动量定理及其应用
力学中的动量定理应用
力学中的动量定理应用动量是物体运动的重要物理量之一,在力学中,动量定理是运动定律之一,研究物体受力后的运动情况。
本文将探讨动量定理在不同场景下的应用及其重要性。
一、汽车碰撞实例考虑两辆汽车A和B发生碰撞的情况。
假设汽车A的质量为m1,速度为v1,汽车B的质量为m2,速度为v2。
根据动量定理,动量守恒的原理,碰撞前后的总动量保持不变。
碰撞前的总动量为m1v1 + m2v2,碰撞后的总动量为(m1+m2)V。
根据动量守恒定理,可以得到下面的方程:m1v1 + m2v2 = (m1+m2)V通过这个方程我们可以计算出碰撞后的速度V。
这个实例展示了动量定理在汽车碰撞中的应用,使我们能够更好地理解碰撞后车辆的速度变化。
二、火箭推进原理火箭的推进原理是基于动量定理而实现的。
火箭在发射时喷射出燃料和气体,根据动量守恒定理,火箭向反方向获得一个相反的动量,使得整个系统的总动量保持不变。
根据动量定理,燃料和气体的动量之和等于火箭的动量。
当燃料喷射出去时,动量向反方向增加,火箭就会获得一个反向的推力。
火箭推进过程中,动量定理的应用使我们能够理解火箭是如何在无外部力的情况下向前运动的。
三、子弹射击子弹射击是另一个动量定理的应用实例。
假设一个质量为m的子弹以速度v射击一个静止的物体,物体的质量为M。
根据动量定理,子弹的动量等于物体的动量。
因此,可以得到下面的方程:mv = MV根据这个方程,可以计算出物体受到的冲量。
此应用示例展示了动量定理在射击过程中的重要性,使我们能够计算出子弹对物体的冲量大小。
四、运动中的人体保护力学中的动量定理还与人体保护密切相关。
当人体受到外力作用时,身体内的器官和组织会受到动量的传递影响。
根据动量定理,人体的动量会随着外力的作用而改变。
因此,为了保护人体免受伤害,可以通过增加物体的密度或采用防护装备等方法减少动量的变化。
这一应用实例突显了动量定理在人体保护中的重要性,使我们能够更加全面地了解身体受到外力时的影响。
高二物理动量定理的应用的知识点
高二物理动量定理的应用的知识点动量定理是物理学中非常重要的一条定律,它描述了物体运动中动量的变化情况。
在高二物理学习阶段,学生需要了解并掌握动量定理的应用以及相关的知识点。
本文将介绍高二物理中动量定理的应用知识点,帮助学生更好地理解和掌握这一内容。
一、动量定理的基本概念动量定理是指在外力作用下,物体的动量的变化率等于物体所受外力的作用力的大小和方向。
动量的变化率可以用动量的前后差值除以时间间隔来表示,即Δp/Δt = F。
其中,Δp表示物体动量的变化量,Δt表示时间间隔,F表示物体所受外力。
二、动量定理的应用1. 动量定理在碰撞中的应用碰撞是动量定理应用的一个重要场景。
根据动量定理,碰撞前后物体的总动量守恒。
可以通过动量定理计算碰撞物体的速度、方向和质量等信息。
2. 动量定理在推动和牵引中的应用物体在受到外力推动或牵引时,动量定理可以用来计算物体的加速度、速度和位移等。
通过观察物体的受力情况和相应的加速度,可以利用动量定理求解这些物理量的数值。
3. 动量定理在爆炸中的应用爆炸是动量定理应用的另一个案例。
在爆炸过程中,物体的动量会突然增加或减小,通过动量定理可以计算爆炸物体的速度和质量等。
4. 动量定理在流体力学中的应用在流体力学中,动量定理可以用来研究液体或气体流动的性质。
通过应用动量定理,可以计算液体或气体流体的压强、速度以及容器中液体或气体的流速等相关物理量。
三、动量守恒定律与动量定理的关系动量守恒定律是指在任何自由系统或任何系统与环境之间的相互作用中,系统的总动量守恒不变。
与动量定理的关系在于,动量守恒定律是动量定理在不受外力作用时的特例,即 F=0,此时动量的变化率为零。
因此,动量守恒定律是动量定理的一个特殊情况。
通过学习和应用动量定理,可以更好地理解物体运动中动量的变化规律,解释和分析各种力学现象。
同时,理解动量定理的应用知识点,可以帮助学生在实际问题中运用物理学知识进行解决和推导。
理论力学-9-动量定理及其应用
y
解法1:建立Oxy坐标系,在角度q为任意值的情形下
vA
yA 2lsin q
A
xB 2lcosq
vA yA 2lqcosq 2lcosq
vB xB 2lqsinq 2lsin q
Oθ
vB
B
p mivi
i
p mAvA mBvB
p mAvA mBvB
x
2lmcosq j 2lmsinq i
l
cost
例题 3
2.求作用在O轴处的最大水平约束力
y
由质心运动定理
A
O
C
B
l/2
x
&x&C
m1 2(m1
2m2 2m3 m2 m3 )
lω2
cos
ωt
D
Fox
MaCx
(m1
2m2
2m3 )
lω2 2
cos ωt
当 cosωt 1 时,水平约束力最大,其值为
Fox,max
Macx
(m1
2m2
隔板
水池
?抽去隔板后将会
发生什么现象
水
光滑台面
第9章 动量定理及其应用
? 二人在太空中拔河,
初始静止,同时用尽 全力相互对拉。若A 的力气大于B的力气, 则拔河的胜负将如何?
第9章 动量定理及其应用
9.1 动量定理与动量守恒 9.2 质心运动定理 9.3 综合应用举例 9.4 结论与讨论
第9章 动量定理及其应用
2lm(-sinq i cosq j)
9.1.1 质点和质点系的动量
例题 1
解法2: 质点系的质心在C处,其速度大小为
A vC
动量定理在生活、生产中的应用
动量定理在生活、生产中的应用
1、火车行驶
质量大的火轮机越容易推进越快行驶,它的动量定理说的就是这个道理,火轮机发动机产生的动力要能有效地推动火车前进,它所产生的
动量就必须要大,这样才能把减速度降到最小。
2、机器人越野
机器人越野运动需要考虑动量,一个大而重的机器人对于移动、改变
方向、停止都会有一定的动量,在机器人越野过程中,会有不少能源
消耗,而大动量会使机器人行为更加稳定、有决断力,减少能耗,实
现机器人越野更好的效果。
3、潜艇航行
潜艇航行的过程中也会考虑到动量的问题,动量大的潜艇不仅容易推进,且提高航速,同时动量小的潜艇在改变方向时也会增加能源消耗,所以在潜艇的设计和制造过程中要考虑到动量的问题,以达到最大的
推进效率。
什么是动量定理及其在高中物理中的应用
什么是动量定理及其在高中物理中的应用在高中物理的学习中,动量定理是一个极其重要的概念,它不仅帮助我们更深入地理解物体的运动规律,还在解决实际问题中有着广泛的应用。
首先,让我们来了解一下什么是动量定理。
动量,用符号 p 表示,其定义为物体的质量 m 与速度 v 的乘积,即 p = mv。
而动量定理则表述为:合外力的冲量等于物体动量的增量。
冲量,用符号 I 表示,定义为力 F 与作用时间 t 的乘积,即 I = Ft。
简单来说,动量定理告诉我们,当一个物体受到外力作用时,外力在一段时间内的累积效果(即冲量)会导致物体动量的改变。
如果外力的作用时间很短,但是力很大,也能产生较大的冲量,从而改变物体的动量;反之,如果外力作用时间很长,但力较小,同样能产生相同的冲量,改变物体的动量。
为了更直观地理解动量定理,我们来看一个简单的例子。
假设一个质量为m 的小球,以速度v 水平向右运动,撞到一堵墙上后反弹回来,速度大小不变,但方向相反。
在与墙碰撞的过程中,小球受到墙对它的作用力 F,作用时间为 t。
根据动量定理,墙对小球的冲量 I = Ft,等于小球动量的变化量。
因为小球碰撞前后的动量方向相反,所以动量的变化量为 2mv(碰撞前动量为 mv,碰撞后动量为 mv)。
在高中物理中,动量定理有着广泛的应用。
下面我们来探讨几个常见的应用场景。
一、碰撞问题碰撞是高中物理中常见的问题类型,包括完全弹性碰撞、非完全弹性碰撞和完全非弹性碰撞。
在解决这些问题时,动量定理往往能发挥重要作用。
例如,在完全弹性碰撞中,两个物体碰撞前后的总动量守恒,总动能也守恒。
通过动量定理,我们可以列出碰撞前后物体动量的表达式,从而求解出碰撞后物体的速度等物理量。
在非完全弹性碰撞和完全非弹性碰撞中,虽然总动能不守恒,但总动量仍然守恒。
利用动量定理,结合能量守恒定律或其他相关条件,我们能够分析碰撞过程中物体的运动状态变化。
二、打击问题当一个物体受到瞬间的打击力时,动量定理可以帮助我们分析物体的运动情况。
动量定理及其应用
动量定理的应用 1. 解释现象 2. 动手操作
动量定理的理解
1)定理反映了合外力冲量是物体动量变化的原因 (2)动量定理不仅适用于恒定的力,也适用于变力。 (对于变力的情况,动量定理中的 F 应理解为 变力在作用时间内的平均值。) (3) 为矢量表达式 ,动
Ft mv mv
量变化的方向与合外力冲量的方向相同。 用此式计算时应先规定正方向,在运用动量 定理时,应该遵循矢量运算的平行四边形定则, 也可采用正交分解法,将矢量运算转为代数运算 (4)动量定理不仅适用于宏观低速物体,对微观 现象和高速运动仍然适用。
这就是动量定理
mv
F
mv′
F 作用了时间 t
F
பைடு நூலகம்
动量定理: 物体受到的合力的冲量 等于物体动量的变化 表达式: 或
Ft mv mv I p
一个质量为0.1kg的垒球,以10m/s的水平速 度飞向球棒,被球棒打击后,反向水平飞回,速 度的大小为10m/s. 垒球动量改变了多少?
动量定理的应用 1. 解释现象
F mv mv 0.08 0.1 N 18N t 0.01
“﹣”表示力的方向与正方向相反。
利用动量定理解题步骤
1. 确定研究对象 2. 对研究对象进行受力分析,确定全部外力及作用时间; 3. 找出物体的初末状态并确定相应的动量; 4. 如果初、末动量在同一直线上,则选定正方向,并给 每个力的冲量和初末动量带上正负号,以表示和正方向 同向或反向;如果初、末动量不在同一直线上,则用平 行四边形定则求解; 5. 根据动量定理列方程求解。
V0=10m/s:1)沿水平方向抛出。求该物体在 抛出两秒内动量的变化 (g值取10m/s2)
利用动量定理解题
动量定理及应用
是隔离出一定形状的一部分流体作为研究对象,然后列式求解.
3.基本思路 (1)在极短时间Δt内,取一小柱体作为研究对象. (2)求小柱体的体积ΔV=vSΔt (3)求小柱体质量Δm=ρΔV=ρvSΔt
(4)求小柱体的动量变化Δp=vΔm=ρv2SΔt
(5)应用动量定理FΔt=Δp
考点四:应用动量定理处理“流体模型”的冲击力问题
落,落到厚软垫上,若从小球接触软垫到小球陷至最低点经历了 t = 0.2 s,则在这段时间内,软垫对小球的冲量是多少?(g=10 m/s2) 答案 0.6 N· s,方向竖直向上
模型 构建
考点四:应用动量定理处理“流体模型”的冲击力问题 1.研究对象 常常需要选取流体为研究对象,如水、空气等. 2.研究方法
(1)喷泉单位时间内喷出的水的质量;
答案 ρv0S
考点四:应用动量定理处理“流体模型”的冲击力问题
(2)玩具在空中悬停时,其底面相对于喷口的高度.
v02 M2g 答案 2g -2ρ2v 2S2 0
考点四:应用动量定理处理“流体模型”的冲击力问题
变式6
为估算池中睡莲叶面承受雨滴撞击产生的平均压强,小明在雨
Байду номын сангаас例4
一高空作业的工人重为600 N,系一条长为L=5 m的安全带,
若工人不慎跌落时安全带的缓冲时间 t=1 s(工人最终悬挂在空中), 则缓冲过程中安全带受的平均冲力是多少?(g取10 m/s2,忽略空气
阻力的影响) 答案 1 200 N,方向竖直向下
考点三:动量定理在多过程问题中的应用
变式5
一个质量为m=100 g的小球从离厚软垫h=0.8 m高处自由下
(3)抓住过程的初、末状态,选好正方向,确定各动量和冲量的正负号.
动量定理及其应用
动量定理及其应用动量定理是物理学中的重要概念之一,它描述了物体运动的性质和变化。
本文将介绍动量定理的基本原理、公式推导以及其在实际应用中的意义和重要性。
一、动量定理的基本原理动量定理是由牛顿提出的,它描述了质点的运动状态和所受外力之间的关系。
根据动量定理的表述,一个质点的动量的变化量等于作用于质点的力的时间积分。
换句话说,当一个物体受到外力作用时,它的动量会发生改变。
动量定理可以表述为以下公式:F = Δp/Δt其中,F代表物体所受的力,Δp为物体的动量变化量,Δt为时间的变化量。
该公式表示力等于物体动量的变化率。
二、动量定理的公式推导动量是物体的运动状态的衡量,它的大小与物体的质量和速度有关。
根据定义,动量p等于物体质量m与速度v的乘积:p = m * v。
当一个物体受到外力F作用时,根据牛顿第二定律F = ma(a为物体的加速度),可得:F = m * a根据运动学公式v = u + at(u为初速度,t为时间),可以将加速度a表示为:a = (v - u) / t将上述两个公式代入牛顿第二定律中得:F = m * (v - u) / t进一步整理可以得到:F * t = m * (v - u)F * t = m * Δv根据动量的定义p = m * v,将上述公式代入可得:F * t = Δp经过推导,我们得到了动量定理的基本公式F = Δp/Δt。
三、动量定理的应用动量定理在物理学和工程学中有着广泛的应用,以下是一些常见的应用场景:1. 交通事故分析:动量定理可以帮助我们分析交通事故中车辆的碰撞情况,准确计算撞击力的大小以及车辆运动状态的变化。
2. 火箭推进原理:在航天工程中,动量定理被用来解释火箭如何通过燃料的喷射产生反作用力,从而达到推进的效果。
3. 球类运动:动量定理可以解释球类运动中击球和接球的力学过程。
例如,乒乓球运动中击球员可以通过控制球的反冲力使得球的速度和方向发生改变。
4. 器械运动分析:动量定理可以用来解析各种器械运动的特点和规律,例如击球运动、举重等。
动量定理应用
动量定理应用动量定理是物理学中的一个基本原理,它描述了物体的动量随时间的变化关系。
在本文中,我们将探讨动量定理在碰撞分析、弹道计算、交通事故分析、工业生产、抛射体运动、游戏物理、刚体动力学和流体力学等方面的应用。
1.碰撞分析动量定理可以用于分析碰撞过程中的能量和动量变化。
在碰撞中,物体的动量会发生瞬时变化,而动量定理可以描述这个变化的过程。
通过动量定理,我们可以判断碰撞是否符合物理规律,从而帮助我们理解物体的碰撞行为。
2.弹道计算动量定理可以用于计算炮弹、子弹等抛射体的运动轨迹和速度。
在枪械和火箭发射中,抛射体的速度和轨迹是决定射击精度和发射角度的重要因素。
通过动量定理,我们可以精确地计算出抛射体的运动轨迹和速度,从而提高枪械和火箭的射击精度。
3.交通事故分析动量定理可以用于分析交通事故中车辆碰撞时的能量和动量变化。
在交通事故中,车辆碰撞时的能量和动量是判断事故责任和损伤程度的重要依据。
通过动量定理,我们可以分析碰撞过程中车辆的能量和动量变化,从而帮助判断事故责任和损伤程度。
4.工业生产动量定理可以用于计算压力容器和机械臂等工业生产设备的力和运动轨迹。
在工业生产中,压力容器和机械臂的运动轨迹和力度是决定产品质量和效率的重要因素。
通过动量定理,我们可以精确地计算出设备的运动轨迹和力度,从而提高生产效率和产品质量。
5.抛射体运动动量定理可以用于分析抛射体运动的轨迹和速度。
在抛射体运动中,物体的速度和轨迹是决定射击精度的重要因素。
通过动量定理,我们可以精确地计算出抛射体的运动轨迹和速度,从而提高射击精度。
6.游戏物理动量定理可以用于制作更加真实的游戏物理效果,包括碰撞反弹、物块运动等。
在游戏中,物理效果的真实与否直接影响到游戏的整体质量。
通过动量定理,我们可以模拟出更加真实的物理效果,从而提高游戏的整体质量。
7.刚体动力学动量定理可以用于计算刚体运动过程中的力和运动轨迹。
在刚体动力学中,物体的力和运动轨迹是决定物体运动状态的重要因素。
动量定理及应用知识点
动量定理及应用知识点什么是动量定理?动量定理是物理学中的一个重要定理,它描述了物体在外力作用下的运动及其与力的关系。
动量定理的数学表达式为:Δp=F⋅Δt其中,Δp表示物体的动量变化,F表示作用在物体上的力,Δt表示力的作用时间。
根据动量定理,如果一个物体受到一个力的作用,它的动量将随时间变化。
当力作用时间很短的时候,动量的变化量也很小;当力作用时间很长的时候,动量的变化量也相应增大。
动量定理的应用动量定理在物理学中有着广泛的应用。
以下是一些常见的应用场景:1.交通事故分析:动量定理可以用来分析交通事故中的碰撞情况。
当两个车辆发生碰撞时,根据动量定理可以计算出碰撞前后车辆的动量变化,从而判断事故的严重程度。
2.火箭升空:动量定理被用来解释火箭升空的原理。
火箭喷射出来的燃料气体具有一定的质量和速度,根据动量定理,喷射气体的动量变化会导致火箭的动量变化,从而推动火箭升空。
3.运动员跳水:运动员在跳水时,通过采用特定的蹬脚和撑手动作,可以改变身体的动量。
运用动量定理,可以计算出运动员跳水时所需的动作力度和角度。
4.物体的运动轨迹:动量定理可以用来预测物体在外力作用下的运动轨迹。
通过计算物体的动量变化和外力的作用时间,可以得出物体在特定条件下的运动情况。
动量定理的局限性尽管动量定理在描述物体运动方面有着广泛的应用,但也存在一些局限性。
以下是一些动量定理的局限性:1.不考虑摩擦力:动量定理没有考虑摩擦力对物体运动的影响。
在实际情况下,物体运动时往往会受到摩擦力的作用,这会导致动量的损失。
2.不考虑外力变化:动量定理假设外力的大小和方向在整个过程中保持不变。
然而,在实际情况下,外力的大小和方向可能会发生变化,这会对动量定理的应用带来一定的限制。
3.仅适用于经典力学:动量定理是经典力学中的一个定理,适用于描述宏观物体的运动。
对于微观领域,如原子和分子的运动,需要使用量子力学等其他理论。
结论动量定理是物理学中重要的定理之一,它描述了物体在外力作用下的运动情况。
动量定理及其应用
1.动量:①定义:物体质量与速度的乘积,②动量的性质:是状态量、具有相对性、矢量性2.动量守恒定律①动量的变化量:②内力与外力:系统内物体间的相互作用力叫做内力;系统外物体施加给系统内物体的力叫做内力。
③动量守恒定律:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变,这就是动量守恒定律。
④动量守恒定律的成立条件a.系统不受外力或所受外力和为零,则系统的动量守恒。
b.系统所受外力比内力小很多,则系统的动量近似守恒。
c.系统某一方向不受外力或所受外力的和为零,或所受外力比内力小很多,该方向动量守恒。
⑤动量守恒定律的普适性a.牛顿定律解决问题涉及全过程,用动量解决只涉及始末状态,与过程无关。
b.动量守恒不仅适用宏观低速,而且适用微观高速,牛顿定律不适用微观高速。
二.碰撞1.碰撞的分类:2.一维弹性碰撞当时①若,交换速度②若,,同向,速度前大后小③若,反弹④若,⑤若,三.反冲1.反冲:如果一个静止的物体在内力的作用下分裂为两部分,一部分向某个方向运动,另一部分必然向相反的方向运动,这个现象叫做反冲。
2.反冲遵循的规律:,即:,,即:3.反冲运动的应用:喷气式飞机,射击时枪筒的后退,火箭发射等。
四.用动量概念表示牛顿第二定律1.用动量概念表示牛顿第二定律假设物体受到恒力的作用做匀变速直线运动,在时刻物体的初速度为,在时刻物体的速度为,由牛顿第二定律得,物体的加速度合力F=ma由于,所以2.动量定理应用动量定理需要注意的几点:①方程左边是物体动量的变化量,计算时顺序不能颠倒②方程右边是物体受到的合外力的总冲量,其中F可以是恒力也可以是变力,如果合外力是变力,则F是合外力在时间t内的平均值③整个式子反映了一个过程,即力对时间的积累效果是引起物体动量的变化。
④动量定理中的冲量和动量都是矢量,冲量的方向与动量变化量的方向相同。
⑤动量与参考系的选取有关,所以用动量定理时必须注意参考系的选取。
动量定理及其应用
小结
1.动量定理的理解
2.动量定理的应用 (1)用动量定理解释现象
P 一定, t 越短,则F越大。
F P
t t 一定, P越大,则F越大。
(2)用动量定理解题
V0=10m/s:1)沿水平方向抛出。求该物体在 抛出两秒内动量的变化
(g值取10m/s2)
利用动量定理解题
4. 质量为m的物体以速率v沿半径为R 的圆在光滑水平面上做匀速圆周运动。 求物体受的合力的及物体运动半周所受 的合力的冲量。
解:
合外力
F
m
v2 R
以小球运动半周的初速度方向为正方向
初动量:P=mv 末动量:P mv
5. 根据动量定理列方程求解。
练习
3.如图,用0.5kg的铁锤钉钉子,打击时 铁锤的速度为4m/s,打击后铁锤的速 度变为零,设打击时间为0.01s
a.不计铁锤的重量,铁锤钉钉子的平均 作用力是多大?
b.考虑铁锤的重量,铁锤钉钉子的平均 作用力是多大?
C.你分析一下,在计算铁锤钉钉子的 平均作用力时在什么情况下可以不计 铁锤的重量.
观察鸡并蛋从思一考米多高的地方落到地板上,肯
定会被打破,现在,在地板上放一块泡沫 塑料垫,让鸡蛋落到泡沫塑料上,会看到 什么现象?你能解释这种现象吗?
上述体育项目中的海绵垫、沙子、接球时手的回收 都有些什么物理原理呢?
v
F 作用了时间 t v′
F
F
分析: 结论:
F合t mvt mv0
这就是动量定理
mv
F F 作用了时间 t
mv′
F
动量定理: 物体受到的合力的冲量 等于物体动量的变化
表达式:Ft mv mv 或 I p
高中物理:动量定理的5种应用+例题详解!
作者:一气贯长空高中物理:动量定理的5种应用+例题详解!动量定理是力对时间的积累效应,使物体的动量发生改变,适用的范围很广,它的研究对象可以是单个物体,也可以是物体系;它不仅适用于恒力情形,而且也适用于变力情形,尤其在解决作用时间短、作用力大小随时间变化的打击、碰撞等问题时,动量定理要比牛顿定律方便得多。
一、用动量定理解释生活中的现象【例1】竖立放置的粉笔压在纸条的一端.要想把纸条从粉笔下抽出,又要保证粉笔不倒,应该缓缓、小心地将纸条抽出,还是快速将纸条抽出?说明理由。
【解析】纸条从粉笔下抽出,粉笔受到纸条对它的滑动摩擦力μmg作用,方向沿着纸条抽出的方向。
不论纸条是快速抽出,还是缓缓抽出,粉笔在水平方向受到的摩擦力的大小不变。
在纸条抽出过程中,粉笔受到摩擦力的作用时间用t表示,粉笔受到摩擦力的冲量为μmgt,粉笔原来静止,初动量为零,粉笔的末动量用mv表示.根据动量定理有:μmgt=mv。
如果缓慢抽出纸条,纸条对粉笔的作用时间比较长,粉笔受到纸条对它摩擦力的冲量就比较大,粉笔动量的改变也比较大,粉笔的底端就获得了一定的速度.由于惯性,粉笔上端还没有来得及运动,粉笔就倒了。
如果在极短的时间内把纸条抽出,纸条对粉笔的摩擦力冲量极小,粉笔的动量几乎不变.粉笔的动量改变得极小,粉笔几乎不动,粉笔也不会倒下。
二、用动量定理解曲线运动问题【例2】以速度v0水平抛出一个质量为1kg的物体,若在抛出后5s未落地且未与其它物体相碰,求它在5s内的动量的变化.(g=10m/s2)。
【解析】此题若求出末动量,再求它与初动量的矢量差,则极为繁琐.由于平抛出去的物体只受重力且为恒力,故所求动量的变化等于重力的冲量.则Δp=Ft=mgt=1×10×5=50 kg·m/s。
动量定理及其应用课件
VS
量子力学中的动量定理
将动量定理应用于量子力学领域,研究其 在描述微观粒子运动和相互作用中的作用 。
动量定理在交叉学科领域的研究
工程力学中的动量定理
将动量定理应用于工程力学领域,研究其在 结构分析、振动控制等方面的应用。
生物学中的动量定理
将动量定理应用于生物学领域,探讨其在描 述生物运动、生态平衡等方面的作用。
棒球投手投球
棒球投手通过改变球的速度和角度来 控制球的轨迹。这需要运用动量定理 来预测球在空中的运动轨迹,以便投 手能够准确地将球投到目标位置。
滑雪技巧
在滑雪过程中,运动员通过改变滑行 速度和方向来控制自己的轨迹。这需 要运用动量定理来理解速度和方向变 化对滑雪轨迹的影响。
工业生产中的应用
机械加工
全。
军事科技
导弹和炮弹的制导和射击精度也 依赖于动量定理来计算和控制弹 道轨迹,提高武器的打击效果。
04 动量定理的实验验证
实验设计
01
02
03
实验目标
验证动量定理在现实生活 中的应用,探究物体在碰 撞过程中的动量变化。
实验原理
基于动量定理,当一个物 体发生碰撞时,其动量的 变化与作用力和作用时间 的乘积成正比。
对碰撞问题的解决
动量定理为解决碰撞问题提供了重要 的工具,使得科学家能够预测和解释 物体碰撞过程中的各种现象。
动量定理在现代科技领域的应用
火箭科学
火箭发动机的推进原理正是基于 动量定理,通过高速喷射物质来 获得反作用力,从而实现火箭的
升空和推进。
碰撞安全研究
汽车、飞机和其他交通工具的碰 撞安全研究依赖于动量定理来分 析碰撞过程中能量的传递和吸收 ,以改进安全设计和保护乘员安
高中物理-动量定理的六种应用
高中物理-动量定理的六种应用动量定理的内容是物体所受合外力的冲量等于物体动量的变化,即I = △p。
动量定理表明冲量是物体动量发生变化的原因,冲量是物体动量变化的量度。
这里所说的冲量必须是物体所受的合外力的冲量。
动量定理是力对时间的积累效应,使物体的动量发生改变,适用的范围很广,它的研究对象可以是单个物体,也可以是物体系;它不仅适用于恒力情形,而且也适用于变力情形,尤其在解决作用时间短、作用力大小随时间变化的打击、碰撞等问题时,动量定理要比牛顿定律方便得多。
一、用动量定理解释生活中的现象动量定理在实际生活中有着广泛的应用,实际生活中的许多现象都可用动量定理加以解释,用动量定理解释现象可分为下列三中情况:1. △p 一定,t短则F大,t 长则F小2. F 一定,t短则△p 小,t 长则△p 大3. t 一定,F短则△p 小,F 长则△p 大【典例1】钉钉子时为什么要用铁锤而不用橡皮锤,而铺地砖时却用橡皮锤而不用铁锤?【答案】见解析【名师点拨】根据动量定理,利用对作用时间的调整来控制作用力的大小。
【典例2】竖立放置的粉笔压在纸条的一端.要想把纸条从粉笔下抽出,又要保证粉笔不倒,应该缓缓、小心地将纸条抽出,还是快速将纸条抽出?说明理由。
如果缓慢抽出纸条,纸条对粉笔的作用时间比较长,粉笔受到纸条对它摩擦力的冲量就比较大,粉笔动量的改变也比较大,粉笔的底端就获得了一定的速度.由于惯性,粉笔上端还没有来得及运动,粉笔就倒了。
如果在极短的时间内把纸条抽出,纸条对粉笔的摩擦力冲量极小,粉笔的动量几乎不变.粉笔的动量改变得极小,粉笔几乎不动,粉笔也不会倒下。
【答案】见解析【学霸总结】1. 体育比赛中的一系列保护措施都可概括为通过延长相互作用的时间来达到减小相互作用力,从而达到保护人体不受伤害的目的,如篮球运动员接迎面飞来的篮球,手接触到球以后,两臂随球后引至胸前把球接住,以延长篮球与手的接触时间,减小篮球对手的作用力。
流体的动量定理及应用
流体的动量定理及应用流体力学是研究流体运动和力学性质的一门学科,其中动量定理是流体力学中重要的基本原理之一。
本文将深入探讨流体的动量定理的原理及其在实际应用中的重要性。
一、流体的动量定理原理流体的动量定理基于牛顿第二定律,即力等于物体的质量乘以加速度。
对于流体,其力可以通过流体压力和流体体积力的合力来表示。
动量定理可以表达为:在不受外力或体积力作用的情况下,流体中某一控制体的动量改变率等于该控制体上合力的作用力,即直接与作用在该控制体上的力相关。
根据动量定理,我们可以推导出流体力学中的两个重要方程:欧拉动量方程和伯努利方程。
欧拉动量方程描述了流体静止状态下力的均衡性,而伯努利方程则用于描述流体在相对运动状态下的动能和压力之间的关系。
二、流体的动量定理的应用1. 流体力学实验流体的动量定理在流体力学实验中具有广泛应用。
通过建立合适的实验装置,我们可以观察流体在不同条件下的运动状态,并利用动量定理分析流体的受力情况。
例如,在研究水泵的性能时,通过测量流体的入口和出口速度,我们可以利用动量定理计算出泵的流量和扬程,从而评估其性能。
2. 水力工程在水力工程中,动量定理被广泛应用于流体的管道、水闸和水泵等设备的设计和优化。
通过研究流体在管道中的流动状态,并利用动量定理分析各个部分的力平衡,我们可以确定管道的尺寸、选择合适的水泵和优化系统设计。
3. 飞行器设计动量定理在飞行器设计中也扮演着关键的角色。
例如,在飞机设计中,通过分析流体在飞机翼上的流动状态,利用动量定理可以计算出升力和阻力。
这对于飞机的气动性能分析和设计改进至关重要。
4. 污水处理在污水处理中,利用动量定理可以评估污水流动过程中的阻力和压力损失,为污水处理设备的运行和设计提供重要依据。
通过优化流体的流动状态,可以提高处理效率并减少能源消耗。
5. 流体力学研究动量定理在流体力学研究中也具有重要应用价值。
通过分析流体运动中的力平衡和动量变化,可以深入研究流体的运动规律、湍流现象和流体与固体的相互作用等问题,为解决实际工程和自然现象提供理论支持。
动量定理的原理应用
动量定理的原理应用1. 动量定理的基本原理动量定理是牛顿第二定律的一个重要应用,它描述了一个物体的动量改变量与作用力的关系。
根据动量定理,当一个作用力作用在一个物体上时,物体的动量将发生改变,其改变量等于作用力乘以时间。
公式表达如下:动量改变量Δp = F × Δt其中,Δp表示动量的改变量,F表示作用力,Δt表示作用时间。
2. 动量定理的应用场景动量定理被广泛应用于力学、流体力学、碰撞等物理学领域,其中一些场景的应用如下:2.1 车辆碰撞在交通事故中,动量定理可以帮助我们理解车辆碰撞时的动量变化。
当两辆车发生碰撞时,它们之间的作用力将会导致各自动量的改变。
根据动量定理,我们可以计算出碰撞前后车辆动量的差值,来评估碰撞的严重程度以及事故的后果。
2.2 射击运动在射击运动中,动量定理也可以应用于研究子弹的运动。
当子弹发射时,推进膛线产生的作用力将会改变子弹的动量。
通过应用动量定理,我们可以计算出子弹的初速度、击中目标后的动量以及反作用力等参数。
2.3 宇宙航天在宇宙航天领域,动量定理也是一项重要的原理。
例如,在火箭发射时,燃料燃烧产生的气体被排出,形成火箭的推进力。
根据动量定理,当火箭发射时,火箭的质量减少,但速度增加,以保持动量守恒。
3. 动量定理应用的案例分析3.1 车辆碰撞案例假设有两辆质量分别为m1和m2的汽车,它们在同一方向上以速度v1和v2相撞,碰撞过程中作用力的时间为Δt。
根据动量定理,我们可以得到以下关系式:m1 × Δv1 = F × Δtm2 × Δv2 = -F × Δt其中,Δv1表示汽车1的速度变化量,Δv2表示汽车2的速度变化量,F表示两辆汽车之间产生的碰撞作用力。
通过求解上述方程组,我们可以计算出碰撞后的速度变化量,从而评估碰撞对两辆汽车的影响。
3.2 射击运动案例假设一枚质量为m的子弹以速度v从一枪口发射,且推进膛线产生的力为F,作用力的时间为Δt。
高中物理动量定理的五种应用及例题详解
高中物理动量定理的五种应用及例题详解动量定理是力对时间的积累效应,使物体的动量发生改变,适用的范围很广,它的研究对象可以是单个物体,也可以是物体系;它不仅适用于恒力情形,而且也适用于变力情形,尤其在解决作用时间短、作用力大小随时间变化的打击、碰撞等问题时,动量定理要比牛顿定律方便得多。
一、用动量定理解释生活中的现象【例1】竖立放置的粉笔压在纸条的一端.要想把纸条从粉笔下抽出,又要保证粉笔不倒,应该缓缓、小心地将纸条抽出,还是快速将纸条抽出?说明理由。
【解析】纸条从粉笔下抽出,粉笔受到纸条对它的滑动摩擦力μmg作用,方向沿着纸条抽出的方向。
不论纸条是快速抽出,还是缓缓抽出,粉笔在水平方向受到的摩擦力的大小不变。
在纸条抽出过程中,粉笔受到摩擦力的作用时间用t表示,粉笔受到摩擦力的冲量为μmgt,粉笔原来静止,初动量为零,粉笔的末动量用mv表示.根据动量定理有:μmgt=mv。
如果缓慢抽出纸条,纸条对粉笔的作用时间比较长,粉笔受到纸条对它摩擦力的冲量就比较大,粉笔动量的改变也比较大,粉笔的底端就获得了一定的速度.由于惯性,粉笔上端还没有来得及运动,粉笔就倒了。
如果在极短的时间内把纸条抽出,纸条对粉笔的摩擦力冲量极小,粉笔的动量几乎不变.粉笔的动量改变得极小,粉笔几乎不动,粉笔也不会倒下。
二、用动量定理解曲线运动问题【例2】以速度v0水平抛出一个质量为1kg的物体,若在抛出后5s未落地且未与其它物体相碰,求它在5s内的动量的变化.(g=10m/s2)。
【解析】此题若求出末动量,再求它与初动量的矢量差,则极为繁琐.由于平抛出去的物体只受重力且为恒力,故所求动量的变化等于重力的冲量.则Δp=Ft=mgt=1×10×5=50 kg·m/s。
注:①运用Δp=mv-mv0求Δp时,初、末速度必须在同一直线上,若不在同一直线,需考虑运用矢量法则或动量定理Δp=Ft求解Δp.②用I=F·t求冲量,F必须是恒力,若F是变力,需用动量定理I=Δp求解I。
动量定理的理解及应用
动量定理的理解及应用动量定理是经典物理学中一个非常重要的定理,它描述了一个物体所受的力是由于外界施加在物体上的冲量所引起的物体动量的变化率。
这个定理给出了力和物体动量之间的关系,是牛顿力学的基础之一。
动量定理可以用一个简单的公式来表示:F = Δp/Δt其中,F代表物体所受的力,Δp代表物体动量的变化量,Δt代表时间的变化量。
这个公式表明,物体所受的力与物体运动状态的变化有关,力越大,物体的动量改变越大。
我们可以从两个方面来理解和应用动量定理。
首先,动量定理可以帮助我们解释运动中的力学现象。
根据动量定理,如果一个物体受到一个力的作用,它的动量会发生变化。
如果物体的质量不变,那么它的速度将发生变化。
当物体在运动过程中受到力的作用时,根据动量定理,我们可以计算物体运动的加速度以及物体速度变化的大小和方向。
这就为我们解释和分析物体在运动中的加速度和速度变化提供了有力的工具。
其次,动量定理还可以帮助我们解决一些实际问题。
例如,在碰撞问题中,我们可以利用动量定理来计算碰撞中物体的速度变化和碰撞冲量的大小。
在实际生活和工程中,很多问题都需要我们研究碰撞过程中物体的动量变化情况,例如汽车的防撞设计、体育运动中的碰撞分析等。
动量定理可以提供一种简单而有效的方法来解决这些问题。
此外,动量定理还可以应用于流体力学中。
流体的运动也可以通过动量定理来描述。
当流体受到外力作用时,根据动量定理可以计算流体运动的速度变化和流体压力分布的变化。
这对于研究流体运动的特性和设计流体力学系统非常重要。
总之,动量定理是一个非常重要的物理定理,它描述了力与物体动量之间的关系。
通过应用动量定理,我们可以解释和分析物体运动中的力学现象,解决实际问题,同时也可以应用于流体力学中。
掌握动量定理的理论和应用,对于深入理解物体运动和力学现象具有重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.动量:①定义:物体质量与速度的乘积,②动量的性质:是状态量、具有相对性、矢量性2.动量守恒定律①动量的变化量:②内力与外力:系统内物体间的相互作用力叫做内力;系统外物体施加给系统内物体的力叫做内力。
③动量守恒定律:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变,这就是动量守恒定律。
④动量守恒定律的成立条件a.系统不受外力或所受外力和为零,则系统的动量守恒。
b.系统所受外力比内力小很多,则系统的动量近似守恒。
c.系统某一方向不受外力或所受外力的和为零,或所受外力比内力小很多,该方向动量守恒。
⑤动量守恒定律的普适性a.牛顿定律解决问题涉及全过程,用动量解决只涉及始末状态,与过程无关。
b.动量守恒不仅适用宏观低速,而且适用微观高速,牛顿定律不适用微观高速。
二.碰撞1.碰撞的分类:2.一维弹性碰撞当时①若,交换速度②若,,同向,速度前大后小③若,反弹④若,⑤若,三.反冲1.反冲:如果一个静止的物体在内力的作用下分裂为两部分,一部分向某个方向运动,另一部分必然向相反的方向运动,这个现象叫做反冲。
2.反冲遵循的规律:,即:,,即:3.反冲运动的应用:喷气式飞机,射击时枪筒的后退,火箭发射等。
四.用动量概念表示牛顿第二定律1.用动量概念表示牛顿第二定律假设物体受到恒力的作用做匀变速直线运动,在时刻物体的初速度为,在时刻物体的速度为,由牛顿第二定律得,物体的加速度合力F=ma由于,所以2.动量定理应用动量定理需要注意的几点:①方程左边是物体动量的变化量,计算时顺序不能颠倒②方程右边是物体受到的合外力的总冲量,其中F可以是恒力也可以是变力,如果合外力是变力,则F是合外力在时间t内的平均值③整个式子反映了一个过程,即力对时间的积累效果是引起物体动量的变化。
④动量定理中的冲量和动量都是矢量,冲量的方向与动量变化量的方向相同。
⑤动量与参考系的选取有关,所以用动量定理时必须注意参考系的选取。
⑥动量定理不仅适用于宏观物体的低速运动,对微观现象,高速运动仍然适用。
⑦不能认为合外力的冲量就是动量的变化。
合外力的冲量是引起动量变化的原因,而动量变化是冲量作用的必然结果⑧动量定理的研究对象是单个质点或由质点所构成的系统,当研究对象为质点系统时,动量定理中的动量应是该系统内所有质点在同一时刻动量的矢量和,而冲量是该系统内各个质点在同一个物理过程中所受一切外力冲量的矢量和,不包括系统内各质点之间相互作用的(内力)的冲量,这是因为内力总是成对出现的,且大小相等、方向相反,故其内力的总冲量必定为零。
五.动量典型模型1.人船模型:如图所示长为,质量为m1的小船在静水中,一个质量为m2的人立在船头,若不计水的粘滞阻力,当人从船头走到船尾的过程中,船和人相对地面的位移各是多少?分析与解答:选船和人组成的系统为研究对象,由于水平方向不受外力,因而人从船头走向船尾的过程中任一时刻水平方向的动量都守恒,既平均动量守恒,而系统在人起步前的总动量为0。
设人和船在全过程中的平均速度分别为和,根据动量守恒定律:设相互作用的时间为,则,故由题意知:联立两式解得:,练习:某人在一只静止于水面的小船上练习射击。
船、人连枪(不包括子弹)及靶的总质量为M,枪内装有n颗子弹,每颗子弹质量为m。
枪口到靶的距离为,子弹射出枪口时相对于地面的速度为v。
在发射后一颗子弹时,前一颗子弹已陷入靶中,则发射完n颗子弹后小船后退多远?参考答案:2.板块模型:已知木板质量为,静止在光滑水平地面上,一个质量为的小滑块,以初速度滑上木板,滑块与木板之间的接触面粗糙(1)木块与木板相对静止的速度由动量守恒定律:(2)从滑块滑上小车到它们处于相对静止所经历的时间由动量定理:(3)m在M上滑行的位移s相对(若滑块不掉下木板,木板至少多长)由功能关系:(4)到达相对静止时,相对地面的位移木块位移:木板位移:练习:如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为 1.6kg,木块与小车之间的摩擦因数为0.2(g取10m/s2)。
设小车足够长,求:(1)木块和小车相对静止时小车的速度(2)从木块滑上小车到它们处于相对静止所经历的时间(3)欲使木块不离开平板小车,小车的至少为多长?(4)达到相对静止时,木块相对地面的位移?参考答案:(1)0.4m/s(2)0.8N(3)0.8m(4)0.96m3.弹簧振子模型:质量为的木块A和B用质量不计的轻质弹簧连接在一起,一个质量为的子弹以速度射向木块A并最终留在木块之中。
(1)在这一过程中产生的热量是多少?以子弹和A木块组成的系统为研究对象由动量守恒:(2)当子弹、A木块与B木块速度相同时,速度大小为多少?由动量守恒:(3)弹簧的最大弹性势能由机械能守恒:练习:如图所示,一轻质弹簧两端连着物体A、B,放在光滑的水平面上,若物体A被水平速度为v0的子弹射中,且后者嵌在物体A的中心,已知物体A的质量是物体B质量的3/4,子弹质量是物体B的1/4,设子弹的质量为m(1)弹簧被压缩到最短时,求物体A、B的速度。
(2)最大弹性势能。
参考答案:(1)(2)4.子弹冲击沙摆模型质量为m的子弹以速度击中用为L细绳悬挂的质量为的沙摆(1)木块被击中后摆动的最大偏角由动量守恒:由机械能守恒定律:(2)运动到最低点绳子的拉力(3)若使沙摆在竖直平面内做圆周运动,最小为多大?由机械能守恒:练习:如图,质量为M的木块用长为L的细线悬挂于某固定点,开始时木块静止在最低点,质量为m的子弹以水平速度V0击中木块后未穿出,设子弹击中木块的时间极短,则:(1)若木块被击中后向右摆动的最大偏角θ小于90°,求θ。
(2)当木块摆动返回最低点时,求悬线的拉力。
(3)欲使小球在竖直面上做完整的圆周运动,子弹水平速度V0必须满足什么条件?参考答案:(1)(2)(3)1.动量守恒定律的判断1、把一支枪水平固定在小车上,小车放在光滑的水平地面上,枪发射出子弹时,关于枪、子弹、车的下列说法正确的是()A.枪和子弹组成的系统动量守恒B.枪和车组成的系统动量守恒C.只有忽略不计子弹和枪筒之间的摩擦,枪、车和子弹组成的系统的动量才近似守恒D.枪、子弹、车组成的系统动量守恒解:本题C选项中所提到的子弹和枪筒之间的摩擦是系统的内力,在考虑枪、子弹、车组成的系统时,这个因素是不用考虑的根据受力分析,可知该系统所受合外力为0,符合动量守恒的条件,故选D规律总结:判断系统是否动量守恒时,一定要抓住守恒条件,即系统不受外力或者所受合外力为0。
变式:如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中:()A、动量守恒、机械能守恒B、动量不守恒、机械能不守恒C、动量守恒、机械能不守恒D、动量不守恒、机械能守恒解析:若以子弹、木块和弹簧合在一起作为研究对象(系统),从子弹开始射入木块到弹簧压缩至最短时,弹簧固定端墙壁对弹簧有外力作用,因此动量不守恒.而在子弹射入木块时,存在剧烈摩擦作用,有一部分能量将转化为内能,机械能也不守恒.答案:B规律总结:实际上,在子弹射入木块这一瞬间过程,取子弹与木块为系统则可认为动量守恒(此瞬间弹簧尚未形变).子弹射入木块后木块压缩弹簧过程中,机械能守恒,但动量不守恒.物理规律总是在一定条件得出的,因此在分析问题时,不但要弄清取谁作研究对象,还要弄清过程的阶段的选取,判断各阶段满足物理规律的条件.2.碰撞中过程的分析2、如图所示,位于光滑水平桌面上的小滑块A和B都可视作质点,质量相等。
B与轻质弹簧相连。
设B静止,A以某一初速度向B运动并与弹簧发生碰撞。
在整个碰撞过程中,弹簧具有的最大弹性势能等于()A. A的初动能B. A的初动能的1/2C. A的初动能的1/3D. A的初动能的1/4解析:解决这样的问题,最好的方法就是能够将两个物体作用的过程细化。
具体分析如图:开始A物体向B运动,如右图;接着,A与弹簧接触,稍有作用,弹簧即有形变,分别对A、B物体产生如中图的作用力,对A的作用力的效果就是产生一个使A减速的加速度,对B的作用力的效果则是产生一个使B加速的加速度。
如此,A在减速,B在加速,一起向右运动,但是在开始的时候,A的速度依然比B 的大,所以相同时间内,A走的位移依然比B大,故两者之间的距离依然在减小,弹簧不断压缩,弹簧产生的作用力越来越大,对A的加速作用和对B的加速作用而逐渐变大,于是,A的速度不断减小,B的速度不断增大,直到某个瞬间两个物体的速度一样,如下图。
过了这个瞬间,由于弹簧的压缩状态没有发生任何变化,所以对两个物体的作用力以及力的效果也没有变,所以A要继续减速,B要继续加速,这就会使得B的速度变的比A 大,于是A、B物体之间的距离开始变大。
因此,两个物体之间的距离最小的时候,也就是弹簧压缩量最大的时候,也就是弹性势能最大的时候,也就是系统机械能损失最大的时候,就是两个物体速度相同的时候。
根据动量守恒有,根据能量守恒有,以上两式联列求解得,可见弹簧具有的最大弹性势能等于滑块A原来动能的一半,B正确规律总结:处理带有弹簧的碰撞问题,认真分析运动的变化过程是关键,面对弹簧问题,一定要注重细节的分析,采取“慢镜头”的手段。
3.动量守恒定律的适用情景3、小型迫击炮在总质量为1000kg的船上发射,炮弹的质量为2kg.若炮弹飞离炮口时相对于地面的速度为600m/s,且速度跟水平面成45°角,求发射炮弹后小船后退的速度。
解析:发射炮弹前,总质量为1000kg的船静止,则总动量Mv=0.发射炮弹后,炮弹在水平方向的动量为mv1'cos45°,船后退的动量为(M-m)v2'据动量守恒定律有0=mv1'cos45°+(M-m)v2'取炮弹的水平速度方向为正方向,代入已知数据解得规律总结:取炮弹和小船组成的系统为研究对象,在发射炮弹的过程中,炮弹和炮身(炮和船视为固定在一起)的作用力为内力。
系统受到的外力有炮弹和船的重力、水对船的浮力.在船静止的情况下,重力和浮力相等,但在发射炮弹时,浮力要大于重力.因此,在垂直方向上,系统所受到的合外力不为零,但在水平方向上系统不受外力(不计水的阻力),故在该方向上动量守恒。
变式:物块A、B质量分别为m A、m B,用细绳连接,在水平恒力F的作用下A、B 一起沿水平面做匀速直线运动,速度为v,如运动过程中,烧断细绳,仍保持力F大小方向不变,则当物块B停下来时,物块A的速度为多大?解析:以A和B组成的系统作为研究对象.绳子烧断前,A、B一起做匀速直线运动,故系统所受外力和为零,水平方向系统所受外力只有拉力F,物块A受到地面的摩擦力f A,物体B受到地面的摩擦力f B,且F=f A+f B.绳烧断后,直到B停止运动前F与f A、f B均保持不变,故在此过程中系统所受外力和仍为零,系统总动量保持不变.所以此题可用动量守恒定律求解.解:取初速v的方向为正方向,设绳断后A、B的速度大小分别为v′A、v′B,由动量守恒定律有(m A+m B)v=m A v′A+m B v′B4.分方向动量守恒4、如图所示.质量为m的铅球以大小为v0仰角为θ的初速度抛入一个装着砂子的总质量为M的静止的砂车中,砂车与地面的摩擦不计,球与砂车的共同速度是多少?解析:小球及小车看成一个系统,该系统水平方向不受外力,故系统水平方向上动量守恒,由动量守恒定律得m v0cosθ=(M+m)v,所以v=mv0cosθ/(M+m)规律总结:此类问题属系统所受外力不为0,竖直方向上受到有外力,动量不守恒,但水平方向上不受外力作用,动量守恒.又如大炮在以倾角发射炮弹时,炮身要后退,受到地面的阻力,但因其炸药产生的作用力很大,远大于受到的阻力,故仍认为水平方向动量守恒.变式如图所示,一辆质量为M的小车以速度v1光滑水平面上运动,一质量为m、速度为v2物体以俯角为θ的方向落到车上并埋在车里的砂中,此时小车的速度为______解析:小球进入砂中的过程,小球受到的砂的阻力大于小球的重力,因此,车与球组成的系统在竖直方向上受到的合外力不为零。