2017毕业设计--框架内力组合(梁端弯矩)

合集下载

毕业设计-柱内力一般组合(表格中已经含有公式)

毕业设计-柱内力一般组合(表格中已经含有公式)

柱顶 D柱 柱底
-15 14.79 ####### ####### 1384.22 1466.90 -71.36 -90.89 -84.81
919 129.8 7.75 -7.75 -83.29 -51.67 -15.3
-13 13.11 ####### ####### 1282.83 1370.42 -71.50 -91.03 -85.04
-27 26.57 ####### ####### 1871.29 1967.68 46.99 64.36 27.36 48.21
919 129.8 7.75 -7.75 -83.41 53.5 17.36 1228.5 187.8 52.98 19.6
柱顶 A柱 柱底
-19 18.54 ####### ####### 1289.67 1370.42 -10 10.3 88.50 73.10 99.05 89.59
-19 18.54 ####### ####### 1734.24 1846.33 -10 10.3 91.02 75.29 101.25 91.12
703柱顶四层柱底6nmin及相应的mnmax及相应的m5柱顶柱底柱底2柱顶柱底1柱顶框架柱内力一般组合本表格含有公式1
框架柱内力一般组合(本表格含有公式)
荷载种类 杆件 跨向 截面 内力 恒载 M N M N M N M N M N M N M N M N M N M N M N M N M N M N M N M N M N M N M N M N M N M 61.52 活载 1.2恒+0.9*1.4(活+风) ±Mmax及 Nmin及相 Nmax及相应 1.2恒+1.4活 1.35恒+活 相应的N 应的M 的M 左风 右风 左风 右风 风载 6.15 2.4 0.00 84.58 -7.75 80.48 361.89 79.18 346.89 ####### 391.66 -76.68 389.84 104.13 391.66 76.68 392.13 -80.48 351.98 -79.18 343.28 85.80 811.83 79.13 803.35 -70.91 877.57 -65.60 874.85 70.91 877.57 65.60 879.56 -85.80 811.83 -79.13 803.09 71.36 7.75 86.52 351.98 85.23 366.98 0.00 90.73 395.67 87.35 395.67 7.75 984.84 395.67 984.84 346.89 ####### 391.66 ####### 441.58 ####### 441.58 ####### 392.13 984.84 351.98 984.84 395.67 ####### 894.47 ####### 803.35 ####### 877.57 ####### 965.98 ####### 965.98 ####### 879.56 ####### 811.83 ####### 894.47 ####### ####### ####### ####### ####### ####### ####### ####### ####### ####### -7.75 80.48 351.98 79.18 346.89 -113.99 391.66 -79.22 75.43 104.13 68.51 67.99 -25.78 -90.73 -33.63 -87.35 343.28 85.80 811.83 79.13 803.35 -70.91 877.57 -65.60 81.60 52.01 78.17 46.70 -23.38 -98.88 -26.49 -92.21 803.09 71.36 1249.79 71.50 1240.97 -65.57 1340.25 -66.33 89.53 37.42 88.86 49.14 90.73 50.00 87.35 -37.60 -95.74 -37.97 -67.99 37.60 120.65 37.97 79.22 -49.14 -80.48 -50.00 -79.18 49.44 98.88 48.29 92.21 -37.84 -52.01 -38.04 -46.70 37.84 70.91 38.04 65.60 -49.44 -85.80 -48.29 -79.13 51.83 90.89 62.32 91.03 -37.09 -37.42 -35.95 -38.18 37.09 65.57 35.95

土木工程毕业设计计算书完整版(带图、表)

土木工程毕业设计计算书完整版(带图、表)

摘要本设计为汇锦集团写字楼(B座)设计,设计层数为7层,结构形式选用多层混凝土框架结构,建筑总面积5987.522m。

钢筋混凝土多层框架结构作为一种常用的结构形式, 具有传力明确、结构布置灵活、抗震性和整体性好的优点, 目前已被广泛地应用于各类多层的工业与民用建筑中。

建筑设计部分包括平面设计、立面设计、剖面设计,楼梯设计,屋面设计及建筑构造。

本设计为商务写字楼设计,一层除设门厅、办公室外,还设有消防控制室、打印室、配电室、电话总机房等功能房间;二层以上多为办公室、配有资料室、茶水休息间、一般会议室及功能会议室,每层设有两部双跑普通楼梯、两部消防电梯等,并要满足防火要求。

屋面为上人屋面。

结构计算部分包括横向水平地震作用下的框架设计和基础设计。

在确定框架布局之后,先进行了层间荷载代表值的计算,接着利用顶点位移法求出自振周期,进而按底部剪力法计算水平地震荷载作用下大小,进而求出在水平荷载作用下的结构弯矩、剪力、轴力。

接着计算竖向恒载及活荷载作用下的结构内力,找出最不利的一组或几组内力组合,内力的组合可以使用excel、力学计算器软件计算。

选取最安全的结果计算配筋并绘图。

梁的配筋尽量一致,柱的配筋尽量一致。

结合本设计结构的实际特点,基础选用桩基础,楼梯则采用板式楼梯。

通过本积极、独立的完成本次毕业设计使我能系统地总结,综合地运用所学的理论知识和专业知识来解决实际的工程设计问题,并能进一步加强我的建筑设计和结构设计的能力,是为今后的实际工作做出的必要的准备。

关键词:商务写字楼;钢筋混凝土;框架结构;抗震设计ABSTRACTThis design is the Huijin Group’s Office Building ,it is 7-floor. The total architectural area is about 6000 square meters and the structure of this building is steel reinforced concrete frame structure.Multi-storey reinforced concrete frame structure is a common structure form, has definite force transmission structure, flexible layout, seismic resistance and good integrity advantages, industrial and civil construction has been widely used in various layers of.During the architectural design stage, the plane design, vertical plane design, the cross-section design, the stair design, the roof design and architect structure are made. his design is business office design, a layer except set Hall, and Office outside, also has fire control room, and print room, and distribution room, and phone switchboard room, features Room; II layer above more is Office, and enjoy has library, and tea rest between, and General room and the features room, each layer has two Department double run General stairs, and two Department fire elevator,, and to meet fire requirements. Roofing is can touch the roof.The structural calculation and design part includes the calculation and design of one floor concrete plate namely beam and column, one staircase and foundation. When the direction of the frames is determined, firstly the weight of each floor is calculated. Then the vibrate cycle is calculated by utilizing the peak- displacement method, then the amount of the horizontal seismic force can be got by way of the bottom-shear force method. The seismic force can be assigned according to the shearing stiffness of the frames of the different axis. Then the internal bending moment, shearing force and axial force in the structure under the horizontal loads can be easily calculated. After thedetermination of the internal force under the dead and live loads, the combination of internal force can be made by using the Excel software,Mechanical calculator, whose purpose is to find one or several sets of the most adverse internal force of the wall limbs and the coterminous girders, which will be the basis of protracting the reinforcing drawings of the components. The steel design of beams and columns are adjusted to be the same as soon as possible. According to the structural characteristic of this building, the strip foundation is used because of its good integrity. The stair case adopts concrete plate stair case.Through the active, independent completion of the graduation design, so that I can systematically summarized, design to solve the problem of the practical application of the theory of knowledge and expertise in engineering comprehensively, and to further strengthen the capacity building design and structure design of mine, was made for practical work in the future the necessary preparations.KEY WORDS:Commercial Office;reinforced concrete structure;frame structure目录前言 (1)第1节建筑设计总说明 (2)1.1 工程概况 (2)1.2设计依据 (2)1.3 模型初设 (3)1.4 门窗设计 (4)1.5 装饰做法 (5)1.5.1屋面做法 (5)1.5.2 楼面做法 (5)1.5.3 墙面装饰 (6)第2节结构设计 (7)2.1 设计条件 (7)2.2 设计依据 (7)2.3 结构选型 (7)2.4 承重方案 (8)2.5 施工方法 (9)2.6 结构布置 (10)第3节荷载计算 (12)3.1 荷载标准值 (12)3.1.1 屋面荷载 (12)3.1.2 楼面荷载 (13)3.1.3 墙荷载 (14)3.1.4 梁柱自重 (15)3.1.5门窗自重 (15)3.2 面积计算 (15)3.2.1上人屋顶 (15)3.2.2 三至七层 (16)3.2.3 二层 (17)3.2.4 一层 (18)3.3 重力荷载代表值确定 (19)3.3.1 顶层 (19)3.3.2 三至六层 (20)3.3.3 二层 (20)3.3.4 一层 (20)3.3.5 重力荷载代表值示意图 (21)3.4梁、柱的线刚度 (21)3.4.1 梁的线刚度 (21)3.4.2 柱线刚度 (22)第4节 框架自振周期及位移计算 (26)4.1 横向框架顶点位移 (26)4.1.1 位移计算 (26)4.1.2风荷载计算 (28)4.2 水平地震作用下框架柱剪力和弯矩计算 (28)4.2.2 柱端弯矩c M 计算 (30)4.2.3 梁端弯矩b M 、剪力b V 、柱轴力N 计算 (32)第5节 框架在竖向荷载作用下的内力分析 (36)5.1 计算方法 (36)5.2 荷载传递路线示意图 (36)5.3 竖向荷载标准值计算 (37)5.4 次梁荷载计算 (38)5.4.1 受均布荷载作用 (39)4.4.2 受均布荷载和集中力作用 (40)5.5 主梁计算 (42)5.5.1 屋面主梁 (42)5.5.2 楼面主梁(二至六层) (43)5.5.3 楼面主梁(一层) (43)第6节梁固端弯矩计算 (48)6.1 固端弯矩计算规则 (48)6.2 弯矩分配系数 (49)6.3 恒载产生弯矩分配与传递 (50)第7节内力组合 (58)7.1 梁端剪力 (58)7.2 柱端轴力 (59)7.3 内力组合 (60)7.3.1 弯矩调幅 (60)第8节截面设计 (80)8.1 框架梁截面设计 (80)8.1.1 支座处正截面承载力计算 (81)8.1.2 梁跨中的正截面承载力计算 (82)8.1.3 梁斜截面受压承载力计算 (83)8.2 框架柱截面设计 (95)8.2.1轴压比验算 (95)8.2.2 正截面承载力计算 (97)第9节楼梯设计计算 (115)9.1 楼梯结构布置 (115)9.2 楼梯板设计 (115)9.3 平台板设计 (116)9.4 平台梁设计 (117)第10节桩基础设计 (119)10.1 设计依据 (119)10.2 计算信息 (119)10.2.1 几何参数 (120)1 0.2.2 材料信息 (120)10.2.3 计算信息 (120)10.3 计算参数 (120)10.4 内力计算 (121)10.5 承台的冲切验算 (122)10.5.1 柱对承台的冲切验算 (122)10.5.2 角桩对承台的冲切验算 (122)10.5.3 承台斜截面受剪验算 (123)10.7 其他验算 (126)附录 (127)1 总信息 (127)2 周期、地震力与振型输出文件 (131)3 结构位移 (135)小结 (149)致谢 (150)参考文献 (151)前言毕业设计是一个总结性的教学环节,是学生全面系统地融汇所学理论知识和专业技能并运用于解决实际问题的过程。

土木工程毕业设计最终模板(计算书)

土木工程毕业设计最终模板(计算书)

前 言本毕业设计说明书是本科高等学校土木工程专业本科生毕业设计的说明书,本说明书全部内容共分十四章,这十四章里包含了荷载汇集、水平作用下框架内力分析、竖向作用下框架内力分析、以及框架中各个结构构件的设计等,这些内容容纳了本科生毕业设计要求的全部内容,其中的计算方法都来自于本科四年所学知识,可以说是大学四年所学知识的一个很好的复习总结 同时也是培养能力的过程。

本毕业设计说明书根据任务书要求以及最新相关规范编写,内容全面、明确,既给出了各类问题解决方法的指导思想,又给出了具体的解决方案,并且明确地给出了各类公式及符号的意义和必要的说明。

本说明书概念清晰、语言流畅,每章都有大量的计算表格,并且对重点说明部分配置图解。

应该说本说明书很好地完成了本次毕业设计的任务要求、达到了本次毕业设计的预定目标。

第一章方案论述建筑方案论述设计依据依据土木工程专业 届毕业设计任务书。

遵照国家规定的现行相关设计规范。

设计内容、建筑面积、标高( )本次设计的题目为“彩虹中学教学楼”。

该工程位于沈阳市,为永久性建筑,建筑设计使用年限 年,防火等级二级。

( )本建筑结构为五层,层高均为 。

建筑面积: ,占地面积: 。

( )室内外高差 ,室外地面标高为 。

房间构成和布置( )房间构成本工程为一所中学教学楼,根据教学楼的功能要求,此次设计该教学楼共包括 个普通教室, 个 人合班教室, 个教师办公室,计算机室,语音室,物理实验室、电话总机室各 个, 个会议室,资料室,教师休息室,学生会办公室等配套房间若干个,以及配套的卫生间若干个。

( )房间布局充分考虑教学楼各种房间在功能和面积等方面的不同,尽量做到功能分区清晰,各功能分区之间联系紧密,以及结构布置合理等,在设计中主要注意了以下几点:①教室(包括普通教室和合班教室)布置在教学楼的阳面。

②语音教室以及录音室等需要安静环境的教室布置在教学楼相对较为偏僻的地方。

③充分考虑实验室办公室,实验准备室和实验室的紧密联系,各类实验室都设置了配套的教师办公室,实验准备室以及实验储藏室。

内力组合

内力组合

框架梁内力组合考虑了三种内力组合,wk Gk 4S .12S .1 这种内力组合与考虑地震作用的组合相比一般较小,对结构设计不起控制作用,故不予考虑。

对于活荷载作用下的跨中弯矩M 还乘以弯矩调幅系数1.1,再进行内力组合。

各层梁的内力组合结果见表。

表中Gk S ,Qk S 两列中的梁端弯矩M 为经过调幅后的弯矩(调幅系数取0.9)。

框架柱内力组合框架柱在恒荷载、活荷载作用下的轴力应包括纵向框架梁、横向框架梁传来的剪力和框架传来的剪力和框架柱自重。

框架梁内力组合表梁 截面 内力 恒荷载 活荷载 风荷载 1.35恒+1.4x0.7活1.2恒 +1.4活 +1.4x0.6风 1.2恒+1.4x0.7活+1.4风E2B2 E2B2M -43.21 -4.45 -1.47 -62.69 -59.32 -58.27V 37.93 13.32 0.13 64.26 64.27 58.75跨中 M 92.46 31.59 0.23 155.78 155.37 142.23B2E2M -94.17 -15.27 -1.01 -142.09 -135.23 -129.38V 69.39 15.98 0.19 109.34 105.80 99.19 B2A2 B2A2M -74.03 -14.60 -0.46 -114.25 -109.66 -103.79V 51.78 12.34 0.25 82.00 79.62 74.58跨中 M 16.15 6.74 0.51 28.41 29.24 26.70A2B2M -23.99 -5.73 -1.47 -38.00 -38.04 -36.46V 35.10 9.38 0.08 56.58 55.32 51.42 E1B1 E1B1M -71.53 -5.41 -6.10 -101.87 -98.53 -99.68V 90.99 13.39 0.46 135.96 128.32 122.95跨中 M 137.18 30.88 1.17 215.46 208.83 196.52B1E1M -166.57 -15.61 -3.76 -240.17 -224.90 -220.45V 114.45 15.91 0.75 170.10 160.24 153.98 B1A1 B1A1M -139.07 -15.08 -2.34 -202.52 -189.96 -184.94V 96.88 11.03 1.02 141.60 132.55 128.49跨中 M 63.43 16.10 1.88 101.41 100.24 94.53A1B1M -46.24 -6.94 -4.63 -69.23 -69.09 -68.77V 65.93 8.32 0.39 97.16 91.09 87.82框架柱内力组合表柱截面 内力 恒荷载 活荷载 风荷载 1.35恒+1.4x0.7活 1.2恒+1.4活+1.4x0.6风 1.2恒+1.4x0.7活+1.4风E2E1上M 43.21 4.45 1.47 62.69 59.32 58.27 N 59.19 13.32 0.13 92.96 89.79 84.26 下 M 48.68 3.74 1.47 69.38 64.89 64.14 N 59.19 13.32 0.13 92.96 89.79 84.26 E1E0上M 22.86 1.67 4.63 32.50 33.66 35.55 N 190.57 26.71 0.59 283.45 266.57 255.69 下 M 11.43 0.84 9.26 16.25 22.67 27.50 N 190.57 26.71 0.59 283.45 266.57 255.69 B2B1上M 20.13 0.66 1.47 27.82 26.31 26.86 N 146.63 28.32 0.43 225.70 215.97 204.31 下 M 18.90 0.38 1.47 25.89 24.45 25.11 N 146.63 28.32 0.43 225.70 215.97 204.31 B1B0上M 8.60 0.15 4.63 11.76 14.42 16.95 N 384.78 55.26 2.20 573.61 540.95 518.97 下 M 4.30 0.08 9.26 5.88 13.05 18.20 N 384.78 55.26 2.20 573.61 540.95 518.97 A2A1上M 23.99 5.73 1.47 38.00 38.04 36.46 N 56.38 9.38 0.08 85.31 80.86 76.96 下 M 31.86 5.15 1.47 48.06 46.68 45.34 N 56.38 9.38 0.08 85.31 80.86 76.96 A1A0上M 14.35 1.77 4.63 21.11 23.59 25.44 N 162.86 17.70 0.47 237.21 220.61 213.44 下M 7.18 0.09 9.26 9.78 16.52 21.67 N162.86 17.70 0.47 237.21 220.61 213.44截面设计1框架梁配筋计算21c C 30,H R B335α=1.0,f =14.3N /m m ,混凝土钢筋级,22t y f =1.43N/mm ,f =300N/mm ,ξ=0.550由于计算过程较复杂,在框架梁截面设计时,一般近似将框架梁视为矩形.E2B2梁 bxh=250x650(1)跨中正截面m ax 155.78.M K N m =062221040,65040610155.78100.117N /m m ,1.014.3250610s s s c f m m h h m m Mf b h αααα'==-=-=⨯===⨯⨯⨯10.1250.550bξξ=-=<=2s 1010.12514.3250610A /909300c f y f b h f m mξα'⨯⨯⨯⨯===验算适用条件:9090.59%0.2%250610s oA b h ρ===>⨯⨯满足要求。

11框架内力组合

11框架内力组合

- 57 -第七章 框架内力组合7。

1 结构抗震等级结构的抗震等级可根据结构类型、地震烈度、房屋高度等因素,查规范得到,该框架结构,高度〈30m,地处抗震设防烈度为7度的郑州地区,因此该框架为三级抗震等级。

7。

2 框架梁内力组合梁内力控制截面一般取两端支座截面及跨中截面。

支座截面内力有支座正、负弯矩及剪力,跨中截面一般为跨中正截面。

结构或结构构件在使用期间,可能遇到同时承受永久荷载和两种以上可变荷载的情况。

但这些荷载同时都达到它们在设计基准期内的最大值的概率较小,且对某些控制截面来说,并非全部可变荷载同时作用时其内力最大,因此应进行荷载效应的最不利组合。

本框架考虑了五种内力组合,《1》 1.2恒+1.4活,《2》 1。

2恒+1。

4风,《3》 1.2恒+0.9×1.4(活+风),《4》 1。

35恒+0。

7×1.4活,《5》 1.2(恒+0。

5活)+1。

3水平地震。

梁最不利内力选取:max max max +;M M V 、-、-从理论上讲,抗震设计中采用的材料强度设计值应高于非抗震设计时的材料强度设计值。

但为了应用方便,在抗震设计中仍采用非抗震设计时的材料强度设计值,而是通过引入承载力抗震调整系数RE γ来提高其承载力。

鉴于时间有限,本毕业设计一共考虑了五种内力组合方式.- 58 -组合二:考虑右风右阵:- 59 -- 60 -- 61 -7.3 框架柱内力组合框架柱是偏心受压构件,其主要内力是弯矩和轴力。

采用对称配筋时,由大偏心受压控制的组合项为max M 、与相应的N 、V 以及min N 与相应的M 、N ;由小偏心受压控制的组合项为N max 与相应的M 、V 。

对于柱的最不利组合的确定,遵循以下原则(1)N 相差不多时,M 大的不利(2)M 相差不多时,凡M/N >0。

3 h 0 的,N 小的不利;M/N ≤0.3 h 0的,N 大的不利。

本次计算的结果符合条件(1),具体的内力组合选择见后配筋计算。

建筑工程毕业设计-内力组合表

建筑工程毕业设计-内力组合表

3.5.2.2 水平地震作用下的内力计算表3-55 地震作用下○A轴处柱端弯矩和与○A轴相连的梁端弯矩计算(kN.m)层号V i∑D D im D im/∑DV im=(D im/∑D)×V iyh M c上M c下M b总h3.00 295.88 36242.00 6055.00 0.17 49.43 1.89 114.19 93.43 114.19 4.20 2.00 308.94 39423.00 6768.00 0.17 53.04 2.18 106.92 115.83 200.35 4.20 1.00 315.69 32054.00 6217.00 0.19 61.23 2.88 117.56 176.34 233.39 4.80表3-56 地震作用下○B轴处柱端弯矩和与○B轴相连的梁端弯矩计算(kN.m)层号V i∑D D im D im/∑D V im=(D im/∑D) ×V i yh M c上M c下M b总h M b左M b右10.00 57.57 56190.00 11239.00 0.20 11.52 1.23 20.38 34.55 20.38 3.009.00 108.72 56190.00 11239.00 0.20 21.75 1.44 33.92 65.24 68.47 3.008.00 153.69 56190.00 11239.00 0.20 30.74 1.50 46.11 92.22 111.35 3.007.00 192.75 56190.00 11239.00 0.20 38.55 1.50 57.83 115.66 150.05 3.006.00 226.19 56190.00 11239.00 0.20 45.24 1.50 67.86 135.73 183.52 3.005.00 254.31 56190.00 11239.00 0.20 50.87 1.50 76.30 152.60 212.03 3.004.00 277.42 56190.00 11239.00 0.20 55.49 1.35 91.56 166.47 244.16 3.003.00 295.88 36242.00 8044.00 0.22 65.67 2.00 144.81 275.82 4.20 155.64 155.64 2.00 308.94 39423.00 8629.00 0.22 67.62 2.10 142.01 284.01 4.20 208.91 208.91 1.00 315.69 32054.00 6540.00 0.20 64.41 2.59 142.22 309.17 4.80 213.11 213.11表3-57 地震作用下○C轴处柱端弯矩和与○C轴相连的梁端弯矩计算(kN.m)层号V i∑D D im D im/∑D V im=(D im/∑D) ×V i yh M c上M c下h M b左M b右10.00 57.57 56190.00 16856.00 0.30 17.27 1.35 28.50 51.81 3.00 14.25 14.25 9.00 108.72 56190.00 16856.00 0.30 32.61 1.49 49.41 97.84 3.00 50.61 50.61 8.00 153.69 56190.00 16856.00 0.30 46.10 1.50 69.16 138.31 3.00 83.50 83.50 7.00 192.75 56190.00 16856.00 0.30 57.82 1.50 86.73 173.46 3.00 112.52 112.52 6.00 226.19 56190.00 16856.00 0.30 67.85 1.50 101.78 203.56 3.00 137.62 137.62 5.00 254.31 56190.00 16856.00 0.30 76.29 1.50 114.43 228.87 3.00 159.00 159.00 4.00 277.42 56190.00 16856.00 0.30 83.22 1.50 124.83 249.66 3.00 176.85 176.85 3.00 295.88 36242.00 8044.00 0.22 65.67 2.00 144.81 275.82 4.20 197.23 197.23 2.00 308.94 39423.00 8629.00 0.22 67.62 2.10 142.01 284.01 4.20 208.91 208.91 1.00 315.69 32054.00 6540.00 0.20 64.41 2.62 140.67 309.17 4.80 212.34 212.34表3-58 地震作用下○D轴处柱端弯矩和与○D轴相连的梁端弯矩计算(kN.m)层号V i∑D D im D im/∑D V im=(D im/∑D) ×V i yh M c上M c下h M b左M b右10.00 57.57 56190.00 16856.00 0.30 17.27 1.35 28.50 51.81 3.00 14.25 14.25 9.00 108.72 56190.00 16856.00 0.30 32.61 1.38 52.93 97.84 3.00 52.37 52.37 8.00 153.69 56190.00 16856.00 0.30 46.10 1.50 69.16 138.31 3.00 83.50 83.50 7.00 192.75 56190.00 16856.00 0.30 57.82 1.50 86.73 173.46 3.00 112.52 112.52 6.00 226.19 56190.00 16856.00 0.30 67.85 1.50 101.78 203.56 3.00 137.62 137.62 5.00 254.31 56190.00 16856.00 0.30 76.29 1.50 114.43 228.87 3.00 159.00 159.00 4.00 277.42 56190.00 16856.00 0.30 83.22 1.50 124.83 249.66 3.00 176.85 176.85 3.00 295.88 36242.00 8044.00 0.22 65.67 2.00 144.81 275.82 4.20 197.23 197.23 2.00 308.94 39423.00 8629.00 0.22 67.62 2.10 142.01 284.01 4.20 208.91 208.91 1.00 315.69 32054.00 6540.00 0.20 64.41 2.62 140.67 309.17 4.80 212.34 212.34表3-59 地震作用下○E轴处柱端弯矩和与○E轴相连的梁端弯矩计算(kN.m)层号V i∑D D im D im/∑DV im=(D im/∑D)×V iyh M c上M c下M b总h10 57.57 56190.00 11239.00 0.20 11.52 1.23 20.38 34.55 20.38 3.0 9 108.72 56190.00 11239.00 0.20 21.75 1.44 33.92 65.24 68.47 3.0 8 153.69 56190.00 11239.00 0.20 30.74 1.50 46.11 92.22 111.35 3.0 7 192.75 56190.00 11239.00 0.20 38.55 1.50 57.83 115.66 150.05 3.0 6 226.19 56190.00 11239.00 0.20 45.24 1.50 67.86 135.73 183.52 3.0 5 254.31 56190.00 11239.00 0.20 50.87 1.50 76.30 152.60 212.03 3.0 4 277.42 56190.00 11239.00 0.20 55.49 1.35 91.56 166.47 244.16 3.0 3 295.88 36242.00 6055.00 0.17 49.43 2.00 109.00 207.62 275.47 4.2 2 308.94 39423.00 6768.00 0.17 53.04 2.18 106.92 222.76 314.54 4.2 1 315.69 32054.00 6217.00 0.19 61.23 2.98 111.68 293.90 334.44 4.8表3-60 水平地震作用梁端弯矩(kN.m)○A轴右梁端○B轴左梁端○B轴右梁端○C轴左梁端○C轴右梁端○D轴左梁端○D轴右梁端○E轴左梁端20.38 14.25 14.25 14.25 14.25 20.3868.47 50.61 50.61 52.37 52.37 68.47111.35 83.50 83.50 83.50 83.50 111.35150.05 112.52 112.52 112.52 112.52 150.05183.52 137.62 137.62 137.62 137.62 183.52212.03 159.00 159.00 159.00 159.00 212.03244.16 176.85 176.85 176.85 176.85 244.16 114.19 155.64 155.64 197.23 197.23 197.23 197.23 275.47 200.35 208.91 208.91 208.91 208.91 208.91 208.91 314.54 233.39 213.11 213.11 212.34 212.34 212.34 212.34 334.44(1)用于承载力计算的框架梁由可变荷载效应控制的基本组合表(工况一)表3-65 用于承载力计算的框架梁由可变荷载效应控制的基本组合表(○A-○B轴间梁)M max相应的V(kN) M min相应的V(kN) │V│max相应的M(kN.m) 层数恒荷①活荷②左风③右风④组合项目数值组合项目数值组合项目数值3 左M -29.4 -9.7 17.0 -17.0 1.2×①+1.4×②+ -63.3 1.2×①+1.4×②+ -63.3左V 59.8 19.9 -5.5 5.5 1.2×①+ 1.4×0.6×④104.3 1.4×0.6×④104.3 中M 63.7 21.2 0.4 -0.4 1.4×②+ 105.87右M -63.9 -21.2 -16.1 16.1 1.4×0.6×④ 1.2×①+1.4×②+ -120.0 1.2×①+1.4×②+ -120.0 右V -48.3 -16.1 -5.5 5.5 1.4×0.6×③-85.2 1.4×0.6×④-85.2 2 左M -41.4 -20.0 31.5 -31.5 1.2×①+1.4×②+ -104.1 1.2×①+1.4×②+ -104.1左V 59.6 20.7 -8.8 8.8 1.2×①+ 1.4×0.6×④108.0 1.4×0.6×④108.0 中M 82.3 18.9 5.0 -5.0 1.4×②+ 121.02右M -74.7 -36.2 -21.5 21.5 1.4×0.6×④ 1.2×①+1.4×②+ -158.5 1.2×①+1.4×②+ -158.5 右V -48.5 -15.3 -8.8 8.8 1.4×0.6×③-87.1 1.4×0.6×④-87.1 1 左M -40.5 -19.6 40.5 -40.5 1.2×①+1.4×②+ -110.0 1.2×①+1.4×②+ -110.0左V 54.1 20.7 -10.8 10.8 1.2×①+ 1.4×0.6×④103.1 1.4×0.6×④103.1 中M 81.7 18.6 7.9 -7.9 1.4×②+ 117.49右M -75.0 -36.3 -24.5 24.5 1.4×0.6×④ 1.2×①+1.4×②+ -161.5 1.2×①+1.4×②+ -161.5 右V -48.3 -15.2 -10.8 10.8 1.4×0.6×③-88.4 1.4×0.6×④-88.4表3-66 用于承载力计算的框架梁由可变荷载效应控制的基本组合表(○B-○C轴间梁)M max相应的V(kN) M min相应的V(kN) │V│max相应的M(kN.m) 层数恒荷①活荷②左风③右风④组合项目数值组合项目数值组合项目数值10 左M -34.5 -11.6 2.3 -2.30 1.2×①+1.4×②+ -59.57 1.2×①+1.4×②+ -59.57左V 58.5 19.4 -0.6 0.64 1.2×①+ 1.4×0.6×④97.99 1.4×0.6×④97.99 中M 67.8 22.6 0.3 -0.37 1.4×②+ 112.77右M -60.8 -20.7 -1.5 1.57 1.4×0.6×④ 1.2×①+1.4×②+ -102.81 1.2×①+1.4×②+ -102.8 右V -49.7 -16.4 -0.6 0.64 1.4×0.6×③-83.38 1.4×0.6×④-83.38 9-4 左M -22.8 -8.1 23.2 -23.22 1.2×①+1.4×②+ -58.32 1.2×①+1.4×②+ -58.32 左V 60.7 19.8 -6.6 6.62 1.2×①+ 1.4×0.6×④106.11 1.4×0.6×④106.11 中M 65.3 21.6 3.3 -3.36 1.4×②+ 105.82右M -62.2 -18.5 -16.5 16.50 1.4×0.6×④ 1.2×①+1.4×②+ -115.10 1.2×①+1.4×②+ -115.1 右V -47.5 -16.1 -6.6 6.62 1.4×0.6×③-85.30 1.4×0.6×④-85.30 3 左M -57.4 -18.0 16.1 -16.18 1.2×①+1.4×②+ -108.93 1.2×①+1.4×②+ -108.9左V 54.4 17.7 -5.9 5.98 1.2×①+ 1.4×0.6×④95.20 1.4×0.6×④95.20 中M 84.2 27.6 1.7 -1.76 1.4×②+ 138.27右M -59.1 -17.0 -19.6 19.69 1.4×0.6×④ 1.2×①+1.4×②+ -112.11 1.2×①+1.4×②+ -112.1 右V -53.8 -18.2 -5.9 5.98 1.4×0.6×③-95.13 1.4×0.6×④-95.13 2 左M -69.8 -33.0 21.5 -21.53 1.2×①+1.4×②+ -149.17 1.2×①+1.4×②+ -149.1左V 53.2 17.5 -7.1 7.18 1.2×①+ 1.4×0.6×④94.44 1.4×0.6×④94.44 中M 101.7 28.3 0.0 0.00 1.4×②+ 161.81右M -64.2 -31.1 -21.5 21.53 1.4×0.6×④ 1.2×①+1.4×②+ -138.75 1.2×①+1.4×②+ -138.7 右V -55.0 -18.5 -7.1 7.18 1.4×0.6×③-97.91 1.4×0.6×④-97.91 1 左M -70.0 -33.0 24.5 -24.57 1.2×①+1.4×②+ -152.10 1.2×①+1.4×②+ -152.1左V 53.1 17.5 -8.1 8.17 1.2×①+ 1.4×0.6×④95.17 1.4×0.6×④95.17 中M 101.9 28.4 0.1 -0.07 1.4×②+ 162.04右M -64.1 -31.0 -24.4 24.43 1.4×0.6×④ 1.2×①+1.4×②+ -140.99 1.2×①+1.4×②+ -140.9 右V -55.10 -18.47 -8.17 8.17 1.4×0.6×③-98.84 1.4×0.6×④-98.84表3-67 用于承载力计算的框架梁由可变荷载效应控制的基本组合表(○C-○D轴间梁)M max相应的V(kN) M min相应的V(kN) │V│max相应的M(kN.m) 层数恒荷①活荷②左风③右风④组合项目数值组合项目数值组合项目数值10 左M -56.70 -19.00 1.57 1.2×①+1.4×②+ -94.64 1.2×①+1.4×②+ -94.64左V 53.67 18.00 -0.52 1.2×①+ 1.4×0.6×④89.60 1.4×0.6×④89.60 中M 81.00 27.00 0.00 1.4×②+ 135.0右M -56.70 -19.00 -1.57 1.4×0.6×④ 1.2×①+1.4×②+ -95.96 1.2×①+1.4×②+ -95.96 右V -53.67 -18.00 -0.52 1.4×0.6×③-90.04 1.4×0.6×④-90.04 9-4 左M -67.90 -18.30 16.50 1.2×①+1.4×②+ -107.10 1.2×①+1.4×②+ -107.10 左V 53.67 18.00 -5.50 1.2×①+ 1.4×0.6×④89.60 1.4×0.6×④89.60 中M 67.50 27.00 0.00 1.4×②+ 118.8右M -67.90 -18.30 -16.50 1.4×0.6×④ 1.2×①+1.4×②+ -120.96 1.2×①+1.4×②+ -120.96 右V -53.67 -18.00 -5.50 1.4×0.6×③-94.22 1.4×0.6×④-94.22 3 左M -67.20 -17.70 19.69 1.2×①+1.4×②+ -105.42 1.2×①+1.4×②+ -105.42左V 54.13 17.86 -6.56 1.2×①+ 1.4×0.6×④89.95 1.4×0.6×④89.95 中M 66.12 26.58 0.00 1.4×②+ 116.5右M -69.96 -18.55 -19.69 1.4×0.6×④ 1.2×①+1.4×②+ -126.46 1.2×①+1.4×②+ -126.46 右V -53.21 -17.86 -7.76 1.4×0.6×③-95.37 1.4×0.6×④-95.37 2 左M -64.30 -31.10 21.53 1.2×①+1.4×②+ -120.70 1.2×①+1.4×②+ -120.70左V 54.58 17.55 -7.18 1.2×①+ 1.4×0.6×④90.07 1.4×0.6×④90.07 中M 96.27 25.66 0.00 1.4×②+ 151.4右M -69.77 -33.78 -21.53 1.4×0.6×④ 1.2×①+1.4×②+ -149.10 1.2×①+1.4×②+ -149.10 右V -52.76 -17.55 -8.97 1.4×0.6×③-95.42 1.4×0.6×④-95.42 1 左M -64.20 -31.06 24.43 1.2×①+1.4×②+ -120.52 1.2×①+1.4×②+ -120.52左V 54.63 17.53 -8.14 1.2×①+ 1.4×0.6×④90.10 1.4×0.6×④90.10 中M 96.10 25.59 0.00 1.4×②+ 151.1右M -70.00 -33.89 -24.43 1.4×0.6×④ 1.2×①+1.4×②+ -151.97 1.2×①+1.4×②+ -151.97 右V -52.70 -17.53 -10.64 1.4×0.6×③-96.72 1.4×0.6×④-96.72表3-68 用于承载力计算的框架梁由可变荷载效应控制的基本组合表(○D-○E轴间梁)M max相应的V(kN) M min相应的V(kN) │V│max相应的M(kN.m) 层数恒荷①活荷②左风③右风④组合项目数值组合项目数值组合项目数值10 左M -60.81 -20.37 1.57 -1.57 1.2×①+1.4×②+ -102.81 1.2×①+1.4×②+ -102.81左V 49.74 16.54 -0.64 0.64 1.2×①+ 1.4×0.6×④83.38 1.4×0.6×④83.38 中M 94.16 31.39 0.37 -0.37 1.4×②+ 156.62右M -34.50 -11.60 -2.30 2.30 1.4×0.6×④ 1.2×①+1.4×②+ -59.57 1.2×①+1.4×②+ -59.57 右V -58.51 -19.46 -0.64 0.64 1.4×0.6×③-97.99 1.4×0.6×④-97.99 9-4 左M -62.26 -18.95 16.50 -16.50 1.2×①+1.4×②+ -115.10 1.2×①+1.4×②+ -115.10 左V 47.54 16.21 -6.62 6.62 1.2×①+ 1.4×0.6×④85.30 1.4×0.6×④85.30 中M 104.78 32.39 3.36 -3.36 1.4×②+ 168.25右M -22.80 -8.18 -23.22 23.22 1.4×0.6×④ 1.2×①+1.4×②+ -58.32 1.2×①+1.4×②+ -58.32 右V -60.70 -19.80 -6.62 6.62 1.4×0.6×③-106.11 1.4×0.6×④-106.11 3 左M -65.80 -19.80 19.69 -19.69 1.2×①+1.4×②+ -123.22 1.2×①+1.4×②+ -123.22左V 50.16 16.92 -7.76 7.76 1.2×①+ 1.4×0.6×④90.39 1.4×0.6×④90.39 中M 96.95 30.23 3.58 -3.58 1.4×②+ 155.65右M -42.01 -13.34 -26.85 26.85 1.4×0.6×④ 1.2×①+1.4×②+ -91.64 1.2×①+1.4×②+ -91.64 右V -58.09 -19.08 -7.76 7.76 1.4×0.6×③-102.92 1.4×0.6×④-102.92 2 左M -74.80 -36.20 21.53 -21.53 1.2×①+1.4×②+ -158.53 1.2×①+1.4×②+ -158.53左V 48.55 15.31 -8.97 8.97 1.2×①+ 1.4×0.6×④87.22 1.4×0.6×④87.22 中M 115.71 35.09 5.39 -5.39 1.4×②+ 183.45右M -41.38 -20.03 -32.30 32.30 1.4×0.6×④ 1.2×①+1.4×②+ -104.83 1.2×①+1.4×②+ -104.83 右V -59.69 -20.70 -8.97 8.97 1.4×0.6×③-108.14 1.4×0.6×④-108.14 1 左M -75.00 -36.30 24.43 -24.43 1.2×①+1.4×②+ -161.34 1.2×①+1.4×②+ -161.34左V 48.36 15.21 -10.64 10.64 1.2×①+ 1.4×0.6×④88.27 1.4×0.6×④88.27 中M 116.28 35.36 7.50 -7.50 1.4×②+ 182.73右M -40.45 -19.58 -39.43 39.43 1.4×0.6×④ 1.2×①+1.4×②+ -109.07 1.2×①+1.4×②+ -109.07 右V -59.88 -20.79 -10.64 10.64 1.4×0.6×③-109.90 1.4×0.6×④-109.90(2)用于承载力计算的框架梁由永久荷载效应控制的基本组合表(工况二)表3-69 用于承载力计算的框架梁由永久荷载效应控制的基本组合表(○A-○B轴间梁)M max相应的V(kN) M min相应的V(kN) │V│max相应的M(kN.m) 层数恒荷①活荷②组合项目数值组合项目数值组合项目数值3 左M -29.40 -9.79 1.35×①+ -49.28 1.35×①+ -49.28左V 59.88 19.91 1.35×①+ 1.4×0.7×②100.35 1.4×0.7×②100.35 中M 63.72 21.29 1.4×0.7×②106.87右M -63.97 -21.22 1.35×①+ -107.16 1.35×①+ -107.16 右V -48.36 -16.10 1.4×0.7×②-81.06 1.4×0.7×②-81.06 2 左M -41.40 -20.00 1.35×①+ -75.49 1.35×①+ -75.49左V 59.69 20.70 1.35×①+ 1.4×0.7×②100.86 1.4×0.7×②100.86 中M 82.31 18.90 1.4×0.7×②129.63右M -74.79 -36.21 1.35×①+ -136.45 1.35×①+ -136.45 右V -48.56 -15.30 1.4×0.7×②-80.54 1.4×0.7×②-80.54 1 左M -40.50 -19.60 1.35×①+ -73.88 1.35×①+ -73.88左V 54.12 20.79 1.35×①+ 1.4×0.7×②93.43 1.4×0.7×②93.43 中M 81.74 18.64 1.4×0.7×②128.61右M -75.03 -36.32 1.35×①+ -136.88 1.35×①+ -136.88 右V -48.37 -15.21 1.4×0.7×②-80.20 1.4×0.7×②-80.20表3-70 用于承载力计算的框架梁由永久荷载效应控制的基本组合表(○B-○C轴间梁)M max相应的V(kN) M min相应的V(kN) │V│max相应的M(kN.m) 层数恒荷①活荷②组合项目数值组合项目数值组合项目数值10.00 左M -56.70 -11.60 1.35×①+ -87.91 1.35×①+ -87.91左V 53.67 19.46 1.35×①+ 1.4×0.7×②91.52 1.4×0.7×②91.52 中M 81.00 22.62 1.4×0.7×②131.51右M -56.70 -20.37 1.35×①+ -96.51 1.35×①+ -96.51 右V -53.67 -16.54 1.4×0.7×②-88.66 1.4×0.7×②-88.66 9-4 左M -67.90 -8.18 1.35×①+ -99.68 1.35×①+ -99.68 左V 53.67 19.80 1.35×①+ 1.4×0.7×②91.85 1.4×0.7×②91.85 中M 67.50 21.62 1.4×0.7×②112.31右M -67.90 -18.95 1.35×①+ -110.24 1.35×①+ -110.24 右V -53.67 -16.21 1.4×0.7×②-88.33 1.4×0.7×②-88.33 3.00 左M -67.20 -18.90 1.35×①+ -109.24 1.35×①+ -109.24左V 54.13 17.78 1.35×①+ 1.4×0.7×②90.50 1.4×0.7×②90.50 中M 66.12 27.65 1.4×0.7×②116.36右M -69.96 -17.60 1.35×①+ -111.69 1.35×①+ -111.69 右V -53.21 -18.22 1.4×0.7×②-89.68 1.4×0.7×②-89.68 2.00 左M -64.30 -33.80 1.35×①+ -119.93 1.35×①+ -119.93左V 54.58 17.55 1.35×①+ 1.4×0.7×②90.88 1.4×0.7×②90.88 中M 96.27 28.35 1.4×0.7×②157.74右M -69.77 -31.11 1.35×①+ -124.68 1.35×①+ -124.68 右V -52.76 -18.45 1.4×0.7×②-89.30 1.4×0.7×②-89.30 1.00 左M -64.20 -33.90 1.35×①+ -119.89 1.35×①+ -119.89左V 54.63 17.53 1.35×①+ 1.4×0.7×②90.93 1.4×0.7×②90.93 中M 96.10 28.42 1.4×0.7×②157.59右M -70.00 -31.06 1.35×①+ -124.94 1.35×①+ -124.94 右V -52.70 -18.47 1.4×0.7×②-89.25 1.4×0.7×②-89.25表3-71 用于承载力计算的框架梁由永久荷载效应控制的基本组合表(○C-○D轴间梁)M max相应的V(kN) M min相应的V(kN) │V│max相应的M(kN.m) 层数恒荷①活荷②组合项目数值组合项目数值组合项目数值10.00 左M -34.50 -19.00 1.35×①+ -65.20 1.35×①+ -65.20左V 58.51 18.00 1.35×①+ 1.4×0.7×②96.62 1.4×0.7×②96.62 中M 67.85 27.00 1.4×0.7×②118.05右M -60.81 -19.00 1.35×①+ -100.71 1.35×①+ -100.71 右V -49.74 -18.00 1.4×0.7×②-84.78 1.4×0.7×②-84.78 9-4 左M -22.80 -18.30 1.35×①+ -48.71 1.35×①+ -48.71 左V 60.70 18.00 1.35×①+ 1.4×0.7×②99.58 1.4×0.7×②99.58 中M 65.32 27.00 1.4×0.7×②114.64右M -62.26 -18.30 1.35×①+ -101.99 1.35×①+ -101.99 右V -47.54 -18.00 1.4×0.7×②-81.82 1.4×0.7×②-81.82 3.00 左M -57.40 -17.70 1.35×①+ -94.84 1.35×①+ -94.84左V 54.41 17.86 1.35×①+ 1.4×0.7×②90.95 1.4×0.7×②90.95 中M 84.20 26.58 1.4×0.7×②139.71右M -59.11 -18.55 1.35×①+ -97.98 1.35×①+ -97.98 右V -53.84 -17.86 1.4×0.7×②-90.18 1.4×0.7×②-90.18 2.00 左M -69.80 -31.10 1.35×①+ -124.71 1.35×①+ -124.71左V 53.20 17.55 1.35×①+ 1.4×0.7×②89.02 1.4×0.7×②89.02 中M 101.77 25.66 1.4×0.7×②162.54右M -64.26 -33.78 1.35×①+ -119.86 1.35×①+ -119.86 右V -55.04 -17.55 1.4×0.7×②-91.51 1.4×0.7×②-91.51 1.00 左M -70.00 -31.06 1.35×①+ -124.94 1.35×①+ -124.94左V 53.15 17.53 1.35×①+ 1.4×0.7×②88.92 1.4×0.7×②88.92 中M 101.93 25.59 1.4×0.7×②162.67右M -64.15 -33.89 1.35×①+ -119.81 1.35×①+ -119.81 右V -55.10 -17.53 1.4×0.7×②-91.56 1.4×0.7×②-91.56表3-72 用于承载力计算的框架梁由永久荷载效应控制的基本组合表(○D-○E轴间梁)M max相应的V(kN) M min相应的V(kN) │V│max相应的M(kN.m) 层数恒荷①活荷②组合项目数值组合项目数值组合项目数值10.00 左M -60.81 -20.37 1.35×①+ -102.06 1.35×①+ -102.06左V 49.74 16.54 1.35×①+ 1.4×0.7×②83.35 1.4×0.7×②83.35 中M 94.16 31.39 1.4×0.7×②157.87右M -34.50 -11.60 1.35×①+ -57.94 1.35×①+ -57.94 右V -58.51 -19.46 1.4×0.7×②-98.05 1.4×0.7×②-98.05 9-4 左M -62.26 -18.95 1.35×①+ -102.62 1.35×①+ -102.62 左V 47.54 16.21 1.35×①+ 1.4×0.7×②80.06 1.4×0.7×②80.06 中M 104.78 32.39 1.4×0.7×②173.19右M -22.80 -8.18 1.35×①+ -38.80 1.35×①+ -38.80 右V -60.70 -19.80 1.4×0.7×②-101.34 1.4×0.7×②-101.34 3.00 左M -65.80 -19.80 1.35×①+ -108.23 1.35×①+ -108.23左V 50.16 16.92 1.35×①+ 1.4×0.7×②84.29 1.4×0.7×②84.29 中M 96.95 30.23 1.4×0.7×②160.50右M -42.01 -13.34 1.35×①+ -69.79 1.35×①+ -69.79 右V -58.09 -19.08 1.4×0.7×②-97.11 1.4×0.7×②-97.11 2.00 左M -74.80 -36.20 1.35×①+ -136.46 1.35×①+ -136.46左V 48.55 15.31 1.35×①+ 1.4×0.7×②80.54 1.4×0.7×②80.54 中M 115.71 35.09 1.4×0.7×②190.59右M -41.38 -20.03 1.35×①+ -75.49 1.35×①+ -75.49 右V -59.69 -20.70 1.4×0.7×②-100.86 1.4×0.7×②-100.86 1.00 左M -75.00 -36.30 1.35×①+ -136.82 1.35×①+ -136.82左V 48.36 15.21 1.35×①+ 1.4×0.7×②80.20 1.4×0.7×②80.20 中M 116.28 35.36 1.4×0.7×②191.62右M -40.45 -19.58 1.35×①+ -73.80 1.35×①+ -73.80(3)用于承载力计算的框架梁由地震效应控制的基本组合表(工况三)表3-73 用于承载力计算的框架梁由地震效应控制的基本组合表(○A-○B轴间梁)重力荷载水平地震水平地震M max相应的V(kN) M min相应的V(kN) │V│max相应的M(kN.m) 层数代表值①作用②作用③组合项目数值组合项目数值组合项目数值3.00 左M -34.30 114.19 -114.19 1.2×①+1.3×③-189.61 1.2×①+1.3×③-189.61左V 69.83 -44.97 44.97 142.26 142.26 中M 74.36 20.72 -20.72 1.2×①+1.3×②116.17右M -74.58 -155.64 155.64 1.2×①+1.3×②-291.82 1.2×①+1.3×②-291.82 右V -56.41 -44.97 44.97 -126.15 -126.15 2.00 左M -51.20 200.35 -200.35 1.2×①+1.3×③-321.90 1.2×①+1.3×③-321.90左V 88.73 -68.21 68.21 195.15 195.15 中M 100.81 4.28 -4.28 1.2×①+1.3×②126.53右M -92.59 -208.91 208.91 1.2×①+1.3×②-382.69 1.2×①+1.3×②-382.69 右V -74.93 -68.21 68.21 -178.59 -178.59 1.00 左M -50.10 233.39 -233.39 1.2×①+1.3×③-363.53 1.2×①+1.3×③-363.53左V 88.96 -74.42 74.42 203.49 203.49 中M 100.11 10.14 -10.14 1.2×①+1.3×②133.31右M -92.88 -213.11 213.11 1.2×①+1.3×②-388.50 1.2×①+1.3×②-388.50 右V -74.70 -74.42 74.42 -186.38 -186.38表3-74 用于承载力计算的框架梁由地震效应控制的基本组合表(○B-○C轴间梁)重力荷载水平地震水平地震M max相应的V(kN) M min相应的V(kN) │V│max相应的M(kN.m) 层数代表值①作用②作用③组合项目数值组合项目数值组合项目数值10.00 左M -39.90 20.38 -20.38 1.2×①+1.3×③-74.38 1.2×①+1.3×③-74.38左V 67.80 -5.77 5.77 88.87 88.87 中M 79.27 3.07 -3.07 1.2×①+1.3×②99.11右M -70.36 -14.25 14.25 1.2×①+1.3×②-102.95 1.2×①+1.3×②-102.95 右V -57.65 -5.77 5.77 -76.68 -76.68 9-4 左M -29.80 244.16 -244.16 1.2×①+1.3×③-353.16 1.2×①+1.3×③-353.16 左V 72.74 -70.17 70.17 178.50 178.50 中M 77.81 33.65 -33.65 1.2×①+1.3×②137.12右M -72.19 -176.85 176.85 1.2×①+1.3×②-316.53 1.2×①+1.3×②-316.53 右V -58.61 -70.17 70.17 -161.54 -161.54 3.00 左M -66.80 155.64 -155.64 1.2×①+1.3×②-282.49 1.2×①+1.3×②-282.49左V 65.87 -58.81 58.81 155.50 155.50 中M 98.39 20.80 -20.80 1.2×①+1.3×②145.11右M -68.02 -197.23 197.23 1.2×①+1.3×②-338.03 1.2×①+1.3×②-338.03 右V -65.47 -58.81 58.81 -155.02 -155.02 2.00 左M -86.40 208.91 -208.91 1.2×①+1.3×③-375.27 1.2×①+1.3×③-375.27左V 80.69 -69.64 69.64 187.35 187.35 中M 124.92 0.00 0.00 1.2×①+1.3×②149.90右M -79.56 -208.91 208.91 1.2×①+1.3×②-367.06 1.2×①+1.3×②-367.06 右V -82.97 -69.64 69.64 -190.09 -190.09 1.00 左M -86.70 213.11 -213.11 1.2×①+1.3×③-381.09 1.2×①+1.3×③-381.09左V 80.61 -70.91 70.91 188.92 188.92 中M 125.14 0.39 -0.39 1.2×①+1.3×②150.67右M -79.42 -212.34 212.34 1.2×①+1.3×②-371.35 1.2×①+1.3×②-371.35表3-75 用于承载力计算的框架梁由地震效应控制的基本组合表(○C-○D轴间梁)重力荷载水平地震水平地震M max相应的V(kN) M min相应的V(kN) │V│max相应的M(kN.m) 层数代表值①作用②作用③组合项目数值组合项目数值组合项目数值10.00 左M -65.60 14.25 -14.25 1.2×①+1.3×③-97.24 1.2×①+1.3×③-97.24左V 57.61 -4.75 4.75 75.30 75.30 中M 94.50 0.00 0.00 1.2×①+1.3×②113.40右M -65.60 -14.25 14.25 1.2×①+1.3×②-97.24 1.2×①+1.3×②-97.24 右V -57.61 -4.75 4.75 -75.30 -75.30 9-4 左M -77.60 176.85 -176.85 1.2×①+1.3×③-323.02 1.2×①+1.3×③-323.02 左V 57.61 -58.95 58.95 145.76 145.76 中M 81.00 0.00 0.00 1.2×①+1.3×②97.20右M -77.60 -176.85 176.85 1.2×①+1.3×②-323.02 1.2×①+1.3×②-323.02 右V -57.61 -58.95 58.95 -145.76 -145.76 3.00 左M -76.50 197.23 -197.23 1.2×①+1.3×②-348.20 1.2×①+1.3×②-348.20左V 58.14 -65.74 65.74 155.24 155.24 中M 79.40 0.00 0.00 1.2×①+1.3×②95.28右M -79.70 -197.23 197.23 1.2×①+1.3×②-352.04 1.2×①+1.3×②-352.04 右V -57.08 -65.74 65.74 -153.96 -153.96 2.00 左M -79.60 208.91 -208.91 1.2×①+1.3×③-367.11 1.2×①+1.3×③-367.11左V 82.96 -69.64 69.64 190.08 190.08 中M 118.12 0.00 0.00 1.2×①+1.3×②141.74右M -86.37 -208.91 208.91 1.2×①+1.3×②-375.23 1.2×①+1.3×②-375.23 右V -80.70 -69.64 69.64 -187.37 -187.37 1.00 左M -79.40 212.34 -212.34 1.2×①+1.3×③-371.32 1.2×①+1.3×③-371.32左V 83.04 -70.78 70.78 191.66 191.66 中M 117.87 0.00 0.00 1.2×①+1.3×②141.44右M -86.66 -212.34 212.34 1.2×①+1.3×②-380.04 1.2×①+1.3×②-380.04表3-76 用于承载力计算的框架梁由地震效应控制的基本组合表(○D-○E轴间梁)重力荷载水平地震水平地震M max相应的V(kN) M min相应的V(kN) │V│max相应的M(kN.m) 层数代表值①作用②作用③组合项目数值组合项目数值组合项目数值10.00 左M -70.36 14.25 -14.25 1.2×①+1.3×③-102.95 1.2×①+1.3×③-102.95左V 57.65 -5.77 5.77 76.68 76.68 中M 109.73 3.07 -3.07 1.2×①+1.3×②135.66右M -39.90 -20.38 20.38 1.2×①+1.3×②-74.38 1.2×①+1.3×②-74.38 右V -67.80 -5.77 5.77 -88.87 -88.87 9-4 左M -72.19 176.85 -176.85 1.2×①+1.3×③-316.53 1.2×①+1.3×③-316.53 左V 58.61 -70.17 70.17 161.54 161.54 中M 120.20 33.65 -33.65 1.2×①+1.3×②187.98右M -29.80 -244.16 244.16 1.2×①+1.3×②-353.16 1.2×①+1.3×②-353.16 右V -72.74 -70.17 70.17 -178.50 -178.50 3.00 左M -75.80 197.23 -197.23 1.2×①+1.3×②-347.36 1.2×①+1.3×②-347.36左V 61.15 -78.78 78.78 175.79 175.79 中M 112.57 39.12 -39.12 1.2×①+1.3×②185.94右M -48.66 -275.47 275.47 1.2×①+1.3×②-416.50 1.2×①+1.3×②-416.50 右V -70.19 -78.78 78.78 -186.65 -186.65 2.00 左M -86.37 208.91 -208.91 1.2×①+1.3×③-375.23 1.2×①+1.3×③-375.23左V 75.97 -87.24 87.24 204.58 204.58 中M 139.07 52.82 -52.82 1.2×①+1.3×②235.54右M -51.23 -314.54 314.54 1.2×①+1.3×②-470.38 1.2×①+1.3×②-470.38 右V -87.68 -87.24 87.24 -218.64 -218.64 1.00 左M -86.66 212.34 -212.34 1.2×①+1.3×③-380.04 1.2×①+1.3×③-380.04左V 75.73 -91.13 91.13 209.35 209.35 中M 139.79 61.05 -61.05 1.2×①+1.3×②247.11右M -50.08 -334.44 334.44 1.2×①+1.3×②-494.87 1.2×①+1.3×②-494.87(4)用于承载力计算的框架柱由可变荷载效应控制的基本组合表(工况一)表3-77 用于承载力计算的框架柱由活荷载效应控制的基本组合表(○A轴处柱)恒荷载活荷载左风右风N max相应的M(kN.m) N min相应的M(kN.m) │M│max 相应的N(kN) 层数①②③④组合项目数值组合项目数值组合项目数值3 上M 29.4 9.8 0.0 0.0 1.2×①+1.4×②+1.4×0.6×③49.0 1.2×①+1.4×②+1.4×0.6×④49.0 1.2×①+1.4×0.7×②+1.4×③44.9N 115.9 75.9 5.6 -5.6 250.0 240.7 221.2 下M -20.7 -100 -17 17.1 -53.2 -24.5 -58.6N 115.9 75.9 5.6 -5.6 1.2×①+1.4×②+1.4×0.6×③250.0 1.2×①+1.4×②+1.4×0.6×④240.7 1.2×①+1.4×0.7×②+1.4×③221.2V 1.5 0.2 -7.4 7.4 -4.2 8.2 -8.42 上M 20.7 10.0 0.0 0.0 1.2×①+1.4×②+1.4×0.6×③38.9 1.2×①+1.4×②+1.4×0.6×④38.9 1.2×①+1.4×0.7×②+1.4×③34.7N 349.0 270.1 14.4 -14.4 809.0 784.8 703.6 下M -21.4 -10.4 -31 31.5 -66.7 -13.7 -80.0N 349.0 270.1 14.4 -14.4 1.2×①+1.4×②+1.4×0.6×③809.0 1.2×①+1.4×②+1.4×0.6×④784.8 1.2×①+1.4×0.7×②+1.4×③703.6V 1.5 0.2 -8.7 8.7 -5.3 9.3 -10.21 上M 10.0 9.2 0.0 0.0 1.2×①+1.4×②+1.4×0.6×③25.0 1.2×①+1.4×②+1.4×0.6×④25.0 1.2×①+1.4×0.7×②+1.4×③21.1N 599.7 481.7 25.2 -25.2 1415.2 1372.8 1227.0 下M -9.5 -4.6 -40 40.5 -51.9 16.2 -72.7N 599.7 481.7 25.2 -25.2 1.2×①+1.4×②+1.4×0.6×③1415.2 1.2×①+1.4×②+1.4×0.6×④1372.8 1.2×①+1.4×0.7×②+1.4×③1227V 1.5 0.2 -11 11.2 -7.4 11.4 -13.7表3-78 用于承载力计算的框架柱由活荷载效应控制的基本组合表(○B轴处柱)恒荷载活荷载左风右风N max相应的M N min相应的M │M│max 相应的N 层数①②③④组合项目数值组合项目数值组合项目数值10 上M 35 12 2 -2 1.2×①+1.4×②+ 60 1.2×①+1.4×②+ 56 1.2×①+1.4×0.7 56N 115 75 1 -1 1.4×0.6×③244 1.4×0.6×④243 ×②+1.4×③212 下M -11 -4 -2 2 -21 -18 -20 N 115 75 1 -1 1.2×①+1.4×②+ 244 1.2×①+1.4×②+ 243 1.2×①+1.4×0.7 212V 2 0 -1 1 1.4×0.6×③ 1 1.4×0.6×④ 3 ×②+1.4×③0 9-4 上M 11 4 13 -13 1.2×①+1.4×②+ 30 1.2×①+1.4×②+ 9 1.2×①+1.4×0.7 36 N 1366 1082 26 -26 1.4×0.6×③3175 1.4×0.6×④3132 ×②+1.4×③2735 下M -11 -4 -11 11 -28 -11 -32 N 1366 1082 26 -26 1.2×①+1.4×②+ 3175 1.2×①+1.4×②+ 3132 1.2×①+1.4×0.7 2735V 2 0 -8 8 1.4×0.6×③-5 1.4×0.6×④9 ×②+1.4×③-9 3 上M 2 1 22 -22 1.2×①+1.4×②+ 22 1.2×①+1.4×②+ -14 1.2×①+1.4×0.7 34N 1568 1247 25 -25 1.4×0.6×③3649 1.4×0.6×④3607 ×②+1.4×③3140 下M -3 -1 -20 20 -21 12 -32 N 1568 1247 25 -25 1.2×①+1.4×②+ 3649 1.2×①+1.4×②+ 3607 1.2×①+1.4×0.7 3140V 2 0 -10 10 1.4×0.6×③-6 1.4×0.6×④10 ×②+1.4×③-12 2 上M 3 1 23 -23 1.2×①+1.4×②+ 24 1.2×①+1.4×②+ -15 1.2×①+1.4×0.7 37N 1902 1545 27 -27 1.4×0.6×③4467 1.4×0.6×④4422 ×②+1.4×③3833 下M -3 -1 -23 23 -25 15 -37 N 1902 1545 27 -27 1.2×①+1.4×②+ 4467 1.2×①+1.4×②+ 4422 1.2×①+1.4×0.7 3833V 2 0 -11 11 1.4×0.6×③-7 1.4×0.6×④11 ×②+1.4×③-14 1 上M 2 1 26 -26 1.2×①+1.4×②+ 26 1.2×①+1.4×②+ -17 1.2×①+1.4×0.7 40N 2263 1870 29 -29 1.4×0.6×③5358 1.4×0.6×④5309 ×②+1.4×③4589 下M -1 -1 -30 30 -28 23 -44 N 2263 1870 29 -29 1.2×①+1.4×②+ 5358 1.2×①+1.4×②+ 5309 1.2×①+1.4×0.7 4589表3-79 用于承载力计算的框架柱由活荷载效应控制的基本组合表(○C轴处柱)恒荷载活荷载左风右风N max相应的M N min相应的M │M│max 相应的N 层数①②③④组合项目数值组合项目数值组合项目数值10 上M 4 1 3 -3 1.2×①+1.4×②+ 9 1.2×①+1.4×②+ 4 1.2×①+1.4×0.7 11N 163 95 0 0 1.4×0.6×③329 1.4×0.6×④328 ×②+1.4×③289 下M -3 0 -3 3 -6 -2 -7 N 163 95 0 0 1.2×①+1.4×②+ 329 1.2×①+1.4×②+ 328 1.2×①+1.4×0.7 289V 2 0 1 -1 1.4×0.6×③ 3 1.4×0.6×④ 1 ×②+1.4×③ 4 9-4 上M 3 0 18 -18 1.2×①+1.4×②+ 19 1.2×①+1.4×②+ -11 1.2×①+1.4×0.7 28 N 1835 1338 4 -4 1.4×0.6×③4078 1.4×0.6×④4071 ×②+1.4×③3518 下M -5 0 -18 18 -21 9 -30 N 1835 1338 4 -4 1.2×①+1.4×②+ 4078 1.2×①+1.4×②+ 4071 1.2×①+1.4×0.7 3518V 2 0 8 -8 1.4×0.6×③9 1.4×0.6×④-5 ×②+1.4×③13 3 上M 3 0 22 -22 1.2×①+1.4×②+ 22 1.2×①+1.4×②+ -14 1.2×①+1.4×0.7 35N 2113 1545 3 -3 1.4×0.6×③4701 1.4×0.6×④4696 ×②+1.4×③4054 下M 0 0 -20 20 -17 17 -28 N 2113 1545 3 -3 1.2×①+1.4×②+ 4701 1.2×①+1.4×②+ 4696 1.2×①+1.4×0.7 4054V 2 0 10 -10 1.4×0.6×③10 1.4×0.6×④-6 ×②+1.4×③16 2 上M 0 0 23 -23 1.2×①+1.4×②+ 20 1.2×①+1.4×②+ -20 1.2×①+1.4×0.7 33N 2500 1860 3 -3 1.4×0.6×③5607 1.4×0.6×④5602 ×②+1.4×③4828 下M 0 0 -23 23 -20 20 -33 N 2500 1860 3 -3 1.2×①+1.4×②+ 5607 1.2×①+1.4×②+ 5602 1.2×①+1.4×0.7 4828V 2 0 11 -11 1.4×0.6×③11 1.4×0.6×④-7 ×②+1.4×③17 1 上M 0 0 26 -26 1.2×①+1.4×②+ 22 1.2×①+1.4×②+ -22 1.2×①+1.4×0.7 36N 2916 2203 3 -3 1.4×0.6×③6585 1.4×0.6×④6580 ×②+1.4×③5662 下M 0 0 -30 30 -25 25 -42 N 2916 2203 3 -3 1.2×①+1.4×②+ 6585 1.2×①+1.4×②+ 6580 1.2×①+1.4×0.7 5662。

(完整版)框架结构毕业设计计算书

(完整版)框架结构毕业设计计算书

(完整版)框架结构毕业设计计算书钢筋混凝⼟现浇框架设计系别:专业年级:姓名:学号:指导教师:⼀、设计任务某五层教学楼,钢筋混凝⼟现浇框架结构。

建筑平⾯为⼀字形,如图1所⽰。

底层层⾼ 4.2m,其它层⾼ 3.6m,室内外⾼差0.3m。

(结构布置如下图1)图11设计内容(1)结构布置确定柱⽹尺⼨,构件截⾯尺⼨,绘制框架结构平⾯布置图。

(2)框架内⼒计算竖向荷载作⽤下可按分层法计算内⼒,⽔平荷载作⽤下按D值法计算框架内⼒。

(3)内⼒组合(4)框架梁和柱承载⼒计算①框架梁承载⼒计算包括正截⾯和斜截⾯承载⼒计算,计算梁的纵向钢筋和箍筋,并配置钢筋。

②框架柱承载⼒计算包括正截⾯和斜截⾯承载⼒计算,计算柱的纵向钢筋和箍筋,并配置钢筋。

(5)框架侧移验算验算顶点侧移和层间侧移,使之符合规范要求。

(6)绘制框架配筋施⼯图。

2设计条件(1)⽓象条件基本风压0.5+6×0.01=0.56kNm2,地⾯粗糙度为B类。

注:以现场按编号布置的为准,本⼈编号6号(2)⼯程地质条件地表下0-10m深度⼟层均可做天然地基,地基承载⼒为180kPa。

(3)屋⾯及楼⾯做法: p]]—6tg①屋⾯做法:现浇楼板上铺膨胀珍珠岩保温层(檐⼝处厚100mm,2%⾃两侧檐⼝向中间找坡);1:2⽔泥砂浆找平层厚20mm;现浇混凝⼟楼板100mm;15mm厚纸筋⾯⽯灰抹。

②楼⾯做法:顶层为20mm厚⽔泥砂浆找平;5mm厚1:2⽔泥砂浆加“107”胶⽔着⾊粉⾯层;现浇混凝⼟楼板;底层为15mm厚纸筋⾯⽯灰抹底。

(4)楼⾯屋⾯活荷载为:1.5+28×0.01=1.78 kNm2(注:楼⾯、屋⾯活荷载以现场按学号布置的为准,本⼈学号28)⼆.框架结构计算过程1.平⾯布置(1)结构平⾯布置(见图2)图 2 结构平⾯布置(2)构件尺⼨确定边跨(AB、CD)梁:取中跨(BC)梁:取框架柱⾃重0.3×0.45×3.6×25=12.15 kN(柱⼦粉刷算在墙体之中)连系梁传来的楼⾯⾃重0.5×4.5×0.5×4.5×3.24=16.4 kN中间层边节点集中荷载 118.5 Kn中柱连系梁⾃重11.25 kN中柱粉刷0.92 kN内纵墙⾃重4.5×(3.6-0.4)×0.24×19=65.66 kN内纵墙粉刷4.5×(3.6-0.4)×2×0.02×17=9.79 kN框架柱⾃重12.15 kN(柱⼦粉刷算在墙体之中)连系梁传来的楼⾯荷载0.5×(4.5+4.5-3)×1.5×3.24=14.58 kN0.5×4.5×2.25×3.24=16.4kN中间层终结点集中荷载 130.75 Kn e)恒荷载作⽤下的结构简图如图5图5 恒荷载作⽤下结构计算简图(2)活荷载计算屋⾯活荷载1.78KNm2,楼⾯活荷载1.78KNm2,⾛廊楼⾯活荷载1.78KNm2。

第4章 框架结构内力组合

第4章  框架结构内力组合

第4章框架内力组合
注:组合所用的内力值均为电算结果4.1框架梁内力的内力组合:
(1)框架梁内力计算结果:
2
其中2
0c b b h q
V V -=, )2
(0c b b b h V M M -=η 式中b V ,b M 为梁端控制截面的剪力
和弯矩;0b V ,0b M 为内力分析得到的柱轴线处的梁端剪力和弯矩,q 为梁上作用的均布荷载;h c 为柱截面高度;η为调幅系数,梁端负弯矩取0.8,跨中正弯矩取1.2,跨中负弯矩不进行调整。

另外由于地震荷载的作用方向不固定,所以都不折减,保证安全。

检查调整后是否满足要求:
2
c
b M M ≥
1() 1.022
l r c
b b b M M M M ++≥
部分梁的跨中弯矩不满足条件,进行调整后的值列于上表的括号中。

(3)框架梁内力的组合结果
4.2框架柱内力组合
(1)框架柱内力计算结果
柱的弯矩计算规定以左侧受拉为正,右侧受拉为负,剪力、轴力值统一用绝对值表示:
4
(2)框架柱内力调整结果:
假想原来计算的柱端弯矩作用在梁高度的中部,并偏于安全的取较小高度的梁(走廊处)的高度值h =300mm 对柱端弯矩进行折算,即:
h V M
M
c
t c t c
-=和0
h V M
M
c
b c b c
-=(底层柱子柱底弯矩不折算)
(3)框架柱的内力组合计算:
6。

一榀框架计算(土木工程毕业设计手算全过程)

一榀框架计算(土木工程毕业设计手算全过程)

合计
92.79KN
3.2 活荷载标准值计算 1)①屋面板活荷载标准值(不上人):
0.5KN/M²
②顶层次梁受板传递的活荷载标准值(计算简图见图 2) 0.5×3=1.5KN/M
③框架梁受次梁传递的活荷载标准值
1.5×9=13.5KN
④屋面板传递给边柱的集中荷载: 中柱的集中荷载:
0.5×1.5×9=6.75KN 0.5×3×9=13.5KN
图 4-4 恒载弯矩分配图
在竖向荷载作用下,梁端截面有较大的负弯矩,设计时应进行弯矩调幅,降低负 弯矩,以减少配筋面积。对于现浇框架,支座弯矩调幅系数为 0.85(在内力组合 的表中进行梁端调幅计算)
图 4-5 恒载作用下的框架弯矩图(等效为集中荷载时)
楼 层 AB 跨
荷载引起的弯矩 BC 跨
VA
VB
VB
VC
表 4-1 恒载作用下内力
CD 跨
VC
VD
AB 跨 VA
弯矩引起的内力
BC 跨 CD 跨
VB
VB VC VC
VD
顶 层 194.67 -194.67 194.67 -194.67 194.67 -194.67 -16.52 -16.52 0 0 16.52 16.52
5
180.6 -180.6 180.6 -180.6 180.6 -180.6 -6.07 -6.07 0 0 6.07 6.07
0.6 KN/M 2 0.02×20=0.4 KN/M 2
0.12×25=3 KN/M 2 0.2 KN/M 2 4.2 KN/M 2
楼面板传递给边柱的集中荷载: 中柱的集中荷载:
4.2×1.5×9=56.7KN 4.2×3×9=113.4KN

框架施工图—内力组合及截面设计(建筑构造)

框架施工图—内力组合及截面设计(建筑构造)

3)风荷载方向
活荷载分跨布置图
框架结构承受的水平荷载(风荷载或地震作用)有向左和向右两个方向,对称结构中,二
者择一即可。
内力组合及截面设计
B 控制截面及最不利内力
1. 框架梁
由于在进行内力分析时是以柱轴线处考虑的,实 际梁支座截面的最不利位置在柱边缘处,在进行截 面配筋计算时,应根据梁轴线处的弯矩和剪力算出 柱边缘的弯矩和剪力
Mb
ቤተ መጻሕፍቲ ባይዱ
M
V
b 2
Vb
V
(g
q)
b 2
梁端控制截面弯矩及剪力
内力组合及截面设计
2. 框架柱
柱的内力包括弯矩、轴力和剪 力。由弯矩图可知,弯矩最大值 在柱的两端,剪力和轴力在同一 层中无变化或变化很小,因此柱 的控制截面是柱的上下端,在梁 轴线处柱的内力也应换算为梁边 柱端截面的内力。
柱的最不利内力可归纳为以下三种类型: (1)|M|max及相应的N、V (2)Nmax及相应的M、V (3)Nmin及相应的M、V
(4)比较大(不是绝对最大),但N比较小
或比较大(不是绝对最小或最大)
内力组合及截面设计
C 框架梁及柱的截面配筋计算
(1) 框架梁设计 梁的配筋计算包括正截面抗弯和斜截面抗剪配筋,一般按受弯构件进行。纵 向受拉钢筋应满足配筋率及裂缝宽度的要求。纵筋的弯起和截断位置,应根 据弯矩包络图确定。 (2) 框架柱设计 框架柱属偏心受压构件,一般采用对称配筋,在中间轴线上的框架柱,按单 向偏心受压考虑,边柱按双向偏心受压考虑,框架平面外尚按轴心受压构件 验算。
i1
由上面三个公式确定的组合有恒荷载+活荷载;恒荷载+风
荷载;恒荷载+0.9(活荷载+风荷载)。

#第六章 框架内力组合

#第六章 框架内力组合

第六部分 框架内力组合一. 框架梁内力组合见横向框架KJ-2内力组合表对于框架梁,在水平荷载和竖向荷载的共同作用下,其剪力沿梁轴线呈线性变化,因此,除取梁的两端为控制截面外,还应在跨间取最大正弯矩的截面为控制截面。

对于框架梁的最不利内力组合有: 对梁端截面:max M +、max M -、m ax V 对梁跨间截面:max M +、max M -荷载规范3.2.5基本组合的荷载分项系数,应按下列规定采用: 1.永久荷载的分项系数: (1) 当其效应对结构不利时,对由可变荷载效应控制的组合,应取1.2; 对由永久荷载效应控制的组合,应取1.35.(2) 当其效应对结构有利时,一般情况下应取1.0;对结构倾覆、滑移和漂浮验算,应取0.9 2.可变荷载的分项系数 一般情况下应取1.4对标准值大于4KN/m 2的工业房屋楼面结构的活荷载应取1.3荷载规范5.4.1结构构件的地震作用效应和其它荷载效应的基本组合,应按下式计算:S=WK W W EVK EVEhK EHGE G S S S S γψγγγ+++式中S ——结构构件内力组合的设计值,包括组合的弯矩、轴向力和剪力设计值; G γ——重力荷载分项系数,一般情况应采用1.2,当重力荷载效应对构件承载能力有利是,不应大于1.0;Eh γ、Ev γ——分别为水平、竖向地震作用分项系数,应按表6―1采用; w γ——风荷载分项系数,应采用1.4;GE S ——重力荷载代表值的效应,有吊车时,尚应包括悬吊物重力标准值的效应; EhK S ——水平地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; EvK S ——竖向地震作用标准值的效应,尚应乘以相应的增大系数或调整系数;wK S ——风荷载标准值的效应;w ψ——风荷载组合值系数,一般结构取0.0,风荷载起控制作用的高层建筑应采用0.2水平、竖向地震作用分项系数表地震作用 Eh γ Ev γ 仅计算水平地震作用1.30.0仅计算竖向地震作用 0.0 1.3 同时计算水平和地震作用1.30.5荷载规范5.4.2 结构构件的截面抗震验算,应采用下列设计表达式: S ≤RE R γ/ 式中 RE γ——承载力抗震调整系数,除另有规定外,应按表采用;R ——结构构件承载力设计值。

整理毕业设计--框架内力组合(柱)

整理毕业设计--框架内力组合(柱)

毕业设计框架内力组合柱A4打印/ 可编辑毕业设计任务书题目:院系名称:土木建筑学院专业班级:土木班学生姓名:学号: 20111401指导教师:教师职称:2015年1月16日毕业设计任务书第3页共12页第4页共12页第5页共12页第6页共12页6. 参考资料7. 致谢(三)绘制施工图要求1. 毕业设计图签做如下统一规定(手工图所买图纸自带图签可不按此格式,但应有相关内容):2. 每个学生要独立地完成所要求的图纸内容及数量,图纸数量不少于2号图12张,要绘出主要的结构平面,其中手工图不少于2号图5张;计算机绘图不少于2号图纸6张。

所需完成的基本图纸要求如下:主要的建筑平面(建筑首层、标准层、屋面)、立面、剖面结构的标准层、屋面的板配筋平面相应的梁平法施工平面柱平法施工平面基础平面所需完成的手工图要求如下:建筑剖面图一张1:100按手工计算框架的计算结果绘制该榀框架的施工图一张1:100梁平法施工图一张1:100按手工计算结果绘制的一层板配筋图一张1:100第7页共12页第8页共12页毕业设计任务书第9页共12页第10页共12页毕业设计任务书5.本毕业设计工作进度计划:起迄日期工作内容2015年1月5日—1月9日1月12日—3月6日3月9日—3月13日3月16日—3月27日3月30日—4月10日4月13日—5月1日5月4日—5月22日5月25日—5月29日6月1日—6月5日6月12日4月6日—4月10日毕业设计动员、选题外文翻译、资料搜集毕业实习调研建筑设计,完成实习调研报告及外文资料翻译结构方案结构计算绘制计算机和手工施工图毕业答辩设计总结、总体审查毕业设计(论文)一次答辩毕业设计(论文)二次答辩学院毕业设计(论文)中期检查所在系审查意见:同意。

负责人:2015 年1 月20日院学术委员会意见:负责人:年月日整理丨尼克本文档信息来自于网络,如您发现内容不准确或不完善,欢迎您联系我修正;如您发现内容涉嫌侵权,请与我们联系,我们将按照相关法律规定及时处理。

一榀框架计算(土木工程毕业设计手算全过程)解读

一榀框架计算(土木工程毕业设计手算全过程)解读

一框架结构设计任务书1.1 工程概况:本工程为成都万达购物广场----成仁店,钢筋混凝土框架结构。

梁板柱均为现浇,建筑面积约为5750m2,宽27米,长为45米,建筑方案确定。

建筑分类为乙类公共类建筑,二类场地,抗震等级三级。

图1-1 计算平面简图1.2 设计资料1)气象条件:基本风压3155KN/m22)抗震设防:设防烈度7度3)屋面做法:20厚水泥砂浆面层一层油毡隔离层40厚挤塑聚苯板保温层15厚高分子防水卷材20厚1:3水泥砂浆找平1:6水泥焦渣1%找坡层,最薄处30厚120厚现浇钢筋混凝土板粉底4)楼面做法:8~13厚铺地砖面层100厚钢筋砼楼板吊顶1.3设计内容1)确定梁柱截面尺寸及框架计算简图2)荷载计算3)框架纵横向侧移计算;4)框架在水平及竖向力作用下的内力分析;5)内力组合及截面设计;6)节点验算。

二 框架结构布置及结构计算简图确定2.1 梁柱截面的确定通过查阅规范,知抗震等级为3级,允许轴压比为[μ]=0.85由经验知n=12~14kn/m 2 取n=13kn/m 2拟定轴向压力设计值 N=n •A=13kn/m 2×81m 2×5=5265KN拟定柱的混凝土等级为C30,f c =14.3N/mm 2 柱子尺寸拟定700mm ×700mmμ= c f s N A =52650.0143700700⨯⨯=0.75<[μ]=0.85 满足初步确定截面尺寸如下:柱:b ×h=700mm ×700mm梁(BC 跨、CE 、EF 跨)=L/12=9000/12=750mm 取h=800mm ,b=400mm纵梁=L/12=9000/15=600mm 取h=600mm ,b=300mm现浇板厚取h=120mm2.2 结构计算简图结构计算简图如下:图2-1结构计算简图图2-2平面计算简图三荷载计算:3.1恒载标准值计算1)①屋面板恒荷载标准值20厚1:3水泥砂浆面层0.02×20=0.4 KN/M 2 一层油毡隔离层0.05 KN/M 2 40厚挤塑苯板保温层0.04×0.5 =0.02 KN/M 2 15厚高分子防水卷材0.04KN/M 2 20厚1:3水泥砂浆找平0.02×20 =0.4 KN/M 2 1:6水泥渣1%找坡层最薄处30厚(0.03+0.045)/2×14=0.525 KN/M 2 120厚现浇钢筋混凝土板0.12×25=3 KN/M 2 12厚板底抹灰0.012×20=0.24 KN/M 2 合计 4.675KN/M 2屋面板传递给边柱的集中荷载: 4.675×1.5×9=63KN中柱的集中荷载: 4.675×3×9=126.23KN②屋顶次梁恒载标准值单向板传给次梁的荷载 4.675×3=14.025 KN/M 次梁自重0.3×(0.6-0.12)) ×25=3.6 KN/M 次梁粉刷(0.6-0.12)×0.02×17×2=0.326 KN/M 合计18 KN/M图3-1 次梁计算单元及板传力图③屋顶框架梁所受恒荷载标准值次梁传给框架梁恒荷载18×9=162KN④屋顶框架梁重量梁自重:0.4×﹙0.8-0.12﹚×25=6.8KN/M粉刷:﹙0.8-0.12﹚×0.02×17×2=0.46KN/M 合计7.26KN/M 2)①楼面板恒载标准值8~13厚铺地砖面层0.6 KN/M 2 20厚1:2水泥砂浆结合层0.02×20=0.4 KN/M 2 120厚钢筋砼楼板0.12×25=3 KN/M 2 石膏板吊顶0.2 KN/M 2合计 4.2 KN/M 2楼面板传递给边柱的集中荷载: 4.2×1.5×9=56.7KN中柱的集中荷载: 4.2×3×9=113.4KN②2~5层纵向次梁恒载标准值计算简图见图3楼面单向板传给纵向次梁恒荷载 4.2×3=12.6 KN/M 次梁自重0.3×(0.6-0.12)×25=3.6KN/M 合计16.2 KN/M③2~5层框架梁所受恒荷载标准值次梁传递给框架梁恒荷载16.2×9≈150 KN③2~5层框架梁恒载标准值框架梁自重0.4×(0.8-0.12)×25=6.8 KN/M 3)四层建在所取一榀框架梁上的填充墙恒荷载标准值墙自重0.2×(3.3-0.8)×10.3≈5.2KN/M 粉刷(3.3-0.8)×0.02×17×2=1.7KN/M 合计取(因为有构造柱取大点)7.2KN/M4)柱自重标准值1~3层柱自重:0.7×0.7×(4.2-0.12)×25=49.98KN大理石贴面:0.5×4×0.7×4.2=5.88KN 合计55.86KN 4~5层柱自重:0.7×0.7×(3.3-0.12)×25=38.96KN大理石贴面:0.5×4×0.7×3.3=4.62KN合计43.58KN5)外墙自重标准值5层外墙作用在边柱的集中荷载墙自重:0.2×(3.3-0.12)×10.3×(9-07)=54.37KN粉刷:2×0.02×(3.3-0.12)×17(9-0.7)=17.95KN合计72.32KN4层玻璃幕墙作用在边柱的集中荷载玻璃幕墙自重: 1.5kn/m2×(9-0.7)×(3.3-0.12)=26.15KN2~3层外墙作用在边柱的集中荷载墙自重:0.2×(4.2-0.12)×10.3×(9-07)=69.76KN粉刷:2×0.02×(4.2-0.12)×17(9-0.7)=23.03KN合计92.79KN3.2活荷载标准值计算1)①屋面板活荷载标准值(不上人):0.5KN/M²②顶层次梁受板传递的活荷载标准值(计算简图见图2)0.5×3=1.5KN/M③框架梁受次梁传递的活荷载标准值1.5×9=13.5KN④屋面板传递给边柱的集中荷载:0.5×1.5×9=6.75KN中柱的集中荷载:0.5×3×9=13.5KN2)①5层楼面板活荷载标准值:5KN/M²②5层次梁受板传递的活荷载标准值(计算简图见图3)5×3=15KN/M③框架梁受次梁传递的活荷载标准值15×9=135KN④5层面板传递给边柱的集中荷载:5×1.5×9=67.5KN中柱的集中荷载:5×3×9=135KN3)①4层楼面板活荷载标准值: 2.5KN/M²②4层次梁受板传递的活荷载标准值(计算简图见图3)2.5×3=7.5KN/M③框架梁受次梁传递的活荷载标准值7.5×9=67.5KN④屋面板传递给边柱的集中荷载: 2.5×1.5×9=33.75KN中柱的集中荷载: 2.5×3×9=67.5KN4)①2~3层楼面板活荷载标准值: 3.5KN/M²②2~3层次梁受板传递的活荷载标准值(计算简图见图3)3.5×3=10.5KN/M③框架梁受次梁传递的活荷载标准值10.5×9=94.5KN④屋面板传递给边柱的集中荷载: 3.5×1.5×9=47.25KN中柱的集中荷载: 3.5×3×9=94.5KN四 内力计算4.1 恒荷载作用下的内力计算刚度计算梁线刚度: 截面的惯性矩 I b0= 312bh = 340080012⨯=17×109mm 4考虑现浇楼板对框架梁截面惯性矩的影响,中框架梁取 I 中=2I b0 边框架取 I 边=1.5I b0i 边跨梁= 91.517109000⨯⨯E =28×105E i 中跨梁= 9217109000⨯⨯E=38×105E柱线刚度: 截面的惯性矩 I C =312bh =370070012⨯=20×109mm 4i 4~5层柱= 92010 3300⨯E =60×105Ei 1~3层柱= 92010 4200⨯E =48×105E取105E 值作为基准值1,算得各杆件相对线刚度(见下图)图4-1 梁柱相对线刚度图图4-2 恒载作用下的计算简图由于分布荷载在梁汇总产生的内力远小于集中荷载,所以将梁的分布荷载近似等效为作用在次梁处的集中荷载,以便于计算。

第七章-内力组合

第七章-内力组合

§7.1框架结构梁内力组合§7.1.1. 框架结构梁的内力组合在竖向荷载作用下,可以考虑梁端塑性变形内力重分布而对梁端负弯距进行调幅,调幅系数为现浇框架:0.8-0.9,本设计取0.85。

计算结果见表7-1 横梁弯矩调幅。

由于风荷载作用下的组合与考虑地震组合相比,一般较小,对于结构设计不起控制作用,故不考虑。

只考虑以下三种组合形式: 一.由可变荷载效应控制的组合:1.2 1.4QK QK S S S =+ (71)-二.由永久荷载效应控制的组合:1.35 1.40.7QK QK S S S =+⨯⨯ (72)-三.竖向荷载与水平地震作用下的组合:1.2(0.5) 1.3QK QK EK S r S S =+⨯+ (73)-具体组合过程见表7.2,其中弯矩KN.m ,剪力KN ,弯矩的上部受拉为负,剪力的产生顺时针为正。

表7-1 横梁弯矩调幅-9.79 2.411.484-48.44621.103614.74724.5965-16.2046 5.625-0.938 2.4 3.75-13.3824-13.8074-1.8173-1.8173V4M-3V-9M-367左D2右9.712.0068面力恒V9.714.569707172 290.754-1.9D7右M V跨V63.851773§7.1.2 梁端弯矩控制值梁的支座截面考虑了柱支撑宽度的影响,按支座边缘截面的弯矩计算,即:`/2M M V b =-⨯ (7-4),式中:M 为梁内力组合表中支座轴线的弯矩值; V 为相应的支座剪力; b 为相应的柱的宽度;计算结果见表7-3表7-3 梁端弯矩控制值 6001.2×(①+1.1.2×(① -90.51-17.16+1.31.2×(①)-30.90)107.87-62.331.2×(①+0.5②恒①-3.540.5②)-240.39-124.08边跨③0.55恒+1.3 1.2×(①§7.1.3梁端截面组合的剪力设计值调整弯”截面设计须对有地震作用的组合剪力设计值按(7-5)进行调整。

毕业设计 框架内力组合 梁端弯矩

毕业设计 框架内力组合 梁端弯矩

S1.2SGk1.4SQk S 1 .3 5 S G k 1 .4 0 .7 S Q k
SG ——由恒荷载产生的内力标准值;
SQ ——由活荷载产生的内力标准值。
在上述两种荷载组合中,取最不利情况作为截面设计的内力设计值。
框架结构梁柱的内力组合第三部分 框架结构 梁内力组合 (3)梁的最大内力 ① 组合后梁两端弯矩、剪力(考虑地震左、右作用)。
梁的内力组合
框架结构梁柱的内力组合第三部分 框架结构
11.3.2 考虑地震组合的框架梁端剪力设计值Vb应按下列规定计算:
梁的内力组合
框架结构梁柱的内力组合第三部分 框架结构
Mbl、Mbr-----考虑地震组合时的框架梁左右端弯矩设计值。
注意:同一工况 梁端弯矩: 1.3左震+1.2重力荷载代表值 1.3右震+1.2重力荷载代表值
G j 永久荷载的分项系数:
当其效应对结构不利时 对由可变荷载效应控制的组合,应取1.2; 对由永久荷载效应控制的组合,应取1.35; 当其效应对结构有利时应取1.0;
Q i 可变荷载的分项系数: 一般情况下应取1.4 对标准值大于4kN/m2的工业房屋楼面结构的活荷载应取1.3。
L i 第i个可变荷载考虑设计使用年限的调整系数,其中 L 1 为主导可变荷载 Q1考虑设计使用年限的调整系数。
ln
ln
M
l b
M
r b
ln
梁的内力组合
框架结构梁柱的内力组合第三部分 框架结构 同一工况 右震!
ln
M
l b
ln
M
r b
ln
框架结构梁柱的内力组合第三部分 框架结构 梁的内力组合
6.3.3 梁的钢筋配置,应符合下列各项要求: 3 梁端箍筋加密区的长度、箍筋最大间距和最小直径应按表6.3.3采用,当梁

毕业设计指导书(框架结构设计)-内力计算及组合

毕业设计指导书(框架结构设计)-内力计算及组合

毕业设计指导书(框架结构设计)-内力计算及组合第三章框架内力计算3.1计算方法框架结构一般承担的荷载主要有恒载、使用活荷载、风荷载、地震作用,其中恒载、活荷载一般为竖向作用,风荷载、地震则为水平方向作用,手算多层多跨框架结构的内力(M、N、V)及侧移时,一般采用近似方法。

如求竖向荷载作用下的内力时,有分层法、弯矩分配法、迭代法等;求水平荷载作用下的内力时,有反弯点法、改进反弯点法(D值法)、迭代法等。

这些方法采用的假设不同,计算结果有所差异,但一般都能满足工程设计要求的精度。

本章主要介绍竖向荷载作用下无侧移框架的弯矩分配法和水平荷载作用下D值法的计算。

在计算各项荷载作用效应时,一般按标准值进行计算,以便于后面荷载效应的组合。

3.1.1竖向荷载作用下框架内力计算1.弯矩分配法在竖向荷载作用下较规则的框架产生的侧向位移很小,可忽略不计。

框架的内力采用无侧移的弯矩分配法进行简化计算。

具体方法是对整体框架按2照结构力学的—般方法,计算出各节点的弯矩分配系数、计算各节点的不平衡弯矩,然用进行分配、传递,在工程设计中,每节点只分配两至三次即可满足精度要求。

相交于同一点的多个杆件中的某一杆件,其在该节点的弯矩分配系数的计算过程为:(1)确定各杆件在该节点的转动刚度杆件的转动刚度与杆件远端的约束形式有关,如图3-1:(a)杆件在节点A处的转动刚度34(b)某节点各杆件弯矩分配系数图3-1 A节点弯矩分配系数(图中lEIi=)(2)计算弯矩分配系数μ∑∑∑∑===++=AADADAACACAABABADACAABSSSSSSSSSSμμμ,,1=++=∑ADACABAμμμμ(3)相交于一点杆件间的弯矩分配弯矩分配之前,还需先要求出节点的固端弯矩,这可查阅相关静力计算手册得到。

表3-1为常见荷载作用下杆件的固端弯矩。

在弯矩分配的过程中,一个循环可同时放松和固定多个节点(各个放松节点和固定节点间间隔布置,如图3-2),以加快收敛速度。

中学教学楼-毕设指导五(内力组合)

中学教学楼-毕设指导五(内力组合)

毕业设计指导五本部分为框架内力组合(注:在内力组合前,需先进行金边缘内力修正、弯矩调幅、活荷载不利布置使跨中内力放大)1.框架承载力计算内力基本组合方式根据规范及本工程特点,考虑以下内力组合形式(按一般框、排架简化规则):①S=1.35S「K②S = 1.2S r..+1.0xl.4S m.③ 5 = 1.05^+1.0x1.45^④S=1.2S GA+L0X1.4S晟(分左右风)⑤S=1.0S GA+L0X1.4s“火(分左右风)⑥S = 12S Gk + 0.9 x 1 AS ok + 0.9 x 1,4S vt,.(分左右风)⑦S = 1.0S Gk + 0.9 X I AS Qk + 0.9 X 1,4S wk(分左右风)⑧S = 1.35S G,+1.0x1.45^ (注:此时只能组合竖向活荷载)⑨S= 1.2S GE +L3S W=1.2(S GK+0.5S”)+ 1.3S W(分左右震,顶层S GE采用5096的雪载)上几式中,S G〃为恒载效应标准值,S QA.为活载效应标准值,5“火为风载效应标准值,小£为重力荷载代表值产生的荷载效应标准值,5湫为水平地震作用产生的荷载效应标准值。

注:以上各组合应根据实际情况取舍,例如当恒载不会出现对结构有利时/ (2)、(4)、(6)可舍弃。

以上的|S G%、S0代表的粱端弯矩M都是经过调幅后的弯矩,调幅系数为0.85O但调幅只对竖向荷载作用下内力进行调幅,不对水平荷载作用下内力进行调幅。

2.框架梁内力组合对于3跨结构对称,每层都有五个控制截面,即梁AB两端,梁AB跨间最大弯矩处,梁BC左端、梁BC跨间最大弯矩处。

进行内力组合前,需对竖向荷载产生弯矩进行0.8的调幅,再将两端节点弯矩换算至两端柱边弯矩;活荷载下内力计算时,没有考虑到活载的最不利布置,跨中弯矩需乘以帆大系数L 2;水平荷载直接换算至两端柱边弯矩,方可进行内力组合。

框架梁内力组合表见附表1 (表中根据实际情况舍弃了一些组合项,自己可以添加项目)。

土木毕业设计内力组合

土木毕业设计内力组合

表 恒载作用下梁端弯矩(kN·m)层次 A l B r B l C r C5 -191.376 291.17 -269.871260.348 -260.348 4 -174.925 200.007 -188.225 185.579 -185.579 3 -165.304 200.007 -188.225 185.579 -185.579 2 -164.852 200.007 -188.225 185.579 -185.579 1-156.682200.007-188.225185.579-185.579表 活载作用下梁端弯矩(kN·m)层次 AlB r Bl Cr C5-43.54 60.82 -56.369 54.38 -54.38 4 -84.675 102.558 -96.517 95.16 -95.16 3 -84.795 102.558 -96.517 95.16 -95.16 2 -84.988 103.558 -96.517 95.16 -95.16 1 -80.617 102.815-96.6495.16-95.16表 雪载作用下梁端弯矩(kN·m)层次 AlB r Bl Cr C5 -14.374 13.544 -12.553 12.11 -12.11 4 -81.992 102.558 -96.517 95.16 -95.16 3 -84.795 102.558 -96.517 95.16 -95.16 2 -84.988 103.558 -96.517 95.16 -95.16 1 -80.617 102.815 -96.64 95.16 -95.16恒载作用下的梁端剪力(kN )层次 荷载引起的剪力 弯矩引起的剪力 AB 跨 BC 跨 CD 跨AB 跨 BC 跨 CD 跨B A V V =C B V V =D C V V = B A V V -=C B V V -=D C V V -= 5 164.000164.000 164.000 -12.794 1.221 0.000 4 116.955 116.955 116.955 -3.216 0.339 0.000 3 116.955 116.955 116.955 -4.449 0.339 0.000 2 116.955 116.955 116.955 -4.507 0.339 0.000 1 116.955116.955116.955 -5.9890.3390.000总剪力(kN )层次 AB 跨BC 跨CD 跨A VB V B VC V C VD V5 151.206 176.794 165.221 162.779 164.000 164.000 4 113.739 120.171 117.294 116.616 116.955 116.955 3 112.506 121.404 117.294 116.616 116.955 116.955 2 112.448 121.462 117.294 116.616 116.955 116.955 1 110.966 122.944 117.294 116.616 116.955 116.955恒载作用下柱轴力(kN )层次A 柱B 柱C 柱N 顶 N 底 N 顶 N 底 N 顶 N 底 5 267.976 336.699 496.325 565.048 481.089 549.812 4 592.988 706.727 914.993 983.716 795.863 864.586 3 961.783 1030.506 1330.106 1398.788 1112.637 1181.36 2 1285.504 1354.227 1750.065 1818.788 1429.411 1498.134 11607.743 1685.898 2165.178 2243.333 1746.185 1824.34表 活载作用下的梁端剪力及轴力(kN )活载作用下的梁端剪力(kN )层次 荷载引起的剪力 弯矩引起的剪力 AB 跨 BC 跨 CD 跨AB 跨 BC 跨 CD 跨B A V V =C B V V =D C V V = B A V V -= C B V V -= D C V V -= 5 34.22334.223 34.223 -2.2150.225 0.000 4 59.892 59.892 59.892 -2.293 0.174 0.000 3 59.892 59.892 59.892 -2.277 0.174 0.000 2 59.892 59.892 59.892 -2.381 0.174 0.000 1 59.89259.89259.892-2.8460.1900.000总剪力(kN )层次 AB 跨BC 跨CD 跨A VB V B VC V C VD V5 32.008 36.438 34.448 -2.215 0.225 0.000 4 57.599 62.185 59.718 -2.293 0.174 0.000 3 57.615 62.169 59.718 -2.277 0.174 0.000 2 57.511 62.273 59.718 -2.381 0.174 0.000 1 57.046 62.738 59.892 -2.846 0.190 0.000活载作用下柱轴力(kN )层次 A 柱 B 柱 C 柱 N 顶=N 底 N 顶=N 底 N 顶=N 底 5 47.218 101.306 98.641 4 131.437 276.449 271.839 3 204.262 451.576 445.037 2 276.983 626.807 618.235 1349.239 802.487 791.433表 调幅后雪荷载作用下的梁端剪力及轴力(kN )调幅后活载作用下的梁端剪力(kN )层次 荷载引起的剪力 弯矩引起的剪力AB 跨 BC 跨 CD 跨AB 跨 BC 跨 CD 跨B AV V =C B V V =D C V V = BAV V -=C B V V -=D C V V -= 5 7.7947.794 7.794 -0.106 0.057 0.000 4 59.892 59.892 59.892 -2.637 0.174 0.000 3 59.892 59.892 59.892 -2.277 0.174 0.000 2 59.892 59.892 59.892 -2.381 0.174 0.000 159.892 59.892 59.892 -2.846 0.190 0.000总剪力(kN )层次 AB 跨BC 跨CD 跨A VB V B VC V C VD V5 7.688 7.900 7.851 7.737 7.794 7.794 4 57.255 62.529 60.066 59.718 59.892 59.892 3 57.615 62.169 60.066 59.718 59.892 59.892 2 57.511 62.273 60.066 59.718 59.892 59.892 1 57.046 62.738 60.082 59.702 59.892 59.892调幅后活载作用下柱轴力(kN )层次 A 柱 B 柱 C 柱 N 顶=N 底 N 顶=N 底 N 顶=N 底 5 10.728 21.831 21.611 4 94.603 197.666 194.461 3 178.838 373.141 367.311 2 262.969 548.72 540.161 1 346.635 724.299 713.011跨中弯矩计算2.跨中弯矩计算采用叠加法对跨中弯矩进行计算,首先将荷载分解为图 所示的三个部分,先求出每个部分的跨中弯矩,然后进行叠加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
梁端负弯矩 M (1.2 M Gk 1.4 M Qk ) M (1.35M Gk 1.4 0.7 M Qk ) M (1.2 M GEk 1.3M Ehk )
梁端正弯矩
M GEk
M 1.3M Ehk 1.0 M GEk
M Ehk
M 1.2M gk 1.4M qk V 1.2Vgk 1.4Vqk
2)由永久荷载效应控制的组合:
S d G j S G jk Qi Liψ ci S Qik
j1 i 1
m
n
M 1.35M gk 1.4 0.7 M qk V 1.35Vgk 1.4 0.7 Vqk
Vb 1.2VGE 1.3VEh
框架结构梁柱的内力组合第三部分 梁的内力组合
1. 按不考虑地震作用计算剪力最大值,验算箍筋
框架结构
第7.5.4条 矩形、T形和I形截面的一般受弯构件,当仅配置箍筋时,其 斜截面的受剪承载力应符合下列规定:
框架结构梁柱的内力组合第三部分 梁的内力组合
框架结构
保证构件出现塑性铰的位置有足够的 转动能力并限制裂缝宽度。
框架结构梁柱的内力组合第三部分
框架结构
梁内力组合 框架结构的内力组合形式分别为: 组合1:1.2恒荷载+1.4活荷载(无地震作用组合) 组合2:1.35恒荷载+1.4*0.7活荷载(无地震作用组合) 组合3:1.2(重力荷载代表值)+1.3水平地震荷载(左震作用) 组合4:1.2(重力荷载代表值)+1.3水平地震荷载(右震作用)
框架结构
ln
lnMl b NhomakorabeaM br
ln
框架结构梁柱的内力组合第三部分 梁的内力组合 同一工况 右震!
框架结构
ln
l Mb
ln
M br
ln
框架结构梁柱的内力组合第三部分 梁的内力组合
6.3.3 梁的钢筋配置,应符合下列各项要求:
框架结构
3 梁端箍筋加密区的长度、箍筋最大间距和最小直径应按表6.3.3采用,当梁 端纵向受拉钢筋配筋率大于2%时,表中箍筋最小直径数值应增大2mm。
2018/3/21 6
框架结构梁柱的内力组合第三部分 梁内力组合
框架结构
框架结构梁柱的内力组合第三部分 梁内力组合
框架结构
框架结构梁柱的内力组合第三部分 梁内力组合
框架结构
S RdE R / RE
框架结构梁柱的内力组合第三部分
框架结构
梁内力组合
5.4.1重力荷载作用下的框架中的现浇梁,经弹性分析求得内力后,可 对支座或节点弯矩进行适度调幅,并确定相应的跨中弯矩。 5.4.3 钢筋混凝土梁支座或节点边缘截面的负弯矩调幅幅度≤25%;弯矩 调整后的梁端截面ξ ≤ 0.35,且≥0.10。 特别注意:调幅关键 1.重力荷载(恒载、活载、重力荷载代表值) 2.支座或节点弯矩 3.跨中弯矩根据内力平衡确定。
S 1.2 SGk 1.4 SQk
S 1.35SGk 1.4 0.7 SQk
SG
——由恒荷载产生的内力标准值; ——由活荷载产生的内力标准值。
SQ
在上述两种荷载组合中,取最不利情况作为截面设计的内力设计值。
框架结构梁柱的内力组合第三部分 梁内力组合
框架结构
(3)梁的最大内力 ① 组合后梁两端弯矩、剪力(考虑地震左、右作用)。
框架结构梁柱的内力组合第三部分 梁的内力组合
2. 按考虑地震作用计算剪力最大值(左、右震),验算箍筋
框架结构
a=0.7试验表明,低周反复荷载作用使梁混凝土受剪承载力降低,在抗震受剪 承载力中,箍筋项承载力降低不明显。为此,仍以截面总受剪承载力试验值 的下包线作为计算公式的取值标准,将混凝土项取为非抗震情况下的60%, 箍筋项则不予折减。
S Eh —水平地震作用效应的标准值。
(2)竖向荷载效应组合(非抗震组合)
(1)1.2恒+1.4活 (2)1.35恒+1.4 ×0.7活 (3)1.2(恒+0.5活)+1.3左震 (4)1.2(恒+0.5活)+1.3右震
SGE —相应于水平地震作用下重力荷载代表值效应的标准值。
包括全部恒载与活载(考虑最不利布置)的组合。
框架结构梁柱的内力组合第三部分
框架结构
梁的内力组合
构件的内力组合,由EXCEL表格计算。
框架结构梁柱的内力组合第三部分 梁的内力组合 梁弯矩以梁上部受拉为负,下部受拉为正 均为柱端弯矩
框架结构
活载满跨
左、右震
这张表是前面工作的总结!
框架结构梁柱的内力组合第三部分 梁的内力组合
分左、右震
框架结构
框架结构梁柱的内力组合第三部分 梁内力组合
框架结构
地震设计状况应按作用的地震组合:
S RdE R / RE
M 1.2(M gk 0.5M qk ) 1.3M Ek
其中风载及竖向地震作用不考虑 重力荷载代表 值产生弯矩
8、9度时的大跨度和长悬臂结构及9度时的高层建筑, 应计算竖向地震作用。
框架结构梁柱的内力组合第三部分 梁内力组合
持久设计状况、短暂设计状况:荷载效应的基本组合
框架结构
γoS≤R ,柱中剪力,不调fu,不考虑方向
1)由可变荷载效应控制的组合:
S d γGj S G j γQ1 L1S Q1k γQi γLi ψ ci S Qik
j1
k
m
n
i 2
11.3.7 梁端纵向受拉钢筋的配筋率不宜大于2.5%。
框架结构梁柱的内力组合第三部分 梁的内力组合 组合后梁端剪力
框架结构
(3)梁的最大内力
Vb 1.2VG 1.4VQ Vb 1.35VG 1.4 0.7VQ
不考虑地震作用
分开计算 不挑大值 考虑地震作用
原因:设计计 算公式不同
以上四种组合中,组合3、4要考虑γRE的影响。 然后,与组合1、2比较,选最大内力。 梁端弯矩需乘以0.85调幅系数(竖向荷载作用下)。
1.2(重力荷载代表值)没加弯矩的剪力要记一下 端支座(0和1)
框架结构梁柱的内力组合第三部分 梁内力组合
(1)地震作用效应与重力荷载代表值效应的组合
框架结构
S 1.2 SGEk 1.3S Ehk
框架结构梁柱的内力组合第三部分 梁的内力组合
11.3.2 考虑地震组合的框架梁端剪力设计值Vb应按下列规定计算:
框架结构
框架结构梁柱的内力组合第三部分 梁的内力组合
Mbl、Mbr-----考虑地震组合时的框架梁左右端弯矩设计值。 注意:同一工况 梁端弯矩: 1.3左震+1.2重力荷载代表值 1.3右震+1.2重力荷载代表值
注意:要乘0.85的调幅系数,同时活荷载是满跨布置。
结构的内力组合形式分别为:
组合1:1.2恒荷载+1.4活荷载(无地震作用组合) 组合2:1.35恒荷载+1.4*0.7活荷载(无地震作用组合) 组合3:1.2(重力荷载代表值)+1.3地震荷载(左震作用) 组合4:1.2(重力荷载代表值)+1.3地震荷载(右震作用)
框架结构梁柱的内力组合第三部分
框架结构
梁内力组合
3.3.2 对持久设计状况、短暂设计状况和地震设计状况,当用内力的形式表达时, 结构构件应采用下列承载能力极限状态设计表达式:
γ0S≤R R=R(fc,fs,ak,…)/γRd
(3.3.2—1) (3.3.2—2)
式中:γ0——结构重要性系数:在持久设计状况和短暂设计状况下,对安全等级为一 级(甲乙)的结构构件不应小于1.1,对安全等级为二级的结构构件不应小于1.0 (丙),对安全等级为三级的结构构件不应小于0.9;对地震设计状况下应取1.0; S——承载能力极限状态下作用组合的效应设计值:对持久设计状况按作用的基本组 合计算;对地震设计状况应按作用的地震组合计算; R——结构构件的抗力设计值; R(· )——结构构件的抗力函数; γRd——结构构件的抗力模型不定性系数:静力设计取1.0,对不确定性较大的结构构 件根据具体情况取大于1.0的数值;抗震设计应用承载力抗震调整系数γRE代替γRd;
4
框架结构梁柱的内力组合第三部分 梁内力组合
Sd γGj SG j γQ1 L1SQ1k γQi γL i ψci SQik
j 1
k
框架结构
m
n
i 2
荷载规范3.2.5 基本组合的荷载分项系数,应按下列规定采用: G j 永久荷载的分项系数: 当其效应对结构不利时 对由可变荷载效应控制的组合,应取1.2; 对由永久荷载效应控制的组合,应取1.35; 当其效应对结构有利时应取1.0;
框架结构梁柱的内力组合第三部分
框架结构
毕业设计第三讲
梁内力组合
框架内力分析-框架内力组合
为什么要内力组合?
求哪里的内力?(控制截面)
何为最不利内力?
2018/3/21
1
框架结构梁柱的内力组合第三部分
框架结构
梁内力组合
内力组合时应注意:
1.梁弯矩以梁上部受拉为负(板面),下部受
拉为正(板底) 配筋 2.梁端弯矩、剪力组合均取活载满布 3.竖向荷载作用下梁端弯矩调幅,调幅系数0.85 4.梁端弯矩、剪力均取柱边值
6.3.4 3 梁端加密区的箍筋肢距,三级不宜大于250mm和20倍箍筋直径的 较大值。
框架结构梁柱的内力组合第三部分
框架结构
梁的内力组合 (3)梁的最大内力
④ 梁端截面取柱边缘内力组合值用作配筋计算。
框架结构梁柱的内力组合第三部分
框架结构
梁的内力组合 (3)梁的最大内力 ⑤ 配筋计算:当相邻层模板相同,且钢筋面积相差不多时(归 并系数0.2),梁可统一配筋,以方便施工。 6.3.3 梁的钢筋配置,应符合下列各项要求: 1 梁端计入受压钢筋的 ξ,三级不应大于0.35。 2 梁端截面的底面和顶面纵向钢筋配筋量的比值,除按计算确 定外,三级不应小于0.3。
相关文档
最新文档