怀柔中考一模数学试题及答案
初中数学北京市怀柔区中考模拟数学一模考试题考试卷及答案
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:- 5的相反数是A.B. C. -5 D.5试题2:党中央、国务院从扩大就业等方面保障和增加居民收入,据统计2013年,全国城镇新增就业人数1310万人,将1310用科学计数法表示应为A.B.C. D.试题3:如图,将三角尺的直角顶点放在直尺的一边上,,则的度数等于A. B. C. D.评卷人得分试题4:掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1 到6的点数,掷得面朝上的点数小于3的概率为A. B. C. D.试题5:如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,•长臂端点升高(杆的宽度忽略不计).A.4m B.6m C.8m D.12m试题6:在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是试题7:在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的A.众数B.中位数 C.平均数 D.方差试题8:在矩形ABCD中,AB=2,BC=6,点E为对角线AC的中点,点P在边BC上,连接PE、PA.当点P在BC上运动时,设BP=x,△APE的周长为y,下列图象中,能表示y与x的函数关系的图象大致是试题9:函数y=中自变量x的取值范围是_________________.试题10:分解因式:ab2-4a=.试题11:请写出一个在各自象限内,y的值随着x值的增大而减小的反比例函数的表达式_________________.试题12:已知:如图,点A、B、C在同一直线上,AD∥CE,AD=AC,∠D=∠CAE.求证:DB=AE.试题13:计算:试题14:解不等式组:试题15:已知,求代数式的值.试题16:某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.求原计划每天生产多少台机器.试题17:已知:关于的一元二次方程(m>1).(1)求证:方程总有两个不相等的实数根.(2)为何整数时,此方程的两个实数根都为正整数?试题18:如图,在平行四边形ABCD中,∠ABC=45°,E、F分别在CD和BC的延长线上,AE∥BD,∠EFC=30°, AB=2.求CF的长.试题19:学生的上学方式是初中生生活自理能力的一种反映.为此,怀柔区某初三数学老师组织本班学生,运用他们所学的统计知识,对初一学生上学的四种方式:骑车、步行、乘车、接送,进行抽样调查,并将调查的结果绘制成图(1)、图(2).请根据图中提供的信息,解答下列问题:(1)抽样调查的样本容量为________,其中步行人数占样本容量的_____%,骑车人数占样本容量的_____%.(2)请将图(1)补充完整.(3)根据抽样调查结果,你估计该校初一年级800名学生中,大约有多少名学生是由家长接送上学的?试题20:如图, Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E为BC边的中点,连接DE.(1)求证:DE与⊙O 相切.(2)若tanC=,DE=2,求AD的长.试题21:如图,定义:在Rt△ABC中,∠C =90°,锐角α的邻边与对边的比叫做角α的余切,记作ctan α,即ctanα=.根据上述角的余切定义,解答下列问题:(1)ctan60°= .(2)求ctan15°的值.试题22:在平面直角坐标系xOy中,二次函数y=2x2+bx+c的图象经过(-1,0)和(,0)两点.(1)求此二次函数的表达式.(2)直接写出当-<x<1时,y的取值范围.(3)将一次函数 y=(1-m)x+2的图象向下平移m个单位后,与二次函数y=2x2+bx+c图象交点的横坐标分别是a和b,其中a<2<b,试求m的取值范围.试题23:问题:在中,,∠A=100°,B D为∠B 的平分线,探究AD、BD、BC之间的数量关系.请你完成下列探究过程:(1)观察图形,猜想A D、BD、BC之间的数量关系为.(2)在对(1)中的猜想进行证明时,当推出∠ABC=∠C=40°后,可进一步推出∠ABD=∠DBC= 度.(3)为了使同学们顺利地解答本题(1)中的猜想,小强同学提供了一种探究的思路:在BC上截取BE=BD,连接DE,在此基础上继续推理可使问题得到解决.你可以参考小强的思路,画出图形,在此基础上对(1)中的猜想加以证明.也可以选用其它的方法证明你的猜想.试题24:在平面直角坐标系xOy 中,已知 A(-2,0),B(2,0),AC⊥AB于点A,AC=2,BD⊥AB于点B,BD=6,以AB为直径的半圆O上有一动点P(不与A、B两点重合),连接PD、PC,我们把由五条线段AB、BD、DP、PC、CA所组成的封闭图形ABDPC 叫做点P的关联图形,如图1所示.(1)如图2,当P运动到半圆O与y轴的交点位置时,求点P的关联图形的面积.(2)如图3,连接CD、OC、OD,判断△OCD的形状,并加以证明.(3)当点P运动到什么位置时,点P的关联图形的面积最大,简要说明理由,并求面积的最大值.试题1答案:D试题2答案:B试题3答案:C试题4答案:D试题5答案:C试题6答案:C试题7答案:B试题8答案:A试题9答案:x≠2试题10答案:a(b+2)(b-2)试题11答案:(答案不唯一)试题12答案:证明:∵AD∥CE,∴∠DA B=∠C,在△ABD和△CEA中,∴△ABD≌△CEA(ASA),∴DB=AE.试题13答案:解:原式=1+-2=1+-+2=3+试题14答案:解:解①得:x<3,解②得:x≥1,所以不等式组的解集为:1≤x<3.试题15答案:解:∵,∴.∴原式=6.试题16答案:解:∵,∴.∴原式=6.试题17答案:解:设原计划每天生产x台机器,则现在可生产(x+50)台.依题意得:.解得x=150.经检验x=150是原方程的解,且符合题意.答:原计划每天生产150台机器.试题18答案:解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∵AB=2,∴CE=4,又∵AB∥CD,∴∠ECF=∠ABC=45°,过点E作EH⊥BF于点H,∵CE=4,∠ECF=45°,∴EH=CH=2,∵∠EFC=30°,∴ FH=2,∴ CF=2+2试题19答案:解:(1)50,30,40. …(2)如图所示.(3)80010%=80试题20答案:(1)证明:连接BD、OD,∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,∵E为BC边的中点,∴DE=EC,∴∠1=∠C,∵OA=OD,∴∠2=∠A,∵∠ABC=90°,∴∠A+∠C =90°,∴∠1+∠2 =90°,∴∠ODE =90°,∴OD⊥DE于点D,∵以AB为直径的⊙O交AC于点D,∴D是半径的外端,∴DE与⊙O 相切.(2) ∵∠BDC=90°,E为BC边的中点,∴,∵DE=2,∴BC=4,在Rt△ABC中,tanC=,∴AB=BC·=2,在Rt△ABC中,AC===6,又∵△ABD∽△ACB,∴,即,∴AD=试题21答案:解:(1).(2)如图,作△DEG,使DE=GE,∠D=15°.过点G作GH⊥DE的延长线于点H.∵ED=EG,∠D=15°. ∴∠2=30°,在Rt△GEH中,∵∠H =90°, ∠2=30°. ∴设GH=x,则EH=,GE=DE=2x,∴DH= DE+EH=2x+.∴ctan15°=试题22答案:解:(1)由二次函数的图象经过(-1,0)和(,0)两点,得解这个方程组,得∴此二次函数的表达式为y=2x2-x-3(2)如图,当x=-时,y=3,当x=1时y=-2,又二次函数的顶点坐标是().∴当-<x<1时y的取值范围是-<y<33)将一次函数 y=(1-m)x+2的图象向下平移m个单位后的一次函数表达式为y=(1-m)x+2-m.∵y=(1-m)x+2-m与二次函数y=2x2+bx+c图象交点的横坐标为a和b,∴2x2-x-3=(1-m)x+2-m,整理得2x2+(m-2)x+m-5=0.∵a<2<b,∴a≠b,∴△=(m-2)2-42(m-5)=(m-6)2+8>0,∴m≠1.∵a和b满足a<2<b,∴如图,当x=2时,(1-m)x+2-m >2x2-x-3,把x=2代入(1-m)x+2-m >2x2-x-3,解得m<,∴m的取值范围为m<的全体实数.试题23答案:解:(1)AD+BD=BC(2)20(3)画出图形继续证明:在BC上截取BF=BA,连接DF,∵∠ABD=∠DBC,BD=BD,∴△ABD≌△FBD,∴AD=DF,①∵∠A=100°,∴∠DFB=∠A=100°,∴∠DFC=80°,∵BE=BD,∠DBC=20°,∴∠BED =∠BDE =80°,∠DFE =∠FED,∴DF=DE,②∵∠FED=80°,∠C=40°,∴∠EDC=40°,∴∠EDC =∠C,∴DE =EC,③∴AD =EC,∴AD+BD=BC.(其它方法对应给分).试题24答案:解:(1)∵A(-2,0),∴OA=2,∵P是半圆O上的动点,P在y轴上,∴OP=2, ∠AOP=90°,∵AC=2,∴四边形AOPC是正方形,∴正方形的面积是4,又∵BD⊥AB,BD=6,∴梯形OPDB的面积=,∴点P的关联图形的面积是12.(2)判断△OCD是直角三角形.证明:延长CP交BD于点F.则四边形ACFB为矩形,∴CF=DF=4,∠DCF=45°,又∵四边形AOPC是正方形,∴∠OCP=45°,∴∠OCD=90°,∴OC⊥CD.∴△OCD是直角三角形…(3)连接OC交半圆O于点P,则点P记为所确定的点的位置.理由如下:连接CD,梯形ACDB的面积=为定值,要使点P的关联图形的面积最大,就要使△PCD的面积最小,∵CD为定长,∴P到CD的距离就要最小.连接OC,设交半圆O于点P,∵AC⊥OA,AC=OA, ∴∠AOC=45°,过C作CF⊥BD于F,则ACFB为矩形,∴CF=DF=4, ∠DCF=45°,∴OC⊥CD,OC=2,∴PC在半圆外,设在半圆O上的任意一点P‘到CD的距离为P‘H,则P‘H+P‘O>OH>OC, ∵OC=PC+OP, ∴P′H> PC,∴当点P运动到半圆O与OC的交点位置时,点P的关联图形的面积最大.∵CD=4,CP=2-2, ∴△PCD的面积=,又∵梯形ACDB的面积=,∴点P的关联图形的最大面积是梯形ACDB的面积-△PCD的面积=16-(8-4)=8+4.。
一模数学试题和答案怀柔
一模数学试题和答案怀柔Modified by JACK on the afternoon of December 26, 2020怀柔区2015—2016学年初三数学模拟练习(一)数学试卷考生须知 1.本试卷共8页,共三道大题,29道小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一.选择题(共有10个小题,每小题3分,共30分) 下面各题均有四个选项,其中只有一个..是符合题意的.1.截止到目前,参加北京市普通小客车摇号的申请人数已经超过2500000人,将2500000用科学记数法表示为×10 5 B. ×106 C. ×10 7 实数a ,b 在数轴上的位置如图所示,下列结论中正确的是A .a >b B.|a |>|b |C .-a <bD .a +b <03. 如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向红色区域的概率是 A.23 B.12C.13D.164.下列图形中,既是轴对称图形又是中心对称图形的是A.B.C.D.5.北京市去年5月份第一周连续七天的最高气温分别为27,25,24,27,24, 28, 24(单位:℃). 这组数据的众数和中位数分别是( )A .24℃,25℃B .24℃,26℃C .24℃,27℃D .28℃,25℃6.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为A .50° B. 40° C .30° D .20°2题图3题图7.如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为 ( )A .(3,2)B .(3,1)C .(2,2)D .(-2,2)8.如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数是 ( )A .30° B.45° C .60°D .75°9. 如图,在△ABC 中,AB=4,AC=3,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于F ,交AB 于G ,连接EF ,则线段EF 的长为( )A. 21 B. 1 C. 27D. 710.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.当甲、乙两车相距50千米时,时间t 的值最多有A .1个B .2个C .3个D .4个 二、填空题(本题共6个小题,每小题3分,共18分) 11.若分式1x-3有意义,则x 的取值范围是 . 6题图 7题图FGBC8题图 9题图10题图12.分解因式:2a3-18a=_________.13.已知⊙O是半径为2的圆形纸板,现要在其内部设计一个内接正三角形图案,则内接正三角形的边长为 .14.已知关于x的方程x2-2x+m=0有两个不相等的实数根,写出一个满足条件的实数m值:m=______.15.李白(701年-762年),唐代伟大的浪漫主义诗人,被后人誉为“诗仙”.李白的一生和酒有不解之缘,写下了如《将进酒》这样的千古绝句.古代民间流传着这样一道算题:李白街上走,提壶去打酒;遇店加一倍,见花喝一斗;三遇店和花,喝光壶中酒;试问酒壶中,原有多少酒?意思是:李白在街上走,提着酒壶边喝边打酒,每次遇到酒店将壶中酒加一倍,每次看见花店就喝去一斗(斗是古代容量单位,1斗=10升),这样遇到酒店、看见花店各三次.把酒喝完.问壶中原来有酒多少?设壶中原来有酒x斗,可列方程为 .如图,将锐角三角形纸片ABC(BC >AC)经过两次折叠,得到边AB ,BC ,CA 上的点D,E,F .使得四边形如图,(1)AC 边向BC 边折叠,使AC 边落在BC 边上,得到 16.在数学课上,老师提出如下问题:小明的折叠方法如下:老师说:“小明的作法正确.”请回答:小明这样折叠的依据是_________________________.三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:1221()5-π(45sin 210-++-- .18.已知063a a 2=++,求代数式1)-1)(a (a 3)a(2a +-+的值.19.解不等式组⎪⎩⎪⎨⎧+<-≤-.41x 3x 3,3x 2)2(x 并写出它的所有非负整数解......20、如图,在Rt△ABC 中,∠C=90°,AB 边的垂直平分线DE 交BC 于点E ,垂足为D.AB C EF D HDF ECBOA求证:∠CAB=∠AED.21.国家实施高效节能电器的财政补贴政策,某款空调在政策实施后,每购买一台,客户可获得500元财政补贴.某校用6万元购买此款空调,补贴后可购买的台数是补贴前的倍,则该款空调补贴前的售价为每台多少元?22. 如图,在△ABC 中,D 为AB 边上一点,F 为AC 的中点,过点C 作CE 2xmy =b kx y +=⊥∆图,在⊙O 中,AB 为直径,OC AB ⊥,弦CF 与OB 交于点E ,过点F ,A 分别作⊙O 的切线交于点H ,且HF 与AB 的延长线交于点D .(1)求证:DF=DE;(2)若tan ∠OCE =12,⊙O 的半径为4,求A H 的长. 25. 阅读下列材料:1985年,中国银行珠海分行发行了中国第一张信用卡.从此,信用卡开始逐步占领国人的消费,“信用消费”时代开启.信用卡业务是典型的“规模经济”,只有具备一定卡量规模,才能通过拉动用卡消费达到提升收入的目的.2013年、2014年从各家银行发布的信用卡年报来看,中国信用卡发卡量在稳步增长中,各家银行信用卡中心对信用业务越来越看重. 截至2013年末,全国信用卡累计发卡亿张,较2012年末增长%.截至2014年末,全国信用卡累计发卡亿张.20题图全国人均持有信用卡张,较上年末增长%.北京、上海信用卡人均拥有量仍远高于全国平均水平,分别达到张和张.2013、2014年各大银行信用卡累计发卡量如图:根据中国人民银行的数据显示,截至2015年四季度末,全国信用卡累计发卡亿张,较上一年末大幅上升.有“宇宙第一行”之称的工商银行,信用卡累计发卡量比2014年末增长了%,在各大银行中遥遥领先.建设银行信用卡累计发卡量8074万张,中国银行累计发卡量为万张,招商银行信用卡发卡量6917万张,民生银行信用卡累计发卡量万张. 根据以上材料回答下列问题:(1)2015年工商银行信用卡累计发卡量为 万张(保留一位小数); (2)选择统计表或.统计图,将2013~2015年工商银行、建设银行和民生银行的信用卡累计发卡量表示出来. 26.阅读下列材料:布鞋在我国有3000多年的历史.据考证,最早的手工布鞋是在山西侯马出土的西周武士跪像所穿的布鞋.2008年6月14日,“千层底手工布鞋制作技艺”被文化部列入《国家级非物质文化遗产名录》,从而将这项古老的手工技艺保护起来.一句歌唱到“最爱穿的鞋是妈妈纳的千层底,站得稳走得正踏踏实实闯天下”,唱出了祖辈对儿时生活的美好回忆.为了提高工作效率,智慧勤劳的先辈们发明了鞋样,就是用纸或纸板按尺寸和形状做成鞋面、鞋帮、鞋底的模型.例如:按照图1的鞋样就可做出图2模样的鞋子.根据以上材料完成下列问题:(1)如图3、4、5是一组布鞋图片,6、7、8是一组鞋样的图片,请你在答题纸上将布鞋和对应的鞋样用线段连接起来;(2)图10是图9所示童鞋的鞋样.看到这个鞋样,明明认为鞋样丢了一部分,芳芳认为鞋样没有丢.请你判断明明和芳芳谁说的对,并用所学的数学知识说明理由.27.在平面直角坐标系中,二次函数y=x2+mx+2m-7的图象经过点(1,0).(1)求抛物线的表达式;26题图6 26题图726题图826题图126题图926题图(2)把-4<x<1时的函数图象记为H ,求此时函数y 的取值范围;(3)在(2)的条件下,将图象H 在x 轴下方的部分沿x 轴 翻折,图象H 的其余部分保持不变,得到一个新图象M .若直线y=x+b 与图象M 有三个公共点,求b 的取值范围.28. 在正方形ABCD 中,点H 在对角线BD 上(与点B 、D 不重合),连接AH ,将HA 绕点H 顺时针旋转 90o 与边CD (或CD 延长线)交于点P ,作HQ ⊥BD 交射线DC 于点Q. (1)如图1:①依题意补全图1;②判断DP 与CQ 的数量关系并加以证明;(2)若正方形ABCD 的边长为3,当 DP=1时,试求∠PHQ 的度数.29.给出如下规定:两个图形G 1和G 2,点P为G 1上任一点,点Q 为G 2上任一点,如果线段PQ G 1和G 2之间的“近距离”;如果线段PQ 的长度存在最大值时,就称该最大值为两个图形G 1和G 2之间的“远距离” .请你在学习,理解上述定义的基础上,解决下面问题:在平面直角坐标系xOy 中,点A (-4, 3),B (-4,-3),C (4,-3),D (4, 3).(1)请在平面直角坐标系中画出四边形ABCD ,直接写出线段AB 和线段CD 的“近距离”和“远距离”. (2)设直线b x y +=34(b>0)与x 轴,y 轴分别交于点E ,F ,若线段EF 与四边形ABCD 的“近距离”是1,求它们的“远距离” ;(3)在平面直角坐标系xOy 中,有一个矩形GHMN ,若此矩形至少有一个顶点在以O 为圆心,2为半径的圆上,其余各点可能在圆上或圆内.将四边形ABCD 绕着点O 旋转一周,在旋转的过程中,它与矩形GHMN 的“远距离”的最大值是 ;“近距离”的最小值是 .怀柔区2016年高级中等学校招生模拟考试(一)数学评分标准一、选择题(每小题有且只有一个选项是正确的,请把正确的选项前的序号填在相应的表格内. 本题共有10个小题,每小题3分,共30分)二、填空题(本题共6个小题,每小题3分,共18分)11. x≠3. 12. 2a(a-3)(a+3). 13. 32. 14.答案不唯一,符合m<1即可. 15. [(2x-1)×2-1] ×2-1=0或8x-7=0..16. CD 和EF 是四边形DECF 对角线,而CD 和EF 互相垂直且平分(答案不唯一). 三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分) 17. 解:原式=1221222-++-⨯………………………………………………4分= 22.………………………………………………5分 18.解:=1)(a 3a 2a 22--+ =1a 3a 2a 22+-+=13a a 2++.……………………………………………………3分 ∵063a a 2=++, ∴-63a a 2=+.∴原式=-6+1=-5. ……………………………………………………5分EDCBA19.解:2(x-2)3x-3, x x+1<34⎧⎪⎨⎪⎩≤① . ②解不等式①得:x≥-1. ……………………………………………………2分 解不等式②得:x<3. ……………………………………………………4分 所以不等式组的解集为-1≤x<3.所以不等式组的非负整数解为0,1,2. .………………………………………5分 20.证明:∵DE 是AB 边的垂直平分线, ∴AE=BE , ∠ADE=90°.∴∠EAB=∠B. ……………………………………………………3分在Rt △ABC 中,∠C=90°, ∴∠CAB+∠B=90°.在Rt△A DE 中,∠ADE=90°,∴∠AED+∠EAB=90°. ……………………………………………………4分 ∴∠CAB=∠AED. ……………………………………………………5分H AB CEFD21. 解:设该款空调补贴前的售价为每台x 元, ……………………………………………1分 由题意,得:,500x 600001.2x 60000-=⨯………………………………………………2分 解得:x=3000. ……………………………………………………3分 经检验,x=3000是原方程的解,且符合题意.………………………………………………4分答:该款空调补贴前的售价为每台3000元.…………………………………………5分 22. (1)证明:∵CE ……………………………1分 ∵F 为AC 的中点, ∴AF=CF.在△DAF 和△ECF 中,∴ △DAF≌△ECF .∴ AD=CE . ………………………………2分∵CE 22FH 2=DF 2HF =1HD 3232:(1)把A (5,1)代入xm y =中,∴m=5.∴反比例函数表达式x5y =.………………………………1分 ∵OC=5BC,设B(x,5x) , (x<0)把B(x,5x)代入x5y =中, ∴5x 2=5.x 1=1(舍),x 2=-1.∴B(-1,-5) . ……………………………2分 把A (5,1),B(-1,-5) 代入b kx y +=中,得⎩⎨⎧-=+-=+5.b k 1,b 5k解得⎩⎨⎧-==4.b 1,k∴一次函数表达式为4x y -=.……………………………3分(2)P (6,0)或P (-6,0) . ……………………………5分 24. (1)证明:连结OF ,如图.∵DH 为⊙O 的切线,OF 为半径, ∴OF ⊥DH.∴∠OFD=90°。
北京市怀柔区初三数学一模试题含答案.doc
l 怀柔区2011年初三一模数 学 试 题一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.-5的倒数是A .-5B .5C .- 15D .152.今年是中国共产党建党90周年,据最新统计中共党员总人数已接近7600万名,用科学记数法表示76000000的结果是A. 576010⨯ B .87.610⨯ C . 87610⨯ D .77.610⨯3.已知⊙O 1、⊙O 2的半径分别为5cm 、8cm ,且它们的圆心距为8cm ,则⊙O 1与⊙O 2的位置关系为 A .外离 B .相交 C .相切 D .内含4.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出是蓝球的概率为 A .57 B .49 C . 58 D . 5125. 将图1所示的直角梯形绕直线l 旋转一周,得到的立体图开是A B CD图16.2011年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31 35 31 34 30 32 31,这组数据的中位数、众数分别是 A .32,31 B .31,32 C .31,31 D .32,35 7.如图是一个圆锥形冰淇淋,已知它的母线长是5cm ,高是4cm , 则这个圆锥形冰淇淋的底面面积是 A .210cm π B .29cm π C .220cm π D .2cm π8.观察下列图形及所对应的算式,根据你发现的规律计算1+8+16+24+ … + 8n(n 是正整数)的结果为第8题图A. ()221n + B. 18n + C. 18(1)n +-D. 244n n +二、填空题(本题共16分,每小题4分)9. 函数y =1x -2中,自变量x 的取值范围是 . 10.方程方程2230x x --=的两个根是__________________ . 11. 已知x=1是方程x 2-4x +m2=0的一个根,则m 的值是______.12.如图,Rt △ABC 中,∠C =90°,∠ABC =30°,AB =6.点D 在AB 边上,点E 是BC 边上一点(不与点B 、C 重合),且DA =DE ,则AD 的取值范围是________________.三、解答题(本题共30分,每小题5分)13(本题满分5分)计算:02sin 302011︒-14. (本题满分5分)因式分解: 221218x x -+ 15.(本题满分5分)如图, 已知:BF=DE,∠1=2,∠3=∠4 求证:AE=CF .证明:16.(本题满分5分)已知 230a a --=,求代数式111aa --的值.解:C D AE (第12题)17. (本题满分5分)一个涵洞成抛物线形,它的截面如图(1).现测得,当水面宽AB=1.6 m时,涵洞顶点O与水面的距离为2.4 m.ED离水面的高FC=1.5 m,求涵洞ED宽是多少?是否会超过1 m?(提示:设涵洞所成抛物线为)0(2<=aaxy)解:18.(本题满分6分)“校园手机”现象越来越受到社会的关注.“寒假”期间,记者刘凯随机调查了某区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)从这次接受调查的学生中,随机抽查一个,恰好是“无所谓”态度的学生的概率是多少?图①图②四、解答题(本题共20分,第19、20题各5分,第21题6分,第22题4分)19. (本题满分5分)如图,已知AB为⊙O的直径,DC切⊙O于点C,过D点作DE⊥AB,垂足为E,DE交AC于点F. 求证:△DFC是等腰三角形.证明:20.(本题满分5分)某校九年级两个班各为红十字会捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%.请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方程....解决的问题,并写出解题过程.(1)21. (本题满分6分)如图,已知二次函数y = x 2-4x + 3的图象交x 轴于A 、B 两点(点A 在点B 的左侧)抛物线y = x 2-4x + 3交y 轴于点C ,(1)求线段BC 所在直线的解析式. (2)又已知反比例函数ky x=与BC 有两个交点且k 为正整数,求k 的值. 解:(1)(2)22.(本题满分4分)(1)如图①两个正方形的边长均为3,求三角形DBF 的面积.(2)如图②,正方形ABCD 的边长为3,正方形CEFG 的边长为1, 求三角形DBF 的面积. (3)如图③,正方形ABCD 的边长为a ,正方形CEFG 的边长为b ,求三角形DBF 的面积.从上面计算中你能得到什么结论.结论是:三角形DBF 的面积的大小只与a 有关, 与b 无关. (没写结论也不扣分)五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. (本题满分7分)如图,已知二次函数24y ax x c =-+的图象与坐标轴交于点A (-1, 0)和点C (0,-5).(1)求该二次函数的解析式和它与x 轴的另一个交点B 的坐标。
初中数学北京市怀柔区中考模拟模拟考试(一模)数学考试题含答案
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:如图所示,用刻度尺度量线段AB,可以读出线段AB的长度为(A) 5.2cm (B) 5.4cm (C) 6.2cm (D) 6.4cm试题2:怀柔素有“北京后花园”之称,因为有着“一半山水一半城,山凝水重入画屏”的美丽自然景观,吸引着中外游客. 2016年1至11月怀柔主要旅游区(点)共接待中外游客约为5870000人次.将5870000用科学记数法表示为(A)5.87×105 (B) 5.87×106 (C) 0.587×107 (D)58.7×105【试题3:数轴上有A,B,C,D四个点,其中表示互为相反数的两个点是(A) 点B与点C (B) 点A与点C(C) 点A与点D (D)点B与点D试题4:评卷人得分下列各式运算结果为的是(A) (B)(C) (D)试题5:下列成语中描述的事件是随机事件的是(A)水中捞月(B)瓮中捉鳖(C)拔苗助长(D)守株待兔试题6:下面的几何体中,主视图、左视图和俯视图形状都相同,大小均相等的是(A)圆柱(B)圆锥(C)三棱柱(D)球试题7:内角为108°的正多边形是试题8:如图,函数y =-2x2的图象是(A)①(B)②(C)③(D)④试题9:如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,但绳子不够长,于是他想到了一个办法,先在地上取一个可以直接到达A点和B点的O点,连接AO并延长到C,使OC=AO,连接BO并延长到D,使OD=OB,连接DC,测得DC=20m,这样小明就可以算出A,B间的距离为2·1·c·n·j·y (A)30m (B)40m (C)60m (D)80m试题10:在“校园读书月”活动中,小华调查了班级里40名同学本学期购买课外书的花费情况,并将结果绘制成如图所示的统计图.下面有四个推断:这次调查获取的样本数据的众数是30 元 这次调查获取的样本数据的中位数是40元若该校共有学生1200人,根据样本数据,估计本学期计划购买课外书花费50元的学生有300人④花费不超过50元的同学共有18人其中合理的是(A) (B) ④(C) (D) ④试题11:分解因式:=_______________.试题12:写出图象经过点(-1,2)的一个函数的表达式____________________.试题13:如图,在ABCD中,ED=2,BC=5,∠ABC的平分线交AD于点E,则AB的长为_______________.试题14:上图中的四边形均为矩形.根据图形,写出一个正确的等式:_______________.试题15:算筹是中国古代用来记数、列式和进行各种数与式演算的一种工具.在算筹计数法中,以“立”,“卧”两种排列方式来表示单位数目,表示多位数时,个位用立式,十位用卧式,百位用立式,千位用卧式,以此类推.《九章算术》的“方程”一章中介绍了一种用“算筹图”解决一次方程组的方法.如图1,从左向右的符号中,前两个符号分别代表未知数x,y的系数.因此,根据此图可以列出方程:x+10y=26.请你根据图2列出方程组.试题16:.数学活动课上,老师让同学们围绕一道尺规作图题展开讨论,尽可能想出不同的作法:已知:如图,直线L和L外一点P.求作:直线PQ,使PQ⊥L于点Q.小强的作法如下:1.在直线L上任取一点A,连接PA;2.分别以A,P为圆心,以大于AP长为半径作弧,两弧交于C,D两点;3.作直线CD,交AP于点O;老师说:“小强的作法正确.”请回答:小强这样作图的依据是: .试题17:计算:.试题18:已知,求代数式的值.试题19:如图,在中,∠ACB=90°,点D是AB边的中点,CE=CD,∠B=∠E.求证:CF=DF.4.以O为圆心,以OA长为半径作圆,交直线L于点Q;5.作直线PQ.所以直线PQ即为所求.试题20:解不等式组:试题21:调查作业:了解某家超市不同品牌饮料的销售情况.为调查不同品牌饮料的市场销售情况,小东和小芸两位同学对一家超市进行了调查,二人在某天对照50名顾客购买饮料的品牌进行了记录.小东的作法是:如果一个顾客购买某一品牌的饮料,就将这一饮料的品牌名字记录一次.表1是记录的初始数据.表1统一冰茶可口可乐统一冰茶汇源果汁露露露露统一冰茶可口可乐露露可口可乐统一冰茶可口可乐可口可乐百事可乐统一冰茶可口可乐百事可乐统一冰茶可口可乐百事可乐百事可乐露露露露百事可乐露露可口可乐统一冰茶统一冰茶汇源果汁汇源果汁汇源果汁统一冰茶可口可乐可口可乐可口可乐可口可乐百事可乐露露汇源果汁百事可乐露露可口可乐百事可乐可口可乐露露可口可乐统一冰茶百事可乐汇源果汁统一冰茶记录之后,小东对上述收集的数据进行了整理,绘制了表2:表2 表3饮料名称频数可口可乐15统一冰茶11百事可乐9露露9汇源果汁 6合计50饮料名称画记频数可口可乐正正正15统一冰茶正正一11百事可乐正9露露正9汇源果汁正一 6合计50小芸的作法是:先设计一个统计表,再进行数据的收集与整理,她的方法是如果一个顾客购买某一品牌的饮料,就将这一饮料的品牌在相应的表格中画记一笔“正”字,上面表3是小芸设计的表格及调查时画记和填写的数据.根据以上材料回答问题:本次调查如果让你去做,在收集整理数据时,你会选择他们中的哪种方法?请你说明理由或者介绍一种新的方法.试题22:如图,已知菱形ABCD的对角线AC,BD相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:四边形BECD是平行四边形;(2)若∠E=60°,AC=,求菱形ABCD的面积.试题23:如图,在平面直角坐标系xOy中,直线y=x+b与双曲线相交于A,B两点,已知A(1,3),B(-3,m).(1)求一次函数和反比例函数的表达式;(2)如果点是y轴上一点,且的面积是4,求点的坐标.试题24:阅读下列材料:为保障和改善民生建设,北京市建立了以最低生活保障为基础、专项救助相配套、临时救助为补充的城乡社会救助体系,逐年提高救助标准,全市困难群众基本生活得到较好保障,并达到全覆盖的目的.2013年底全市共有农村低保人数5.96万人,城市低保人数10.37万人.2014年底全市共有农村低保人数5.13万人,比上年同期减少了13.9%,城市低保人数8.91万人,比上年同期减少了14.1%.2015年底全市共有农村低保人数比上年同期减少了4.8%,城市低保人数8.49万人.2016年底全市共有低保人数12.68万人,其中农村低保人数比城市低保人数少3.36万人.根据以上材料解答下列问题:(1)2015年底北京市农村低保人数约为万人;(2)2016年底北京市城市低保人数约为万人;(3)利用统计表或统计图将2013 - 2016年北京市农村低保人数和城市低保人数表示出来;(4)针对以上文字内容,谈谈你的看法.试题25:如图,在△ABC中,点D为BC上一点,过A,B,D三点作⊙O,AE是⊙O的直径,AC是⊙O的切线,AD=DC,连结DE.(1)求证:AB=AC;(2)若,AC=,求△ADE的周长(用含a的代数式表示).试题26:已知y是x的函数,下表是y与x的几组对应值.x 2 3 4 5 6 7 …y 0 1 2 …小聪根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的表达式,图象和性质进行了探究.下面是小聪的探究过程,请补充完整:(1)根据上述表格所反映出的y与x之间的变化规律,写出该函数的表达式: ;(2)该函数自变量x的取值范围是 ;(3)如图,在平面直角坐标系xOy中,描出上表中各对对应值为坐标的点的位置(近似即可),根据描出的点,画出该函数的图象;(4)根据画出的函数图象,写出该函数的一条性质: .试题27:已知二次函数(a>0).(1)求证:抛物线与x轴有两个交点;(2)求该抛物线的顶点坐标;(3)结合函数图象回答:当x≥1时,其对应的函数值y的最小值范围是2≤y≤6,求a的取值范围.试题28:(1)如图1,在△ACB和△ADB中,∠C=∠D =90°,过A,B,C三点可以作一个圆,此时AB为圆的直径,AB的中点O为圆心.因为∠D=90°,利用圆的定义可知点D也在此圆上,若连接DC,当∠CAB=31°时,利用圆的知识可知∠CDB= 度.(2)如图2,在△ACB中,∠ACB=90°,AC=BC=3,CE⊥AB于E,点F是CE中点,连接AF并延长交BC于点D.CG⊥AD于点G,连接EG.①求证:BD=2DC;②借助(1)中求角的方法,写出求EG长的思路.(可以不写出计算的结果)试题29:在平面直角坐标系xOy中,点P的坐标为(x,y),若过点p的直线与x轴夹角为60°时,则称该直线为点P的“相关直线”,(1)已知点A的坐标为(0,2),求点A的“相关直线”的表达式;(2)若点B的坐标为(0,),点B的“相关直线”与直线y=交于点C,求点C的坐标;(3)⊙O的半径为,若⊙O上存在一点N,点N的“相关直线”与双曲线y=(x>0)相交于点M,请直接写出点M的横坐标的取值范围.试题1答案:BB试题3答案:A试题4答案:B试题5答案:D试题6答案:D试题7答案:B试题8答案:C试题9答案:B试题10答案:C试题11答案:试题12答案:.答案比唯一.如:y=-2x. 试题13答案:3(m+n)(a+b)=ma+mb+na+nb试题15答案:试题16答案:直径所对的圆周角是90º;两点确定一条直线.到线段两端距离相等的点在线段的垂直平分线上. 试题17答案:解:.试题18答案:.解:.∵,∴原式.试题19答案:证明:∵在中,∠ACB=90°,点D是AB边的中点,∴CD=BD.∴∠DCB=∠B.∵CD=CE,∴∠CDE=∠E.∵∠B=∠E,∴∠DCF=∠CDF.∴CF=DF.试题20答案:解不等式①,得x<1.解不等式②,得x≥.∴不等式组的解集为:≤x<1试题21答案:选择小芸的作法因为小芸的方法清晰,方便,简明.(答案不唯一)试题22答案:(1)证明:∵四边形ABCD是菱形,∴AB=CD,AB∥CD. 又∵BE=AB,∴BE=CD∵BE∥CD,∴四边形BECD是平行四边形.(2)解:∵四边形BECD是平行四边形,∴BD∥CE.∴∠ABO=∠E=60°.又∵四边形ABCD是菱形,∴AC丄BD,OA=OC.∴∠BOA=90°,∴∠BAO=30°.∵AC=,∴OA=OC=.∴OB=OD=2. ∴BD=4.∴菱形ABCD的面积=试题23答案:解:(1)把A(1,3)代入y=x+b中,得3=1+b ,解得b=2 .∴一次函数的表达式为. 把A(1,3)代入中,得,解得k=3 .∴反比例函数的表达式为. ;(2)把B(-3,m)代入y=x+2,可得B(-3,-1).设一次函数的图象与y轴的交点C的坐标为(0,2).∵S△ABP = 4,∴.∴.∴点P的坐标为(0,0),(0,4)试题24答案:解:(1)4.88.(2)8.02 .(3) 2013 — 2016年北京市农村低保和城市低保人数统计表农村低保城市低保低保类别人口数量(万人)年度2013 5.96 10.372014 5.13 8.912015 4.88 8.492016 4.66 8.02数值近似即可(4)北京市低保人数逐年递减,政府加强了民生的保障和改善,社会生活水平有新的提高. (答案不唯一,要体现正能量)试题25答案:(1)证明:∵AD=DC,∴∠CAD=∠C.∵AC是⊙O的切线,∴∠CAE=90°.∴∠CAD+∠EAD=90°.∵AE是⊙O的直径,∴∠ADE=90°.∴∠E+∠EAD=90°.∴∠CAD=∠E.又∵∠E=∠B,∴∠C=∠B.∴AB=AC. ……………………………2分(2)解:过点D作DF⊥AC于点F.①由DA=DC,AC=,可得CF==.②由∠C=∠E,,可得.在 Rt△CDF中,求出CD=DA=3a. (或利用△CDF∽△ADE求).③在 Rt△ADE中,利用,求出AE=9a.再利用勾股定理得出DE=.④△ADE的三边相加得出周长为12a+.试题26答案:(1)y=(2)x≥2;(3) 如图:(4) x≥2时,函数图形y随x的增大而增大.试题27答案:解:(1)令y=0.∴.∵△==4a,∵a>0,∴4a>0.∴△>0. ∴抛物线与x轴有两个交点.(2).把x=-1代入.∴y=-1.∴顶点坐标(-1,-1).(3)①把(1,2)代入.∴②把(1,6)代入.∴.∴由图象可知:≤a≤.试题28答案:解:(1)31°.(2)①过点E作EH∥AD交CB于H点.∵CE⊥AB于点E,AC=BC,∴点E是AB中点.∴BH=DH.∵点F是CE中点,∴HD=DC.∴BD=2CD②∵CE⊥AB于点E,∴∠CEA=90°.∵CG⊥AD于点G,∴∠CGA=90°.∴AC为圆的直径.∵∠ACB=90°,AC=BC,∴∠CAE =45°.∵CE⊥AB于点E,∴∠ACE =45°.∴∠AGE=45°.方法1:解斜三角形法在Rt△DCA中,因为∠C =90°, CG⊥AD于点G,DC=1.所以可以求出CG的长.又因为∠CGE==135°,CE=.解△ECG可求出EG的长.(此题解△AEG也可行)…………………7分方法2:证明等腰直角三角形法.延长CG交EH于M点.因为EH∥AD交CB于H点,点F是CE中点,所以点G为MC的中点.因为AD=.∴CG=.∴MG=.……………………6分因为∠EGA=∠ACE=45°,所以∠CGE==135°.所以∠MGE=∠GEM=45°,所以GE可解.∵ME=MG=.,∴EG=.………………………7分方法3:相似法∵AC=BC=3,∴AB=.∴AE=.∵CD=1,∴BD=2,AD.∵∠AGE=∠B= 45°, ∠DAB=∠EAD.∴△AGE△ABD. …………………6分∴.∴.∴EG=.………………………7分方法4:旋转法:过E 作EK⊥GE交AD于点K,可证△AKE△CGE(ASA). …………………6分∴AK=CG=.∵CD=1,AD,∴DG=.∴KG=.∴EG=.……………………………7分试题29答案:解:(1)①当过点A的直线与x轴正方向夹角为60°时,点A的相关直线表达式:.……………………………1分②当过点A的直线与x轴负方向夹角为60°时,点A的相关直线表达式:.……………………………2分(2)可知BC1直线表达式为, ∴C1(1,).………………………3分同理C2(-1,).(3)设点N1的“相关直线”与⊙O相切,交双曲线于点M1.可求得直线N1 M1的表达式为.………4分∴x=1或 x=-3(舍).……………………………5分∴M1(1,).……………………………6分同理M2(3,).……………………………7分∴M的横坐标的取值范围是1≤X M≤3. ………………8分。
2024年北京怀柔中考数学试题及答案(1)
2024年北京怀柔中考数学试题及答案考生须知:1.本试卷共6页,共两部分.三道大题,28道小题。
满分100分。
考试时间120分钟。
2.在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上.选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D.2.如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A .29︒B .32︒C .45︒D .58︒3.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .1b >-B .2b >C .0a b +>D .0ab >4.若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为( )A .16-B .4-C .4D .165.不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为( )A .34B .12C .13D .146.为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A .16810⨯B .17210⨯C .17510⨯D .18210⨯7.下面是“作一个角使其等于AOB ”的尺规作图方法.(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)作射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';以点C '为圆心,CD 长为半径画弧,两弧交于点D ¢;(3)过点D ¢作射线O B '',则A O B AOB '''∠=∠.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是( )A .三边分别相等的两个三角形全等B .两边及其夹角分别相等的两个三角形全等C .两角及其夹边分别相等的两个三角形全等D .两角分别相等且其中一组等角的对边相等的两个三角形全等8.如图,在菱形ABCD 中,60BAD ∠=︒,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90︒得到菱形A B C D '''',两个菱形的公共点为E ,F ,G ,H .对八边形BFB GDHD E ''给出下面四个结论:①该八边形各边长都相等;②该八边形各内角都相等;③点O 到该八边形各顶点的距离都相等;④点O 到该八边形各边所在直线的距离都相等。
中考强化练习:2022年北京市怀柔区中考数学模拟测评 卷(Ⅰ)(含详解)
2022年北京市怀柔区中考数学模拟测评 卷(Ⅰ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、下列图形是中心对称图形的是( ). A .B .C .D . 2、下列说法中,正确的有( ) ①射线AB 和射线BA 是同一条射线;②若AB BC ,则点B 为线段AC 的中点;③连接A 、B 两点,使线段AB 过点C ;④两点的所有连线中,线段最短.A .0个B .1个C .2个D .3个 3、某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过125分,他至少要答对多少道题?如果设小明答对x 道题,根据题意可列不等式( )·线○封○密○外A .10x ﹣5(20﹣x )≥125B .10x +5(20﹣x )≤125C .10x +5(20﹣x )>125D .10x ﹣5(20﹣x )>125 4、如图,已知双曲线 (0)ky x x => 经过矩形 OABC 边 AB 的中点 F 且交 BC 于 E ,四边形OEBF 的面积为 2,则()k =A .1B .2C .4D .8 5、已知抛物线()20y ax bx c a =++≠的对称轴为直线1x =,与x 轴的一个交点坐标为()3,0A ,其部分图象如图所示,下列结论中:①0abc <;②240b ac ->;③抛物线与x 轴的另一个交点的坐标为()1,0-;④方程21ax bx c ++=有两个不相等的实数根.其中正确的个数为( )A .1个B .2个C .3个D .4个6、对于二次函数y =﹣x 2+2x +3,下列说法不正确的是( )A .开口向下B .当x ≥1时,y 随x 的增大而减小C .当x =1时,y 有最大值3D .函数图象与x 轴交于点(﹣1,0)和(3,0)7、已知4个数:()20201-,2-,()1.5--,23-,其中正数的个数有( ) A .1B .C .3D .4 8、在实数范围内分解因式2x 2﹣8x +5正确的是( ) A .(x(xB .2(x(xC .(2x(2xD .(2x ﹣4(2x ﹣9、为保护人民群众生命安全,减少交通事故,自2020年7月1日起,我市市民骑车出行必须严格遵守“一盔一带”规定,某头盔经销商经过统计发现:某品牌头盔从5月份到7月份销售量的月增长率相同,若5月份销售200个,7月份销售288个,设月增长率为x 则可列出方程( ) A .200(+x )=288 B .200(1+2x )=288 C .200(1+x )²=288 D .200(1+x ²)=28810、若x =1是关于x 的一元二次方程x 2+mx ﹣3=0的一个根,则m 的值是( )A .﹣2B .﹣1C .1D .2 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分)1、 “x 与2的差不大于3”用不等式表示为___.2、若等腰三角形的一个外角等于80°,则与它不相邻的两个内角的度数分别是 ___;3、如图,C 是线段AB 延长线上一点,D 为线段BC 上一点,且2CD BD =,E 为线段AC 上一点,2CE AE =,若2DE =,则AB =_________.4、计算:()32a =_________,2b -=_________,2217x y xy ÷=_________.分解因式:221a a ++=_________,22x x -=_________,21m -=________. ·线○封○密○外,如果AB=5cm,CD=1cm,那么BD的长等于5、如图,点C、点D是线段AB上的两个点,且AD CB_______cm.三、解答题(5小题,每小题10分,共计50分)1、某电影院某日某场电影的购票方式有两种,①个人票;成人票每张30元,学生票每张15元:②团体票:按个人票价的9折出售(满40人可购团体票,不足40人可按40人计算).某班在4位老师带领下去该电影院看该场电影,学生人数为x人(1)若按个人票购买,该班师生买票共付费_____元(用含x的代数式表示);若按团体票购买,该班师生买票共付费_____元(用含x的代数式表示,且x≥36)(2)如果该班学生人32人,该班师生买票最少可付费多少元?2、如图,在平面直角坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),二次函数y=x2+bx﹣2的图象经过C点.(1)求二次函数的解析式;(2)若点P是抛物线的一个动点且在x轴的下方,则当点P运动至何处时,恰好使△PBC的面积等于△ABC的面积的两倍.(3)若点Q是抛物线上的一个动点,则当点Q运动至何处时,恰好使∠QAC=45°?请你求出此时的Q点坐标.3、一个正整数k去掉个位数字得到一个新数,如果原数的个位数字的2倍与新数之和与7的商是一个整数,则称正整数k为“尚志数”,把这个商叫做k的尚志系数,记这个商为F(k).如:732去掉个位数字是73.2的2倍与73的和是77,77÷7=11,11是整数,所以732是“尚志数”,732的尚志系数是11,记F (732)=11: (1)计算:F (204)= ;F (2011)= ;(2)若m 、n 都是“尚志数”,其中m =3030+10la ,n =400+10b +c (0≤a ≤9,0≤b ≤9,0≤c ≤9,a ,b ,c 是整数),规定:G (m ,n )=a c b,当F (m )+F (n )=66时,求G (m ,n )的值. 4、如图1,点A 、O 、B 依次在直线MN 上,如图2,现将射线OA 绕点O 沿顺时针方向以每秒4°的速度旋转,同时射线OB 绕点O 沿逆时针方向以每秒6°的速度旋转,当其中一条射线回到起始位置时,运动停止,直线MN 保持不动,设旋转时间为t s . (1)当t =3时,∠AOB = ;(2)在运动过程中,当射线OB 与射线OA 垂直时,求t 的值;(3)在旋转过程中,是否存在这样的t ,使得射线OB 、射线OA 和射线OM ,其中一条射线把另外两条射线的夹角(小于180°)分成2:3的两部分?如果存在,直接写出答案;如果不存在,请说明理由. 5、如图,抛物线y =13x 2+bx +c (a ≠0)与x 轴交于4B 两点,且点B 的坐标为(2,0),与y 轴交于点C ,抛物线的对称轴为直线x =﹣1,点D 为抛物线的顶点,连接AD ,AC . ·线○封○密○外(1)求抛物线的解析式;(2)如图1,点P是抛物线上第三象限内的一个动点,过点P作PM∥x轴交AC于点M,求PM的最大值及此时点P的坐标;(3)如图2,将原抛物线向右平移,使得点A刚好落在原点O,M是平移后的抛物线上一动点,Q是直线AC上一动点,直接写出使得由点C,B,M,Q组成的四边形是平行四边形的点Q的坐标;并把求其中一个点Q的坐标的过程写出来.-参考答案-一、单选题1、A【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,据此可得结论.【详解】解:选项B、C、D均不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,选项A能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,故选:A.【点睛】本题主要考查了中心对称图形,掌握中心对称图形的定义是解题关键.2、B【分析】①射线有方向性,描述射线时的第1个字母表示它的端点,所以①不对.②不明确A 、B 、C 是否在同一条直线上.所以错误.③不知道C 是否在线段AB 上,错误.④两点之间线段最短,正确.【详解】①射线AB 和射线BA 的端点不同不是同一条射线.所以错误.②若AB 和BC 为不在同一条直线的两条线段,B 就不是线段AC 的中点.所以错误.③若C 点不在线段AB 两点的连线上,那么C 点就无法过线段AB .所以错误.④两点之间线段最短,所以正确.故选:B . 【点睛】 本题考查了射线、线段中点的含义.解题的关键是根据两点之间线段最短,射线、线段的中点的定义,角平分线的定义对各小题分析判断即可得解. 3、D 【分析】 根据规定每答对一题得10分,答错或不答都扣5分,可以列出相应的不等式,从而可以解答本题. 【详解】 解:由题意可得,10x -5(20-x )>125,故选:D .【点睛】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式. 4、B【分析】·线○封○密·○外利用反比例函数图象上点的坐标,设()k F a a ,,则根据F 点为AB 的中点得到2()k B a a,.然后根据反比例函数系数k 的几何意义,结合OAF OCE OABC OEBF S S S S =++矩形四边形,即可列出11222B B x y k k ⋅=++,解出k 即可.【详解】 解:设()k F a a,, ∵点F 为AB 的中点, ∴2()k B a a,. ∵OAF OCE OABC OEBF S S S S =++矩形四边形, ∴11222B B x y k k ⋅=++,即211222k a k k a ⋅=++, 解得:2k =.故选B .【点睛】本题考查反比例函数的k 的几何意义以及反比例函数上的点的坐标特点、矩形的性质,掌握比例系数k 的几何意义是在反比例函数(0)k y k x=≠图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|是解答本题的关键.5、C【分析】根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①如图,开口向上,得0a >,12b x a =-=,得20b a =-<,抛物线与y 轴交于负半轴,即0,0x y c ==<,0abc ∴>, 故①错误; ②如图,抛物线与x 轴有两个交点,则240b ac ->; 故②正确; ③由对称轴是直线1x =,抛物线与x 轴的一个交点坐标为(3,0)A ,得到:抛物线与x 轴的另一个交点坐标为(1,0)-, 故③正确; ④如图所示,当1x =时,0y <, 21ax bx c ∴++=根的个数为1y =与2y ax bx c =++图象的交点个数, 有两个交点,即21ax bx c ++=有两个根, 故④正确; 综上所述,正确的结论有3个. 故选:C . 【点睛】 主要考查抛物线与x 轴的交点,二次函数图象与二次函数系数之间的关系,解题的关键是会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用. 6、 C ·线○封○密·○外【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:y=-x2++2x+3=-(x-1)2+4,∵a=-1<0,∴该函数的图象开口向下,故选项A正确;∵对称轴是直线x=1,∴当x≥1时,y随x的增大而减小,故选项B正确;∵顶点坐标为(1,4),∴当x=1时,y有最大值4,故选项C不正确;当y=0时,-x2+2x+3=0,解得:x1=-1,x2=3,∴函数图象与x轴的交点为(-1,0)和(3,0),故D正确.故选:C.【点睛】本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.7、C【分析】化简后根据正数的定义判断即可.【详解】解:()20201-=1是正数,2-=2是正数,()1.5--=1.5是正数,23-=-9是负数,故选C . 【点睛】 本题考查了有理数的乘方、相反数、绝对值的意义,以及正负数的意义,正确化简各数是解答本题的关键. 8、B【分析】解出方程2x 2-8x +5=0的根,从而可以得到答案. 【详解】解:∵方程2x 2-8x +5=0中,a =2,b =-8,c =5, ∴Δ=(-8)2-4×2×5=64-40=24>0, ∴x=, ∴2x 2-8x +5=2(x(x, 故选:B . 【点睛】 本题考查了解一元二次方程,实数范围内分解因式,求出一元二次方程的根是解题的关键. 9、C 【分析】 ·线○封○密○外设月增长率为x,根据等量关系用增长率表示7月份的销售量与销售288相等,可列出方程200(1+x)²=288即可.【详解】解:设月增长率为x,则可列出方程200(1+x)²=288.故选C.【点睛】本题考查列一元二次方程解增长率问题应用题,掌握列一元二次方程解增长率问题应用题方法与步骤,抓住等量关系列方程是解题关键.10、D【分析】把x=1代入方程x2+mx-3=0,得出一个关于m的方程,解方程即可.【详解】解:把x=1代入方程x2+mx-3=0得:1+m-3=0,解得:m=2.故选:D.【点睛】本题考查了一元二次方程的解和解一元一次方程,关键是能根据题意得出一个关于m的方程.二、填空题1、x-2≤3【分析】首先表示出x与2的差为(x-2),再小于等于3,列出不等式即可.【详解】解:由题意可得:x-2≤3.故答案为:x -2≤3.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,关键是抓住关键词,选准不等号.2、40°,40°度,40度【分析】先根据平角等于180°求出与这个外角相邻的内角的度数,再根据等腰三角形两底角相等求解.【详解】解:∵等腰三角形的一个外角等于80°,∴与这个外角相邻的内角是180°-80°=100°, ∴100°的内角是顶角, 12(180°-100°)=40°, ∴另两个内角是40°,40°. 故答案为:40°,40°. 【点睛】 本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键. 3、3 【分析】 设BD =a ,AE =b ,则CD =2a ,CE =2b ,根据AB =AE +BE =AE +DE -BD 代入计算即可. 【详解】 设BD =a ,AE =b , ∵2CD BD =,2CE AE =, ∴CD =2a ,CE =2b , ·线○封○密○外∴DE =CE -CD =2b -2a =2即b -a =1,∴AB =AE +BE =AE +DE -BD =2+b -a =2+1=3,故答案为:3.【点睛】本题考查了线段的和与差,正确用线段的和差表示线段是解题的关键.4、6a21b 3x ()21+a ()2x x - ()()11m m +- 【分析】根据幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解分别计算即可【详解】解:计算:()32a =6a ,2b -=21b,2217x y xy ÷=3x . 分解因式:221a a ++=()21+a ,22x x -=()2x x -,21m -=()()11m m +-.故答案为:6a ;21b ;3x ;()21+a ;()2x x -;()()11m m +- 【点睛】本题考查了幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解,掌握以上运算法则和因式分解的方法是解题的关键.5、2【分析】AD CB =,AD CD CB CD -=-可知2AB CD AC BD -==,代值求解即可. 【详解】解:AD CB =AD CD CB CD ∴-=-2AB CD AC BD -∴== 5AB cm =,1CD cm = 2BD cm ∴= 故答案为:2. 【点睛】 本题考查了线段的和与差.解题的关键在于正确的表示各线段之间的数量关系. 三、解答题 1、(1)15120x +,13.5108x +;(2)594元 【分析】 (1)若按个人票购买,则费用为(43015)x ⨯+元;若按团体票购买,该班师生买票共付费(4300.9150.9)x ⨯⨯+元; (2)按学生32人购票,则可购买团体票,此时费用最小. 【详解】 解:(1)4301515120x x ⨯+=+, 所以若按个人票购买,该班师生买票共付费(15120)x +元; 4300.9150.913.5108x x ⨯⨯+=+, 所以若按团体票购买,该班师生买票共付费(13.5108)x +元; 故答案为:15120x +;13.5108x +; (2)当按个人票购买时,1532120600⨯+=元, 当按团体票购买时,13.536108594⨯+=, 所以该班师生买票最少可付费594元. ·线○封○密○外【点睛】本题考查了代数式求值,解题的关键是列出代数式,根据求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.2、(1)222y x x -=-;(2)当点P 运动至坐标为()2,2-或111,39时,恰好使△PBC 的面积等于△ABC 的面积的两倍; (3)Q ⎝⎭或.Q ⎝⎭【分析】(1)如图,过C 作1CQ OQ 于1,Q 先证明1,ABO CAQ ≌ 111,2,OA CQ OB AQ 可得3,1,C 再代入二次函数y =x 2+bx ﹣2中,再利用待定系数法求解b 即可;(2)先求解155,,22ABC ABS AB AC 过P 作PH y ∥轴交BC 于,H 再求解直线BC 为:12,3y x 设2,22,P x x x 则1,2,3H x x 再利用21545,23PBC C B S x x x x 再解方程即可;(3)分两种情况讨论:如图,作B 关于AC 的对称点,N 连接,CN 作CAN ∠的角平分线,AH 交CN 于,H 交抛物线于,Q 由,AB AC ⊥ 则45,,QAC AB AC AN 再求解AH 的解析式,再求解AH 与抛物线的交点坐标即可,如图,同理可得:当AH 平分BAC ∠时,射线AH 与抛物线的交点Q 满足45,QAC 按同样的方法可得答案.【详解】解:(1)如图,过C 作11CQ OQ 于1,Q则190,AOB AQ C 而,,90,AB AC AB AC BAC190,BAO ABO BAO CAQ 1,ABO CAQ1,ABO CAQ ≌ 而1,0,0,2,A B111,2,OA CQ OB AQ 3,1,C二次函数y =x 2+bx ﹣2的图象经过C 点, 9321,b 解得:2,b =- ∴ 二次函数的解析式为:22 2.y x x(2) 1,0,0,2,,,A B AB AC AB AC 2215125,,22ABCAB S AB AC 25,PBC ABC S S过P 作PH y ∥轴交BC 于,H ·线○封○密○外设直线BC 为,y mx n =+31,2m n n 解得:1,32m n所以直线BC 为:12,3y x 设2,22,P x x x 则1,2,3H x x 22152224,33PH x x x x x 21545,23PBC C B S x x x x整理得:23520,x x --=解得:1212,,3x x 当2x =时,2,y =-当13x =-时,11,9y 2,2P 或111,.39P 所以当点P 运动至坐标为()2,2-或111,39时,恰好使△PBC 的面积等于△ABC 的面积的两倍. (3)如图,作B 关于AC 的对称点,N 连接,CN作CAN ∠的角平分线,AH 交CN 于,H 交抛物线于,Q由,AB AC ⊥ 则45,,QAC ABAC AN 0,2,1,0,B A 2,2,N ,AC AN AH 平分,CAN,CH NH 3,1,C 则51,,22H 同理可得直线AH 的解析式为:11,33yx 2113322y x y x x 解得:51096110918x y 或51096110918xy (不合题意,舍去) .Q ∴⎝⎭ 如图,同理可得:当AH 平分BAC ∠时,射线AH 与抛物线的交点Q 满足45,QAC ·线○封○密○外同理:33,,22H 直线AH 为:33,y x23322y x y x x 解得:521293212x y 或521293212xy (不合题意舍去) .Q ∴⎝⎭【点睛】 本题考查的是利用待定系数法求解一次函数,二次函数关系式,全等三角形的性质与判定,等腰直角三角形的性质,一元二次方程的解法,清晰的分类讨论是解本题的关键.3、(1)4;29(2)15-或0或19 【分析】(1)利用“尚志数”的定义即可求得结论;(2)利用m =3030+101a 是“尚志数”,根据0≤a ≤9,a 为整数可求得a =1或8,进而求得F (m )的值,利用F (m )+F (n )=66,可得F (n ),再利用“尚志数”的定义得出关于b ,c 的式子,利用0≤b ≤9,0≤c ≤9,b ,c 是整数可求得b ,c 的值,利用公式G (m ,n )=a c b -,可求结论. 【小题1】 解:∵20+4×2=28,28÷7=4, ∴F (204)=4. ∵201+1×2=203,203÷7=29, ∴F (2011)=29. 故答案为:4;29; 【小题2】∵m =3030+101a =3000+100a +30+a ,∴F (m )=30010322124377a a a +++⨯+=+, 由题干中的定义可知2127a +为整数,且0≤a ≤9, ∵a =1时,2127a +=2,a =8时,2127a +=14, ∴a =1或a =8. ①当a =1时,F (m )=43+2=45, ∵F (m )+F (n )=66, ∴F (n )=21. ∵F (n )=4027bc ++, ∴4027b c ++=21. ∴b +2c =107. ·线○封○密○外∵0≤b ≤9,0≤c ≤9,∴不存在b ,c 满足b +2c =107.②当a =8时,F (m )=43+14=57,∵F (m )+F (n )=66,∴F (n )=9.∵F (n )=4027b c ++, ∴4027b c ++=9. ∴b +2c =23.∵0≤b ≤9,0≤c ≤9,∴59b c =⎧⎨=⎩或78b c =⎧⎨=⎩或97b c =⎧⎨=⎩, ∴当a =8,b =5,c =9时,G (m ,n )=89155a c b --==-; 当a =8,b =7,c =8时,G (m ,n )=8807a cb --==; 当a =8,b =9,c =7时,G (m ,n )=87199a cb --==. 【点睛】 本题主要考查了因式分解的应用,本题是阅读型题目,准确理解题干中的定义并熟练应用是解题的关键.4、(1)150°(2)9或27或45;(3)t 为454、27019、1507、45019、117019 【分析】 (1)求出∠AOM 及∠BON 的度数可得答案; (2)分两种情况:①当030t <≤时,②当3060t <≤时,根据OA 与OB 重合前,OA 与OB 重合后,列方程求解; (3)射线OB 、射线OM 、射线OA 中,其中一条射线把另外两条射线的夹角(小于180°)分成2:3的两部分有以下九种情况:①OA 分∠BOM 为2:3时,②OA 分∠BOM 为3:2时,③OB 分∠AOM 为2:3时,④OB 分∠AOM 为3:2时,⑤OM 分∠AOB 为2:3时,⑥ OB 分∠AOM 为2:3时,⑦OB 分∠AOM 为3:2时,⑧ OA 分∠BOM 为3:2时,⑨ OA 分∠BOM 为2:3时,列方程求解并讨论是否符合题意. (1) 解:当t =3时,∠AOM =12°,∠BON =18°, ∴∠AOB =180°-∠AOM -∠BON =150°, 故答案为:150°; (2) 解:分两种情况: ①当030t <≤时, 当OA 与OB 重合前,1804690t t --=,得t =9; 当OA 与OB 重合后,4618090t t +-=,得t =27; ②当3060t <≤时, 当OA 与OB 重合前,4180618090t t -+-=,得t =45; 当OA 与OB 重合后,3604360690t t -+-=,得t =63(舍去); 故t 的值为9或27或45; ·线○封○密·○外(3)解:射线OB 、射线OM 、射线OA 中,其中一条射线把另外两条射线的夹角(小于180°)分成2:3的两部分有以下九种情况:①OA 分∠BOM 为2:3时,∴4t :(180-4t -6t )=2:3,解得:t =454; ②OA 分∠BOM 为3:2时,∴4t :(180-4t -6t )=3:2,解得:t =27019; ③OB 分∠AOM 为2:3时,∵4618010180,1806AOB t t t BOM t ∠=+-=-∠=-,∴(10180):(1806)2:3t t --=,得t =1507; ④OB 分∠AOM 为3:2时, ∴(10180):(1806)3:2t t --=, 得t =45019; ⑤OM 分∠AOB 为2:3时, ∴(6180):42:3t t -=, 得t =54, 此时(46180)360AOB t t ∠=+-︒=︒>180°,故舍去;⑥ OB 分∠AOM 为2:3时,∴[]3604(6180):(6180)2:3t t t ----=, 得337t =, 此时2388(3604)1807AOM t ∠=-︒=︒>︒,故舍去; ·线○封○密·○外⑦OB 分∠AOM 为3:2时,∴[]3604(6180):(6180)3:2t t t ----=, 得81019t =, 此时3600(3604)18019AOM t ∠=-︒=︒>︒,故舍去;⑧ OA 分∠BOM 为3:2时,∴[](3604):6180(3604)3:2t t t ----=, 得117019t =,⑨ OA 分∠BOM 为2:3时,∴[](3604):6180(3604)2:3t t t ----=,得t =67.5(舍去)综上,当t 的值分别为454、27019、1507、45019、117019时,射线OB 、射线OM 、射线OA 中,其中一条射线把另外两条射线的夹角(小于180°)分成2:3的两部分.【点睛】此题考查了角的计算,角的旋转,几何图形中角度的度数比,列一元一次方程,正确画出图形求角度值是解题的关键. 5、(1)2128333y x x =+- (2)PM 最大值为2,8(2,)3P -- (3)Q或(Q -【分析】 (1)用待定系数法即可得抛物线的解析式为2128333y x x =+-; (2)由(4,0)A -,8(0,)3C -得直线AC 解析式为2833y x =--,设2128(,)333P t t t +-,(40)t -<<,可得2221()2(2)2222t t PM t t t t =---=--=-++,即得2t =-时,PM 的值最大,最大值为2,8(2,)3P --; (3)由已知得平移后的抛物线解析式为221281(4)(4)23333y x x x x =-+--=-,设21(,2)3M m m m -,28(,)33Q n n --,而(2,0)B ,8(0,)3C -,①以BC 、MQ 为对角线,则BC 的中点即是MQ 的中点,即2208128023333m n m m n +=+⎧⎪⎨-=---⎪⎩,解得Q或(Q -;②以BM 、CQ 为对角线,·线○封○密○外得220128823333m n m m m +=+⎧⎪⎨-=---⎪⎩,方程组无解;③以BQ 、CM 为对角线,2022818023333m n n m m +=+⎧⎪⎨--+=--⎪⎩,解得Q或(Q -. (1) 解:点B 的坐标为(2,0)在抛物线213y x bx c =++,抛物线的对称轴为直线1x =-, ∴40231123b c b ⎧=++⎪⎪⎨-=-⎪⨯⎪⎩,解得2383b c ⎧=⎪⎪⎨⎪=-⎪⎩, ∴抛物线的解析式为2128333y x x =+-; (2) 在2128333y x x =+-中,令0y =得2x =或4-, (4,0)A ∴-, 在2128333y x x =+-中,令0x =得83y =-, 8(0,)3C ∴-, 设直线AC 解析式为83y kx =-,则8043k =--, 解得23k =-,∴直线AC 解析式为2833y x =--, 设2128(,)333P t t t +-,(40)t -<<, 由21282833333t t x +-=--得22t x t =--,2(2t M t ∴--,2128)333t t +-, 2221()2(2)2222t t PM t t t t ∴=---=--=-++, 102-<, 2t ∴=-时,PM 的值最大,最大值为2;此时8(2,)3P --; (3) 将原抛物线向右平移,使得点(4,0)A -刚好落在原点(0,0)O , ∴平移后的抛物线解析式为221281(4)(4)23333y x x x x =-+--=-, 设21(,2)3M m m m -,28(,)33Q n n --,而(2,0)B ,8(0,)3C -, ①以BC 、MQ 为对角线,则BC 的中点即是MQ 的中点,∴2208128023333m n m m n +=+⎧⎪⎨-=---⎪⎩,解得n =±Q ∴或(Q -; ②以BM 、CQ 为对角线, ·线○封○密○外∴220128823333m n m m m +=+⎧⎪⎨-=---⎪⎩,方程组无解; ③以BQ 、CM 为对角线, ∴2022818023333m n n m m +=+⎧⎪⎨--+=--⎪⎩,解得n =±Q ∴或(Q -;综上所述,Q或(Q -. 【点睛】本题考查二次函数综合应用,涉及待定系数法、平行四边形等知识,解题的关键是用含字母的代数式表示相关点的坐标和相关线段的长度。
2021年怀柔区初三一模试题答案(Word版)
中考一模数学试卷答案及评分参考题 号 1 2 3 4 5 6 7 8 答 案 CDBDCCBA题号 910 11 12 答案2x ≠x=-1 或x=3m=62≤AD <3(注:12题评分标准:有AD <3 …2分, 有2≤AD …2分, 有2<AD …1分)三、解答题(本题共30分,每小题5分)13(本题满分5分)计算:02sin 308232011︒解:原式=12223212⨯+……………………………………4分 323=5分14. (本题满分5分)因式分解: 221218x x -+解:221218x x -+=2)96(2+-x x …………………………………4分=223x -()……………………………………………… …5分 15.(本题满分5分)证明:∵BF=DE EF=EF ∴BF- EF =DE- EF∴BE=DF ………………………1分 在△ABE 和△CDF 中∵12,34,BE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF ……………………………………4分 ∴AE=CF .…………………………………5分16.(本题满分5分)已知 230a a --=,求代数式111aa --的值.解:()11111a aa a a a ---=--………………………………………1分 ()11a a =--……………………………………………………2分21a a=--……………………………………3分 ∵ 230a a --=, ∴23a a -=.…………………………………4分 ∴ 原式13=-……………………………………5分 17. (本题满分5分)解:∵抛物线 )0(2<=a ax y点B 在抛物线上,将B(0.8,2.4)它的坐标代人)0(2<=a ax y ,求得 415-=a ………………………2分 所求解析式为2415x y -= 再由条件设D 点坐标为)9.0,(-x ………………………3分则有:24159.0x -=- 0.24x =0.254分x <0.5 ……………………………5分2x <1所以涵洞ED 不超过1m.18.(本题满分6分)解:(1) 家长人数为80÷20%=400 家长反对人数280 补全图 ……2分(2)40360400⨯°=36° ………………………… 4分 (3)300.151403030=++ ………………………… 6分(1)四、解答题(本题共20分,第19、20题各5分,第21题6分,第22题4分) 19.证明:连结OC ,∵OA=OC ∴∠OAC=∠OCA ……………(1分) ∵DC 是切线∴∠DCF=900-∠OCA ……………(2分) ∵DE ⊥AB∴∠DFC=900-∠OAC ……………(3分) ∵∠OAC=∠OCA ,……………(4分)∴∠DFC=∠DCF ……………(5分)即△DFC 是等腰三角形. 20.(本题满分5分) 20.解法一:求两个班人均捐款各多少元?设1班人均捐款x 元,则2班人均捐款(x+4)元,根据题意得 1800x ·90%=1800x+4………………………………………………………(3分)解得x=36 经检验x=36是原方程的根,且符合实际意义………………………(4分) ∴x+4=40 ……………………………………………(5分) 答:1班人均捐36元,2班人均捐40元解法二:求两个班人数各多少人? 设1班有x 人,则根据题意得1800x +4=180090x% …………(3分)解得x=50 ,经检验x=50是原方程的根,且符合实际意义…(4分)∴90x % =45 ……………(5分) 答:1班有50人,2班有45人. (不检验扣1分) 21. (本题满分6分)解:(1)令x 2-4x + 3=0,1x =1,2x =3………………………(2分) 则A(1,0) B(3,0) C(0,3)BC 所在直线为3y x =-+……………………………………………(3分)(2)反比例函数ky x=与BC 有两个交点且k 为正整数整理得:x 2-3x + k=0………………………(4分)∵△=9-4k >0 ∴ k <94…………………………………………………(5分) 又因为反比例函数ky x=与BC 的交点 所以k >0,因为 k 为正整数所以k=1或k=2………………………………………(6分)22.(本题满分4分) 解:(1)92 92………………………(2分) (2)22a…………(2分) 结论是:三角形DBF 的面积的大小只与a 有关, 与b 无关. (没写结论也不扣分)五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. (本题满分7分)解:(1)根据题意,得⎪⎩⎪⎨⎧+⨯-⨯=-+-⨯--⨯=.0405,)1(4)1(022c a c a …(2分)解得 ⎩⎨⎧-==.5,1c a ……………………(3分)∴二次函数的表达式为542--=x x y .B(5,0)…………………………………………………………………………(4分) (2)令y=0,得二次函数542--=x x y 的图象与x 轴的另一个交点坐标C (5, 0)…………………………………………………(5分) 由于P(2,-2) ,符合条件的坐标有共有4个,分别是1P (4,0)2P (2,0) 3P (-22,0)4P ( 22,0) ………………………………………………………………………(7分)① 24. (本题满分6分) 解:(1)证明:EPC BEP B ∠=∠+∠ 而FPC EPF EPC ∠+∠=∠ ︒=∠=∠30EPF B 所以FPC BEP ∠=∠ 由︒=∠=∠30C B 可知结论成立. ………………………………………………………………………(3分) (2)①相似……………………………………………………………………………(4分)②相似……………………………………………………………………………(5分) 理由:由△BPE 与△CFP 相似可得 PF PE PC BE =即PFPEPB BE =,而︒=∠=∠30EPF B 知结论成立…………(6分)(第23题图)③由△BPE 与△PFE 相似得EFPEPF BP =,即m PF PE 34=⋅,过F 作PE 垂线可得 m PE PF S 32121=⋅⋅=)0(>m ………………………………………………(7分)图a图b25.(本题满分8分)解:(1)∵ 点A )4,2(在抛物线C 1上,∴ 把点A 坐标代入()512-+=x a y 得 a =1 ……………………………………(2分)∴ 抛物线C 1的解析式为422-+=x x y设B(-2,b), ∴ b =-4, ∴ B(-2,-4) …………………………(3分) (2)①如图1:∵ M(1, 5),D(1, 2), 且DH ⊥x 轴,∴ 点M 在DH 上,MH=5. 过点G 作GE ⊥DH,垂足为E,由△DHG 是正三角形,可得EG=3, EH=1,∴ ME =4. ………………………………(4分) 设N ( x, 0 ), 则 NH =x -1,由△MEG ∽△MHN,得HN EGMH ME =, ∴ 1354-=x , ∴ =x 1345+…………(5分)) ∴ 点N 的横坐标为1345+. ② 当点D移到与点A 重合时,如图2,直线l 与DG 交于点G,此时点N的横坐标最大. 过点G,M作x 轴的垂线,垂足分别为点Q,F, 设N(x ,0)∵ A (2, 4) ∴ G (322+, 2)∴ NQ=322--x NF =1-x GQ=2 MF =5. ∵ △NGQ ∽△NMF ∴MFGQNF NQ = A BCP EFABCPEF第25题图1第25题图2∴521322=---x x∴ 38310+=x . ………………………………………………………(7分)当点D 移到与点B 重合时,如图3 直线l 与DG 交于点D,即点B 此时点N 的横坐标最小.∵ B(-2, -4) ∴ H(-2, 0), D(-2, -4) 设N (x ,0)∵ △BHN ∽△MFN , ∴MFBHFN NH = ∴5412=-+x x ∴ 32-=x∴ 点N 横坐标的范围为 32-≤x ≤38310+………………………………(8分)(注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分)第25题图3图4。
北京市怀柔区2019-2020学年中考数学一月模拟试卷含解析
北京市怀柔区2019-2020学年中考数学一月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知AB ∥CD ,DE ⊥AF ,垂足为E ,若∠CAB=50°,则∠D 的度数为( )A .30°B .40°C .50°D .60°2.如图,ABC ∆为等边三角形,要在ABC ∆外部取一点D ,使得ABC ∆和DBC ∆全等,下面是两名同学做法:( )甲:①作A ∠的角平分线l ;②以B 为圆心,BC 长为半径画弧,交l 于点D ,点D 即为所求; 乙:①过点B 作平行于AC 的直线l ;②过点C 作平行于AB 的直线m ,交l 于点D ,点D 即为所求.A .两人都正确B .两人都错误C .甲正确,乙错误D .甲错误,乙正确3.式子2x +在实数范围内有意义,则x 的取值范围是( )A .x >﹣2B .x≥﹣2C .x <﹣2D .x≤﹣24.某种超薄气球表面的厚度约为0.00000025mm ,这个数用科学记数法表示为( ) A .72.510-⨯ B .70.2510-⨯ C .62.510-⨯ D .52510-⨯5.如图1,在△ABC 中,AB=BC ,AC=m ,D ,E 分别是AB ,BC 边的中点,点P 为AC 边上的一个动点,连接PD ,PB ,PE.设AP=x ,图1中某条线段长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是( )A .PDB .PBC .PED .PC6.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ACD=30°,则∠BAD 为( )A .30°B .50°C .60°D .70°7.青藏高原是世界上海拔最高的高原,它的面积是 2500000 平方千米.将 2500000 用科学记数法表示应为( )A .70.2510⨯B .72.510⨯C .62.510⨯D .52510⨯8.已知等腰三角形的周长是10,底边长y 是腰长x 的函数,则下列图象中,能正确反映y 与x 之间函数关系的图象是( )A .B .C . D9.化简16的结果是( ) A .±4 B .4 C .2 D .±210.如图,已知AE 垂直于ABC ∠的平分线于点D ,交BC 于点E , 13CE BC =,若ABC ∆的面积为1,则CDE ∆的面积是( )A .14B .16C .18D .11011.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )A .三棱柱B .四棱柱C .三棱锥D .四棱锥12.如图,在四边形ABCD 中,AD ∥BC ,∠ABC+∠DCB=90°,且BC=2AD ,分别以AB 、BC 、DC 为边向外作正方形,它们的面积分别为S 1、S 2、S 1.若S 2=48,S 1=9,则S 1的值为( )A .18B .12C .9D .1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知线段a=4,b=1,如果线段c 是线段a 、b 的比例中项,那么c=_____.14.如图,在平面直角坐标系中,已知点A (1,1),以点O 为旋转中心,将点A 逆时针旋转到点B 的位置,则¶AB 的长为_____.15.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.16.在函数y =中,自变量x 的取值范围是_____.17.不等式组52130x x -≤⎧⎨+>⎩的解集是__________. 18.若分式22x x +的值为正,则实数x 的取值范围是__________________. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:2﹣1+|﹣312+2cos30°20.(6分) 如图,已知正方形ABCD ,E 是AB 延长线上一点,F 是DC 延长线上一点,且满足BF =EF ,将线段EF 绕点F 顺时针旋转90°得FG ,过点B 作FG 的平行线,交DA 的延长线于点N ,连接NG .求证:BE =2CF ;试猜想四边形BFGN 是什么特殊的四边形,并对你的猜想加以证明.21.(6分)化简:()()2a b a 2b a -+-.22.(8分)某市飞翔航模小队,计划购进一批无人机.已知3台A 型无人机和4台B 型无人机共需6400元,4台A 型无人机和3台B 型无人机共需6200元.(1)求一台A 型无人机和一台B 型无人机的售价各是多少元?(2)该航模小队一次购进两种型号的无人机共50台,并且B 型无人机的数量不少于A 型无人机的数量的2倍.设购进A 型无人机x 台,总费用为y 元.①求y 与x 的关系式;②购进A 型、B 型无人机各多少台,才能使总费用最少?23.(8分)如图1,□OABC 的边OC 在y 轴的正半轴上,OC =3,A(2,1),反比例函数y =k x (x >0)的图象经过点B .(1)求点B 的坐标和反比例函数的关系式;(2)如图2,将线段OA 延长交y =k x(x >0)的图象于点D ,过B ,D 的直线分别交x 轴、y 轴于E ,F 两点,①求直线BD 的解析式;②求线段ED 的长度.24.(10分)石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x 元时,每天可销售______ 件,每件盈利______ 元;(用x 的代数式表示)每件童装降价多少元时,平均每天赢利1200元.要想平均每天赢利2000元,可能吗?请说明理由.25.(10分)文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题.已知正方形的边长是2,就能求出图中阴影部分的面积.证明:S 矩形ABCD =S 1+S 2+S 3=2,S 4= ,S 5= ,S 6= + ,S 阴影=S 1+S 6=S 1+S 2+S 3= .26.(12分)某天,甲、乙、丙三人一起乘坐公交车,他们上车时发现公交车上还有A ,B ,W 三个空座位,且只有A ,B 两个座位相邻,若三人随机选择座位,试解决以下问题:(1)甲选择座位W 的概率是多少;(2)试用列表或画树状图的方法求甲、乙选择相邻座位A ,B 的概率.27.(12分)如图,在Rt △ABC 中,∠C =90°,AC 5=,tanB 12=,半径为2的⊙C 分别交AC ,BC 于点D 、E ,得到DE 弧.(1)求证:AB 为⊙C 的切线.(2)求图中阴影部分的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】试题解析:∵AB ∥CD ,且50CAB ∠=︒,50ECD ∴∠=︒,ED AE Q ,⊥ 90CED ∴∠=︒,∴在Rt CED V 中,905040D .∠=︒-︒=︒故选B .2.A【解析】【分析】根据题意先画出相应的图形,然后进行推理论证即可得出结论.【详解】甲的作法如图一:∵ABC V 为等边三角形,AD 是BAC ∠的角平分线∴90BEA ∠=︒180BEA BED ∠+∠=︒Q90BED ∴∠=︒90BEA BED ∴∠=∠=︒由甲的作法可知,AB BD =ABC DBC ∴∠=∠在ABC V 和DCB V 中,AB BD ABC DBC BC BC =⎧⎪∠=∠⎨⎪=⎩()ABC DCB SAS ∴≅V V故甲的作法正确;乙的作法如图二://,//BD AC CD AB Q,ACB CBD ABC BCD ∴∠=∠∠=∠在ABC V 和DCB V 中,ABC BCD BC BCACB CBD ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABC DCB ASA ∴≅V V故乙的作法正确;故选:A .【点睛】本题主要借助尺规作图考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键. 3.B【解析】【分析】根据二次根式有意义的条件可得20x +≥ ,再解不等式即可.【详解】解:由题意得:20x +≥,解得:2x ≥-,故选:B .【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.4.A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】70.00000025 2.510-=⨯,故选:A .【点睛】本题考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.C【解析】观察可得,点P 在线段AC 上由A 到C 的运动中,线段PE 逐渐变短,当EP ⊥AC 时,PE 最短,过垂直这个点后,PE 又逐渐变长,当AP=m 时,点P 停止运动,符合图像的只有线段PE ,故选C.点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.6.C【解析】试题分析:连接BD ,∵∠ACD=30°,∴∠ABD=30°,∵AB 为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.故选C .考点:圆周角定理7.C【解析】分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.解答:解:根据题意:2500000=2.5×1. 故选C .8.D【解析】【分析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x 的取值范围,然后选择即可.【详解】由题意得,2x+y=10,所以,y=-2x+10,由三角形的三边关系得,()2210210x x x x x -+--+⎧⎨⎩>①<②, 解不等式①得,x >2.5,解不等式②的,x <5,所以,不等式组的解集是2.5<x<5,正确反映y与x之间函数关系的图象是D选项图象.故选:D.9.B【解析】【分析】根据算术平方根的意义求解即可.【详解】=4,故选:B.【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a 的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.10.B【解析】【分析】先证明△ABD≌△EBD,从而可得AD=DE,然后先求得△AEC的面积,继而可得到△CDE的面积. 【详解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵1CE BC3=,ΔABC的面积为1,∴S△AEC=13S△ABC=13,又∵AD=ED,∴S△CDE=12S△AEC=16,故选B.【点睛】本题考查了全等三角形的判定,掌握等高的两个三角形的面积之比等于底边长度之比是解题的关键.11.D【解析】试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.故选D考点:几何体的形状12.D【解析】【分析】过A作AH∥CD交BC于H,根据题意得到∠BAE=90°,根据勾股定理计算即可.【详解】∵S2=48,∴BC=43,过A作AH∥CD交BC于H,则∠AHB=∠DCB.∵AD∥BC,∴四边形AHCD是平行四边形,∴CH=BH=AD=23,AH=CD=1.∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB2=BH2﹣AH2=1,∴S1=1.故选D.【点睛】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.【详解】根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.则c1=4×1,c=±1,(线段是正数,负值舍去),故c=1.。
怀柔一模初三数学试卷
一、选择题(本大题共10小题,每小题3分,共30分)1. 下列选项中,不是实数的是()A. 2.5B. -3C. √9D. π2. 已知a=5,b=-3,那么a²-b²的值是()A. 16B. 14C. 10D. 83. 下列函数中,是奇函数的是()A. y=x²B. y=x³C. y=x⁴D. y=x⁵4. 在△ABC中,∠A=30°,∠B=45°,那么∠C的度数是()A. 105°B. 120°C. 135°D. 150°5. 下列方程中,无解的是()A. x+2=5B. 2x-3=7C. 3x+2=2x+5D. x²-2x+1=06. 已知一次函数y=kx+b(k≠0),若图象经过点(1,-2),(2,0),则该函数的解析式为()A. y=2x-4B. y=x-4C. y=2x+4D. y=x+47. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 平行四边形D. 圆8. 已知a、b是方程x²-4x+3=0的两根,那么a²+4b²的值是()A. 14B. 15C. 16D. 179. 下列数列中,不是等差数列的是()A. 1, 4, 7, 10, ...B. 2, 5, 8, 11, ...C. 3, 6, 9, 12, ...D. 4, 7, 10, 13, ...10. 在平面直角坐标系中,点P(2,3)关于直线y=x的对称点坐标是()A. (2,3)B. (3,2)C. (-2,-3)D. (-3,-2)二、填空题(本大题共10小题,每小题3分,共30分)11. 已知∠A=60°,∠B=90°,那么∠C的度数是________。
12. 二元一次方程组 \begin{cases} {x+y=5} \\ {2x-3y=1}\end{cases} 的解是x=________,y=________。
怀柔数学一模答案
高级中等学校招生模拟考试(一)数学评分标准一、选择题(每小题有且只有一个选项是正确的,请把正确的选项前的序号填在相应的表格内. 本题共有10个小题,每小题3分,共30分) 二、填空题(本题共6个小题,每小题3分,共18分)11. x≠3. 12. 2a(a-3)(a+3). 13. 32.14.答案不唯一,符合m<1即可. 15. [(2x-1)×2-1] ×2-1=0或8x-7=0.. 16. CD 和EF 是四边形DECF 对角线,而CD 和EF 互相垂直且平分(答案不唯一).三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分) 17. 解: 原式=1221222-++-⨯………………………………………………4分= 22.………………………………………………5分 18.解:1)-1)(a (a 3)a(2a +-+=1)(a 3a 2a22--+=1a 3a 2a 22+-+=13a a 2++.……………………………………………………3分 ∵063a a 2=++, ∴-63a a 2=+.∴原式=-6+1=-5. ……………………………………………………5分19.解:2(x-2)3x-3, x x+1<34⎧⎪⎨⎪⎩≤① . ②解不等式①得:x≥-1. ……………………………………………………2分解不等式②得:x<3. ……………………………………………………4分 所以不等式组的解集为-1≤x<3.所以不等式组的非负整数解为0,1,2. .………………………………………5分 20.证明:∵DE 是AB 边的垂直平分线, ∴AE=BE , ∠ADE=90°.EDCBAHA BCEFD∴∠EAB=∠B. ……………………………………………………3分 在Rt △ABC 中,∠C=90°, ∴∠CAB+∠B=90°.在Rt △ADE 中,∠ADE=90°, ∴∠AED+∠EAB=90°. ……………………………………………………4分∴∠CAB=∠AED. ……………………………………………………5分21. 解:设该款空调补贴前的售价为每台x 元, ……………………………………………1分 由题意,得:,500x 600001.2x 60000-=⨯………………………………………………2分 解得:x=3000. ……………………………………………………3分经检验,x=3000是原方程的解,且符合题意.………………………………………………4分 答:该款空调补贴前的售价为每台3000元.…………………………………………5分 22. (1)证明:∵CE//AB ,∴∠DAF=∠ECF. ……………………………1分 ∵F 为AC 的中点, ∴AF=CF. 在△DAF 和△ECF 中,DAF=ECF AF=CFAFD=CFE ∠∠⎧⎪⎨⎪∠∠⎩∴ △DAF ≌△ECF .∴ AD=CE . ………………………………2分 ∵CE//AB ,∴ 四边形ADCE 为平行四边形.………………………………3分 (2)作FH ⊥DC 于点H . ∵ 四边形ADCE 为平行四边形,∴ AE//DC ,DF= EF=22, ∴∠FDC =∠AED=45°. 在Rt △DFH 中,∠DHF=90°,DF=22,∠FDC=45°,∴ sin ∠FDC=FH =DF 2,得FH=2, tan ∠FDC=HF=1HD,得DH=2. ………………………………4分 在Rt △CFH 中,∠FHC=90°,FH=2,∠FCD=30°,∴ FC=4. 由勾股定理,得HC=32.∴ DC=DH+HC=2+32. ………………………………5分23.解:(1)把A (5,1)代入xm y =中, ∴m=5.∴反比例函数表达式x5y =.………………………………1分 ∵OC=5BC,设B(x,5x) , (x<0) 把B(x,5x)代入x5y =中, ∴5x 2=5. x 1=1(舍),x 2=-1.∴B(-1,-5) . ……………………………2分 把A (5,1),B(-1,-5) 代入b kx y +=中, 得⎩⎨⎧-=+-=+5.b k 1,b 5k解得⎩⎨⎧-==4.b 1,k∴一次函数表达式为4x y -=.……………………………3分(2)P (6,0)或P (-6,0) . ……………………………5分 24. (1)证明:连结OF ,如图.∵DH 为⊙O 的切线,OF 为半径,∴OF ⊥DH. ∴∠OFD=90°。
北京怀柔区中考一模数学试题及答案
北京市怀柔区2015年高级中等学校招生模拟考试(一)数学试卷 2015.5考生须知1.本试卷共6页,共五道大题,29道小题,满分120分.考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,请将本试卷、答题卡一并交回。
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的.1.把8000用科学计数法表示是A.28010⨯ B.3810⨯ C.40.810⨯D.4810⨯2.数轴上有A,B,C,D四个点,其中绝对值相等的点是A.点A与点DB. 点A与点CC. 点B与点CD. 点B与点D3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D4. 小华的老师让他在无法看到袋子里小球的情形下,从袋子里模出一个小球. 袋子里各种颜色小球的数量统计如表所示.小华模到褐色小球的概率为A.101B.51C.41D.215. 如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为A.30° B.60° C.80° D.120°6.如图,已知⊙O的半径为10,弦AB长为16,则点O到AB的距离是A. 3B. 4C. 5D. 67.某校在“中国梦.我的梦”演讲比赛中,有11名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的颜色红色橙色黄色绿色蓝色紫色褐色数量 6 4 3 3 2 2 5xDCBA123–1–2–3A.平均数B.众数C.中位数D.方差8.如图,已知正方形ABCD中,G、P分别是DC、BC上的点,E、F分别是AP、GP的中点,当P在BC上从B向C移动而G不动时,下列结论成立的是A.线段EF的长逐渐增大 B.线段EF的长逐渐减小C.线段EF的长不改变 D.线段EF的长不能确定9.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为A .x≥ B. x≤3C. x ≤D.x≥310.如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE.设AP=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的A.线段PD B.线段PC C.线段PE D.线段DE二、填空题(本题共18分,每小题3分)11.函数y=1x-3中自变量x的取值范围是_________________.12.请写出一个过一、三象限的反比例函数的表达式_________________.13.下面有五个图形,与其它图形众不同的是第个.14.如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE•ED=16,则矩形ABCD 的面积为.GFEPDCBA①②③④⑤xy图2OPED CBA图115.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”. 如果一个“半角三角形”的“半角”为20°,那么这个 “半角三角形”的最大内角的度数为__________.16.2014年5月1日开始,北京市开始实施居民用水阶梯水价.具体方案如下:户年用水量180立方米(含)内,每立方米5元;181立方米至260立方米(含)内,每立方米7元;260立方米以上,每立方米9元.阶梯水价以日历年(每年1月1日到12月31日)为周期计算.小王家2014年4月30日抄表示数550立方米,5月1日起实施阶梯水价,6月抄表时因用户家中无人未见表,8月12日抄表示数706立方米,那么小王家本期用水量为 立方米,本期用水天数104天,日均用水量为 立方米. 如果按这样每日用水量计算,小李家今后每年的水费将达到 元(一年按365天计算).三、解答题(本题共30分,每小题5分)17.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F ∠=∠.求证:BC DE =.18. 计算:011(20152014)82cos 45()2--+-︒+ 19.解不等式组:240,3(1) 2.x x x -<⎧⎨+≥+⎩20.已知32a b =,求代数式2243(3)9a b a b a b ++-的值.21.列方程或方程组解应用题:为了培育和践行社会主义核心价值观,引导学生广泛阅读古今文学名著,传承优秀传统文化,我区某校决定为初三学生购进相同数量的名著《三国演义》和《红岩》.其中《三国演义》的单价比《红岩》的单价多28元.若学校购买《三国演义》用了1200元,购买《红岩》用了400元,求《三国演义》和《红岩》的单价各多少元.22.已知:关于x 的一元二次方程2(41)330kx k x k -+++=(k 是整数). (1)求证:方程有两个不相等的实数根; (2)若方程的两个实数根都是整数,求k 的值. 四、解答题(本题共20分,每小题5分)23. 如图,BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,BE =AF .(1)求证:四边形ADEF 是平行四边形;FEDCB A(2)若∠ABC=60°,BD=4,求平行四边形ADEF的面积.24.某公司有5个股东,每个股东的利润相同,有100名工人,每名工人的工资相同.2015年第一个季度工人的工资总额与公司的股东总利润情况见右表:该公司老板根据表中数据,作出了图1,并声称股东利润和工人工资同步增长,公司和工人做到了“有福同享”.(1)这三个月工人个人的月收入分别是万元;(2)在图2人月收入的统计图;(3)通过完成第(1),(2)问和对图2句话概括)25.如图,AB是⊙O的直径,C是弧AB的中点,D是⊙O的切线CN上一点,BD交AC于点E,且BA= BD.(1)求证:∠ACD=45°;(2)若OB=2,求DC的长.26.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图1,在△ABC中,∠A=2∠B,CD平分∠A CB,AD=2.2,AC=3.6求BC的长.AD D A图1个人收入小聪思考:因为CD 平分∠A CB ,所以可在BC 边上取点E ,使EC=AC ,连接DE. 这样很容易得到△DEC ≌△DAC ,经过推理能使问题得到解决(如图2). 请回答:(1)△BDE 是_________三角形.(2)BC 的长为__________.参考小聪思考问题的方法,解决问题:如图3,已知△ABC 中,AB=AC, ∠A =20°, BD 平分∠ABC,BD=2.3,BC=2.求AD 的长. 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy 中,二次函数y=(a-1)x 2+2x+1与x 轴有交点,a(1)求a 的值. (2)将二次函数y=(a-1)x 2+2x+1的图象向右平移m 个单位,向下平移m2+1个单位,当 -2≤x ≤1时,二次函数有最小值-3求实数m 的值.28.在等边△ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接BD,CD ,其中CD 交直线AP 于点E .(1)依题意补全图1;(2)若∠PAB=30°,求∠ACE 的度数;(3)如图2,若60°<∠PAB <120°,判断由线段AB,CE,ED 可以构成一个含有多少度角的三角形,并证明.BC ABCPABCP27题图29. 对某种几何图形给出如下定义: 符合一定条件的动点所形成的图形,叫做符合这个条件的点的轨迹.例如,平面内到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.(1)如图1,在△ABC 中,AB=AC ,∠BAC=90°,A(0,2),B 是x 轴上一动点,当点B 在x 轴上运动时,点C 在坐标系中运动,点C 运动形成的轨迹是直线DE ,且DE ⊥x 轴于点G. 则直线DE 的表达式是 .(2)当△ABC 是等边三角形时,在(1①当点B 运动到如图2的位置时,AC ∥x 轴,则C 点的坐标是 . ②在备用图中画出动点C 形成直线的示意图,并求出这条直线的表达式.③设②中这条直线分别与x,y 轴交于E,F 两点,当点C 在线段EF 上运动时,点H 在线段OF 上运动,(不与O 、F 重合),且CH=CE,则CE 的取值范围是 .怀柔区2014—2015学年度中考模拟练习(一)数学试卷答案及评分参考二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分) 17.(本小题满分5分) 证明:∵ AB ∥DE∴ ∠B = ∠EDF ;在△ABC 和△F DE 中A F AB DFB EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩…………………………3分 ∴△ABC ≌△FDE (ASA),…………………4分 ∴BC=DE. …………………………………5分 18.解:原式=1+-222+……………………………………4分 =1+5分 19. 解①得:x<2,…………………………………………………………2分解②得:x ≥1-2,……………………………………………………4分 所以不等式组的解集为:1-2≤x<2. ……………………………5分20. 解:2243(3)9a ba b a b ++-43(3)(3)(3)a b a b a b a b +=++- 433a ba b +=-……………………………………………3分∵32a b =, ∴23a b =. ………………………………………………4分∴原式=662aa a =--. ……………………………………5分21.解:设《红岩》的单价为x 元,则《三国演义》的单价为(x+28)元. ……………1分.由题意,得120040028x x=+……………………………………3分. 解得x=14. ……………………………………4分.经检验,x=14是原方程的解,且符合题意. ∴x+28=42.答:《红岩》的单价为14元,《三国演义》的单价为42元. ……………………5分.22.(1)证明:△2(41)4(33)k k k =+-+2(21)k =-·………………………………………1分.∵2(41)330kx k x k-+++=是一元二次方程,∴k ≠0, ∵k 是整数 ∴12k ≠即210k -≠. ∴△2(21)0k =->∴方程有两个不相等的实数根. ………………………………………2分(2)解方程得:2(41)(21)2k k x k+±-=……………………………………3分.∴3x =或11x k=+………………………………………4分∵k 是整数,方程的根都是整数,∴k =1或-1…………………………………5分.四、解答题(本题共20分,每小题5分)23. (1)证明:∵BD 是△ABC 的角平分线, ∴∠ABD =∠DBE ,∵DE ∥AB , ∴∠ABD =∠BDE , ∴∠DBE =∠BDE ,∴BE=DE; ∵BE =AF ,∴AF=DE;∴四边形ADEF 是平行四边形. ………………………………………2分(2)解:过点D 作DG ⊥AB 于点G ,过点E 作EH ⊥BD 于点H , ∵∠ABC =60°,BD 是∠ABC 的平分线, ∴∠ABD =∠EBD =30°,∴DG =BD =×4=2,………………………………………3分 ∵BE =DE ,∴BH =DH =2,∴BE ==433,∴DE =433,………………………………………4分 ∴四边形ADEF 的面积为:DE •DG =833.………………………………………5分 24. 解:(1)0,28,0.3,0.32. ……………………………3分(2)补图如右图:………………………………4分个人收入(3)答案不唯一.…………………………………5分25. (1)证明:∵C 是弧AB 的中点,∴弧AC=弧BC,∴AC=BC.∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠BAC=∠CBA=45°, 连接OC, ∵OC=OA, ∴∠AC0=45°. ∵CN 是⊙O 切线,∴∠OCD=90°,∴∠ACD=45°. ………………………………2分.(2) 解:作BH ⊥DC 于H 点,…………………………3分. ∵∠ACD=45°,∴∠DCB=135°, ∴∠BCH=45°, ∵OB=2,∴BA= BD=4,AC= BC=. ∵BC=,∴BH= CH=2, 设DC=x,在Rt △DBH 中,利用勾股定理:2222)24x ++=(,………4分. 解得:x=2-±,∴x=2-+∴DC的长为:2-+5分. 26.解:(1)△BDE 是等腰三角形. ………………………1分. (2)BC 的长为5.8.………………………………2分. ∵△ABC 中,AB=AC, ∠A =20°, ∴∠A BC=∠C= 80°,∵BD 平分∠B. ∴∠1=∠2= 40°,∠BDC= 60°,.在BA 边上取点E ,使BE=BC=2,连接DE ,. (3)则△DEB ≌△DBC ,∴∠BED=∠C= 80°, ∴∠4=60°,∴∠3=60°,在DA 边上取点F ,使DF=DB ,连接FE ,…………………………4则△BDE ≌△FDE ,∴∠5=∠1= 40°,BE=EF=2, ∵∠A =20°,∴∠6=20°,∴AF=EF=2,∵BD=DF=2.3, ∴AD = BD+BC=4.3.…………………………5分.五、解答题(本题共22分,第27题7分,第28题7分,第29题27.解:(1)∵二次函数y=(a-1)x 2+2x+1与x 轴有交点,令y=0,则(a-1)x 2+2x+1=0,∴=4-4(a-1)0∆≥,解得a ≤2. …………………………………1分. ∵a 为正整数. ∴a=1、2又∵y=(a-1)x 2+2x+1是二次函数,∴a-1≠0,∴a ≠1, ∴a 的值为2. ………………………………………2分(2)∵a=2,∴二次函数表达式为y=x 2+2x+1,将二次函数y=x 2+2x+1化成顶点式y=(x+1)2二次函数图象向右平移m 个单位,向下平移m 2+1个单位后的表达式为y=(x+1-m )2-(m 2+1).此时函数的顶点坐标为(m-1, -m 2-1). …………………………………4分 当m-1<-2,即m <-1时, x=-2时,二次函数有最小值-3, ∴-3=(-1-m )2-(m 2+1),解得32m =-且符合题目要求. ………………………………5分 当 -2≤m-1≤1,即-1≤m ≤2,时,当 x= m-1时,二次函数有最小值-m 2-1=-3,解得m =.∵m =-1≤m ≤2的条件,舍去.∴m =.……………………………………6分当m-1>1,即m >2时,当 x=1时,二次函数有最小值-3, ∴-3=(2-m )2-(m 2+1),解得32m =,不符合m >2的条件舍去. 综上所述,m 的值为32-……………………………………7分 28.解:(1)补全图形,如图1所示. …………………………… 1分(2)连接AD ,如图2.∵点D 与点B 关于直线AP 对称,∴AD=AB ,∠DAP = ∠BAP =30°.∵AB=AC, ∠BAC =60°. ∴AD=AC, ∠DAC =120°.∴2∠ACE+60°+60°=180°∴∠ACE =30°…………………………… 3分(3)线段AB,CE,ED 可以构成一个含有60°角的三角形. …………………………… 4分 证明:连接AD ,EB ,如图3.∵点D 与点B 关于直线AP 对称, ∴AD=AB ,DE=BE , 可证得∠EDA = ∠E BA .∵AB=AC,AB=AD.∴AD=AC, ∴∠ADE = ∠ACE.∴∠ABE = ∠ACE.设AC ,BE 交于点F,又∵∠AFB = ∠CFE.∴∠B AC = ∠BEC=60°.∴线段AB,CE,ED 可以构成一个含有60°角的三角形.………7分29. 解:(1)x=2. …………………………1分.(2)①C 点坐标为:2)…………………………3分. ②由①C 点坐标为: 2)再求得其它一个点C1),或(0,-2)等P E D C BAP E D C BA代入表达式y=kx+b,解得b=-2 k⎧⎪⎨=⎪⎩∴直线的表达式是2y=-.………………………5分.动点C运动形成直线如图所示.……………6分.EC≤<…………………………8分.相关信息链接:北达教育|百度百科|百度贴吧北达教育北达教育总部位于北京大学校内,分校遍及北京各城区40多所,多年来被家长认可的教育机构,法制晚报曾报道:是什么让北达教育成为京城良好口碑课外辅导品牌?为此北达教育被法制晚报评为:公众最信赖知名教育品牌!曾多次被新浪网,中国网评为课外绿色发展机构!北达教育为中央电视台推荐品牌。
【高频真题解析】2022年北京市怀柔区中考数学模拟测评 卷(Ⅰ)(含答案解析)
2022年北京市怀柔区中考数学模拟测评 卷(Ⅰ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、如图,已知AD ∥BC ,欲用“边角边”证明△ABC ≌△CDA ,需补充条件( ) A .AB = CDB .∠B = ∠DC .AD = CB D .∠BAC = ∠DCA2、在实数范围内分解因式2x 2﹣8x +5正确的是( )A .(x(xB .2(x(xC .(2x(2xD .(2x ﹣4(2x ﹣3、某商品原价为 200 元,连续两次平均降价的百分率为 a ,连续两次降价后售价为 148 元, 下面所列方程正确的是 ( )A .200(1 + a )2 = 148B .200(1 - a )2 = 148C .200(1 - 2a )2 = 148D .200(1 - a 2)= 148 4、今年,网络购物已经成为人们生活中越来越常用的购物方式.元旦期间,某快递分派站有包裹若·线○封○密○外干件需快递员派送,若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件,设该分派站有x名快递,则可列方程为()A.7681x x-=+B.7681x x+=-C.6178x x-+=D.6178x x+-=5、下列说法正确的是()A.不相交的两条直线叫做平行线B.过一点有且仅有一条直线与已知直线垂直C.平角是一条直线D.过同一平面内三点中任意两点,只能画出3条直线6、如图,四棱柱的高为9米,底面是边长为6米的正方形,一只蚂蚁从如图的顶点A开始,爬向顶点B.那么它爬行的最短路程为()A.10米B.12米C.15米D.20米7、若数a使关于x的方程433ax x+--=12的解为非负数,使关于y的不等式组5(2)341225y yy y a+<-⎧⎪--⎨>⎪⎩无解,则所有满足条件的整数a的值之和为()A.7 B.12 C.14 D.18 8、下列方程是一元二次方程的是()A .x 2+3xy =3B .x 2+12=3C .x 2+2xD .x 2=39、下列计算错误的是( ) A2=- B2 C2= D.2(2= 10、如图,在平行四边形ABCD 中,E 是AD 上一点,且DE =2AE ,连接BE 交AC 于点F ,已知S △AFE =1,则S △ABD 的值是( ) A .9B .10C .12D .14 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分)1、不等式621x ->的最大整数解是_______.2、如图,在平面直角坐标系中,二次函数 y =x 2﹣2x +c 的图象与 x 轴交于 A 、C 两点,与 y 轴交于点 B (0,﹣3),若 P 是 x 轴上一动点,点 D (0,1)在 y 轴上,连接 PD ,则 C 点的坐标是_____+PC 的最小值是______. 3、方程(2x ﹣1)2=25的解是 ___; 4、定义新运算“*”;其规则为a *b =22a b +,则方程(2*2)×(4*x )=8的解为x =___. ·线○封○密○外5、已知一个角等于70°,则这个角的补角等于___________三、解答题(5小题,每小题10分,共计50分)1、如图,直线AB 与CD 相交于点O ,OE 是∠COB 的平分线,OE ⊥OF .(1)图中∠BOE 的补角是 ;(2)若∠COF =2∠COE ,求△BOE 的度数;(3)试判断 OF 是否平分∠AOC ,请说明理由.2、关于 x 的方程 x 2﹣2(k ﹣1)x +k 2=0 有两个实数根 x 1,x 2.(1)求 k 的取值范围;(2)请问是否存在实数 k ,使得 x 1+x 2=1﹣x 1x 2 成立?若存在,求出 k 的值;若不存在, 说明理由.3、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,F 为AB 延长线上一点,连接CF ,DF .(1)若OE =3,BE =2,求CD 的长;(2)若CF 与⊙O 相切,求证DF 与⊙O 相切.4、如图,AB 为O 的直径,弦CD AB ⊥于点E ,连接,AC BC BD OF AC ⊥,,于点F ,且1OF =.(1)求BD 的长;(2)当30D ∠=︒时,求AC 的长和阴影部分的面积(结果保留根号和π). 5、(综合与实践)现实生活中,人们可以借助光源来测量物体的高度.已知榕树CD ,FG 和灯柱AB 如图①所示,在灯柱AB 上有一盏路灯P ,榕树和灯柱的底端在同一水平线上,两棵榕树在路灯下都有影子,只要测量出其中一些数据,则可求出所需要的数据,具体操作步骤如下: ①根据光源确定榕树在地面上的影子; ②测量出相关数据,如高度,影长等; ③利用相似三角形的相关知识,可求出所需要的数据. 根据上述内容,解答下列问题: (1)已知榕树CD 在路灯下的影子为DE ,请画出榕树FG 在路灯下的影子GH ; (2)如图①,若榕树CD 的高度为3.6米,其离路灯的距离BD 为6米,两棵榕树的影长DE ,GH 均为4米,两棵树之间的距离DG 为6米,求榕树FG 的高度; (3)无论太阳光还是点光源,其本质与视线问题相同.日常生活中我们也可以直接利用视线解决问题.如图②,建筑物CD 高为50米,建筑物MF 上有一个广告牌EM ,合计总高度EF 为70米,两座建··线○封○密○外筑物之间的直线距离FD为30米.一个观测者(身高不计)先站在A处观测,发现能看见广告牌EM 的底端M处,观测者沿着直线AF向前走了5米到B处观测,发现刚好看到广告牌EM的顶端E处.则广告牌EM的高度为米.-参考答案-一、单选题1、C【分析】∠=∠,再由AC为公共边,即要想利用“边角边”证明△ABC≌△CDA,由平行线的性质可知DAC BCA可添加AD=CB即可.【详解】∵AD∥BC,∠=∠.∴DAC BCA∵AC为公共边,∴只需AD=CB,即可利用“边角边”证明△ABC≌△CDA.故选:C.【点睛】本题考查平行线的性质,三角形全等的判定.理解“边角边”即为两边及其夹角是解答本题的关键.2、B【分析】解出方程2x2-8x+5=0的根,从而可以得到答案.【详解】解:∵方程2x2-8x+5=0中,a=2,b=-8,c=5,∴Δ=(-8)2-4×2×5=64-40=24>0,∴x=, ∴2x 2-8x +5=2(x(x, 故选:B .【点睛】本题考查了解一元二次方程,实数范围内分解因式,求出一元二次方程的根是解题的关键. 3、B 【分析】 第一次降价后价格为()2001a ⨯-,第二次降价后价格为()()20011a a ⨯-⨯-整理即可. 【详解】解:第一次降价后价格为()2001a ⨯- 第二次降价后价格为()()()2200112001148a a a ⨯-⨯-=⨯-= 故选B .【点睛】 本题考查了一元二次方程的应用.解题的关键在于明确每次降价前的价格. 4、B 【分析】 设该分派站有x 个快递员,根据“若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件”,即可得出关于x 的一元一次方程,求出答案. 【详解】解:设该分派站有x 名快递员,则可列方程为:·线○封○密·○外7x+6=8x-1.故选:B.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系是解题的关键.5、B【分析】根据平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质依次判断.【详解】解:同一平面内,不相交的两条直线叫做平行线,故选项A错误;过一点有且仅有一条直线与已知直线垂直,故选项B正确;平角是角的两边在同一直线上的角,故选项C错误;过同一平面内三点中任意两点,能画出1条或3条直线故选项D错误;故选:B.【点睛】此题考查语句的正确性,正确掌握平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质是解题的关键.6、C【分析】将立体图形展开,有两种不同的展法,连接AB,利用勾股定理求出AB的长,找出最短的即可.【详解】解:如图,(1)AB(2)AB15,由于15则蚂蚁爬行的最短路程为15米.故选:C .【点睛】本题考查了平面展开--最短路径问题,要注意,展开时要根据实际情况将图形安不同形式展开,再计算.7、C【分析】第一步:先用a 的代数式表示分式方程的解.再根据方程的解为非负数,x -3≠0,列不等式组,解出解集,第二步解出不等式组的解集,根据不等式组无解,列不等式求出解集,根据这两步中m 的取值范围进行综合考虑确定最后m 的取值范围,最后根据a 为整数确定最后结果.【详解】 解:41332a x x +=--, 2a -8=x -3, x =2a -5, ∵方程的解为非负数,x -3≠0, ·线○封○密·○外∴250253a a -≥⎧⎨-≠⎩, 解得a ≥52且a ≠4,5(2)341225y y y y a +<-⎧⎪--⎨>⎪⎩, 解不等式组得:752y y a <-⎧⎨>-⎩, ∵不等式组无解,∴5-2a ≥-7,解得a ≤6,∴a 的取值范围:52≤a ≤6且a ≠4,∴满足条件的整数a 的值为3、5、6,∴3+5+6=14,故选:C .【点睛】本题考查分式方程的解、解一元一次不等式组、解一元一次不等式,掌握用含a 的式子表示方程的解,根据方程的解为非负数,根据不等式组无解,两个条件结合求出m 的取值范围是解题关键.8、D【分析】根据一元二次方程的定义逐个判断即可.只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.【详解】解:A .是二元二次方程,不是一元二次方程,故本选项不符合题意;B .是分式方程,故本选项不符合题意;C .不是方程,故本选项不符合题意;D .是一元二次方程,故本选项符合题意;故选:D .【点睛】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键.9、A【分析】直接利用二次根式的性质以及二次根式的乘法运算法则化简,进而判断即可. 【详解】 解:A2,故此选项计算错误,符合题意; B2,故此选项计算正确,不合题意; C2=,故此选项计算正确,不合题意; D.2(2=,故此选项计算正确,不合题意; 故选:A .【点睛】此题考查了二次根式的性质及二次根式的乘法运算法则,熟记乘法法则是解题的关键. 10、C【分析】过点F 作MN ⊥AD 于点M ,交BC 于点N ,证明△AFE ∽△CFB ,可证得13MF FN =,得MN =4MF ,再根据三角形面积公式可得结论.·线○封○密○外【详解】解:过点F作MN⊥AD于点M,交BC于点N,连接BD,∵四边形ABCD是平行四边形,∴AD//BC,AD=BC∴△AFE∽△CFB∴AE FM BC FN=∵DE=2AE∴AD=3AE=BC∴13 FM AEFN BC==∴14FMMN=,即4MN FM=又112AEFS AE MF∆==∴2 AE MF=∴113466212 22ABDS AD MN AE MF AE MF∆==⨯⨯=⨯=⨯=故选:C【点睛】本题主要考查了平行四边形的性质,相似三角形的判定与性质,解答此题的关键是能求出两三角形的高的数量关系.二、填空题1、2【分析】首先根据不等式求解不等式,再根据不等式的解集写出最大的整数解.【详解】解:移项,得:216x ->-,合并同类项,得:25x ->-,系数化成1得:122x <, 则最大整数解是:2. 故答案是:2. 【点睛】 本题主要考查不等式的整数解,关键在于求解不等式. 2、(3,0) 4 【分析】过点P 作PJ ⊥BC 于J ,过点D 作DH ⊥BC 于H)PC PD PD PJ ⎫+=+⎪⎪⎭,求出PD PJ +的最小值即可解决问题. 【详解】 解:过点P 作PJ ⊥BC 于J ,过点D 作DH ⊥BC 于H . ·线○封○密·○外∵二次函数y =x 2﹣2x +c 的图象与y 轴交于点B (0,﹣3),∴c =﹣3,∴二次函数的解析式为y =x 2﹣2x ﹣3,令y =0,x 2﹣2x ﹣3=0,解得x =﹣1或3,∴A (﹣1,0),C (3,0),∴OB =OC =3,∵∠BOC =90°,∴∠OBC =∠OCB =45°,∵D (0,1),∴OD =1,BD =1-(-3)=4,∵DH ⊥BC ,∴∠DHB =90°,设DH x =,则BH x =,∵222DH BH BD +=,∴2224x x +=,∴x =∴DH =∵PJ ⊥CB ,∴90PJC ∠︒=,∵∠PCJ =45°,∴∠CPJ =90°-∠PCJ =45°,∴PJ =JC ,根据勾股定理22222PC PJ JC PJ =+=∴2PJ PC ,)2PC PD PC PD PJ ⎫+=+=+⎪⎪⎭, ∵PD PJ DH +≥,∴PD PJ +≥ ∴PD +PJ的最小值为PC +的最小值为4. 故答案为: (3,0),4. 【点睛】 本题考查了二次函数的相关性质,以及等腰直角三角形的判定和性质,勾股定理,垂线段最短等知识,解题的关键是学会用转化的思想思考问题.3、x 1=3,x 2=-2 【分析】 ·线○封·○密○外通过直接开平方求得2x-1=±5,然后通过移项、合并同类项,化未知数系数为1解方程.【详解】解:由原方程开平方,得2x-1=±5,则x=152±,解得,x1=3,x2=-2.故答案是:x1=3,x2=-2.【点睛】本题考查了解一元二次方程--直接开平方法.(1)用直接开方法求一元二次方程的解的类型有:x2=a (a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.4、2 3【分析】先根据已知新运算求出求出2*2=3,4*x=2+x,根据(2*2)×(4*x)=8求出答案即可.【详解】解:∵2*2=2222+⨯=3,4*x=422x+=2+x,又∵(2*2)×(4*x)=8∴(2*2)×(4*x)=3(x+2)=8,解得:x=23,故答案为:23.【点睛】本题考查了有理数的混合运算和解一元一次方程,能灵活运用新运算进行计算是解此题的关键. 5、110︒度【分析】根据补角的定义:若两角相加等于180︒,则两角互补,求出答案即可.【详解】∵一个角等于70°,∴这个角的补角为:18070110︒-︒=︒.故答案为:110︒. 【点睛】 本题考查补角的定义,掌握两角互补,则两角相加为180︒是解题的关键. 三、解答题 1、(1)∠AOE 和∠DOE ;(2)∠BOE =30°;(3)OF 平分AOC .理由见解析. 【分析】 (1)根据补角的定义,依据图形可直接得出答案; (2)根据互余和∠COF =2∠COE ,可求出∠COF 、∠COE ,再根据角平分线的意义可求答案;(3)根据互余,互补、角平分线的意义,证明∠FOA =∠COF 即可.【详解】解:(1)∵∠AOE +∠BOE =∠AOB =180°,∠COE +∠DOE =∠COD =180°,∠COE =∠BOE ∴∠BOE 的补角是∠AOE ,∠DOE 故答案为:∠AOE 或∠DOE ; (2)∵OE ⊥OF .∠COF =2∠COE ,·线○封○密○外∴∠COF=23×90°=60°,∠COE=13×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF平分∠AOC.【点睛】考查互为余角、互为补角、角平分线的意义,解题的关键是熟知:如果两角之和等于180°,那么这两个角互为补角.其中一个角叫做另一个角的补角;如果两个角的和是直角,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.2、(1)12 k≤(2)存在,3k=-【分析】(1)根据关于x 的方程x2﹣2(k﹣1)x+k2=0 有两个实数根,∆≥0,代入计算求出k的取值范围.(2)根据根与系数的关系,12=xbxa+-,12=cx xa,根据题意列出等式,求出k的值,根据k的值是否在取值范围内做出判断.(1)解:∵关于 x 的方程 x 2﹣2(k ﹣1)x +k 2=0 有两个实数根根据题意得()22414480k k k ∆=--=-≥, 解得12k ≤. (2)解:存在.根据根与系数关系122()1x x k +=-,212x x k =, ∵x 1+x 2=1﹣x 1x 2, ∴2()211k k -=-, 解得1231k k =-=,, ∵12k ≤. ∴存在实数k =-3,使得x 1+x 2=1﹣x 1x 2.【点睛】本题考查一元二次方程根的判别式及根与系数的关系,解一元二次方程,要注意根据k 的取值范围来进取舍. 3、(1)8;(2)见解析 【分析】 (1)连接OC ,利用勾股定理求解CE =4,再利用垂径定理可得答案; (2)证明90,,OCF CF DF 再证明,OCF ODF ≌ 可得90,ODF 从而可得结论. 【详解】 (1)解:连接OC , ·线○封○密○外∵CD⊥AB,∴CE=DE,∴OC=OB=OE+BE=3+2=5,在Rt△OCE中,∠OEC=90°,由勾股定理得:CE2=OC2-OE2,∴CE2=52-32,∴CE=4,∴CD=2CE=8.(2)解:连接OD,∵CF与⊙O相切,∴∠OCF=90°,∵CE=DE,CD⊥AB,∴CF=DF,又OF=OF,OC=OD,∴△OCF ≌△ODF ,∴∠ODF =∠OCF =90°,即OD ⊥DF .又D 在⊙O 上,∴DF 与⊙O 相切.【点睛】本题考查的是圆的基本性质,垂径定理的应用,切线的性质与判定,证明△OCF ≌△ODF 得到∠ODF =∠OCF =90°是解本题的关键. 4、(1)2;(2)AC 的长为43π,阴影部分的面积为43π【分析】 (1)根据垂径定理可得AF CF =、BC BD =,从而得到OF 为ABC 的中位线,BC BD =,即可求解; (2)连接OC ,求得120AOC ∠=︒,利用含30直角三角形的性质求得半径,即可求解. 【详解】 解:(1)∵OF AC ⊥, ∴AF FC =, ∵OA OB =, ∴OF 为ABC 的中位线 ∴22BC OF ==, ∵AB CD ⊥, ∴BC BD =, ∴2BD BC ==; (2)连接OC ,如下图: ·线○封○密○外∵30CAB D ∠=∠=︒,OA OC =,∴30OAC OCA ∠=∠=︒,∴120AOC ∠=︒,在Rt ABC 中,∵90ACB ∠=︒,2BC =,30CAB ∠=︒,∴24AB BC ==,AC ==∴AC 的长120241803ππ==,阴影部分的面积2120214136023ππ=-⨯= 【点睛】此题考查了圆的垂径定理,弦、弧、圆心角之间的关键,三角形中位线的性质,等腰三角形的性质,含30直角三角形的性质,弧长以及扇形面积的计算,解题的关键是掌握并灵活运用相关性质求解. 5、(1)见解析(2)94(3)54【分析】(1)根据题意画出图形;(2)证明△ECD ∽△EPB ,根据相似三角形的性质列出比例式,把已知数据代入计算即可;(3)根据△BCD ∽△BEF 求出BD ,再根据△ACD ∽△AMF 求出MF ,进而求出EM .【小题1】解:图①中GH 即为所求; 【小题2】 ∵CD ∥PB , ∴△ECD ∽△EPB , ∴CD ED PB EB =,即3.6446PB =+, 解得:PB =9, ∵FG ∥PB , ∴△HFG ∽△HPB , ∴FG HG PB HB =,即49466FG =++, 解得:FG =94,答:榕树FG 的高度为94米; 【小题3】 ∵CD ∥EF , ·线○封○密○外∴△BCD∽△BEF,∴CD BDEF BF=,即507030BDBD=+,解得:BD=75,∵CD∥EF,∴△ACD∽△AMF,∴CD ADMF AF=,即5057557530MF+=++,解得:MF=2754,∴EM=EF-MF=70-2754=54(米),故答案为:54.【点睛】本题考查的相似三角形的判定和性质的应用,掌握相似三角形的判定定理和性质定理是解题的关键.。
北京怀柔区中考一模数学试卷及答案(图片版)
教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
2019北京延庆区中考一模数学试卷及答案
北京市怀柔区初三一模数学试题及答案
北京市怀柔区高级中等学校招生模拟考试(一)数学试卷考生须知1.本试卷共6页,共五道大题,29道小题,满分120分.考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,请将本试卷、答题卡一并交回。
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的.1.把8000用科学计数法表示是A.28010⨯ B.3810⨯ C.40.810⨯D.4810⨯2.数轴上有A,B,C,D四个点,其中绝对值相等的点是A.点A与点DB. 点A与点CC. 点B与点CD. 点B与点D3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D4. 小华的老师让他在无法看到袋子里小球的情形下,从袋子里模出一个小球.袋子里各种颜色小球的数量统计如表所示.小华模到褐色小球的概率为A.101B.51C.41D.215. 如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为A.30° B.60° C.80° D.120°6.如图,已知⊙O的半径为10,弦AB长为16,则点O到AB的距离是A. 3B. 4C. 5D. 6颜色红色橙色黄色绿色蓝色紫色褐色数量 6 4 3 3 2 2 5xDCBA123–1–2–37.某校在“中国梦.我的梦”演讲比赛中,有11名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的A.平均数B.众数C.中位数D.方差8.如图,已知正方形ABCD中,G、P分别是DC、BC上的点,E、F分别是AP、GP的中点,当P在BC上从B向C移动而G不动时,下列结论成立的是A.线段EF的长逐渐增大 B.线段EF的长逐渐减小C.线段EF的长不改变 D.线段EF的长不能确定9.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为A.x≥ B. x≤3C. x≤D.x≥310.如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE.设AP=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的A.线段PD B.线段PC C.线段PE D.线段DE二、填空题(本题共18分,每小题3分)11.函数y=1x-3中自变量x的取值范围是_________________.GFEPDCBAxy图2OPED CBA图112.请写出一个过一、三象限的反比例函数的表达式_________________.13.下面有五个图形,与其它图形众不同的是第个.14.如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE•ED=16,则矩形ABCD的面积为.15.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为__________.16.2014年5月1日开始,北京市开始实施居民用水阶梯水价.具体方案如下:户年用水量180立方米(含)内,每立方米5元;181立方米至260立方米(含)内,每立方米7元;260立方米以上,每立方米9元.阶梯水价以日历年(每年1月1日到12月31日)为周期计算.小王家2014年4月30日抄表示数550立方米,5月1日起实施阶梯水价,6月抄表时因用户家中无人未见表,8月12日抄表示数706立方米,那么小王家本期用水量为立方米,本期用水天数104天,日均用水量为立方米. 如果按这样每日用水量计算,小李家今后每年的水费将达到元(一年按365天计算).三、解答题(本题共30分,每小题5分)17.如图,点C,D在线段BF上,AB DE∥,AB DF=,A F∠=∠.求证:BC DE=.FEDCBA①②③④⑤18. 计算:011(20152014)2cos 45()2--︒+19.解不等式组:240,3(1) 2.x x x -<⎧⎨+≥+⎩20.已知32a b=,求代数式2243(3)9a b a b a b ++-的值.21.列方程或方程组解应用题:为了培育和践行社会主义核心价值观,引导学生广泛阅读古今文学名著,传承优秀传统文化,我区某校决定为初三学生购进相同数量的名著《三国演义》和《红岩》.其中《三国演义》的单价比《红岩》的单价多28元.若学校购买《三国演义》用了1200元,购买《红岩》用了400元,求《三国演义》和《红岩》的单价各多少元.22.已知:关于x的一元二次方程错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市怀柔区2015年高级中等学校招生模拟考试(一)数 学 试 卷 2015.5一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.把8000用科学计数法表示是A .28010⨯ B .3810⨯ C .40.810⨯ D .4810⨯ 2.数轴上有A ,B ,C ,D 四个点,其中绝对值相等的点是A.点A 与点DB. 点A 与点CC. 点B 与点CD. 点B 与点D 3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4. 小华的老师让他在无法看到袋子里小球的情形下,从袋子里模出一个小球. 袋子里各种颜色小球的数量统计如表所示.小华模到褐色小球的概率为 A .101 B .51 C .41D .215. 如图,AD 是∠EAC 的平分线,AD∥BC,∠B=30°,则∠C 为 A .30° B .60° C .80° D .120°6.如图,已知⊙O 的半径为10,弦AB 长为16,则点O 到AB 的距离是 A. 3 B. 4 C. 5 D. 67.某校在“中国梦.我的梦”演讲比赛中,有11名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的 A .平均数 B .众数 C .中位数 D .方差 8.如图,已知正方形ABCD 中,G 、P 分别是DC 、BC 上的点,E 、F 分别是AP 、GP 的中点,当P 在BC 上从 B 向C 移动而G 不动时,下列结论成立的是A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不改变D .线段EF 的长不能确定颜色 红色 橙色 黄色 绿色 蓝色 紫色 褐色 数量 6433225G FE PD CBAxD CB A 123–1–2–39.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为A .x≥ B. x≤3C. x ≤D.x≥310.如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE.设AP=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的A.线段PD B.线段PC C.线段PE D.线段DE二、填空题(本题共18分,每小题3分)11.函数y=1x-3中自变量x的取值范围是_________________.12.请写出一个过一、三象限的反比例函数的表达式_________________.13.下面有五个图形,与其它图形众不同的是第个.14.如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE•ED=16,则矩形ABCD的面积为.15.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为__________.16.2014年5月1日开始,北京市开始实施居民用水阶梯水价.具体方案如下:户年用水量180立方米(含)内,每立方米5元;181立方米至260立方米(含)内,每立方米7元;260立方米以上,每立方米9元.阶梯水价以日历年(每年1月1日到12月31日)为周期计算.小王家2014年4月30日抄表示数550立方米,5月1日起实施阶梯水价,6月抄表时因用户家中无人未见表,8月12日抄表示数706立方米,那么小王家本期用水量为立方米,本期用水天数104天,日均用水量为立方米. 如果按这样每日用水量计算,小李家今后每年的水费将达到元(一年按365天计算).①②③④⑤xy图2OPED CBA图1三、解答题(本题共30分,每小题5分)17.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F ∠=∠.求证:BC DE =.18.计算:011(20152014)2cos 45()2--+︒+ 19.解不等式组:240,3(1) 2.x x x -<⎧⎨+≥+⎩20.已知32a b =,求代数式2243(3)9a ba b a b ++-的值.21.列方程或方程组解应用题:为了培育和践行社会主义核心价值观,引导学生广泛阅读古今文学名著,传承优秀传统文化,我区某校决定为初三学生购进相同数量的名著《三国演义》和《红岩》.其中《三国演义》的单价比《红岩》的单价多28元.若学校购买《三国演义》用了1200元,购买《红岩》用了400元,求《三国演义》和《红岩》的单价各多少元.22.已知:关于x 的一元二次方程2(41)330kx k x k -+++=(k 是整数).(1)求证:方程有两个不相等的实数根; (2)若方程的两个实数根都是整数,求k 的值.FEDCA四、解答题(本题共20分,每小题5分)23. 如图,BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,BE =AF . (1)求证:四边形ADEF 是平行四边形;(2)若∠ABC =60°,BD =4,求平行四边形ADEF 的面积.24.某公司有5个股东,每个股东的利润相同,有100名工人,每名工人的工资相同.2015年第一个季度工人的工资总额与公司 的股东总利润情况见右表:该公司老板根据表中数据,作出了图1,并声称股东利润和工人工资同步增长,公司和工人做到了“有福同享”.月份 工人工资总额(万元) 股东总利润(万元) 1 28 142 30 163 32 18 股东利润工人工资(万元)总额图1123股东(万元)个人收入图2针对老板的说法,解决下列问题:(1)这三个月工人个人的月收入分别是 万元;(2)在图2中,已经做出这三个月每个股东利润统计图,请你补出这三个月工人个人月收入的统计图; (3)通过完成第(1),(2)问和对图2的观察,你如何看待老板的说法?(用一两句话概括)25. 如图,AB 是⊙O 的直径,C 是弧AB 的中点,D 是⊙O 的切线CN 上一点,BD 交AC 于点E ,且BA= BD . (1)求证:∠ACD=45°; (2)若OB=2,求DC 的长.26.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图1,在△ABC 中, ∠A =2∠B,CD 平分∠A CB ,AD=2.2,AC=3.6求BC 的长.小聪思考:因为CD 平分∠A CB ,所以可在BC 边上取点E ,使EC=AC ,连接DE. 这样很容易得到△DEC ≌△DAC ,经过推理能使问题得到解决(如图2). 请回答:(1)△BDE 是_________三角形.(2)BC 的长为__________. 参考小聪思考问题的方法,解决问题:如图3,已知△ABC 中,AB=AC, ∠A =20°,BD 平分∠ABC,BD=2.3,BC=2.求AD 的长.C ED C B AB C五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy中,二次函数y=(a-1)x2+2x+1与x轴有交点,a为正整数.(1)求a的值.向下平移m2+1个单位,当 -2≤x≤1时,二次函数有最小值-3求实数m的值.27题图28.在等边△ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接BD,CD ,其中CD 交直线AP 于点E .(1)依题意补全图1; (2)若∠PAB=30°,求∠ACE 的度数;(3)如图2,若60°<∠PAB <120°,判断由线段AB,CE,ED 可以构成一个含有多少度角的三角形,并证明.ABCPABCP29. 对某种几何图形给出如下定义:符合一定条件的动点所形成的图形,叫做符合这个条件的点的轨迹.例如,平面内到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.(1)如图1,在△ABC中,AB=AC,∠BAC=90°,A(0,2),B是x轴上一动点,当点B在x轴上运动时,点C在坐标系中运动,点C运动形成的轨迹是直线DE,且DE⊥x轴于点G.则直线DE的表达式是.(2)当△ABC是等边三角形时,在(1①当点B运动到如图2的位置时,AC∥x轴,则C点的坐标是.②在备用图中画出动点C形成直线的示意图,并求出这条直线的表达式.③设②中这条直线分别与x,y轴交于E,F两点,当点C在线段EF上运动时,点H在线段OF上运动,(不与O、F重合),且CH=CE,则CE怀柔区2014—2015学年度中考模拟练习(一)数学试卷答案及评分参考二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分) 17.(本小题满分5分) 证明:∵ AB ∥DE∴ ∠B = ∠EDF ;在△ABC 和△F DE 中A F AB DFB EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩…………………………3分 ∴△ABC ≌△FDE (ASA),…………………4分 ∴BC=DE. …………………………………5分 18.解:原式=1+22⨯+……………………………………4分 =1+-5分 19. 解①得:x<2,…………………………………………………………2分解②得:x ≥1-2,……………………………………………………4分 所以不等式组的解集为:1-2≤x<2. ……………………………5分20. 解:2243(3)9a ba b a b ++- 43(3)(3)(3)a b a b a b a b +=++- 433a ba b+=-……………………………………………3分∵32a b =, ∴23a b =. ………………………………………………4分∴原式=662aa a=--. ……………………………………5分21.解:设《红岩》的单价为x 元,则《三国演义》的单价为(x+28)元. ……………1分. 由题意,得120040028x x=+……………………………………3分. 解得x=14. ……………………………………4分.经检验,x=14是原方程的解,且符合题意. ∴x+28=42.答:《红岩》的单价为14元,《三国演义》的单价为42元. ……………………5分.22.(1)证明:△2(41)4(33)k k k =+-+2(21)k =-·………………………………………1分.∵2(41)330kx k x k -+++=是一元二次方程,∴k ≠0, ∵k 是整数 ∴12k ≠即210k -≠. ∴△2(21)0k =->∴方程有两个不相等的实数根. ………………………………………2分(2)解方程得:2(41)(21)k k x +±-=……………………………………3分.∴3x =或11x k=+………………………………………4分 ∵k 是整数,方程的根都是整数,∴k =1或-1…………………………………5分.四、解答题(本题共20分,每小题5分)23. (1)证明:∵BD 是△ABC 的角平分线, ∴∠ABD =∠DBE ,∵DE ∥AB , ∴∠ABD =∠BDE , ∴∠DBE =∠BDE ,∴BE=DE; ∵BE =AF ,∴AF=DE;∴四边形ADEF 是平行四边形. ………………………………………2分 (2)解:过点D 作DG ⊥AB 于点G ,过点E 作EH ⊥BD 于点H , ∵∠ABC =60°,BD 是∠ABC 的平分线, ∴∠ABD =∠EBD =30°,∴DG =BD =×4=2,………………………………………3分 ∵BE =DE ,∴BH =DH =2,∴BE =433DE 433,………………………………………4分 ∴四边形ADEF 的面积为:DE •DG 8335分 24. 解:(1)0,28,0.3,0.32. ……………………………3分(2)补图如右图:………………………………4分 (3)答案不唯一.…………………………………5分25. (1)证明:∵C 是弧AB 的中点,∴弧AC=弧BC,∴AC=BC.∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠BAC=∠CBA=45°, 连接OC, ∵OC=OA, ∴∠AC0=45°. ∵CN 是⊙O 切线,∴∠OCD=90°,∴∠ACD=45°. ………………………………2分.(2) 解:作BH ⊥DC 于H 点,…………………………3分. ∵∠ACD=45°,∴∠DCB=135°, ∴∠BCH=45°, ∵OB=2,∴BA= BD=4,AC= BC=2. ∵BC=22∴BH= CH=2, 设DC=x,在Rt △DBH 中,利用勾股定理:2222)24x ++=(,………4分. 解得:x=23-±x=223-+ ∴DC 的长为:23-+5分.26.解:(1)△BDE 是等腰三角形. ………………………1分. (2)BC 的长为5.8.………………………………2分. ∵△ABC 中,AB=AC, ∠A =20°, ∴∠A BC=∠C= 80°,∵BD 平分∠B. ∴∠1=∠2= 40°,∠BDC= 60°,.在BA 边上取点E ,使BE=BC=2,连接DE ,. ………………………3分 则△DEB ≌△DBC ,∴∠BED=∠C= 80°, ∴∠4=60°,∴∠3=60°,在DA 边上取点F ,使DF=DB ,连接FE ,…………………………4分 则△BDE ≌△FDE ,∴∠5=∠1= 40°,BE=EF=2, ∵∠A =20°,∴∠6=20°,∴AF=EF=2,∵BD=DF=2.3, ∴AD = BD+BC=4.3.…………………………5分.654321F ED CBAHOABCDEN 123个人收入(万)工人股东图2五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.解:(1)∵二次函数y=(a-1)x 2+2x+1与x 轴有交点,令y=0,则(a-1)x 2+2x+1=0,∴=4-4(a-1)0∆≥,解得a ≤2. …………………………………1分. ∵a 为正整数. ∴a=1、2又∵y=(a-1)x 2+2x+1是二次函数,∴a-1≠0,∴a ≠1, ∴a 的值为2. ………………………………………2分(2)∵a=2,∴二次函数表达式为y=x 2+2x+1,将二次函数y=x 2+2x+1化成顶点式y=(x+1)2二次函数图象向右平移m 个单位,向下平移m 2+1个单位后的表达式为y=(x+1-m )2-(m 2+1).此时函数的顶点坐标为(m-1, -m 2-1). …………………………………4分 当m-1<-2,即m <-1时, x=-2时,二次函数有最小值-3, ∴-3=(-1-m )2-(m 2+1),解得32m =-且符合题目要求. ………………………………5分 当 -2≤m-1≤1,即-1≤m ≤2,时,当 x= m-1时,二次函数有最小值-m 2-1=-3,解得m =.∵m =-1≤m ≤2的条件,舍去.∴m =.……………………………………6分当m-1>1,即m >2时,当 x=1时,二次函数有最小值-3, ∴-3=(2-m )2-(m 2+1),解得32m =,不符合m >2的条件舍去. 综上所述,m 的值为32-……………………………………7分 28.解:(1)补全图形,如图1所示. …………………………… 1分(2)连接AD ,如图2.∵点D 与点B 关于直线AP 对称,∴AD=AB ,∠DAP = ∠BAP =30°.∵AB=AC, ∠BAC =60°. ∴AD=AC, ∠DAC =120°.∴2∠ACE+60°+60°=180°∴∠ACE =30°…………………………… 3分PEDCB APEDCBA(3)线段AB,CE,ED可以构成一个含有60°角的三角形.…………………………… 4分证明:连接AD,EB,如图3.∵点D与点B关于直线AP对称,∴AD=AB,DE=BE,可证得∠EDA= ∠E BA.∵AB=AC,AB=AD.∴AD=AC, ∴∠ADE= ∠ACE.∴∠ABE= ∠ACE.设AC,BE交于点F,又∵∠AFB= ∠CFE.∴∠B AC= ∠BEC=60°.∴线段AB,CE,ED可以构成一个含有60°角的三角形.………7分29. 解:(1)x=2.…………………………1分.(2)①C点坐标为: 2)…………………………3分.②由①C点坐标为: 23()再求得其它一个点C1),或(0,-2)等代入表达式y=kx+b,解得b=-2 k⎧⎪⎨=⎪⎩∴直线的表达式是2y=-.………………………5分.动点C运动形成直线如图所示.……………6分.EC≤<…………………………8分.FPCADE。