
工业互联网联盟已经已经开始起草工业互联网通用参考架构,该参考架构将定义工业物联网的功能区域、技术以及标准,用于指导相关标准的制定,帮助硬件和软件开发商创建与物联网完全兼容的产品,最终目的是实现传感器、网络、计算机、云计算系统、大型企业、车辆和数以百计其他类型的实体得以全面整合,推动整个工业产业链的效率全面提升。