人教版七年级数学下册第八章达标测试及答案卷及答案.doc
人教版七年级数学下册第八章测试题及答案精选全文完整版
可编辑修改精选全文完整版最新人教版七年级数学下册第八章测试题及答案第8章二元一次方程组班级 姓名 成绩__________一、相信你的选择(每小题3分,共30分)1、下列给出的方程中,是二元一次方程的是( )A 、5=xyB 、y x 56=C 、61=+yx D 、642=+y x 2、下列二元一次方程组中,以 21==y x 为解的是( ) A 、 531=+=-y x y x B 、 531-=+=-y x y x C 、 5332=+-=-y x y x D 、 433=+=-y x y x 3、解方程组 .328,1258=-=+y x y x 比较简便的方法是( ) A 、代入法 B 、加减法 C 、试数法 D 、无法确定4、若方程组.9.3053,1332=+=-b a b a 的解是 .2.1,3.8==b a 则方程组 .9.30)1(5)2(3,13)1(3)2(2=-++=--+y x y x 的解是( ) A 、 2.23.6==y x B 、 2.13.8==y x C 、 2.23.10==y x D 、 2.03.10==y x 5、若二元一次方程123=-y x 的解为正整数,则x 的值为( )A 、奇数B 、偶数C 、奇数或偶数D 、06、已知 .83,123=+=+y x y x 那么y x +的值是( ) A 、0 B 、5 C 、1- D 、17、如果0124323=+---m n n m y x 是二元一次方程,那么m 、n 的值分别为( )A 、2、3B 、2、1C 、1- 、2D 、3、48、一个两位数,他的个位数与十位数的和为4,那么符合条件的两位数为( )A 、3个B 、4个C 、5个D 、无数个9、在向汶川地震灾区献爱心活动中,西关小学捐给五年级一批图书,如果该年级每个同学分6本还差6本,如果 每个同学分5本则多出5本,则五年级共有同学( )名。
人教版七年级数学下册第8章 二元一次方程组(A卷及答案).doc
班级 姓名 学号 分数《第八章 二元一次方程组》测试卷(A 卷)(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分) 1.方程2x ﹣3y=4,2x+y 3=4,2x-3y=4,2x+3y ﹣z=5,x 2﹣y=1中,是二元一次方程的有( )A .1个B .2个C .3个D .4个 2.如果a 3x b y与﹣a 2y b x+1是同类项,则( )A 、23x y =-⎧⎨=⎩ B. 23x y =⎧⎨=-⎩ C. 23x y =-⎧⎨=-⎩D. 23x y =⎧⎨=⎩3.x 与y 的值相等,则已知程方组54358x y mx y -=⎧⎨+=⎩中m 的值是( ).(A )1 (B )1- (C )1± (D )5±4.甲、乙两个车间工人人数不相等,若甲车间调10人到乙车间,则两车间人数相等;若乙车间调10人到甲车间,则甲车间的人数就是乙车间人数的2倍,求原来甲、乙两车间各有多少名工人?设原来甲车间有x 名工人,乙车间有y 名工人,列以下方程组正确的是( ) A.⎩⎨⎧-==-)10(210y x y x B.⎩⎨⎧-==-10210y x y x C.⎩⎨⎧-=++=-)10(2101010y x y x D.⎩⎨⎧-=++=-10)10(21010y x y x5.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为( )A .50180x y x y =-⎧⎨+=⎩B .50180x y x y =+⎧⎨+=⎩C . 5090x y x y =+⎧⎨+=⎩D .5090x y x y =-⎧⎨+=⎩6.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人.下面所列的方程组正确的是( ) A .3412x y x y +=⎧⎨+=⎩ B .3421x y x y +=⎧⎨=+⎩ C .3421x y x y +=⎧⎨=+⎩ D .23421x y x y +=⎧⎨=+⎩7.已知:21x y =⎧⎨=⎩是方程kx-y=3的解,则k 的值是( )A.2B.-2C.1D.-18.方程组525x y x y =+⎧⎨-=⎩的解满足方程x +y -a=0,那么a 的值是( )A .5B .-5C .3D .-39.已知x 2y 1==⎧⎨⎩是方程组ax by 5bx ay 1+=+=⎧⎨⎩的解,则a ﹣b 的值是( )A.1-B.2C.3D.4 10.下列四组数值中,为方程组⎪⎩⎪⎨⎧=--=--=++231202z y x z y x z y x 的解是( )A 、⎪⎩⎪⎨⎧-===210z y xB 、⎪⎩⎪⎨⎧===101z y xC 、⎪⎩⎪⎨⎧=-==010z y xD 、⎪⎩⎪⎨⎧=-==321z y x二、填空题(共10小题,每题3分,共30分) 11.已知x 2y 1=⎧⎨=-⎩是方程ax 5y 15+=的一个解,则a = 。
人教版七年级数学下册第八单元测试题及答案.docx
12(第6题)七年级数学第八章《二元一次方程组》测试卷班级 _______ 姓名 ________ 坐号 _______ 成绩 _______一、选择题(每小题3分,共24分)1、下列各组数是二元一次方程⎩⎨⎧=-=+173x y y x 的解是( )A 、⎩⎨⎧==21y xB 、⎩⎨⎧==10y xC 、⎩⎨⎧==07y x D 、⎩⎨⎧-==21y x 2、方程⎩⎨⎧=+=+10by x y ax 的解是 ⎩⎨⎧-==11y x ,则a ,b 为( )A 、⎩⎨⎧==10b aB 、⎩⎨⎧==01b aC 、⎩⎨⎧==11b aD 、⎩⎨⎧==00b a3、|3a +b +5|+|2a -2b -2|=0,则2a 2-3ab 的值是( )A 、14B 、2C 、-2D 、-44、解方程组⎩⎨⎧=-=+534734y x y x 时,较为简单的方法是( )A 、代入法B 、加减法C 、试值法D 、无法确定5、某商店有两进价不同的耳机都卖64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店( )A 、赔8元B 、赚32元C 、不赔不赚D 、赚8元6、一副三角板按如图摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到的方程组为( )A 、⎩⎨⎧=+-=18050y x y xB 、⎩⎨⎧=++=18050y x y xC 、⎩⎨⎧=+-=9050y x y xD 、⎩⎨⎧=++=9050y x y x 7、李勇购买80分与100分的邮票共16枚,花了14元6角,购买80分与100分的邮票的枚数分别是( )A 、6,10B 、7,9C 、8,8D 、9,78、两位同学在解方程组时,甲同学由⎩⎨⎧=-=+872y cx by ax 正确地解出⎩⎨⎧-==23y x ,乙同学因把C 写错了解得 ⎩⎨⎧=-=22y x ,那么a 、b 、c 的正确的值应为( ) A 、a =4,b =5,c =-1 B 、a =4,b =5,c =-2C 、a =-4,b =-5,c =0D 、a =-4,b =-5,c =2二、填空(每小题3分,共18分)9、如果⎩⎨⎧-==13y x 是方程3x -ay =8的一个解,那么a =_________。
新人教版初中数学七年级下册第8章《二元一次方程组》检测试卷(含答案)
人教版数学七年级下册第八章《二元一次方程组》测试题一、选择题(每小题只有一个正确答案)1.下列各方程组中,属于二元一次方程组的是( )A. B. C. D.2.下列各组数中,方程2x-y=3和3x+4y=10的公共解是( )A. B. C. D.3.用代入法解方程组有以下步骤:①由(1),得y=(3);②由(3)代入(1),得7x-2×=3;③整理得3=3;④∴x可取一切有理数,原方程组有无数个解以上解法,造成错误的一步是( )A.① B.② C.③ D.④4.一船顺水航行45千米需要3小时,逆水航行65千米需要5小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则x,y的值为( )A. B. C. D.5.|3x-y-4|+|4x+y-3|=0,那么x与y的值分别为( )A. B. C. D.6.从方程组中求x与y的关系是( )A.x+y=-1 B.x+y=1 C. 2x-y=7 D.x+y=97.如果ax+2y=1是关于x,y的二元一次方程,那么a的值应满足( )A.a是有理数 B.a≠0 C.a=0 D.a是正有理数8.已知甲数的60%加乙数的80%等于这两个数的和的72%,若设甲数为x,乙数为y,则下列方程中符合题意的是( )A. 60%x+80%y=x+72%y B. 60%x+80%y=60%x+yC. 60%x+80%y=72%(x+y) D. 60%x+80%y=x+y9.下列各组数中,不是方程2x+y=10的解是( )A .B .C .D .10.如图所示,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A .400 cm 2B .500 cm2C .600 cm 2D .4 000 cm 211.有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨,3辆大车与5辆小车一次可以运货为(单位:吨)( ) A . 25.5 B . 24.5 C . 26.5 D . 27.512.一文具店的装订机的价格比文具盒的价格的3倍少1元,购买2把装订机和6个文具盒共需70元,问装订机与文具盒价格各是多少元?设文具盒的价格为x 元,装订机的价格为y 元,依题意可列方程组为( )A .B .C .D . 二、填空题 13.在括号内填写一个二元一次方程,使其与二元一次方程5x -2y =1组成方程组的解是 你所填写的方程为______________.14.已知方程3x -2y =5的一个解中,y 的值比x 的值大1,则这个方程的这个解是________. 15.已知方程组则x -y =______,x +y =______.16.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,所列方程组为______. 17.已知方程2x 2n -1-3y 3m -n +1=0是二元一次方程,则m =______,n =______. 三、解答题18、用代入消元法解方程组 20.用加减消元法解方程组⎩⎨⎧-=-=+54032y x y x 3410,490;x y x y +=⎧⎨+-=⎩19、用适当的方法解下列方程组(1)20328x y x y -=⎧⎨+=⎩ (2)23533x yx y -⎧=⎪⎪⎨+⎪=⎪⎩20.甲、乙两人共同解方程组⎩⎨⎧-=-=+ ②by x ①y ax 24155,由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧-=-=13y x人教版数学七年级下册同步单元复习卷: 第8章 二元一次方程组(1) 一、选择题(每小题3分,共42分)请将正确答案的代号填涂在答题卡上 1.下列各数中,既是分数又是负数的是( ) A .1B .﹣3C .0D .2.252.﹣2019的相反数是( ) A .﹣2019B .2019C .﹣D .3.“2017中国企业跨国投资研讨会”于11月17日在长沙召开,共同聚焦“‘一带一路’跨国投资与服务新时代”,该研讨会表示,在2016年,中国企业对7961家境外企业累计实现投资约170100000000美元,170100000000用科学记数法可表示为( ) A .1.701×1011B .1.701×1010C .17.01×1010D .170.1×1094.下列各组数中,互为倒数的是( ) A .2与﹣2B .﹣与C .﹣1与(﹣1)2016D .﹣与﹣5.计算﹣100÷10×,结果正确的是( ) A .﹣100B .100C .1D .﹣16.下列说法正确的是()A.整式就是多项式B.﹣的系数是C.π是单项式D.x4+2x3是七次二项式7.下列各组单项式中,不是同类项的一组是()A.x2y和2xy2B.﹣32和3C.3xy和﹣D.5x2y和﹣2yx28.下列计算正确的是()A.3a+2b=5ab B.3x2y﹣yx2=2x2yC.5x+x=5x2D.6x﹣x=69.下列运用等式的性质,变形正确的是()A.若x2=6x,则x=6B.若2x=2a﹣b,则x=a﹣bC.若3x=2,则x=D.若a=b,则a﹣c=b﹣c10.若|a+3|+(b﹣2)2=0,则a b的值为()A.﹣6B.﹣9C.9D.611.多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的和不含二次项,则m为()A.2B.﹣2C.4D.﹣412.某商品的原价是每件x元,在销售时每件加价20元,再降价15%,则现在每件的售价是()元.A.15%x+20B.(1﹣15%)x+20C.15%(x+20)D.(1﹣15%)(x+20)13.有长为l的篱笆,利用他和房屋的一面墙围成如图形状的长方形园子,园子的宽为t,则所围成的园子面积为()A.(l﹣2t)t B.(l﹣t)t C.(﹣t)t D.(l﹣)t 14.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2018次得到的结果为()A.1B.2C.3D.4二、填空题(每小题3分,共15分)15.临沂某天的最高温度为8℃,最大温差11℃,该天最低温度是.16.在数轴上,点A表示的数是5,若点B与A点之间距离是8,则点B表示的数是.17.若2a﹣3b2=5,则2018﹣4a+6b2的值是.18.关于x的方程mx+4=3x﹣5的解是x=1,则m=.19.如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由个基础图形组成.三、解答题(本题共7个小题,共计63分)20.(12分)计算下列各题:(1)(﹣5)﹣(﹣6)+(+1)(2)﹣12×(﹣+)(3)﹣1100﹣(1﹣0.5)××[3﹣(﹣3)2]21.(6分)对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a ﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.22.(12分)先化简,再求值.(1)﹣x2+5x+4﹣7x﹣4+2x2,其中x=﹣2.(2)m﹣2(m﹣n2)+(﹣m+n2),其中m=﹣2,n=﹣23.(7分)2017年12月,旗团委号召各校组织开展捐赠衣物的“暖冬行动”.某校七年级六个班参加了这次捐赠活动,若每班捐赠衣物以100件为基准,超过的件数用正数表示,不足的件数用负数表示,记录如下:(1)捐赠衣物最多的班比最少的班多多少件?(2)该校七年级学生共捐赠多少件衣物?该校七年级学生平均每人捐赠多少件衣物?24.(7分)为了有效控制酒后驾车,交警队一辆汽车每天在一条东西方向的公路上巡视.某天早晨从A地出发,晚上到达B地,约定向东为正方向,当天行驶记录如下(单位:km):+18,﹣19,﹣13,+15,+10,﹣14,+19,﹣20.问:(1)B地在A地哪个方向?距A地多少千米?(2)若该警车每千米耗油0.2L,警车出发时,油箱中有油20L,请问中途有没有给警车加油?若有,至少加多少升油?请说明理由.25.(7分)如图所示,1925年数学家莫伦发现的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形,请你计算:(1)如果标注1、2的正方形边长分别为1,2,第3个正方形的边长=;第5个正方形的边长=;(2)如果标注1、2的正方形边长分别为x,y,第10个正方形的边长=.(用含x、y的代数式表示)26.(12分)开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x的式子表示);(2)若小敏按方案二购买,需付款多少元(用含x的式子表示);(3)当x=10时,通过计算说明此时按哪种方案购买较为合算;(4)当x=10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.2018-2019学年山东省临沂市临沭县七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共42分)请将正确答案的代号填涂在答题卡上1.下列各数中,既是分数又是负数的是()A.1B.﹣3C.0D.2.25【分析】根据有理数的分类即可求出答案.【解答】解:既是分数又是负数的是故选:B.【点评】本题考查有理数的分类,解题的关键是正确理解有理数的分类,本题属于基础题型.2.﹣2019的相反数是()A.﹣2019B.2019C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2019的相反数是:2019.故选:B.【点评】此题主要考查了相反数,正确把握定义是解题关键.3.“2017中国企业跨国投资研讨会”于11月17日在长沙召开,共同聚焦“‘一带一路’跨国投资与服务新时代”,该研讨会表示,在2016年,中国企业对7961家境外企业累计实现投资约170100000000美元,170100000000用科学记数法可表示为()A.1.701×1011B.1.701×1010C.17.01×1010D.170.1×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:170100000000=1.701×1011.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列各组数中,互为倒数的是()A.2与﹣2B.﹣与C.﹣1与(﹣1)2016D.﹣与﹣【分析】根据倒数的定义,可得答案.【解答】解:﹣与﹣互为倒数,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.5.计算﹣100÷10×,结果正确的是()A.﹣100B.100C.1D.﹣1【分析】直接利用有理数的乘除运算法则计算得出答案.【解答】解:﹣100÷10×=﹣10×=﹣1.故选:D.【点评】此题主要考查了有理数的乘除运算,正确掌握运算法则是解题关键.6.下列说法正确的是()A.整式就是多项式B.﹣的系数是C.π是单项式D.x4+2x3是七次二项式【分析】根据整式的定义,单项式的系数,单项式的定义以及多项式概念对各选项分析判断即可得解.【解答】解:A、整式就是多项式,错误,因为单项式和多项式统称为整式,故本选项错误;B、﹣的系数是﹣,故本选项错误;C、π是单项式,故本选项正确;D、x4+2x3是四次二项式,故本选项错误.故选:C.【点评】本题考查了多项式,单项式,熟练掌握相关概念是解题的关键.7.下列各组单项式中,不是同类项的一组是()A.x2y和2xy2B.﹣32和3C.3xy和﹣D.5x2y和﹣2yx2【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、所含字母相同且相同字母的指数也相同,故B正确;C、所含字母相同且相同字母的指数也相同,故C正确;D、所含字母相同且相同字母的指数也相同,故D正确;故选:A.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.8.下列计算正确的是()A.3a+2b=5ab B.3x2y﹣yx2=2x2yC.5x+x=5x2D.6x﹣x=6【分析】根据合并同类项的法则解答即可.【解答】解:A、3a与2b不是同类项,错误;B、3x2y﹣yx2=2x2y,正确;C、5x+x=6x,错误;D、6x﹣x=5x,错误;故选:B.【点评】此题考查合并同类项,关键是根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.9.下列运用等式的性质,变形正确的是()A.若x2=6x,则x=6B.若2x=2a﹣b,则x=a﹣bC.若3x=2,则x=D.若a=b,则a﹣c=b﹣c【分析】根据等式的性质解答.【解答】解:A、当x=0时,该等式的变形不成立,故本选项错误;B、若2x=2a﹣b,则x=a﹣b,故本选项错误;C、在等式3x=2的两边同时除以2,等式仍成立,即x=,故本选项错误;D、在等式a=b的两边同时减去c,等式仍成立,即a﹣c=b﹣c,故本选项正确.故选:D.【点评】考查的是等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.10.若|a+3|+(b﹣2)2=0,则a b的值为()A.﹣6B.﹣9C.9D.6【分析】根据非负数的性质列式求出ab的值,然后再代入代数式进行计算.【解答】解:根据题意得,a+3=0,b﹣2=0,解得a=﹣3,b=2,∴a b=(﹣3)2=9.故选:C.【点评】本题主要考查了非负数的性质,几个非负数相加等于0,则每一个算式都等于0.11.多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的和不含二次项,则m为()A.2B.﹣2C.4D.﹣4【分析】先把两多项式的二次项相加,令x的二次项为0即可求出m的值.【解答】解:∵多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3相加后不含x的二次项,∴﹣8x2+2mx2=(2m﹣8)x2,∴2m﹣8=0,解得m=4.故选:C.【点评】本题考查的是整式的加减,根据题意把两多项式的二次项相加得到关于m的方程是解答此题的关键.12.某商品的原价是每件x元,在销售时每件加价20元,再降价15%,则现在每件的售价是()元.A.15%x+20B.(1﹣15%)x+20C.15%(x+20)D.(1﹣15%)(x+20)【分析】先提价的价格是原价+20,再降价的价格是降价前的1﹣15%,得出此时价格即可.【解答】解:根据题意可得:(1﹣15%)(x+20),故选:D.【点评】本题考查了列代数式,解答本题的关键是读懂题意,列出代数式.13.有长为l的篱笆,利用他和房屋的一面墙围成如图形状的长方形园子,园子的宽为t,则所围成的园子面积为()A.(l﹣2t)t B.(l﹣t)t C.(﹣t)t D.(l﹣)t 【分析】表示出长,利用长方形的面积列出算式即可.【解答】解:园子的面积为t(l﹣2t).故选:A.【点评】此题考查列代数式,利用长方形的面积计算方法是解决问题的关键.14.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2018次得到的结果为()A.1B.2C.3D.4【分析】将x=2代入,然后依据程序进行计算,依据计算结果得到其中的规律,然后依据规律求解即可.【解答】解:当x=2时,第一次输出结果=×2=1;第二次输出结果=1+3=4;第三次输出结果=4×=2,;第四次输出结果=×2=1,…2018÷3=672…2.所以第2018次得到的结果为4.故选:D.【点评】本题主要考查的是求代数式的值,熟练掌握相关方法是解题的关键.二、填空题(每小题3分,共15分)15.临沂某天的最高温度为8℃,最大温差11℃,该天最低温度是﹣3℃.【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:∵临沂某天的最高温度为8℃,最大温差11℃,∴该天最低温度是:8﹣11=﹣3(℃).故答案为:﹣3℃【点评】此题主要考查了有理数的加减,正确掌握运算法则是解题关键.16.在数轴上,点A表示的数是5,若点B与A点之间距离是8,则点B表示的数是﹣3或13.【分析】分点B在点A的左边与右边两种情况讨论求解.【解答】解:①当点B在点A的左边时,5﹣8=﹣3,②当点B在点A的右边时,5+8=13,所以点B表示的数是﹣3或13.故答案为:﹣3或13.【点评】本题考查了数轴,注意分点B在点A的左右两边两种情况讨论.17.若2a﹣3b2=5,则2018﹣4a+6b2的值是2008.【分析】首先把2018﹣4a+6b2化成2018﹣2(2a﹣3b2),然后把2a﹣3b2=5代入化简后的算式,求出算式的值是多少即可.【解答】解:∵2a﹣3b2=5,∴2018﹣4a+6b2=2018﹣2(2a﹣3b2)=2018﹣2×5=2018﹣10=2008故答案为:2008.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.关于x的方程mx+4=3x﹣5的解是x=1,则m=﹣6.【分析】把x=1代入方程mx+4=3x﹣5,得到关于m的一元一次方程,解之即可.【解答】解:把x=1代入方程mx+4=3x﹣5得:m+4=3﹣5,解得:m=﹣6,故答案为:﹣6.【点评】本题考查了一元一次方程的解,正确掌握代入法是解题的关键.19.如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由(3n+1)个基础图形组成.【分析】观察图形很容易看出每加一个图案就增加三个基础图形,以此类推,便可求出结果.【解答】解:第一个图案基础图形的个数:3+1=4;第二个图案基础图形的个数:3×2+1=7;第三个图案基础图形的个数:3×3+1=10;…∴第n个图案基础图形的个数就应该为:(3n+1).故答案为:(3n+1).【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题(本题共7个小题,共计63分)20.(12分)计算下列各题:(1)(﹣5)﹣(﹣6)+(+1)(2)﹣12×(﹣+)(3)﹣1100﹣(1﹣0.5)××[3﹣(﹣3)2]【分析】(1)运用加减运算律和运算法则计算可得;(2)运用乘法分配律计算可得;(3)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=(﹣5+1)+6=﹣4+6=2;(2)原式=(﹣12)×﹣(﹣12)×+(﹣12)×=﹣4+3﹣6=﹣7;(3)原式=﹣1﹣××(3﹣9)=﹣1﹣×(﹣6)=﹣1+1=0.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则及其运算律.21.(6分)对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a ﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.【分析】(1)根据新定义计算可得;(2)根据数轴得出a<0<b且|a|>|b|,从而得出a+b<0、a﹣b<0,再根据绝对值性质解答可得.【解答】解:(1)2⊙(﹣4)=|2﹣4|+|2+4|=2+6=8;(2)由数轴知a<0<b,且|a|>|b|,则a+b<0、a﹣b<0,所以原式=﹣(a+b)﹣(a﹣b)=﹣a﹣b﹣a+b=﹣2a.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算法则和运算顺序及绝对值的性质.22.(12分)先化简,再求值.(1)﹣x2+5x+4﹣7x﹣4+2x2,其中x=﹣2.(2)m﹣2(m﹣n2)+(﹣m+n2),其中m=﹣2,n=﹣【分析】(1)直接合并同类项,进而计算得出答案;(2)直接去括号进而合并同类项,再把已知代入求出答案.【解答】解:(1)﹣x2+5x+4﹣7x﹣4+2x2=x2﹣2x,当x=﹣2,原式=8;(2)原式=﹣3m+n2,当m=﹣2,n=﹣,原式=6+=.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.23.(7分)2017年12月,旗团委号召各校组织开展捐赠衣物的“暖冬行动”.某校七年级六个班参加了这次捐赠活动,若每班捐赠衣物以100件为基准,超过的件数用正数表示,不足的件数用负数表示,记录如下:(1)捐赠衣物最多的班比最少的班多多少件?(2)该校七年级学生共捐赠多少件衣物?该校七年级学生平均每人捐赠多少件衣物?【分析】(1)求出捐赠衣物最多的班额,捐赠衣物最少的班额,然后相减即可;(3)用标准捐赠衣物数加上记录的各班捐赠衣物数的和,计算即可得解.【解答】解:(1)19﹣(﹣7)=26,答:捐赠衣物最多的班比最少的班多26件;(2)18﹣3+19+14+9﹣7+6×100=50+600=650,答:该校七年级学生共捐赠650件衣物,平均每人捐赠2.6件衣物.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.(7分)为了有效控制酒后驾车,交警队一辆汽车每天在一条东西方向的公路上巡视.某天早晨从A地出发,晚上到达B地,约定向东为正方向,当天行驶记录如下(单位:km):+18,﹣19,﹣13,+15,+10,﹣14,+19,﹣20.问:(1)B地在A地哪个方向?距A地多少千米?(2)若该警车每千米耗油0.2L,警车出发时,油箱中有油20L,请问中途有没有给警车加油?若有,至少加多少升油?请说明理由.【分析】(1)把行驶记录求和,若结果为正,则B地在出发地的正东,若结果为负,再B地再出发点的正西;(2)计算各个记录的绝对值的和,计算出耗油量,根据邮箱里的油量判断是否需要加油,计算至少需要加多少升油.【解答】解:(1)18﹣19﹣13+15+10﹣14+19﹣20=(18+15+10)﹣(13+14+20)+(19﹣19)=43﹣47=﹣4即B地在A地的西方,距A地4千米.(2)因为(18+19+13+15+10+14+19+20)×0.2=128×0.2=25.6(L)因为25.6>20,所以途中至少加油5.6L答:途中警车需加油,至少需加油5.6L.【点评】本题考查了正负数的意义和有理数的混合运算,解决本题的关键是根据题意列出代数式,并能根据计算结果作答.25.(7分)如图所示,1925年数学家莫伦发现的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形,请你计算:(1)如果标注1、2的正方形边长分别为1,2,第3个正方形的边长=3;第5个正方形的边长=7;(2)如果标注1、2的正方形边长分别为x,y,第10个正方形的边长=3y﹣3x.(用含x、y的代数式表示)【分析】(1)根据正方形的性质即可解决问题;(2)根据各个正方形的边的和差关系分别表示出第(3)(4)(5)(6)(7),第10个正方形的边长=第7个正方形的边长﹣第一个正方形的边长﹣第3个正方形的边长;【解答】解:(1)观察图象可知第3个正方形的边长=3;第5个正方形的边长=7;故答案为3,7;(2):(1)第(3)个正方形的边长是:x+y,则第(4)个正方形的边长是:x+2y;第(5)个正方形的边长是:x+2y+y=x+3y;第(6)个正方形的边长是:(x+3y)+(y﹣x)=4y;第(7)个正方形的边长是:4y﹣x;第(10)个正方形的边长是:(4y﹣x)﹣x﹣(x+y)=3y﹣3x;故答案为3y﹣3x.【点评】本题考查了列代数式,正确理解各个正方形的边之间的和差关系是关键.26.(12分)开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x 的式子表示); (2)若小敏按方案二购买,需付款多少元(用含x 的式子表示); (3)当x =10时,通过计算说明此时按哪种方案购买较为合算;(4)当x =10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.【分析】(1)根据题意列出算式即可;(2)根据题意列出算式即可;(3)把x =10分别代入求出结果,即可得出答案;(4)先在方案一买6把扫帚,再在方案二买4块抹布即可.【解答】解:(1)∵方案一:买一把扫帚送一块抹布,∴小敏需要购买扫帚6把,抹布x 块(x >6),若小敏按方案一购买,需付款25×6+5(x ﹣6)=(5x +120)元;(2)∵方案二:扫帚和抹布都按定价的90%付款,∴小敏需要购买扫帚6把,抹布x 块(x >6),若小敏按方案二购买,需付款25×6×0.9+5x •0.9=(4.5x +135)元;(3)方案一需:5×10+120=170元,方案二需4.5×10+135=180元, 故方案一划算;(4)其中6把扫帚6块抹布按方案一买,剩下4块抹布按方案二买,共需168元.【点评】本题考查了求代数式的值,列代数式的应用的应用,能正确根据题意列出算式是解此题的关键.人教版七年级下册 第八章二元一次方程组单元试题一、选择题(共10小题,每小题3分,共30分)1.二元一次方程组⎩⎨⎧ x +y =7,3x -y =5的解是( ) A.⎩⎨⎧ x =4,y =3B .⎩⎨⎧ x =5,y =2 C .⎩⎨⎧ x =3,y =4 D .⎩⎨⎧ x =-2,y =92.已知方程组⎩⎨⎧ 2x +y =4,x +2y =5,则x +y 的值为( )A .-1B .0C .2D .33.下列各方程中,是二元一次方程的是( )A.x 3-2y=y +5x B .3x +1=2xy C .15x =y 2+1 D .x +y =14.已知x 2m -1+3y 4-2n =-7是关于x ,y 的二元一次方程,则m ,n 的值是( ) A.⎩⎨⎧ m =2,n =1B .⎩⎨⎧ m =1,n =-32 C .⎩⎨⎧ m =1,n =52D .⎩⎨⎧ m =1,n =325.方程kx +3y =5有一组解是⎩⎨⎧ x =2,y =1,则k 的值是( )A .1B .-1C .0D .2 6.二元一次方程x +2y =10的所有正整数解有( )A .1个B .2个C .3个D .4个7.“珍爱生命,拒绝毒品”,学校举行的2017年禁毒知识竞赛共有60道题,曾浩同学答对了x 道题,答错了y 道题(不答视为答错),且答对题数比答错题数的7倍还多4道,那么下面列出的方程组中正确的是( )A.⎩⎨⎧ x +y =60,x -7y =4B .⎩⎨⎧ x +y =60,y -7x =4C .⎩⎨⎧ x =60-y ,x =7y -4D .⎩⎨⎧ y =60-x ,y =7x -48.关于x ,y 的方程组⎩⎨⎧ x +py =0,x +y =3的解是⎩⎨⎧ x =1,y =■,其中y 的值被盖住了,不过仍能求出p ,则p 的值是( )A .-12B .12C .-14D .149.若|x +y -5|与(x -y -1)2互为相反数,则x 2-y 2的值为( )A .-5B .5C .13D .1510.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为( )A.⎩⎨⎧ 8x -3=y ,7x +4=yB .⎩⎨⎧ 8x +3=y ,7x -4=yC .⎩⎨⎧ y -8x =3,y -7x =4D .⎩⎨⎧ 8x -y =3,7x -y =4二、填空题(共5小题,每小题4分,共20分)11.方程组⎩⎨⎧ x +y =1,3x -y =3的解是 .12.“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需 元.13.已知关于x ,y 的二元一次方程组⎩⎨⎧ 2x +y =k ,x +2y =-1的解互为相反。
2019-2020人教版七年级下学期数学第八章单元测试题1含答案.doc
一、选择题1、若23815m n x y -+-=是关于x y 、的二元一次方程,则m n +=( ) A.1- B.2 C.1 D.2-2、以11x y =⎧⎨=-⎩为解的二元一次方程组是( )A .01x y x y +=⎧⎨-=⎩ B .01x y x y +=⎧⎨-=-⎩ C .02x y x y +=⎧⎨-=⎩ D .02x y x y +=⎧⎨-=-⎩3、为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则搭建方案共有( ) A .8种B .9种C .16种D .17种4、同时满足方程21132x y +=与325x y +=的解是( ) A .23x y ==, B .34x y =-=, C .32x y ==-, D .32x y =-=-,5、已知代数式1312a x y -与23b a bx y -+-是同类项,那么a 、b 的值分别是( )A.21a b =⎧⎨=-⎩B.21a b =⎧⎨=⎩C.21a b =-⎧⎨=-⎩D.21a b =-⎧⎨=⎩6、2(5)23100x y x y +-+--=若,则代数式xy 的值是( ) A. 6 B.-6 C.0 D. 57、若方程组⎩⎨⎧=+=-81my nx ny mx 的解是⎩⎨⎧==12y x ,则m 、n 的值分别是( )A. m=2,n=1B. m=2,n=3C. m=1,n=8D. 无法确定8、如图,点O 在直线AB 上,OC 为射线,1∠比2∠的3倍少︒10,设1∠,2∠的度数分别为x ,y ,那么下列求出这两个角的度数的方程是( )A.⎩⎨⎧-==+10180y x y x B.⎩⎨⎧-==+103180y x y xC.⎩⎨⎧+==+10180y x y x D.⎩⎨⎧-==1031803y x y9、某校七年级(2)班40名同学为“希望工程”捐款,共捐款100元。
捐款情况如表:47表格中捐款2元和3若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组( ) A.⎩⎨⎧=+=+663227y x y x B.⎩⎨⎧=+=+1003227y x y x C.⎩⎨⎧=+=+662327y x y x D.⎩⎨⎧=+=+1002327y x y x10、“十一黄金周”期间,几位同学一起去郊外游玩。
2020年人教版七年级数学下册 第八章 二元一次方程组 达标检测卷 名校试卷(word精编版含答案)
2020年人教版七年级数学下册 第八章 二元一次方程组 达标检测卷时间:120分钟 满分:120分 姓名__________一、选择题(每小题3分,共36分)1.将方程2x -y =3写成用含x 的式子表示y 的形式,正确的是( )A .x =y 2+32B .y =2x -3C .y =-2x +3D .y =-2x -32.下列各组数是二元一次方程⎩⎪⎨⎪⎧x +3y =7,y -x =1的解的是( )A.⎩⎪⎨⎪⎧x =1,y =2B.⎩⎪⎨⎪⎧x =0,y =1C.⎩⎪⎨⎪⎧x =7,y =0D.⎩⎪⎨⎪⎧x =1,y =-2 3.已知四个方程组:①⎩⎪⎨⎪⎧5x -2y =-3,5x +3y =4;②⎩⎪⎨⎪⎧y =3-2x ,x -2y =-1;③⎩⎪⎨⎪⎧2x +3y =1,5x -6y =-12;④⎩⎪⎨⎪⎧x 3+2y 7=1,5x -6y =3,合理简便的消元方法是( ) A .①③④用加减消元法,②用代入消元法 B .①②用加减消元法,③④用代入消元法 C .③④用加减消元法,①②用代入消元法 D .②用加减消元法,①③④用代入消元法4.若⎩⎪⎨⎪⎧x =9y =2是方程组⎩⎪⎨⎪⎧4x -7y =a +b ,3x -y =a -b 的解,则a ,b 的值是( ) A.⎩⎨⎧a =812,b =14 B.⎩⎪⎨⎪⎧a =3,b =-17 C.⎩⎨⎧a =472,b =-32D.⎩⎪⎨⎪⎧a =5,b =-195.如果|x +y -1|和2(2x +y -3)2互为相反数,那么x ,y 的值为( )A.⎩⎪⎨⎪⎧x =1,y =2B.⎩⎪⎨⎪⎧x =-1,y =-2C.⎩⎪⎨⎪⎧x =2,y =-1D.⎩⎪⎨⎪⎧x =-2,y =-16.由方程组⎩⎪⎨⎪⎧x -y =2,y -z =3,z +x =5可求出xyz -20的值为( )A .0B .20C .-35D .-207.由方程组⎩⎪⎨⎪⎧2x +m =1,y -3=m 可得出x 与y 的关系是( )A .2x +y =4B .2x -y =4C .2x +y =-4D .2x -y =-48.为了绿化校园,某校30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,若设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A.⎩⎪⎨⎪⎧x +y =78,3x +2y =30B.⎩⎪⎨⎪⎧x +y =78,2x +3y =30C.⎩⎪⎨⎪⎧x +y =30,2x +3y =78D.⎩⎪⎨⎪⎧x +y =30,3x +2y =789.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19B .18C .16D .1510.桂花村派男女村民共15人到村外采购建房所需的水泥,已知男村民一人挑两包,女村民两人抬一包,共购回15包,那么这次采购派男女村民的人数为( )A .男村民3人,女村民12人B .男村民5人,女村民10人C .男村民6人,女村民9人D .男村民7人,女村民8人11.为奖励消防演练活动中表现优异的同学,某校决定用1 200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A .4种B .3种C .2种D .1种12.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于几个正方体的重量( )A .2B .3C .4D .5二、填空题(每小题3分,共18分)13.若(m -3)x +2y |m -2|+8=0是关于x ,y 的二元一次方程,则 .14.方程组s +2t 3=3s -t2=4的解为 .15.用加减消元法解方程组⎩⎨⎧3x +y =-1,①4x +2y =1,②由 得2x =-3.16.两位同学在解方程组时,甲同学由⎩⎪⎨⎪⎧ax +by =2,cx -7y =8正确地解出⎩⎨⎧x =3,y =-2,乙同学因把c 写错了,解得⎩⎨⎧x =-2,y =2,那么a ,b ,c 的正确的值应为 .17.为了合理利用电力资源,缓解用电紧张状况,我国电力部门出台了使用“峰谷电”的政策及收费标准(见下表).已知王老师家4月份使用“峰谷电”95千瓦时,缴电费43.40元,问王老师家4月份“峰电”和“谷电”各用了多少千瓦时?设王老师家4月份“峰电”用了x 千瓦时,“谷电”用了y 千瓦时,则x = ,y = .18.关于x ,y 的方程组⎩⎪⎨⎪⎧3x -ay =16,2x +by =15的解是⎩⎨⎧x =7,y =1,那么关于x ,y 的二元一次方程⎩⎪⎨⎪⎧3(x +y )-a (x -y )=16,2(x +y )+b (x -y )=15的解是 . 三、解答题(本大题共8小题,共66分)19.(6分)解下列方程组:(1)⎩⎪⎨⎪⎧y =2x -3,5x +y =11; (2)⎩⎪⎨⎪⎧3x -5y =3,x 2-y 3=1.20.(6分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧7x +9y =m ,3x -y +29=0的解也是2x +y =-6的解,求m 的值.21.(8分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =5,4ax +5by =-22与⎩⎪⎨⎪⎧2x -y =1,ax -by -8=0有相同的解,求a ,b的值.22.(8分)在平面直角坐标系中,O 为坐标原点,点A 的坐标为(a ,-a ),点B 的坐标为(b ,c ),a ,b ,c 满足⎩⎪⎨⎪⎧3a -b +2c =8,a -2b -c =-4.(1)若a 没有平方根,判断A 在第几象限并说明理由;(2)若点A 到x 轴的距离是点B 到x 轴距离的3倍,求点B 的坐标.23.(8分)已知⎩⎪⎨⎪⎧4x -3y -6z =0,2x +4y -14z =0(x ,y ,z ≠0),求2x 2+3y 2+6z 2x 2+5y 2+7z 2的值.24.(10分)小王购买了一套房子,现准备将地面铺上地砖,地面结构如图所示,根据图中的数据(单位:m),解答下列问题.(1)用含x ,y 的代数式表示地面总面积; (2)已知客厅面积比卫生间面积多21 m 2,且地面总面积是卫生间面积的15倍.若铺1 m 2地砖的平均费用为80元,那么铺地砖的总费用为多少元?25.(10分)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5 200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?26.(10分)某景点的门票价格如下表:某校七年级,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1 118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班分别节约了多少钱?参考答案一、选择题(每小题3分,共36分)1.将方程2x -y =3写成用含x 的式子表示y 的形式,正确的是(B )A .x =y 2+32B .y =2x -3C .y =-2x +3D .y =-2x -32.下列各组数是二元一次方程⎩⎪⎨⎪⎧x +3y =7,y -x =1的解的是(A )A.⎩⎪⎨⎪⎧x =1,y =2B.⎩⎪⎨⎪⎧x =0,y =1C.⎩⎪⎨⎪⎧x =7,y =0D.⎩⎪⎨⎪⎧x =1,y =-2 3.已知四个方程组:①⎩⎪⎨⎪⎧5x -2y =-3,5x +3y =4;②⎩⎪⎨⎪⎧y =3-2x ,x -2y =-1;③⎩⎪⎨⎪⎧2x +3y =1,5x -6y =-12;④⎩⎪⎨⎪⎧x 3+2y 7=1,5x -6y =3,合理简便的消元方法是(A ) A .①③④用加减消元法,②用代入消元法 B .①②用加减消元法,③④用代入消元法 C .③④用加减消元法,①②用代入消元法 D .②用加减消元法,①③④用代入消元法4.若⎩⎪⎨⎪⎧x =9y =2是方程组⎩⎪⎨⎪⎧4x -7y =a +b ,3x -y =a -b 的解,则a ,b 的值是(C )A.⎩⎨⎧a =812,b =14B.⎩⎪⎨⎪⎧a =3,b =-17C.⎩⎨⎧a =472,b =-32D.⎩⎪⎨⎪⎧a =5,b =-195.如果|x +y -1|和2(2x +y -3)2互为相反数,那么x ,y 的值为(C )A.⎩⎪⎨⎪⎧x =1,y =2B.⎩⎪⎨⎪⎧x =-1,y =-2C.⎩⎪⎨⎪⎧x =2,y =-1D.⎩⎪⎨⎪⎧x =-2,y =-1 6.由方程组⎩⎪⎨⎪⎧x -y =2,y -z =3,z +x =5可求出xyz -20的值为(D )A .0B .20C .-35D .-207.由方程组⎩⎪⎨⎪⎧2x +m =1,y -3=m 可得出x 与y 的关系是(A )A .2x +y =4B .2x -y =4C .2x +y =-4D .2x -y =-48.为了绿化校园,某校30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,若设男生有x 人,女生有y 人,根据题意,所列方程组正确的是(D )A.⎩⎪⎨⎪⎧x +y =78,3x +2y =30B.⎩⎪⎨⎪⎧x +y =78,2x +3y =30C.⎩⎪⎨⎪⎧x +y =30,2x +3y =78D.⎩⎪⎨⎪⎧x +y =30,3x +2y =78 9.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为(B )A .19B .18C .16D .1510.桂花村派男女村民共15人到村外采购建房所需的水泥,已知男村民一人挑两包,女村民两人抬一包,共购回15包,那么这次采购派男女村民的人数为(B )A .男村民3人,女村民12人B .男村民5人,女村民10人C .男村民6人,女村民9人D .男村民7人,女村民8人11.(龙东中考)为奖励消防演练活动中表现优异的同学,某校决定用1 200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有(A )A .4种B .3种C .2种D .1种12.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于几个正方体的重量(D )A .2B .3C .4D .5二、填空题(每小题3分,共18分)13.若(m -3)x +2y |m -2|+8=0是关于x ,y 的二元一次方程,则m =1.14.方程组s +2t 3=3s -t2=4的解为⎩⎪⎨⎪⎧s =4,t =4.15.用加减消元法解方程组⎩⎨⎧3x +y =-1,①4x +2y =1,②由①×2-②得2x =-3.16.两位同学在解方程组时,甲同学由⎩⎪⎨⎪⎧ax +by =2,cx -7y =8正确地解出⎩⎨⎧x =3,y =-2,乙同学因把c 写错了,解得⎩⎨⎧x =-2,y =2,那么a ,b ,c 的正确的值应为4,5,-2.17.为了合理利用电力资源,缓解用电紧张状况,我国电力部门出台了使用“峰谷电”的政策及收费标准(见下表).已知王老师家4月份使用“峰谷电”95千瓦时,缴电费43.40元,问王老师家4月份“峰电”和“谷电”各用了多少千瓦时?设王老师家4月份“峰电”用了x 千瓦时,“谷电”用了y 千瓦时,则x =60,y =35.用电时间段 收费标准 峰电 08:00—22:00 0.56元/千瓦时 谷电22:00—08:000.28元/千瓦时18.关于x ,y 的方程组⎩⎪⎨⎪⎧3x -ay =16,2x +by =15的解是⎩⎨⎧x =7,y =1,那么关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3(x +y )-a (x -y )=16,2(x +y )+b (x -y )=15的解是⎩⎪⎨⎪⎧x =4,y =3. 三、解答题(本大题共8小题,共66分)19.(6分)解下列方程组:(1)⎩⎪⎨⎪⎧y =2x -3,5x +y =11; 解:方程组的解为⎩⎪⎨⎪⎧x =2,y =1. (2)⎩⎪⎨⎪⎧3x -5y =3,x 2-y 3=1.解:方程组的解为⎩⎪⎨⎪⎧x =83,y =1.20.(6分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧7x +9y =m ,3x -y +29=0的解也是2x +y =-6的解,求m 的值.解:解方程组⎩⎨⎧3x -y =-29,2x +y =-6,得⎩⎪⎨⎪⎧x =-7,y =8.再把⎩⎪⎨⎪⎧x =-7,y =8代入方程7x +9y =m 中,得-49+72=m ,∴m =23.21.(8分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =5,4ax +5by =-22与⎩⎪⎨⎪⎧2x -y =1,ax -by -8=0有相同的解,求a ,b的值.解:由题意得,可将x +y =5与2x -y =1组成方程组⎩⎪⎨⎪⎧x +y =5,2x -y =1.解得⎩⎨⎧x =2,y =3,把⎩⎪⎨⎪⎧x =2,y =3代入4ax +5by =-22,得8a +15b =-22①,把⎩⎪⎨⎪⎧x =2,y =3代入ax -by -8=0得2a -3b -8=0②,①与②组成方程组,得⎩⎨⎧8a +15b =-22,2a -3b -8=0,解得⎩⎪⎨⎪⎧a =1,b =-2.22.(8分)在平面直角坐标系中,O 为坐标原点,点A 的坐标为(a ,-a ),点B 的坐标为(b ,c ),a ,b ,c 满足⎩⎪⎨⎪⎧3a -b +2c =8,a -2b -c =-4.(1)若a 没有平方根,判断A 在第几象限并说明理由;(2)若点A 到x 轴的距离是点B 到x 轴距离的3倍,求点B 的坐标. 解:(1)第二象限.理由:∵a 没有平方根,∴a < 0,-a > 0, ∴点A 在第二象限;(2)由题意可知|a |=3|c |.解方程⎩⎪⎨⎪⎧3a -b +2c =8,a -2b -c =-4得⎩⎪⎨⎪⎧a =b ,c =4-b .则|b |=3|4-b |,解得b =3或6.当b =3时,c =1;当b =6时c =-2.∴点B 的坐标为(3,1)或(6,-2).23.(8分)已知⎩⎪⎨⎪⎧4x -3y -6z =0,2x +4y -14z =0(x ,y ,z ≠0),求2x 2+3y 2+6z 2x 2+5y 2+7z 2的值. 解:把z 看成常数,解关于x ,y 的方程组⎩⎨⎧4x -3y -6z =0,2x +4y -14z =0,得⎩⎪⎨⎪⎧x =3z ,y =2z . 所以2x 2+3y 2+6z 2x 2+5y 2+7z 2=2(3z )2+3(2z )2+6z 2(3z )2+5(2z )2+7z 2=1.24.(10分)小王购买了一套房子,现准备将地面铺上地砖,地面结构如图所示,根据图中的数据(单位:m),解答下列问题.(1)用含x ,y 的代数式表示地面总面积; (2)已知客厅面积比卫生间面积多21 m 2,且地面总面积是卫生间面积的15倍.若铺1 m 2地砖的平均费用为80元,那么铺地砖的总费用为多少元?解:(1)(6x +2y +18)m 2.(2)由题意得⎩⎪⎨⎪⎧6x -2y =21,6x +2y +18=15× 2y .解得⎩⎪⎨⎪⎧x =4,y =32.∴地面的总面积为6x +2y +18=45 m 2.∴铺地砖的总费用为45× 80=3600元.答:铺地砖的总费用为3 600元.25.(10分)(长沙中考)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5 200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?解:(1)设打折前甲品牌粽子每盒x 元,乙品牌粽子每盒y 元,根据题意得⎩⎨⎧6x +3y =600,50×0.8x +40×0.75y =5 200,解得⎩⎪⎨⎪⎧x =40,y =120. 答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元. (2)80×40+100×120-80×0.8×40-100×0.75×120=3 640元.答:打折后购买这批粽子比不打折节省了3 640元.26.(10分)某景点的门票价格如下表:购票人数/人 1-50 51-100 100以上每人门票价/元12108某校七年级,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1 118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班分别节约了多少钱?解:(1)设七年级(1)班有x 人,(2)班有y 人.若50<x +y ≤100,则x +y =816÷10=81.6,因为人数不能为小数,所以x +y >100,依题意,得⎩⎨⎧12x +10y =1 118,8(x +y )=816,解之得⎩⎪⎨⎪⎧x =49,y =53. 答:七年级(1)班有49人,(2)班有53人.(2)七年级(1)班节省的费用为(12-8)×49=196元,七年级(2)班节省的费用为(10-8)×53=106元.答:两个班分别节约了196元和106元.。
2023-2024学年人教版数学七年级下册第八章 二元一次方程组 单元测试(含答案)
1 10
ö2024 b÷÷ø
的值. 22.下面是小莹同学解二元一次方程组的过程,请认真阅读并完成相应任务.
2x 4 y 3① 解方程组 4……第一步
② ③,得 3y 6 .
…………………………第二步
解得 y 2 .
是
.
15.若关于
x,y
的方程组
x y 3x 5y
c1
c2
的解为
x
y
5 6
,则方程组
x 3
1 y 1 c1 x 1 5 y 1
c2
的解
为. 16.A,B 两地相距 80 千米,一船从 A 出发顺水行驶 4 小时到达 B,而从 B 出发逆水行驶 5 小时才能到达 A,则船在静水中的航行速度是 千米/时. 17.甲对乙说:“我像你这样大岁数的那年,你的岁数等于我今年的岁数的一半;当你到我 这样大岁数的时候,我的岁数是你今年岁数的二倍少 7 岁.”则今年甲的年龄为 岁, 乙 的年龄为 岁.
(1)1 辆 A 型车和 1 辆 B 型车都载满荔枝一次可分别运送多少吨? (2)请你帮该物流公司设计租车方案. 26.春节前夕,某商场用 14900 元购进矿泉水和无糖茶共 500 箱,它们的成本价与销售价如 下表所示:
类别 成本价/(元/箱) 销售价/(元/箱)
矿泉水
25
36
无糖茶
35
50
(1)商场这次购进矿泉水和无糖茶各多少箱? (2)该商场售完这 500 箱矿泉水和无糖茶,可获利多少元? 27.长江是我们的母亲河,金港新区为了打造沿江风景,吸引游客搞活经济,将一段长为 180 米的沿江河道整治任务交由 A、B 两工程队先后接力完成.A 工作队每天整治 12 米,B 工程 队每天整治 8 米,共用时 20 天.求 A、B 两工程队分别整治河道多少米? ⑴根据题意,七⑴班甲同学列出尚不完整的方程组如下.根据甲同学所列的方程组,请你分 别指出未知数 x、y 表示的意义,然后在方框中补全甲同学所列的方程组; x y 12x 8y ,x 表示________________________,y 表示_________________________;
人教版七年级数学下册第八章测试题(附答案)
人教版七年级数学下册第八章测试题(附答案)学校:___________姓名:___________班级:___________考号:___________评卷人 得分一、选择题 1.若532+y x b a 与xy b a2425-是同类项,则( ) A .x=1,y=2 B .x=3,y=-1C .x=0,y=2D .x=2,y=-12.若x m ﹣n ﹣2y m+n ﹣2=2007,是关于x ,y 的二元一次方程,则m ,n 的值分别是( )A .m=1,n=0B .m=0,n=1C .m=2,n=1D .m=2,n=33.我国古代数学名著《孙子算经》中记载了一道题,大意是:求100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .B .C .D .4.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人.下面所列的方程组正确的是( )A .3412x y x y +=⎧⎨+=⎩B .3421x y x y +=⎧⎨=+⎩C .3421x y x y +=⎧⎨=+⎩D .23421x y x y +=⎧⎨=+⎩5.宜宾市某化工厂,现有A 种原料52千克,B 种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A 种原料3千克,B 种原料2千克;生产1件乙种产品需要A 种原料2千克,B 种原料4千克,则生产方案的种数为( )A .4B .5C .6D .76.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2011个格子中的数为( )3 a b c ﹣12 …A .3B .2C .0D .﹣17.一元一次方程组3227x y x y +=⎧⎨-=⎩的解的情况是( ) A .51x y =⎧⎨=-⎩ B .82x y =⎧⎨=-⎩ C .91x y =⎧⎨=⎩ D .32x y =⎧⎨=-⎩8.已知二元一次方程2x ﹣7y=5,用含x 的代数式表示y ,正确的是( )A .B .C .D .9.若实数x 、y 满足x ﹣2y=4,2x ﹣y=3,则x+y 的值是( )A .﹣1B .0C .1D .210.一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组( )A .5414825100x y x y +=⎧⎨+=⎩B .4514825100x y x y +=⎧⎨+=⎩C .5414852100x y x y +=⎧⎨+=⎩D .4514852100x y x y +=⎧⎨+=⎩11. 若方程组4314(1)6x y kx k y +=⎧⎨+-=⎩的解中x 与y 的值相等,则k 为( ) A.4 B.3 C.2 D.112.已知方程组2425x y x y +=⎧⎨+=⎩,则x y +的值为( ) A .1- B .0 C .2 D .3评卷人得分 二、填空题13.已知是二元一次方程组的解,则m+3n 的立方根为________. 14.7x+2y=11的正整数解是 .15.已知,那么x+y 的值为 ,x ﹣y 的值为 .16.学校的篮球比足球数的2倍少3个,篮球数与足球数的比为3:2。
人教版七年级数学下册第8章 二元一次方程组(B卷及答案).doc
整列火车完全在桥上的时间共 40s.求火车的速度和长度.
(1)写出题目中的两个等量关系;
(2)给出上述问题的完整解答过程.
26.(8 分)某景点的门票价格规定如下表
购票人数
1—50 人
51—100 人
100 人以上
每人门票价
12 元
10 元
8元
某校八年(一)、(二)两班共 100 多人去游览该景点,其中(一)班不足 50 人,(二)班多于 50 人,如果
8.有一个两位数,减去它各位数字之和的 3 倍,值为 23,除以它各位数 字之和商是 5,余数是 1,则这样
的两位数( )
A. 不存在 B. 是唯一的 C. 有两个 D. 有无数解
9.二元一次方程
中非负整数解的个数是(
)
A. 1 个 B. 2 个 C. 3 个 D. 4 个
10.已知 关于 , 的方程组
15.某班去看演出,甲种票每张 24 元,乙种票每张 18 元,如果 35 名学生购票恰好用去 750 元,那么甲种
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】
8
票买了____张,乙种票买了____张. 【答案】 20 15
xm 16.已知{
xn 和{
是方程 2x-3y=1 的解,则代数式 2m 6 的值为______.
yn ym
3n 5
【答案】1
【解析】将{x m
和{ x n
代入方程 2x﹣3y=1,得:
2m 3n 1 {
,解得:
m 1 {
,则
yn ym
2n 3m 1
n 1
2m 6 2 6 =1.故答案为:1. 3n 5 3 5
人教版七年级下册数学第八章测试卷附答案
第八章-二元一次方程组一、单选题1.一个两位数,十位数字与个位数字和为6,这样的两位数中,是正整数的有()A. 6个B. 5个 C. 3个 D. 无数个2.下列各组数中①;②;③;④是方程的解的有( )A. 1个 B. 2 C. 3 个D. 4个3.下列方程中,是二元一次方程的是()A. -y=6B. +=1C. 3x-y2=0D. 4xy=34.二元一次方程组的解为()A. B.C. D.5.已知方程组,则x﹣y的值为()A. -1B. 0C. 2D. 36.购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支,作业本5本,圆珠笔2支共需()A. 4.5元B. 5元 C. 6元 D. 6.5元7.下列方程组中,是二元一次方程组的是()A. B. C.D.8.笼中有x只鸡y只兔,共有36只脚,能表示题中数量关系的方程是()A. x+y=18B. x+y=36C.4x+2y=36 D. 2x+4y=369.二元一次方程x+2y=5在实数范围内的解()A. 只有1个B. 只有2个 C. 只有3个 D. 有无数个二、填空题10.请写出一个你所喜欢的二元一次方程组________11.若+(2a+3b﹣13)2=0,则a+b= ________.12.已知,则a+b等于________.13.若关于x、y的二元一次方程组的解满足x+y=1,则a的值为________.14.请构造一个二元一次方程组,使它的解为.这个方程组是________.15.已知|x﹣y+2|+(2x+y+4)2=0.则x y=________.16.将方程5x﹣y=1变形成用含x的代数式表示y,则y=________.17.方程组的解是________.三、计算题18.解方程组:.19.解下列二元一次方程组:(1)(2)20.解下列方程组:(1)(2)四、综合题21.已知y=kx+b,当x=1时,y=﹣2;当x=﹣1时,y=4.(1)求k、b的值;(2)当x取何值时,y的值小于10?答案一、单选题1.【答案】 A【解析】【解答】解:设两位数的个位数为x,十位为y,根据题意得:x+y=6,∵xy都是整数,∴当x=0时,y=6,两位数为60;当x=1时,y=5,两位数为51;当x=2时,y=4,两位数为42;当x=3时,y=3,两位数为33;当x=4时,y=2,两位数为24;当x=5时,y=1,两位数为15;则此两位数可以为:60、51、42、33、24、15,共6个,故选:A.【分析】可以设两位数的个位数为x,十位为y,根据两数之和为6,且xy为整数,分别讨论两未知数的取值即可.注意不要漏解.2.【答案】 B【解析】【解答】解:把①代入得左边=10=右边;把②代入得左边=9≠10;把③代入得左边=6≠10;把④代入得左边=10=右边;所以方程的解有①④2个.故答案为:B【分析】能使二元一次方程的左边和右边相等的未知数的值就是二元一次方程的解,二元一次方程有无数个解,根据定义将每一对x,y的值分别代入方程的左边算出答案再与右边的10比较,若果相等,x,y的值就是该方程的解,反之就不是该方程的解。
新编人教版七年级数学下第八单元练习题与答案
初一数学下第8章《二元一次方程组》试题及答案§8.1二元一次方程组一、填空题1、二元一次方程4x-3y=12,当x=0,1,2,3时,y=____2、在x+3y=3中,若用x 表示y ,则y= ,用y 表示x ,则x=3、已知方程(k 2-1)x 2+(k+1)x+(k-7)y=k+2,当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程。
4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=____;当y=0时,则x=____。
5、方程2x+y=5的正整数解是______。
6、若(4x-3)2+|2y+1|=0,则x+2= 。
7、方程组⎩⎨⎧==+b xy a y x 的一个解为⎩⎨⎧==32y x ,那么这个方程组的另一个解是 。
8、若21=x 时,关于y x 、的二元一次方程组⎩⎨⎧=-=-212by x y ax 的解互为倒数,则=-b a 2 。
二、选择题1、方程2x-3y=5,xy=3,33=+yx ,3x-y+2z=0,62=+y x 中是二元一次方程的有( )个。
A、1 B、2 C、3 D、42、方程2x+y=9在正整数范围内的解有( ) A 、1个 B 、2个 C 、3个 D 、4个3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )A 、10x+2y=4B 、4x-y=7C 、20x-4y=3D 、15x-3y=64、若是m y x 25与2214-++n m n y x 同类项,则n m -2的值为 ( )A 、1 B 、-1 C 、-3 D 、以上答案都不对5、在方程(k 2-4)x 2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k 值为( )A 、2B 、-2C 、2或-2D 、以上答案都不对.6、若⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是( )A 、⎩⎨⎧=+=-5253y x y x B 、⎩⎨⎧=--=523x y x y C 、⎩⎨⎧=+=-152y x y x D 、⎩⎨⎧+==132y x y x 7、在方程3)(3)(2=--+x y y x 中,用含x 的代数式表示y ,则 ( )A 、35-=x yB 、3--=x yC 、35+=x yD 、35--=x y8、已知x=3-k,y=k+2,则y与x的关系是( )A、x+y=5 B、x+y=1 C、x-y=1 D、y=x-19、下列说法正确的是( )A、二元一次方程只有一个解B、二元一次方程组有无数个解C、二元一次方程组的解必是它所含的二元一次方程的解D、三元一次方程组一定由三个三元一次方程组成10、若方程组⎩⎨⎧=+=+16156653y x y x 的解也是方程3x+ky=10的解,则k的值是( ) A、k=6 = B、k=10 C、k=9 D、k=101 三、解答题1、解关于x 的方程)1(2)4)(1(+-=--x a x a a2、已知方程组⎩⎨⎧=+=+c y ax y x 27,试确定c a 、的值,使方程组: (1)有一个解; (2)有无数解; (3)没有解3、关于y x 、的方程3623-=+k y kx ,对于任何k 的值都有相同的解,试求它的解。
人教版七年级数学下册第8章测试卷及答案 (1).doc
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】人教版数学七年级第八章单元测试卷一、选择题:(每小题3分,共24分)1.(3分)下列方程中,是二元一次方程的是()A.3x﹣2y=4z B.6xy+9=0 C.+4y=6 D.4x=2.(3分)下列方程组中,是二元一次方程组的是()A.B.C.D.3.(3分)二元一次方程5a﹣11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解4.(3分)方程的公共解是()A.B.C.D.5.(3分)若方程组的解x、y的值相等,则a的值为()A.﹣4 B.4 C.2 D.16.(3分)若实数满足(x+y+2)(x+y﹣1)=0,则x+y的值为()A.1 B.﹣2 C.2或﹣1 D.﹣2或17.(3分)方程组的解是()A.B.C.D.8.(3分)某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,则下面所列的方程组中符合题意的有()A.B.C.D.二、填空题(每空2分,共24分)9.(4分)已知方程2x+3y﹣4=0,用含x的代数式表示y为:y=;用含y 的代数式表示x为:x=.10.(4分)在二元一次方程﹣x+3y=2中,当x=4时,y=;当y=﹣1时,x=.11.(4分)若x3m﹣3﹣2y n﹣1=5是二元一次方程,则m=,n=.12.(2分)已知是方程x﹣ky=1的解,那么k=.13.(2分)已知|x﹣1|+(2y+1)2=0,且2x﹣ky=4,则k=.14.(2分)二元一次方程x+y=5的正整数解有.15.(2分)以为解的一个二元一次方程是.16.(4分)已知是方程组的解,则m=,n=.三、解方程组(每小题8分,共16分)17.(8分)(1)(用加减消元法)(2)(用代入消元法)18.(8分)(1)(2).四、解答题(本题共个6小题,每题6分,共36分)19.(6分)当y=﹣3时,二元一次方程3x+5y=﹣3和3y﹣2ax=a+2(关于x,y 的方程)有相同的解,求a的值.20.(6分)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?21.(6分)将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只.问有笼多少个?有鸡多少只?22.(6分)甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,两人的平均速度各是多少?23.(6分)有大、小两种货车,2辆大车与3辆小车一次可以运货15.5吨;5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?24.(6分)(开放题)是否存在整数m,使关于x的方程2x+9=2﹣(m﹣2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?参考答案与试题解析一、选择题:(每小题3分,共24分)1.(3分)下列方程中,是二元一次方程的是()A.3x﹣2y=4z B.6xy+9=0 C.+4y=6 D.4x=【考点】91:二元一次方程的定义.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.【解答】解:A、3x﹣2y=4z,不是二元一次方程,因为含有3个未知数;B、6xy+9=0,不是二元一次方程,因为其最高次数为2;C、+4y=6,不是二元一次方程,因为不是整式方程;D、4x=,是二元一次方程.故本题选D.【点评】二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.2.(3分)下列方程组中,是二元一次方程组的是()A.B.C.D.【考点】96:二元一次方程组的定义.【分析】二元一次方程的定义:含有两个未知数,并且未知数的项的最高次数是1的方程叫二元一次方程.二元一次方程组的定义:由两个二元一次方程组成的方程组叫二元一次方程组.【解答】解:根据定义可以判断A、满足要求;B、有a,b,c,是三元方程;C、有x2,是二次方程;D、有x2,是二次方程.故选A.【点评】二元一次方程组的三个必需条件:(1)含有两个未知数;(2)每个含未知数的项次数为1;(3)每个方程都是整式方程.3.(3分)二元一次方程5a﹣11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解【考点】92:二元一次方程的解.【分析】对于二元一次方程,可以用其中一个未知数表示另一个未知数,给定其中一个未知数的值,即可求得其对应值.【解答】解:二元一次方程5a﹣11b=21,变形为a=,给定b一个值,则对应得到a的值,即该方程有无数个解.故选B.【点评】本题考查的是二元一次方程的解的意义,当不加限制条件时,一个二元一次方程有无数个解.4.(3分)方程的公共解是()A.B.C.D.【考点】88:同解方程;97:二元一次方程组的解.【专题】11 :计算题.【分析】此题要求公共解,实质上是解二元一次方程组.【解答】解:把方程y=1﹣x代入3x+2y=5,得3x+2(1﹣x)=5,x=3.把x=3代入方程y=1﹣x,得y=﹣2.故选C.【点评】这类题目的解题关键是掌握方程组解法,此题运用了代入消元法.5.(3分)若方程组的解x、y的值相等,则a的值为()A.﹣4 B.4 C.2 D.1【考点】9C:解三元一次方程组.【分析】根据题意可得x=y,将此方程和原方程组联立,组成三元一次方程组进行求解,即可求出x,y,a的值.【解答】解:由题意可得方程x=y,将此方程代入原方程组的第二个方程得:4x+3x=14,则x=y=2;然后代入第一个方程得:2a+2(a﹣1)=6;解得:a=2.故选C.【点评】本题关键在于根据题意等出第三个方程,此方程和原方程组的第二个方程可得出x,y的值,将x,y的值代入第一个方程即可得出a值.6.(3分)若实数满足(x+y+2)(x+y﹣1)=0,则x+y的值为()A.1 B.﹣2 C.2或﹣1 D.﹣2或1【考点】98:解二元一次方程组.【专题】36 :整体思想.【分析】其根据是,若ab=0,则a、b中至少有一个为0.【解答】解:因为(x+y+2)(x+y﹣1)=0,所以(x+y+2)=0,或(x+y﹣1)=0.即x+y=﹣2或x+y=1.故选D.【点评】本题需要将(x+y)看做一个整体来解答.其根据是,若ab=0,则a、b 中至少有一个为0.7.(3分)方程组的解是()A.B.C.D.【考点】98:解二元一次方程组.【专题】11 :计算题.【分析】解决本题关键是寻找式子间的关系,寻找方法降元,观察发现两式中y 的系数互为相反数,所以可以直接将两式相加去y,解出x的值,将x的值代入①式中求出y的值.【解答】解:将①式与②相加得,3x=6解得,x=2,将其代入①式中得,y=1,此方程组的解是:故选A.【点评】本题考查的是二元一次方程的解法之一:把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求得未知数的值,将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数.8.(3分)某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,则下面所列的方程组中符合题意的有()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】此题中的等量关系有:①某年级学生共有246人,则x+y=246;②男生人数y比女生人数x的2倍少2人,则2x=y+2【解答】解:根据某年级学生共有246人,则x+y=246;②男生人数y比女生人数x的2倍少2人,则2x=y+2.可列方程组为.故选B.【点评】找准等量关系是解决应用题的关键,注意代数式的正确书写,字母要写在数字的前面.二、填空题(每空2分,共24分)9.(4分)已知方程2x+3y﹣4=0,用含x的代数式表示y为:y=;用含y的代数式表示x为:x=.【考点】解二元一次方程.【分析】把方程2x+3y﹣4=0写成用含x的式子表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后系数化1就可用含x的式子表示y 的形式:y=;写成用含y的式子表示x的形式,需要把含有x的项移到等号一边,其他的项移到另一边,然后系数化1就可用y的式子表示x的形式:x=.【解答】解:(1)移项得:3y=4﹣2x,系数化为1得:y=;(2)移项得:2x=4﹣3y,系数化为1得:x=.【点评】本题考查的是方程的基本运算技能,移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的一边,其他的项移到另一边,然后合并同类项、系数化1就可用含x的式子表示y的形式或用含y的式子表示x的形式.10.(4分)在二元一次方程﹣x+3y=2中,当x=4时,y=;当y=﹣1时,x=﹣10.【考点】93:解二元一次方程.【分析】本题只需把x或y的值代入解一元一次方程即可.【解答】解:把x=4代入方程,得﹣2+3y=2,解得y=;把y=﹣1代入方程,得﹣x﹣3=2,解得x=﹣10.【点评】本题关键是将二元一次方程转化为关于y的一元一次方程来解答.二元一次方程有无数组解,当一个未知数的值确定时,即可求出另一个未知数的值.11.(4分)若x3m﹣3﹣2y n﹣1=5是二元一次方程,则m=,n=2.【考点】91:二元一次方程的定义.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面考虑,求常数m、n的值.【解答】解:因为x3m﹣3﹣2y n﹣1=5是二元一次方程,则3m﹣3=1,且n﹣1=1,∴m=,n=2.故答案为:,2.【点评】二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.12.(2分)已知是方程x﹣ky=1的解,那么k=﹣1.【考点】92:二元一次方程的解.【分析】知道了方程的解,可以把这组解代入方程,得到一个含有未知数k的一元一次方程,从而可以求出k的值.【解答】解:把代入方程x﹣ky=1中,得﹣2﹣3k=1,则k=﹣1.【点评】解题关键是把方程的解代入原方程,使原方程转化为以系数k为未知数的方程.13.(2分)已知|x﹣1|+(2y+1)2=0,且2x﹣ky=4,则k=4.【考点】1F:非负数的性质:偶次方;16:非负数的性质:绝对值.【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x、y的值,再代入所求代数式计算即可.【解答】解:由已知得x﹣1=0,2y+1=0.∴x=1,y=﹣,把代入方程2x﹣ky=4中,2+k=4,∴k=4.【点评】本题考查了非负数的性质.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.14.(2分)二元一次方程x+y=5的正整数解有解:.【考点】93:解二元一次方程.【专题】11 :计算题.【分析】令x=1,2,3…,再计算出y的值,以不出现0和负数为原则.【解答】解:令x=1,2,3,4,则有y=4,3,2,1.正整数解为.故答案为:.【点评】本题考查了解二元一次方程,要知道二元一次方程的解有无数个.15.(2分)以为解的一个二元一次方程是x+y=12.【考点】92:二元一次方程的解.【专题】26 :开放型.【分析】利用方程的解构造一个等式,然后将数值换成未知数即可.【解答】解:例如1×5+1×7=12;将数字换为未知数,得x+y=12.答案不唯一.【点评】此题是解二元一次方程的逆过程,是结论开放性题目.二元一次方程是不定个方程,一个二元一次方程可以有无数组解,一组解也可以构造无数个二元一次方程.不定方程的定义:所谓不定方程是指解的范围为整数、正整数、有理数或代数整数的方程或方程组,其未知数的个数通常多于方程的个数.16.(4分)已知是方程组的解,则m=1,n=4.【考点】97:二元一次方程组的解.【分析】所谓“方程组”的解,指的是该数值满足方程组中的每一方程.在求解时,可以将代入方程组得到m和n的关系式,然后求出m,n的值.【解答】解:将代入方程组,得,解得.【点评】此题比较简单,解答此题的关键是把x,y的值代入方程组,得到关于m,n的方程组,再求解即可.三、解方程组(每小题8分,共16分)17.(8分)(1)(用加减消元法)(2)(用代入消元法)【考点】98:解二元一次方程组.【专题】11 :计算题.【分析】(1)方程组整理后,两方程相加消去y求出x的值,进而求出y的值,即可确定出方程组的解;(2)由第一个方程表示出x,代入第二个方程消去x求出y的值,进而求出x 的值,即可确定出方程组的解.【解答】解:(1)方程组整理得:,①+②得:2x=0,即x=0,将x=0代入②得:y=1,则方程组的解为;(2),由①得:x=25﹣y,代入②得:50﹣2y﹣y=8,即y=14,将y=14代入得:x=25﹣14=11,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(8分)(1)(2).【考点】98:解二元一次方程组.【专题】11 :计算题.【分析】(1)方程组整理后,利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)方程组整理得:,②﹣①得:10y=20,即y=2,将y=2代入①得:x=5.5,则方程组的解为;(2)方程组整理得:,②×3﹣①×2得:x=4,将x=4代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.四、解答题(本题共个6小题,每题6分,共36分)19.(6分)当y=﹣3时,二元一次方程3x+5y=﹣3和3y﹣2ax=a+2(关于x,y 的方程)有相同的解,求a的值.【考点】98:解二元一次方程组.【分析】首先把y=﹣3代入3x+5y=﹣3中,可解得x的值,再把x,y的值代入3y﹣2ax=a+2中便可求出a的值.【解答】解:当y=﹣3时,3x+5×(﹣3)=﹣3,解得:x=4,把y=﹣3,x=4代入3y﹣2ax=a+2中得,3×(﹣3)﹣2a×4=a+2,解得:a=﹣.【点评】此题主要考查了二元一次方程的解的问题,把握住方程的解的定义是解题的关键.20.(6分)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?【考点】9A:二元一次方程组的应用.【分析】设0.8元的邮票买了x枚,2元的邮票买了y枚,根据购买邮票13枚,共花去20元钱,可列方程组求解.【解答】解:设0.8元的邮票买了x枚,2元的邮票买了y枚,根据题意得,解得,买0.8元的邮票5枚,买2元的邮票8枚.【点评】本题考查理解题意的能力,关键是找到枚数和钱数做为等量关系,可列方程组求解.21.(6分)将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只.问有笼多少个?有鸡多少只?【考点】CE:一元一次不等式组的应用.【专题】12 :应用题.【分析】设笼有x个,那么鸡就有(4x+1)只,根据若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只,可列出不等式求解.【解答】解:设笼有x个.,解得:8<x<11x=9时,4×9+1=37x=10时,4×10+1=41(舍去).故笼有9个,鸡有37只.【点评】本题考查理解题意能力,关键是看到将不足40只鸡放入若干个笼中,最后答案不符合的舍去.22.(6分)甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,两人的平均速度各是多少?【考点】B7:分式方程的应用.【分析】设甲的速度是x千米/时,乙的速度是y千米/时,根据甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,可列方程组求解.【解答】解:设甲的速度是x千米/小时,乙的速度是y千米/小时,,.故甲的速度是4千米/时,乙的速度是2千米/时.【点评】本题考查理解题意的能力,有两种情景,一种是相遇,一种是追及,根据两种情况列出方程组求解.23.(6分)有大、小两种货车,2辆大车与3辆小车一次可以运货15.5吨;5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?【考点】9A:二元一次方程组的应用.【专题】12 :应用题.【分析】本题等量关系比较明显:2辆大车运载吨数+3辆小车运载吨数=15.5;5辆大车运载吨数+6辆小车运载吨数=35.算出1辆大车与1辆小车一次可以运货多少吨后,再算3辆大车与5辆小车一次可以运货多少吨.【解答】解:设大货车每辆装x吨,小货车每辆装y吨根据题意列出方程组为:解这个方程组得所以3x+5y=24.5.答:3辆大车与5辆小车一次可以运货24.5吨.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题应注意不能设直接未知数,应先算出1辆大车与1辆小车一次可以运货多少吨后再进行计算.24.(6分)(开放题)是否存在整数m,使关于x的方程2x+9=2﹣(m﹣2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?【考点】93:解二元一次方程.【专题】26 :开放型.【分析】要求关于x的方程2x+9=2﹣(m﹣2)x在整数范围内有解,首先要解这个方程,其解x=,根据题意的要求让其为整数,故m的值只能为±1,±7.【解答】解:存在,四组.∵原方程可变形为﹣mx=7,∴当m=1时,x=﹣7;m=﹣1时,x=7;m=7时,x=﹣1;m=﹣7时,x=1.【点评】此题只需把m当成字母已知数求解,然后根据条件的限制进行分析求解.。
人教版七年级数学下册第八章二元一次方程组达标测试卷带参考答案和解析
人教版七年级数学下册第八章二元一次方程组达标测试卷带参考答案和解析选择题将方程2x+y=3写成用含x的式子表示y的形式,正确的是()A. y=2x-3B. y=3-2xC. x=D. x=【答案】B【解析】把x看做已知数求出y即可.解:2x+3=y,移项,得:y=3-2x.故选B.选择题方程2x-=0,3x+y=0,2x+xy=1,3x+y-2x=0,x2-x+1=0中,二元一次方程的个数是()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】由二元一次方程的定义“如果一个方程含有两个未知数,并且所含未知项的次数都为1次,那么这个整式方程就叫做二元一次方程”可知,是二元一次方程的有:3x+y=0和3x+y-2x=0,共2个.故选B.选择题用加减法解方程组,下列解法正确的是()A. ①×3+②×2,消去yB. ①×2-②×3,消去yC. ①×(-3)+②×2,消去xD. ①×2-②×3,消去x【答案】C【解析】用加减法解二元一次方程组时,必须使同一未知数的系数相等或者互为相反数.如果系数相等,那么相减消元;如果系数互为相反数,那么相加消元.解:A、①×3+②×2,不能消去y,故不正确;B、①×2-②×3,不能消去y,故不正确;C、①×(-3)+②×2,可消去x,故正确;D、①×2-②×3,不能消去x,故不正确.故选C.选择题已知是方程kx+y=3的一个解,那么k的值是()A.7 B.1 C.-1 D.-7【答案】C.【解析】试题解析:把代入方程kx+y=3中,得k+4=3,解得,k=-1,故选C.选择题已知二元一次方程2x+3y﹣2=0,当x,y的值互为相反数时,x、y的值分别为()A. 2,﹣2B. ﹣2,2C. 3,﹣3D. ﹣3,3【答案】B【解析】试题根据题意可得出方程组为:,解得:,故选B.选择题若和是二元一次方程mx+ny=6的两个解,则m,n的值分别为()A. 4,2B. 2,4C. -4,-2D. -2,-4【答案】A【解析】将x与y的两对值代入方程计算即可求出m与n的值.解:把和分别代入方程mx+ny=6中,得:解得:故选A.选择题已知-y2m-5xn+1与xm+2yn-2是同类项,则m-n等于()A. -1B. 1C. -7D. 7【答案】A【解析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出m、n的值,再代入m-n计算即可.解:由题意,得:解得:∴m-n=4-5=-1.故选A.选择题若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k 的取值为( )A. 3B. ﹣3C. ﹣4D. 4【答案】D【解析】先利用方程3x-y=7和2x+3y=1组成方程组,求出x、y,再代入y=kx-9求出k值.解:由题意,得:解得:将代入y=kx-9中,得:-1=2k-9,解得:k=4.故选D.选择题《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.B.C.D.【答案】D【解析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.设每枚黄金重x两,每枚白银重y两,由题意得:,故选:D.选择题小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A. 19B. 18C. 16D. 15【答案】B【解析】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据前两束气球的价格,即可得出关于x、y的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据题意得:,方程(①+②)÷2,得:2x+2y=18.故选:B.填空题已知(m-2)x|m|-1+3y=0是关于x,y的二元一次方程,则m =________.【答案】-2【解析】根据二元一次方程的定义解答即可.解:依题意可知|m|-1=1且m-2≠0,∴|m|=2,且m≠2,∴m=-2.故答案为:-2.填空题若关于x,y的方程组的解是,则|m+n|的值是________.【解析】将x=1,y=3代入方程组得:,解得:,则|m+n|=|−1−2|=|−3|=3.故答案为:3填空题试写出一个关于x,y的二元一次方程组,使它的解是,这个方程组可以是________________.【答案】(答案不唯一)【解析】根据方程组的解的定义,应满足所写方程组的每一个方程.解:∵x+y=-3+4=1,x+2y=-3+4×2=5,∴这个方程组可以是故答案为:(答案不唯一).填空题当a=________时,方程组的解也是x+y=1的一个解.【解析】将2x+y=3与x+y=1组成方程组求出x、y,再将x、y的值代入,即可求出a的值.解:由已知可得:-,得:x=2,把x=2代入,得:2+y=1,解得y=-1,∴把代入ax+2y=4-a,得:2a-2=4-a,解得:a=2.故答案为:2.填空题以二元一次方程组的解为坐标的点(x,y)在平面直角坐标系的第________象限.【答案】一【解析】先解方程组,求出方程组的解,即可得出点的坐标,再作出判断.解:①+②,得:4y=8,解得:y=2,将y=2代入②,得:2-x=1,解得x=1,∴点的坐标为(1,2),在第一象限.故答案为:一.填空题已知,则a-b的值为________.【答案】3【解析】分析题意,先根据加减消元法解二元一次方程组,将两个二元一次方程相加可得3a-3b=9,再对方程两边同时除以3即可求解.解:①+②,得:3a-3b=9,∴a-b=3.故答案为:3.填空题为奖励消防演练活动中表现优异的同学,某校决定用1 200元购买篮球和排球(各至少买1个),其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有________种.【答案】3【解析】设购买篮球x个,排球y个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x、y的方程,由x、y均为非负整数即可得.解:设购买篮球x个,购买排球y个,根据题意,得:120x+90y=1200,∵x、y是整数,∴方程的整数解为:,,,∴购买方案有三种:方案一,购买1个篮球,12个排球;方案二,购买4个篮球,8个排球;方案三,购买7个篮球,4个排球.故答案为:3.填空题一千官兵一千布,一官四尺无零数,四兵才得布一尺,请问官兵多少数?这首诗的意思是:一千名官兵分一千尺布,一名军官分四尺,四名士兵分一尺,正好分完,则军官有________名,士兵有________名.【答案】200 800【解析】设军官有x名,士兵y名,根据共有1000名,得方程x+y=1000;根据共有1000尺布,得方程4x+y=1000,联立方程组即可.解:设军官有x名,士兵y名,根据题意,得:解之,得:所以军官有200名,士兵有800名.故答案为:200,800.解答题用适当的方法解下列方程组:(1)(2)(3)(4)【答案】(1)(2)(3)(4)【解析】根据方程组的特点应用相应的方法解答.(1)②-①,得x=6.将x=6代入①,得y=4.所以这个方程组的解是(2)化简②,得3x-2y=6.③将①代入③,得6y-2y=6,解得y=.将y=代入①,得x=3.所以这个方程组的解是(3)设x+y=a,x-y=b,则原方程组变为由①,得3a+2b=36.③解由②③组成的方程组,得所以解得所以原方程组的解是(4)①-③,得3y-z=0,即z=3y.④将④代入②,得y-6y=5,解得y=-1.将y=-1代入①,得x=8.将x=8代入③,得z=-3.所以这个方程组的解为故答案为:(1);(2);(3);(4).解答题解关于x、y的方程组时,甲正确地解得方程组的解为,乙因为把c抄错了,在计算无误的情况下解得方程组的解为,求a、b、c的值.【答案】a=,b=1,c=2.【解析】分析:把甲的结果代入方程组求出c的值,以及关于a 与b的方程,再将已知的结果代入第一个方程得到关于a与b的方程,联立求出a与b的值即可.详解:把代入方程,得:,解得:.把分别代入方程,得:,解得.所以,.解答题在端午节来临之际,某商店订购了A型和B型两种粽子.A型粽子28元/千克,B型粽子24元/千克.若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.【答案】A型粽子40千克,B型粽子60千克.【解析】分析】订购了A型粽子x千克,B型粽子y千克.根据B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元列出方程组,求解即可.设订购了A型粽子x千克,B型粽子y千克,根据题意,得,解得.答:订购了A型粽子40千克,B型粽子60千克.解答题甲、乙二人从同一地点出发,同向而行,甲乘车,乙步行.如果乙先走20 km,那么甲用1 h就能追上乙;如果乙先走1 h,那么甲只用15 min就能追上乙.求甲、乙二人的速度.【答案】甲的速度为25 km/h,乙的速度为5 km/h【解析】设甲、乙二人的速度分别为xkm/h、ykm/h,根据乙先走20 km,那么甲用1h就能追上乙,列出方程x-y=20;根据乙先走1h,那么甲只用15min就能追上乙,可以列出方程(x-y)=y,联立方程组求解即可.设甲、乙二人的速度分别为x km/h,y km/h.依题意得解得答:甲的速度为25 km/h,乙的速度为5 km/h.故答案为:甲的速度为25 km/h,乙的速度为5 km/h.解答题某校规划在一块长AD为18 m、宽AB为13 m的长方形场地ABCD 上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?【答案】1【解析】利用AM:AN=8:9,设通道的宽为xm,AM=8ym,则AN=9ym,进而利用AD为18m,AB为13m,得出等式求出即可.设通道的宽是xm,AM=8ym.因为AM∶AN=8∶9,所以AN=9ym.所以解得答:通道的宽是1m.故答案为:1.解答题某中学库存一批旧桌凳,准备修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务,经协商得知:甲小组单独修理这批桌凳比乙小组多用20天,乙小组每天比甲小组多修8套,甲小组每天修16套桌凳;学校每天需付甲小组修理费80元,付乙小组120元.(1)求甲、乙两个木工小组单独修理这批桌凳各需多少天.(2)在修理桌凳的过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有下面三种修理方案供选择:①由甲小组单独修理;②由乙小组单独修理;③由甲、乙两小组合作修理.你认为哪种方案既省时又省钱?试比较说明.【答案】(1)60天,40天;(2)方案③既省时又省钱.【解析】(1)设甲小组单独修完需要x天,乙小组单独修完需要y天,根据“甲小组单独修理这批桌凳比乙小组多用20天”,以及桌凳总数不变,便可建立方程组进行解答;(2)综合(1)所得求出这批旧桌凳的数目,然后求出三种方案的工作时间与实际花费,再进行比较即可.解:(1)设甲小组单独修理这批桌凳需要x天,乙小组单独修理这批桌凳需要y天.根据题意,得解得答:甲、乙两个木工小组单独修理这批桌凳各需60天、40天.(2)这批旧桌凳的数目为60×16=960(套).方案①:学校需付费用为60×(80+10)=5400(元);方案②:学校需付费用为40×(120+10)=5200(元);方案③:学校需付费用为×(120+80+10)=5040(元).比较知,方案③既省时又省钱.故答案为:(1)60天,40天;(2)方案③既省时又省钱.。
人教版七年级数学下册第八章达标检测卷含答案
人教版七年级数学下册第八章达标检测卷一、选择题(每题3分,共30分)1.【教材P 93练习T 1变式】已知2x -3y =1,用含x 的式子表示y 正确的是( )A .y =23x -1B .x =3y +12C .y =2x -13D .y =-13-23x 2.下列方程组中,是二元一次方程组的是( )A .⎩⎪⎨⎪⎧x +13=1,y =x 2B .⎩⎨⎧3x -y =5,2y -z =6 C .⎩⎪⎨⎪⎧x 5+y 2=1,xy =1 D .⎩⎪⎨⎪⎧x 2=3,y -2x =43.用代入法解方程组⎩⎨⎧2y -3x =1,x =y -1,下面的变形正确的是( )A .2y -3y +3=1B .2y -3y -3=1C .2y -3y +1=1D .2y -3y -1=14.已知⎩⎪⎨⎪⎧x =2,y =-3是二元一次方程5x +my +2=0的解,则m 的值为( )A .4B .-4C .83D .-83 5.方程组⎩⎨⎧2x +y =■,x +y =3的解为⎩⎨⎧x =2y =■,则被遮盖的两个数分别为( ) A .1,2 B .5,1 C .2,3 D .2,4 6.【教材P 109活动1变式】以二元一次方程组⎩⎨⎧x +3y =7,y -x =1的解为坐标的点(x ,y )在平面直角坐标系的( )A .第一象限B .第二象限C .第三象限D .第四象限 7.已知(x -y -3)2+|x +y -1|=0,则yx 的值为( )A .-1B .1C .-2D .2 8.如果方程组⎩⎨⎧3x +7y =10,ax +(a -1)y =5的解中x 与y 的值相等,那么a 的值是( )A .1B .2C .3D .49.甲、乙两个工程队各有员工80人、100人,现在从外部调90人充实两队,调配后甲队人数是乙队人数的23,则甲、乙两队分别分到的人数为( )A .50,40B .36,54C .28,62D .20,70 10.为迎接2022年北京冬奥会,某校开展了以迎冬奥为主题的演讲活动,计划拿出180元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件15元,乙种奖品每件10元,则购买方案有( )A .5种B .6种C .7种D .8种二、填空题(每题3分,共24分)11.写一个以⎩⎨⎧x =5,y =7为解的二元一次方程:______________.12.已知(n -1)x |n |-2y m -2 024=0是关于x ,y 的二元一次方程,则n m =________.13.方程组⎩⎨⎧x +y =12,y =2的解为________.14. 若⎩⎨⎧x +y =1,2x +y =0的解是方程ax -3y =2的一组解,则a 的值是________.15.已知⎩⎨⎧x =2,y =1是二元一次方程组⎩⎨⎧mx +ny =7,nx -my =1的解,则m +3n 的立方根为________.16.定义运算“*”,规定x *y =ax 2+by ,其中a ,b 为常数,且1*2=5,2*1=6,则2*3=________.17.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm ,小红所搭的“小树”的高度为22 cm.设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =________,y =________.18.【教材P 102习题T 4变式】机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个.已知2个大齿轮与3个小齿轮配成一套,则安排________名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.三、解答题(19题16分,其余每题10分,共66分)19.【教材P 111复习题T 3变式】解方程组:(1)⎩⎨⎧x -2y =3,3x +y =2;(2)⎩⎪⎨⎪⎧x 3-y 2=6,x -y 2=9;(3)⎩⎪⎨⎪⎧3(x +y )-4(x -y )=6,x +y 2-x -y 6=1;(4)⎩⎨⎧x -y +z =0,4x +2y +z =0,25x +5y +z =60.20.【教材P 106习题T 5变式】已知y =x 2+px +q ,当x =1时,y =2;当x =-2时,y =2.求p 和q 的值.21.若关于x ,y 的二元一次方程组⎩⎨⎧x +y =3,mx +ny =8与⎩⎨⎧x -y =1,mx -ny =4有相同的解.(1)求这个相同的解; (2)求m -n 的值.22.某种商品的包装盒是长方体,它的展开图如图所示.如果长方体包装盒的长比宽多4 cm ,求这种商品包装盒的体积.23.某同学在解关于x ,y 的方程组⎩⎨⎧ax +by =2,cx -7y =8时,本应得出解为⎩⎨⎧x =3,y =-2,由于看错了系数c ,而得到⎩⎨⎧x =-2,y =2, 求a +b -c 的值.24.书法是中华民族的文化瑰宝,是人类文明的宝贵财富,是我国基础教育的重要内容.通过书法教育可以帮助学生提高汉字书写能力、培养审美情趣、陶冶情操,促进其全面发展.某学校准备为学生的书法课购买一批毛笔和宣纸,已知购买40支毛笔和100张宣纸需要280元;购买30支毛笔和200支宣纸需要260元. (1)求毛笔和宣纸的单价;(2)某超市给出以下两种优惠方案: 方案A :购买一支毛笔,赠送一张宣纸;方案B :购买200张以上宣纸,超出200张的部分按原价打八折,毛笔不打折.学校准备购买毛笔50支,宣纸若干张(超过200张),选择哪种方案更划算?请说明理由.答案一、1.C 2. D 3.A 4.A 5.B 6.A7.B 点拨:因为(x -y -3)2与|x +y -1|均为非负数,两非负数相加和为0,即每一个加数都为0,据此可构建方程组⎩⎨⎧x -y -3=0,x +y -1=0,解得⎩⎨⎧x =2,y =-1,所以yx =(-1)2=1.故选B.8.C 9.C 10.A二、11.x +y =12(答案不唯一) 12.-113.⎩⎨⎧x =10,y =2 14.-8 15.216.10 点拨:根据题中的新定义及已知等式得⎩⎨⎧a +2b =5,4a +b =6.解得⎩⎨⎧a =1,b =2.则2*3=4a +3b =4+6=10. 17.4;5 点拨:根据题意得⎩⎨⎧2x +3y =23,3x +2y =22,解得⎩⎨⎧x =4,y =5.18.25 点拨:设安排x 名工人加工大齿轮,y 名工人加工小齿轮,则依题意有⎩⎪⎨⎪⎧x +y =85,16x 2=10y 3,解得⎩⎨⎧x =25,y =60.三、19.解:(1)⎩⎨⎧x -2y =3,①3x +y =2,②由①,得x =3+2y .③将③代入②,得9+6y +y =2, 即y =-1.将y =-1代入③,得x =3-2=1. 所以原方程组的解为⎩⎨⎧x =1,y =-1.(2)⎩⎪⎨⎪⎧x 3-y 2=6,①x -y 2=9,②②-①,得23x =3,解得x =92.将x =92代入①,得32-y2=6, 解得y =-9.所以原方程组的解为⎩⎪⎨⎪⎧x =92,y =-9.(3)⎩⎪⎨⎪⎧3(x +y )-4(x -y )=6,①x +y 2-x -y 6=1,②②×6,得3(x +y )-(x -y )=6,③ ①-③,得-3(x -y )=0,即x =y .将x =y 代入③,得3(x +x )-0=6,即x =1. 所以y =1.所以原方程组的解为⎩⎨⎧x =1,y =1.(4)⎩⎨⎧x -y +z =0,①4x +2y +z =0,②25x +5y +z =60,③②-①,得3x +3y =0,④ ③-①,得24x +6y =60,⑤ ④和⑤组成方程组⎩⎨⎧3x +3y =0,24x +6y =60,解得⎩⎪⎨⎪⎧x =103,y =-103.将⎩⎪⎨⎪⎧x =103,y =-103代入①,得z =-203.所以原方程组的解为⎩⎪⎨⎪⎧x =103,y =-103,z =-203.20.解:根据题意,得⎩⎨⎧1+p +q =2,4-2p +q =2,解得⎩⎨⎧p =1,q =0,∴p 的值是1,q 的值是0.21.解:(1)根据题意可得,x ,y 满足方程组⎩⎨⎧x +y =3,x -y =1,解得⎩⎨⎧x =2,y =1.故这个相同的解为⎩⎨⎧x =2,y =1.(2)将⎩⎨⎧x =2,y =1代入方程组⎩⎨⎧mx +ny =8,mx -ny =4,可得⎩⎨⎧2m +n =8,2m -n =4,解得⎩⎨⎧m =3,n =2,所以m -n =3-2=1.22.解:设这种商品包装盒的宽为x cm ,高为y cm ,则长为(x +4)cm.根据题意,得⎩⎨⎧2x +2y =14,x +4+2y =13,解得⎩⎨⎧x =5,y =2,所以x +4=9,故这种商品包装盒的长为9 cm ,宽为5 cm ,高为2 cm ,所以其体积为9×5×2=90(cm 3).答:这种商品包装盒的体积为90 cm 3.23.解:把⎩⎨⎧x =3,y =-2,⎩⎨⎧x =-2,y =2分别代入ax +by =2,得⎩⎨⎧3a -2b =2,-2a +2b =2,解得⎩⎨⎧a =4,b =5.将⎩⎨⎧x =3,y =-2 代入cx -7y =8,得3c +14=8,解得c =-2. 则a +b -c =4+5+2=11.24.解:(1)设毛笔的单价为x 元,宣纸的单价为y 元,根据题意列方程组得⎩⎨⎧40x +100y =280,30x +200y =260, 解得⎩⎨⎧x =6,y =0.4.答:毛笔的单价为6元,宣纸的单价为0.4元.(2)设购买宣纸a (a >200)张,则方案A 的费用为50×6+0.4×(a -50)=0.4a +280(元),方案B 的费用为50×6+200×0.4+0.4×0.8×(a -200)=0.32a +316.当0.4a +280<0.32a +316时,解得a <450,所以当200<a <450时选择方案A 更划算;当0.4a +280=0.32a +316时,解得a =450,所以当a =450时选择方案A 和方案B 所需费用一样;当0.4a +280>0.32a +316时,解得a >450,所以当a >450时选择方案B 更划算.。
人教版七年级数学下册第八章测试卷(附答案)
人教版七年级数学下册第八章测试卷(附答案)人教版七年级数学下册第八章测试卷(附答案)一、单选题(共12题;共24分)1.用加减法解方程组时,若要求消去y,则应选择( B )。
A.①×3+②×2B.①×3−②×2C.①×5−②×3D.①×5+②×32.下列方程组中是二元一次方程组的是 ( A )。
A.2x+3y=5B.2x+3y^2=5C.2x^2+3y=5D.2x^2+3y^2=53.下面三对数值:(1)(2)(3)是方程的解的是 ( C )。
A.(1)B.(2)C.(3)D.(1)和(3)4.一艘内河轮船匀速从甲地开往乙地,沿河岸有一公路,船长看见每隔30分钟有一辆公共汽车从背后开过,而迎面则每隔10分钟有一辆公共汽车开来,假定以甲、乙两地为终点站往返均匀发车,匀速行驶,则每隔( B )分钟发车一辆?A。
12B。
15C。
18D。
205.方程组的解是( A )。
A.x=1,y=2B.x=2,y=1C.x=-2,y=1D.x=1,y=-26.若2a3xby+5与5a2-4yb2x是同类项,则 ( A )。
A.3x-2y=1B.2x-3y=1C.3x+2y=1D.2x+3y=17.已知关于x、y的方程3x+4y=7,则( A )。
A.x=1,y=1B.x=1,y=-1C.x=-1,y=1D.x=-1,y=-18.二元一次方程7x+y=15有( C )组正整数解。
A.1组B.2组C.3组D.4组9.方程组的解为x=3,y=4,则被遮盖的前后两个数分别为( B )。
A.1、2B.1、5C.5、1D.2、410.为丰富同学们的课余活动,某校计划成立足球和篮球课外兴趣小组,现需购买篮球和足球若干个,已知购买篮球的数量比足球的数量少1个,篮球的单价为60元,足球的单价为30元,一共花了480元,问篮球和足球各买了多少个?设购买篮球x个,购买足球y个,可列方程组( C )。
七年级数学下册《第八章 二元一次方程组》单元测试卷附答案解析-人教版
七年级数学下册《第八章 二元一次方程组》单元测试卷附答案解析-人教版一、单选题1.已知x 2y 1=⎧⎨=-⎩是二元一次方程2x 3ky 1-=的一组解,则k 的值为( )A .1B .-1C .53D .53-2.方程组: 5210x y x y +=⎧⎨+=⎩①② ,由②-①得到的方程是( )A .3x =10B .x =-5C .3 x =-5D .x =53.七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是( ) A .14B .13C .12D .154.将方程3x+y=9写成用含y 的式子表示x 的形式,正确的是( )A .y=3x-9B .y=9-3xC .x=3y-3 D .x=3-3y 5.已知{x =2ky =−3k 是二元一次方程x-y=10的解,则k 的值是( )A .-10B .-2C .2D .106.若4326x y x y +=⎧⎨-=⎩,则x y +的值为( )A .3B .4C .5D .67.已知方程组272a b a b +=⎧⎨-=⎩①②下列消元过程错误的是( )A .代人法消去a ,由②得2a b =+代入①B .代入法消去b ,由①得72b a =-代入②C .加减法消去b ,①-②D .加减法消去a ,①-②×28.三元一次方程组32522x y x y z z -=⎧⎪++=⎨⎪=⎩,,的解是( )A .112x y z =⎧⎪=⎨⎪=⎩B .112x y z =⎧⎪=-⎨⎪=⎩C .112x y z =-⎧⎪=⎨⎪=⎩D .112x y z =-⎧⎪=-⎨⎪=⎩9.把一根长17m 的钢管截成2m 和3m 长两种不同规格的钢管,且不造成浪费,你有几种不同的截法( ) A .1种B .2 种C .3种D .4种10.在学习完“垃圾分类”的相关知识后,小明和小丽一起收集了一些废电池,小明说:“我比你多收集了7节废电池啊!”小丽说:“如果你给我8节废电池,我的废电池数量就是你的2倍”.如果他们说的都是真的,设小明收集了x 节废电池,小丽收集了y 节废电池,则可列方程组为( ).A .()7828x y x y -=⎧⎨-=+⎩B .()7828y x x y -=⎧⎨+=-⎩C .()728x y x y -=⎧⎨-=⎩D .()7288x y x y -=⎧⎨-=+⎩二、填空题11.已知方程2x ﹣y =8,用含x 的代数式表示y ,则y = . 12.若二元一次方程组ax by 3bx ay 2+=⎧⎨+=⎩的解为x 3y 2=⎧⎨=⎩,则a b +的值 .13.已知关于x ,y 的二元一次方程()()a 1x a 2y 52a 0-+++-=,当a 每取一个值时就有一方程,而这些方程有一个公共解,则这个公共解是 .14.某中学为积极开展校园足球运动,计划购买A 和B 两种品牌的足球,已知一个A 品牌足球价格为120元,一个B 品牌足球价格为150元.学校准备用3000元购买这两种足球(两种足球都买),并且3000元全部用完,请写出一种购买方案:买 个A 品牌足球,买 个B 品牌足球.三、计算题15.解方程 212311x y x y -=-⎧⎨+=⎩16.解方程组: 3472395978x z x y z x y z +=⎧⎪++=⎨⎪-+=⎩①②③四、解答题17.已知关于x ,y 的二元一次方程组2632x y x y k -=⎧⎨-=⎩的解满足x ﹣y =2,求k 的值.18.下面是王斌同学解方程组1022x y x y +=⎧⎨-=-⎩的过程,请认真阅读并完成相应任务.解:1022x y x y +=⎧⎨-=-⎩①②由①得10y x =-③,……第一步把③代入②,得2(10)2x x --=-,……第二步 整理得2022x x --=-,……第三步 解得18x -=,即18x =-.……第四步 把18x =-代入③,得28y =则方程组的解为1828x y =-⎧⎨=⎩.……第五步(1)任务一:填空:①以上求解过程中,王斌用了 消元法;(填“代入”或“加减”)②第 步开始出现错误,这一步错误的原因是 ;(2)任务二:直接写出该方程组求解后的正确结果.19.为了鼓励市民节约用电,某市对居民用电实行阶梯收费(总电费=第一阶梯电费+第二阶梯电费),规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.以下是张磊家2014年3月和4月所交电费的收据,问该市规定的第一阶梯电价和第二阶梯电价分别为每度多少元? 代收电费收据 电表号 1205 电表号 1205 户名 张磊 户名 张磊 月份 3月 月份 4月 用电量 220度 用电量 265度 金额112元金额139元20.已知31x y =⎧⎨=⎩是方程2x-ay=9的一个解,解决下列问题:(1)求a 的值;(2)化简并求值:()()()()211213a a a a a -+--+-21.阅读下列方程组的解法,然后解答相关问题:解方程组272625252423x y x y +=⎧⎨+=⎩①②时若直接利用消元法解,那么运算比较繁杂,采用下列解法则轻而易举解:①-②,得222x y +=,即1x y +=.③ ②-③×24,得1x =-.把1x =-代入③,解得2y =.故原方程组的解是12x y =-⎧⎨=⎩.(1)请利用上述方法解方程组192123111315x y x y +=⎧⎨+=⎩.(2)猜想并写出关于x ,y 的方程组()2()2ax a m y a mbx b m y b m +-=-⎧⎨+-=-⎩的解,并加以检验.22.一批机器零件共558个,甲先做3天后,乙再加入,两人共同再做6天刚好完成.设甲每天做x个,乙每天做y 个.(1)列出关于x ,y 的二元一次方程.(2)用含x 的代数式表示y ,并求当32x =时y 的值是多少? (3)若乙每天做48个,则甲每天做多少个?参考答案与解析1.【答案】B【解析】【解答】解:∵x 2y 1=⎧⎨=-⎩是二元一次方程2x-3ky=1的一组解∴4+3k=1 解得k=-1. 故答案为:B.【分析】根据二元一次方程根的概念,将x=2、y=-1代入原方程,可得关于字母k 的一元一次方程,解该方程可求出k 的值.2.【答案】D【解析】【解答】解:由②-①得:x=5.故答案为:D.【分析】由方程②-方程①,即左边减左边,右边减右边,可得x=5,即可得出正确答案.3.【答案】C【解析】【解答】解:设这间会议室的座位排数是x 排,人数是y 人.根据题意,得()12111411x y x y+=⎧⎨-+=⎩解得12155x y =⎧⎨=⎩. 故答案为:C .【分析】本题中有两个等量关系:1、每排坐12人,则有11人没有座位;2、每排坐14 人,则余1人独坐一排. 这样设每排的座位数为x ,总人数为y ,列出二元一次方程组即可.4.【答案】D【解析】【解答】解:3x+y=93x=9-y 解之:33yx =-. 故答案为:D【分析】先移项,将含y 的项移到方程的右边,再在方程的两边同时除以3,可求出x.5.【答案】C【解析】【解答】解:∵{x=2ky=−3k是二元一次方程x-y=10的解∴2k+3k=10解之:k=2.故答案为:C【分析】将x,y的值代入方程,可得到关于k的方程,解方程求出k的值. 6.【答案】A【解析】【解答】解:43 26 x yx y+=⎧⎨-=⎩①②①+②得3x+3y=9两边同时除以3得x+y=3.故答案为:A.【分析】直接将方程组中的两个方程相加后再在两边同时除以3即可得出答案. 7.【答案】C【解析】【解答】解:方程组272a ba b+=⎧⎨-=⎩①②A、代入法消去a,由②得a=b+2代入①可消去a,不符合题意;B、代入法消去b.由①得b=7−2a代入②可消去b,不符合题意;C、加减法消去b,①+②,符合题意;D、加减法消去a,①−②×2,不符合题意.故答案为:C.【分析】利用加减消元法和代入消元的方法求解二元一次方程组即可。
七年级数学下册第八章《二元一次方程组》综合测试卷-人教版(含答案)
七年级数学下册第八章《二元一次方程组》综合测试卷-人教版(含答案)一、选择题(本大题共10小题,共30分)1. 二元一次方程x −2y =1有无数多个解,下列四组值中不是该方程的解的是( )A. {x =0y =−12B. {x =1y =1C. {x =1y =0D. {x =−1y =−12. 若(k -2)x |k|−1-3y =2是关于x ,y 的二元一次方程,则k 2-3k -2的值为( )A. 8B. 8或−4C. −8D. −43. 方程组{2x +y =4,x −y =−1的解是( )A. {x =1y =2B. {x =−3y =−2C. {x =2y =0D. {x =3y =−14. 《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为( )A. 160钱B. 155钱C. 150钱D. 145钱5. 我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x 米,乙工程队每天施工y 米.根据题意,所列方程组正确的是( )A. {x =y −22x +3y =400 B. {x =y −22x +3(x +y)=400−50 C. {x =y +22x +3y =400−50D. {x =y +22x +3(x +y)=400−506. 用代入法解方程组时,比较容易的变形是( )A. 由 ①,得x =y+12B. 由 ①,得y =2x −1C. 由 ②,得y =3x+56D. 由 ②,得x =6y−537. 为做好防疫消毒工作,某单位制作日常消毒液.将浓度分别为90%和60%的甲、乙两种酒精溶液,配制成浓度是75%的消毒酒精溶液500g ,设甲种酒精溶液为xg ,乙种酒精溶液为yg ,则()A. {x =300y =200B. {x =250y =200C. {x =250y =250D. {x =200y =3008. 在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都相等,若填在图中的数字如图,则x ,y 的值是( )A. x =1,y =−1B. x =−1,y =1C. x =2,y =−1D. x =−2,y =19. 两位同学在解方程组时,甲同学由{ax +by =2,cx −y =−4正确地解出{x =3,y =−2;乙同学因把c 写错了解得{x =−2,y =2,则a +b +c 的值为( )A. 3B. 0C. 1D. 710. 若点P (x ,y )的坐标满足方程组{x +y =k,x −y =6−3k,则点P 不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题(本大题共4小题,共12分)11. 已知方程组{3x +2y =m −22x +3y =m的解适合x +y =2,则m 的值为______.12. 当m ,n 满足关系 时,关于x ,y 的方程组{x −5y =2m,2x +3y =m −n 的解互为相反数.13. 已知乙组人数是甲组人数的一半,若将乙组人数的13调入甲组,则甲组比乙组多15人,甲、乙两组的人数分别为__________.14. 已知2x -y -z =0,3x +4y -2z =0,则x−y+zx+y+z =________________.三、计算题(本大题共2小题,共12分) 15. 解方程组:(1{3x −2y +20=0,2x +15y −3=0;(2){1.5(20x +10y)=15000,1.2(110x +120y)=97200.16. 若方程组{ax +by =32ax +by =4与方程组{2x +y =3x −y =0有相同的解,求a 、b 的值.四、解答题(本大题共5小题,共46分)17. 某两位数,两个数位上的数之和为11.这个两位数加上45,得到的两位数恰好等于原两位数的两个数字交换位置所表示的数,求原两位数. (1)列一元一次方程求解.(2)如果设原两位数的十位数字为x ,个位数字为y ,列二元一次方程组. (3)检验(1)中求得的结果是否满足(2)中的方程组.18. 一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?19.某新长途客运站准备在国庆前建成营运.后期工程若请甲乙两个工程队同时施工,8天可以完工,需付两工程队施工费用7040元;若先请甲工程队单独施工6天,再请乙工程队单独施工12天也可以完工,需付两工程队施工费用6960元.问甲、乙两工程队施工一天,应各付施工费用多少元?20.已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案(即A、B两种型号的车各租几辆,有几种租车方案).21. 先阅读材料,然后解方程组.材料:解方程组{x −y −1=0,①4(x −y)−y =5.②由①,得x -y =1.③把③代入②,得4×1-y =5,解得y =-1. 把y =-1代入③,得x =0. ∴原方程组的解为{x =0,y =−1. 这种方法称为“整体代入法”.你若留心观察,有很多方程组可采用此方法解答,请用整体代入法解方程组:{2x −3y −2=0,①2x−3y+57+2y =9.②参考答案1.【答案】B【解析】 【分析】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.将x 、y 的值分别代入x -2y 中,看结果是否等于1,判断x 、y 的值是否为方程x -2y =1的解. 【解答】解:A 、当x =0,y =-12时,x -2y =0-2×(-12)=1,是方程的解; B 、当x =1,y =1时,x -2y =1-2×1=-1,不是方程的解; C 、当x =1,y =0时,x -2y =1-2×0=1,是方程的解; D 、当x =-1,y =-1时,x -2y =-1-2×(-1)=1,是方程的解. 故选B .2.【答案】A【解析】 【分析】本题主要考查了二元一次方程的概念,代数式求值,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程; 根据二元一次方程满足的条件列式求出k 的值,即可得解. 【解答】解:根据题意得:{k −2≠0|k |−1=1,解得:k =-2,∴k 2-3k -2=(-2)2-3×(-2)-2=4+6-2=8. 故选:A .3.【答案】A【解析】 【分析】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.方程组利用加减消元法求出解即可. 【解答】 解:,①+②得:3x =3, 解得:x =1,把x =1代入①得:y =2, 则方程组的解为{x =1y =2.故选:A .4.【答案】C【解析】解:设共有x 人合伙买羊,羊价为y 钱, 依题意,得:{5x +45=y7x +3=y ,解得:{x =21y =150.故选:C .设共有x 人合伙买羊,羊价为y 钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.【答案】D【解析】解:由题意可得, {x =y +22x +3(x +y)=400−50, 故选:D .根据甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程和甲工程队每天比乙工程队多施工2米,可以列出相应的二元一次方程组,本题得以解决. 本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.6.【答案】B【解析】观察方程组的特点可知,B 中的变形比较容易,7.【答案】C【解析】根据题意,得{x +y =500,90%x +60%y =500×75%,解得{x =250,y =250,故选C .8.【答案】B【解析】 【分析】本题考查了二元一次方程组的应用,解答本题的关键是仔细审题,根据题意列出方程组,难度一般. 根据每行每列及对角线上三个方格中的数字和都相等,可得出方程组,解出即可. 【解答】解:由题意,得{2x +3+2=2−3+4y,2−3+4y =2x +y +4y, 解得{x =−1,y =1. 故选B .9.【答案】D【解析】把{x =3,y =−2代入方程组得把{x =−2,y =2代入ax +by =2得-2a +2b =2,即-a +b =1,联立得{3a −2b =2,−a +b =1,解得{a =4,b =5,由得c =-2,则a +b +c =4+5-2=7.故选D .10.【答案】C【解析】略11.【答案】6【解析】解:两个方程相加,得 5x +5y =2m -2, 即5(x +y )=2m -2, 即x +y =2m−25=2.解得m =6.方程组中的两个方程相加,即可用m 表示出x +y ,即可解得m 的值.注意到两个方程的系数之间的关系,而采用方程相加的方法解决本题是解题的关键.12.【答案】m =34n【解析】由题可知x =-y ,代入方程组,得{−6y =2m,y =m −n,则-6m +6n =2m ,所以m =34n .13.【答案】甲组18人,乙组9人【解析】 【分析】此题主要考查了二元一次方程组的应用,找准等量关系是解决应用题的关键,特别注意第二个等量关系的理解.等量关系有:①乙组人数是甲组人数的一半;②乙组人数的三分之一调入甲组,即甲组现有(x +13y)人,乙组现有人数23y 人,此时甲组比乙组多15人,据此列方程组求解即可. 【解答】解:设甲组有x 人,乙组有y 人,根据乙组人数是甲组人数的一半,则y =12x ; 根据乙组人数的三分之一调入甲组时甲组比乙组多15人,得方程x +13y =23y +15, 可列方程组为:{y =12x x +13y =23y +15, 解得:{ x =18 y =9.所以甲组人数为18人,乙组人数为9人, 故答案是甲组18人,乙组9人.14.【答案】89【解析】【分析】此题考查的是解三元一次方程组,需将三元一次方程组中的一个未知数当做已知数来处理,转化为二元一次方程组来解.将x 、y 写成用z 表示的代数式然后代入即可得到答案. 【解答】 解:{2x −y −z =0①3x +4y −2z =0②①×4+②得, 11x −4z −2z =0, 解得x =6z11,将x =6z 11代入①得,12z11−y −z =0, 解得y =z11, ∴原式=6z 11−z 11+z 6z 11+z 11+z =1618=89.故答案为89.15.【答案】(1)方程组整理得×15+×2得49x =-294,解得x =-6,把x =-6代入得-12+15y =3,解得y =1, ∴方程组的解为{x =−6,y =1.(2)方程组整理得 ×12-得13x =3900,解得x =300,把x =300代入得600+y =1000,解得y =400, ∴方程组的解为{x =300,y =400.【解析】略16.【答案】解:,解得该方程组的解为{x =1y =1,由题意该方程组的解也是方程组{ax +by =32ax +by =4的解,代入ax +by =3可得a +b =3③,代入2ax +by =4可得2a +b =4④,④-③可得a =1,代入③可得b =2,∴a =1,b =2.【解析】先求出第二个方程组的解,再代入第一个方程组即可求出a 、b 的值.本题主要考查二元一次方程组的解,解答此题的关键是要弄清题意,正确求出第二个方程组的解.17.【答案】解:(1)设原两位数的个位数字为m ,则十位数字为(11-m ),依题意,得:10×(11-m )+m +45=10m +(11-m ),解得:m =8,∴11-m =3.答:原两位数为38.(2)设原两位数的十位数字为x ,个位数字为y ,依题意,得:{x +y =1110x +y +45=10y +x. (3)结合(1),可知:x =3,y =8,∴x +y =11,10x +y +45=83=10y +x ,∴(1)中求得的结果满足(2)中的方程组.【解析】(1)设原两位数的个位数字为m ,则十位数字为(11-m ),根据原两位数+45等于原两位数的两个数字交换位置所表示的数,即可得出关于m 的一元一次方程,解之即可得出结论;(2)设原两位数的十位数字为x ,个位数字为y ,根据原两位数两个数位上的数之和为11及原两位数+45等于原两位数的两个数字交换位置所表示的数,即可得出关于x ,y 的二元一次方程组,此问得解;(3)由(1)的结论可得出x ,y 的值,再将其代入(2)的方程组中验证后即可得出结论. 本题考查了一元一次方程的应用以及由实际问题抽象出二元一次方程组,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出二元一次方程组;(3)将(1)的结论代入方程组中验证方程组是否正确.18.【答案】解:(1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,依题意,得:{6(x +y)=90(6+4)(x −y)=90,解得:{x =12y =3. 答:该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时;(2)设甲、丙两地相距a 千米,则乙、丙两地相距(90-a )千米,依题意,得:a 12+3=90−a 12−3,解得:a =2254.答:甲、丙两地相距2254千米.【解析】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程. (1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,根据路程=速度×时间,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设甲、丙两地相距a 千米,则乙、丙两地相距(90-a )千米,根据时间=路程÷速度,即可得出关于a 的一元一次方程,解之即可得出结论.19.【答案】解:设甲工程队每天需费用x 元,乙工程队每天需费用y 元,由题意得,{8x +8y =70406x +12y =6960, 解得:{x =600y =280. 答:甲工程队每天需费用600元,乙工程队每天需费用280元.【解析】设甲工程队每天需费用x 元,乙工程队每天需费用y 元,根据题意可得:甲乙合作8天完工,需付两工程队施工费用7040元;甲队单独施工6天,再请乙工程队单独施工12天完工,需付两工程队施工费用6960元,列方程组求解.本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.20.【答案】解:(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨,y 吨,根据题意得:{2x +y =10x +2y =11, 解得:{x =3y =4. 答:1辆A 型车和1辆B 型车都装满货物一次可分别运货3吨,4吨.(2)由题意可得:3a +4b =31,∴b =31−3a 4.∵a ,b 均为正整数,∴有{a =1b =7、{a =5b =4和{a =9b =1三种情况. 故共有三种租车方案,分别为:①A 型车1辆,B 型车7辆;②A 型车5辆,B 型车4辆;③A 型车9辆,B 型车1辆.【解析】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)根据等量关系,列出关于x 、y 的二元一次方程组;(2)由(1)的结论结合共运货31吨,找出3a +4b =31.(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨,y 吨,根据“用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)由(1)的结论结合某物流公司现有31吨货物,即可得出3a +4b =31,即b =31−3a 4,由a 、b 均为正整数即可得出各租车方案.21.【答案】解:由①,得2x -3y =2.③把③代入②,得2+57+2y =9,解得y =4.把y =4代入③,得2x -3×4=2, 解得x =7.∴原方程组的解为{x =7,y =4.【解析】略。
人教版数学七年级下册第八章 二元一次方程组 达标测试卷(含答案)
第八章 二元一次方程组 达标测试卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合要求的)1.下列不是二元一次方程组的是( )A.⎩⎨⎧2x +9y =0,x +y =0 B .3x =4y =1 C.⎩⎪⎨⎪⎧1x +9y =0,x =1D.⎩⎨⎧x =3,y =2 2.用代入法解方程组⎩⎨⎧2y -3x =1,x =y -1时,下面的变形正确的是( ) A .2y -3y +3=1B .2y -3y -3=1C .2y -3y +1=1D .2y -3y -1=13.方程组⎩⎨⎧x +2y =7,x -2y =13的解是( ) A.⎩⎨⎧x =10,y =1.5 B.⎩⎨⎧x =10,y =-1.5C.⎩⎨⎧x =1,y =4D.⎩⎨⎧x =-1,y =-44.由方程组⎩⎨⎧x +m =7,y -1=m可得出x 与y 的关系式是( ) A .x +y =8 B .x +y =1C .x +y =-1D .x +y =-85.把一根9 m 长的钢管截成1 m 长和2 m 长两种规格均有的短钢管,且没有余料,设某种截法中1 m 长的钢管有a 根,则a 的值有( )A .3种B .4种C .5种D .9种6.若二元一次方程3x -y =7,2x +3y =1,y =kx -9有公共解,则k 的值为( )A .3B .-3C .-4D .47.若单项式15a 3x +y b x -y 与-14a 3b 4x +y 的和仍是单项式,则x +y 的值是( )A .4B .-1C .1D .-38.一千官兵一千布,一官四尺无零数,四兵才得布一尺,请问官兵多少数?这首诗的意思是:一千名官兵分一千尺布,一名军官分四尺,四名士兵分一尺,正好分完.若设军官有x 名,士兵有y 名,则可列方程组为( )A.⎩⎪⎨⎪⎧x +y =1 000,14x +y =1 000B.⎩⎪⎨⎪⎧x +y =1 000,4x +14y =1 000 C.⎩⎨⎧x +y =1 000,4x +y =1 000 D.⎩⎪⎨⎪⎧x +y =1 000,14x +4y =1 000 9.在解关于x ,y 的方程组⎩⎨⎧ax +5y =2,bx -7y =8时,小亮解出的结果为⎩⎨⎧x =-2,y =2老师看了小亮的解题过程后,对小亮说:“你方程组中的b 抄错了,该方程组的正确结果x 比y 大5.”则a ,b 的值分别为( )A .4,-2B .4,2C .-4,2D .-4,-210.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19元B .18元C .16元D .15元二、填空题(本题共6小题,每小题3分,共18分)3 11.已知⎩⎨⎧x =1,y =4是方程kx +y =3的一个解,那么k 的值是________. 12.关于x ,y 的方程组⎩⎨⎧2x -y =m ,x +my =n 的解是⎩⎨⎧x =1,y =3,则|m +n |的值是________. 13.当a =________时,方程组⎩⎨⎧2x +y =3,ax +2y =4-a的解也是方程x +y =1的一个解. 14.以二元一次方程组⎩⎨⎧x +3y =7,y -x =1 的解为坐标的点(x ,y )在平面直角坐标系的第________象限.15.对于有理数x ,y ,定义新运算“※”:x ※y =ax +by +1,a ,b 为常数,若3※5=15,4※7=28,则5※9的值为________.16.5个大小、形状完全相同的长方形纸片,在平面直角坐标系中摆成如图所示的图案,已知点B 的坐标为(-8,5),则点A 的坐标为__________.三、解答题(本题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤)17.(8分)用适当的方法解下列方程组:(1)⎩⎨⎧x +y =10,2x +y =16;(2)⎩⎪⎨⎪⎧x =2y ,x 2-y 3=1.5 18.(8分)阅读材料善于思考的小明在解方程组⎩⎨⎧2x +5y =3①,4x +11y =5②时,采用了一种“整体代换”的解法:解:将②变形:4x +10y +y =5,即2(2x +5y )+y =5,③把①代入③得2×3+y =5,解得y =-1.把y =-1代入①得x =4,所以原方程组的解为⎩⎨⎧x =4,y =-1.解决问题模仿小明的“整体代换”法解方程组⎩⎨⎧3x -2y =5,9x -4y =19.19.(8分)甲、乙二人从同一地点出发,同向而行,甲乘车,乙步行.如果乙先走20 km ,那么甲用1 h 就能追上乙;如果乙先走1 h ,那么甲只用15 min 就能追上乙.求甲、乙二人的速度.20.(8分)某校规划在一块长AD为18 m、宽AB为13 m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?21.(10分)南靖芦柑是漳州南靖特产,以其色、香、味三绝而久负盛名,饮誉海内外.某销售商为了扩大销售,对840 kg南靖芦柑进行线下、线上销售,包装方式及售价如图所示,假设用这两种包装方式恰好包装完所有的南靖芦柑.(1)若销售s盒线下礼盒装和s盒线上纸盒装的总收入是1 070元,求s的值;(2)当销售总收入为16 240元时,①若这批南靖芦柑全部售完,请问线下礼盒装共包装了多少盒?线上纸盒装共包装了多少盒?②若该销售商留下m(m>0)盒线下礼盒装送人,剩余南靖芦柑全部售出,求m的值.7 22.(10分)在一节复习课上,李老师让同学们探索下面问题:某电器公司计划用甲、乙两种汽车运送190台家电到农村销售,已知甲种汽车每辆可运送家电20台,乙种汽车每辆可运送家电30台,且每辆汽车均按规定满载,一共用了8辆汽车运送.(1)小宇同学根据题意列出了一个尚不完整的方程组⎩⎨⎧x +y =?20x +30y =*请写出小宇所列方程组中未知数x 、y 表示的意义:x 表示______________,y 表示____________.该方程组中“?”处的数应是________,“*”处的数应是________;(2)小琼同学的思路是设甲种汽车运送m 台家电,乙种汽车运送n 台家电.下面请你按照小琼的思路列出方程组,并求甲种汽车的数量;(3)如果每辆甲种汽车的运费是180元,每辆乙种汽车的运费是300元,那么该公司运完这190台家电的总运费是多少?答案一、1.C 2.A 3.B 4.A 5.B 6.D 7.B 8.B 9.A10.B二、11.-1 12.3 13.2 14.一 15.41 16.(-3,6)三、17.解:(1)⎩⎨⎧x +y =10,①2x +y =16.②②-①,得x =6.将x =6代入①,得y =4.所以这个方程组的解是⎩⎨⎧x =6,y =4.(2)⎩⎪⎨⎪⎧x =2y ,①x 2-y 3=1.② 化简②,得3x -2y =6.③将①代入③,得6y -2y =6,解得y =32.将y =32代入①,得x =3.所以这个方程组的解是⎩⎪⎨⎪⎧x =3,y =32. 18.解:⎩⎨⎧3x -2y =5,①9x -4y =19,②将②变形得3(3x -2y )+2y =19,③ 把①代入③得3×5+2y =19,解得y =2.把y =2代入①得x =3,所以原方程组的解为⎩⎨⎧x =3,y =2.19.解:设甲、乙二人的速度分别为x km/h ,y km/h.依题意得⎩⎪⎨⎪⎧x -y =20,14(x -y )=y ,解得⎩⎨⎧x =25,y =5. 答:甲的速度为25 km/h ,乙的速度为5 km/h.9 20.解:设通道的宽是x m ,AM =8y m.因为AM ∶AN =8∶9,所以AN =9y m.所以⎩⎨⎧2x +24y =18,x +18y =13,解得⎩⎪⎨⎪⎧x =1,y =23. 答:通道的宽是1 m.21.解:(1)由题意得88s +126s =1 070,解得s =5.∴s 的值为5.(2)①设线下礼盒装共包装了x 盒,线上纸盒装共包装了y 盒,由题意得⎩⎨⎧4x +7y =840,88x +126y =16 240,解得⎩⎨⎧x =70,y =80.∴线下礼盒装共包装了70盒,线上纸盒装共包装了80盒. ②设线下礼盒装共包装了a 盒,线上纸盒装共包装了b 盒.由4a +7b =840,可得a =840-7b 4, 由题意得88⎝ ⎛⎭⎪⎫840-7b 4-m +126b =16 240,解得b =80-227m . ∵a ,b ,m 都是整数,且a >0,b >0,m >0,当m =7时,b =58,a =108.5(不符合题意,舍去), 当m =14时,b =36,a =147,当m =21时,b =14,a =185.5(不符合题意,舍去), ∴m 的值为14.22.解:(1)甲种汽车的数量;乙种汽车的数量;8;190(2)根据题意,得⎩⎪⎨⎪⎧m +n =190,m 20+n 30=8,解得⎩⎨⎧m =100,n =90, ∴甲种汽车的数量为10020=5(辆).(3)由(2)可知甲种汽车需要5辆,根据题意,得5×180+(8-5)×300=1 800(元).答:该公司运完这190台家电的总运费是1 800元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章达标测试卷时间:100分钟 满分:120分一、选择题(每题3分,共30分)1.将方程2x +y =3写成用含x 的式子表示y 的形式,正确的是( )A .y =2x -3B .y =3-2xC .x =y 2-32D .x =32-y22.下列方程:① 2x -1y =0;② 3x +y =0;③ 2x +xy =1;④ 3x +y -2x =0;⑤ x 2-x +1=0中, 二元一次方程的个数是( ) A .1个B .2个C .3个D .4个3.用加减法解方程组⎩⎨⎧2x -3y =4,①3x +2y =-2,②下列解法正确的是( )A .①×3+②×2,消去yB .①×2-②×3,消去yC .①×(-3)+②×2,消去xD .①×2-②×3,消去x4.已知⎩⎨⎧x =1,y =4是方程kx +y =3的一个解,那么k 的值是( )A .7B .1C .-1D .-75.已知二元一次方程2x +3y -2=0,当x ,y 互为相反数时,x ,y 的值分别为( ) A .2,-2B .-2,2C .3,-3D .-3,36.若⎩⎨⎧x =1,y =1和⎩⎨⎧x =2,y =-1是二元一次方程mx +ny =6的两个解,则m ,n 的值分别为( ) A .4,2B .2,4C .-4,-2D .-2,-47.已知-47y 2m -5x n +1与35x m +2y n -2是同类项,则m -n 等于( )A .-1B .1C .-7D .78.若二元一次方程3x -y =7,2x +3y =1,y =kx -9有公共解,则k 的值为( )A .3B .-3C .-4D .49.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意可列方程组( ) A.⎩⎨⎧11x =9y (10y +x )-(8x +y )=13 B.⎩⎨⎧10y +x =8x +y 9x +13=11yC.⎩⎨⎧9x =11y (8x +y )-(10y +x )=13D.⎩⎨⎧9x =11y (10y +x )-(8x +y )=13 10.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.(第10题)由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( ) A .19元 B .18元 C .16元D .15元二、填空题(每题3分,共24分)11.已知(m -2)x |m |-1+3y =0是关于x ,y 的二元一次方程,则m =________. 12.关于x ,y 的方程组⎩⎨⎧2x -y =m ,x +my =n 的解是⎩⎨⎧x =1,y =3,则|m +n |的值是________.13.试写出一个关于x ,y 的二元一次方程组,使它的解是⎩⎨⎧x =-3,y =4,这个方程组可以是________________.14.当a =________时,方程组⎩⎨⎧2x +y =3,ax +2y =4-a 的解也是x +y =1的一个解.15.以二元一次方程组⎩⎨⎧x +3y =7,y -x =1的解为坐标的点(x ,y )在平面直角坐标系的第________象限.16.已知⎩⎨⎧2a -b =5,a -2b =4,则a -b 的值为________.17.为奖励消防演练活动中表现优异的同学,某校决定用1 200元购买篮球和排球(各至少买1个),其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有________种.18.一千官兵一千布,一官四尺无零数,四兵才得布一尺,请问官兵多少数?这首诗的意思是:一千名官兵分一千尺布,一名军官分四尺,四名士兵分一尺,正好分完,则军官有________名,士兵有________名. 三、解答题(19题16分,20~23题每题9分,24题14分,共66分) 19.用适当的方法解下列方程组: (1)⎩⎨⎧x +y =10,2x +y =16; (2)⎩⎪⎨⎪⎧x =2y ,x 2-y 3=1;(3)⎩⎪⎨⎪⎧x +y 2+x -y 3=6,4(x +y )-5(x -y )=2; (4)⎩⎨⎧x +3y =5,y -2z =5,x +z =5.20.解关于x ,y 的方程组⎩⎨⎧ax +by =9,3x -cy =-2时,甲正确地解出⎩⎨⎧x =2,y =4;乙因为把c 抄错了,误解为⎩⎨⎧x =4,y =-1.求a ,b ,c 的值.21.在端午节来临之际,某商店订购了A 型和B 型两种粽子,A 型粽子28元/kg ,B 型粽子24元/kg.若B 型粽子的数量比A 型粽子的2倍少20 kg ,购进两种粽子共用了2 560元,求两种型号粽子各多少千克.22.甲、乙二人从同一地点出发,同向而行,甲乘车,乙步行.如果乙先走20 km,那么甲用1 h就能追上乙;如果乙先走1 h,那么甲只用15 min就能追上乙.求甲、乙二人的速度.23.某校规划在一块长AD为18 m、宽AB为13 m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?24.某中学库存一批旧桌凳,准备修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务,经协商得知:甲小组单独修理这批桌凳比乙小组多用20天,乙小组每天比甲小组多修8套,甲小组每天修16套桌凳;学校每天需付甲小组修理费80元,付乙小组120元.(1)求甲、乙两个木工小组单独修理这批桌凳各需多少天.(2)在修理桌凳的过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有下面三种修理方案供选择:①由甲小组单独修理;②由乙小组单独修理;③由甲、乙两小组合作修理.你认为哪种方案既省时又省钱?试比较说明.答案一、1.B 2.B 3.C 4.C 5.B 6.A7.A 8.D 9.D10.B 点拨:设每个笑脸气球的价格为x 元,每个爱心气球的价格为y 元.由题意得⎩⎨⎧3x +y =16,①x +3y =20,②①+②,得4x +4y =36,∴2x +2y =18.二、11.-2 12.313.⎩⎨⎧x +y =1x +2y =5(答案不唯一) 14.2 15.一 16.3 17.318.200;800 点拨:设军官有x 名,士兵有y 名.根据题意得: ⎩⎪⎨⎪⎧x +y =1 000,4x +14y =1 000,解得⎩⎨⎧x =200,y =800. 三、19.解:(1)⎩⎨⎧x +y =10,①2x +y =16.②②-①,得x =6. 将x =6代入①,得y =4. 所以这个方程组的解是⎩⎨⎧x =6,y =4.(2)⎩⎪⎨⎪⎧x =2y ,①x 2-y 3=1.②化简②,得3x -2y =6.③ 将①代入③,得6y -2y =6, 解得y =32.将y =32代入①,得x =3. 所以这个方程组的解是⎩⎪⎨⎪⎧x =3,y =32.(3)设x +y =a ,x -y =b ,则原方程组变为⎩⎪⎨⎪⎧a 2+b 3=6,①4a -5b =2.②由①,得3a +2b =36.③解由②③组成的方程组,得⎩⎨⎧a =8,b =6.所以⎩⎨⎧x +y =8,x -y =6.解得⎩⎨⎧x =7,y =1.所以原方程组的解是⎩⎨⎧x =7,y =1.(4)⎩⎨⎧x +3y =5,①y -2z =5,②x +z =5.③①-③,得3y -z =0,即z =3y .④ 将④代入②,得y -6y =5, 解得y =-1.将y =-1代入①,得x =8. 将x =8代入③,得z =-3.所以这个方程组的解为⎩⎨⎧x =8,y =-1,z =-3.20.解:把⎩⎨⎧x =2,y =4代入方程组,得⎩⎨⎧2a +4b =9,①6-4c =-2.② 由②,得c =2.把⎩⎨⎧x =4,y =-1代入ax +by =9, 得4a -b =9.③联立①③,得⎩⎨⎧2a +4b =9,4a -b =9,解得⎩⎨⎧a =2.5,b =1.即a =2.5,b =1,c =2.21.解:设A ,B 型粽子的数量分别为x kg ,y kg.依题意列方程组,得⎩⎨⎧y =2x -20,28x +24y =2 560.解这个方程组,得⎩⎨⎧x =40,y =60.答:A ,B 型粽子的数量分别为40 kg ,60 kg.22.解:设甲、乙二人的速度分别为x km/h ,y km/h.依题意得⎩⎪⎨⎪⎧x -y =20,14(x -y )=y ,解得⎩⎨⎧x =25,y =5.答:甲的速度为25 km/h ,乙的速度为5 km/h.23.解:设通道的宽是x m ,AM =8y m.因为AM ∶AN =8∶9,所以AN =9y m. 所以⎩⎨⎧2x +24y =18,x +18y =13,解得⎩⎪⎨⎪⎧x =1,y =23.答:通道的宽是1 m.24.解:(1)设甲小组单独修理这批桌凳需要x 天,乙小组单独修理这批桌凳需要y 天.根据题意,得⎩⎨⎧16x =(16+8)y ,x -y =20,解得⎩⎨⎧x =60,y =40.答:甲、乙两个木工小组单独修理这批桌凳各需60天、40天. (2)这批旧桌凳的数目为60×16=960(套).方案①:学校需付费用为60×(80+10)=5 400(元);方案②:学校需付费用为40×(120+10)=5 200(元);方案③:学校需付费用为96016+(16+8)×(120+80+10)=5 040(元).比较知,方案③既省时又省钱.。