第四章 轴心受力构件
钢结构设计原理 第四章-轴心受力构件
因此,失稳时杆件的整个截面都处于加载的过 程中,应力-应变关系假定遵循同一个切线模量 Et,此时轴心受压杆件的屈曲临界力为:
N cr ,t
2 Et I
2 二、实际的轴心受压构件的受力性能
在钢结构中,实际的轴压杆与理想的直杆受力性能之间差别很大,实 际上,轴心受压杆的屈曲性能受许多因素影响,主要的影响因素有:
一、理想轴压构件的受力性能 理想轴压构件是指满足下列4个条件: o杆件本身绝对直杆; o材料均质且各向同性; o无荷载偏心且在荷载作用之前无初始应力; o杆端为两端铰接。 在轴心压力作用下,理想的压杆可能发生三种形式的屈曲: 弯曲屈曲、扭转屈曲、弯扭屈曲——见教科书P97图4–6 轴心受压构件具体以何种形式失稳,主要取决于截面的形式 和尺寸、杆的长度以及杆端的支撑条件。
l N 2 EI 对一无残余应力仅存在初弯曲的轴压杆,杆件中点截面边缘开始 式中 N l2 NE 屈服的条件为:
0
1
经过简化为:
N N vm v0 v0 fy v m v0 v 1 1 N NE A W N N v0 N E fy A W NE N
An—构件的净截面面积_
N fy r f R An
P94式4-2
(1)当轴力构件采用普通螺栓连接时 螺栓为并列布置:
n1 n2 n3
按最危险的截面Ⅰ-Ⅰ 计算,3个截面净截面面积 相同,但 Ⅰ-Ⅰ截面受力最大。
N n
Ⅰ-Ⅰ:N Ⅱ-Ⅱ:N-Nn1/n Ⅲ-Ⅲ:N-N(n1+n2)/n
Ⅰ Ⅱ Ⅲ
2 2
从上面两式我们可以看出,绕不同轴屈曲时,不仅临界力不同,且残余 应力对临界应力的影响程度也不同。因为k1,所以残余应力对弱轴的 影响比对强轴的影响严重的多。
第4章轴心受力构件的承载力计算
柱的长细比较大,柱的极限承载力将受侧向变形所引起的附加弯矩影响而 降低。
第4章 轴心受力构件的承载力计算
1. 受力分析及破坏特征 ⑴受压短柱 第Ⅰ阶段——弹性阶段 轴向压力与截面钢筋和混凝土的应力 基本上呈线性关系
第Ⅱ阶段——弹塑性阶段 混凝土进入明显的非线性阶段,钢筋 的压应力比混凝土的压应力增加得快, 出现应力重分布。
Asso
d cor Ass1
s
计算螺旋筋间距s, 选螺旋箍筋为
12,Assl=113.1mm2
s
d cor Assl
Asso
3.14 450 113.1 69.4mm 2303
取s=60mm,满足s ≤ 80mm(或1/5dcor)
第4章 轴心受力构件的承载力计算
截面验算 一
由混凝土压碎所控制,这一阶段是计算轴心受压构件极限强度的依据。
第4章 轴心受力构件的承载力计算
⑵受压长柱
初始偏心距
附加弯矩和侧向挠度
加大了原来的初始偏心距
构件承载力降低
破坏时,首先在凹侧出现纵向裂缝,随后混凝土被压 碎,纵筋被压屈向外凸出;凸侧混凝土出现垂直于纵 轴方向的横向裂缝,侧向挠度急剧增大,柱子破坏。
第4章 轴心受力构件的承载力计算
2.配有普通箍筋的轴心受压构件正截面承载力计算方法
f c A) N 0.9 ( f y As
N-轴向力设计值;
N
-钢筋混凝土构件的稳定系数;
f y-钢筋抗压强度设计值; fc f y A s
A s-全部纵向受压钢筋的截面面积;
f c-混凝土轴心抗压强度设计值; A -构件截面面积,当纵向配筋率大于0.03时, A改为Ac, Ac =A- A s; 0.9 -可靠度调整系数。 h
第4章轴心受力构件1211
轴 心 受 力 构 件
强度 (承载能力极限状态) 轴心受拉构件 刚度 (正常使用极限状态) 强度 轴心受压构件 稳定 刚度 (正常使用极限状态)
(承载能力极限状态)
设计轴心受拉构件时,应根据结构用途、构件受 力大小和材料供应情况选用合理的截面形式,并对所 选截面进行强度和刚度计算。 设计轴心受压构件时,除使截面满足强度和刚度 要求外尚应满足构件整体稳定和局部稳定要求。实际
结构构件,稳定计算比强度计算更为重要。强度问题与 稳定问题虽然均属第一极限状态问题,但两者之间概念 不同。强度问题关注在结构构件截面上产生的最大内力 或最大应力是否达到该截面的承载力或材料的强度,强 度问题是应力问题;而稳定问题是要找出作用与结构内 部抵抗力之间的不稳定平衡状态,即变形开始急剧增长
的状态,属于变形问题。
N f An ,1 其中:An ,1 b n1 d 0 t ;
f 钢材强度设计值 ; d 0 螺栓孔直径; b 主板宽度;t 主板厚度。
拼接板的危险截面为2-2截面。
考虑孔前传力50%得: 2-2截面的内力为:
2
t1 t b
N
b1
N
0.5n2 N 0.5 N 1 n 2 n2 计算截面上的螺栓数; n 连接一侧的螺栓总数。 N f 其中:An , 2 b1 n2 d 0 t 1 ; An , 2
上,只有长细比很小及有孔洞削弱的轴心受压构件,
才可能发生强度破坏。一般情况下,由整体稳定控制 其承载力。 轴心受压构件丧失整体稳定常常是突发性的,容 易造成严重后果,应予以特别重视。
§4-2 轴心受力构件的强度和刚度
一、强度计算(承载能力极限状态)
钢结构第四章轴心受力构件
虑初弯曲和初偏心的影响,再考虑不同的截面形状和尺寸、不 同的加工条件和残余应力分布及大小及不同的屈曲方向后,采
用数值分析方法来计算构件的Nu值。
令 n/( E/ fy) Nu /(Afy)
绘出~λn曲线(算了200多条),它们形成了相当宽的
三、轴心受力构件的工程应用 平面桁架、空间桁架(包括网架和塔架)
结构、工作平台和其它结构的支柱等。 四、截面选型的原则
用料经济;形状简单,便于制做;便于与 其它构件连接。 五、设计要求
满足强度和刚度要求、轴心受压构件还应 满足整体稳定和局部稳定要求。
★思考问题:强度破坏和整体失稳有何异同??
第二节 轴心受力构件的强度和刚度计算
h ix /1
b iy /2
根据所需A、h、b 并考虑局部稳定要求 和构造要
求(h≥b),初选截面尺寸A、h、b 、t、tw。通常取h0 和b为10mm的倍数。对初选截面进行验算调整。由
于假定的不一定恰当,一般需多次调整才能获得较
满意的截面尺寸。
三、格构式轴心受压构件设计
1. 格构式轴心受压构件的整体稳定承载力 (1) 绕实轴的整体稳定承载力
h0/tw(2 50.5m)ax 23 /fy 5
式中λmax为两方向 长细比的较大值
当构件的承载力有富 裕时,板件的宽厚比可适 当放宽。
第五节 轴心受压构件设计
一、设计原则 1.设计要求 应满足强度、刚度、整体稳定和局部稳定要求。 2.截面选择原则 (1)尽量加大截面轮廓尺寸而减小板厚,以获得
也板称的作局局部部稳与定整计体算等,稳《定规准范则》。采用了σcr板σcr整体的设计准则, σcr板—板的临界应力,主要与板件的宽厚比有关。 《规范》采用限制板件宽厚比的方法来满足局部稳定。根据设 计准则分析并简化后得到的局部稳定计算公式为:
钢结构原理-第4章轴心受力构件
存在,且都是变量,再 加上材料的弹塑性,轴 压构件属于极值点失稳, 其极限承载力Nu很难用 解析法计算,只能借助 计算机采用数值法求解。
《钢结构原理》 第4章 轴心受力构件
缺陷通常只考虑影响最大的残余应力和初弯曲(l/1000)。 采用数值法可以计算出轴压构件在某个方向(绕 x 或 y 轴)的 柱子曲线,如下图,纵坐标为截面平均应力与屈服强度的比值, 横坐标为正则化长细比。
《钢结构原理》 第4章 轴心受力构件
4.1 概述
4.1.1 定义:构件只承受轴心力的作用。 承受轴心压力时称为轴心受压构件。 承受轴心拉力时称为轴心受拉构件。
N
N
N
N
《钢结构原理》 第4章 轴心受力构件
4.1.2 轴心受力构件的应用 平面及空间桁架(钢屋架、管桁架、塔桅、网架等); 工业及民用建筑结构中的一些柱; 支撑系统;等等。
(a) N
(b) N
Hale Waihona Puke (c) NNN
N
《钢结构原理》 第4章 轴心受力构件
4.4.3 理想轴心受压构件的弯曲屈曲 4.4.3.1 弹性弯曲屈曲
取隔离体,建立平衡微分方程
EyIN y0
用数学方法解得:N 的最 小值即分岔屈曲荷载 Ncr,又称 为欧拉荷载 NE 。
Ncr2EI/l2
对应的临界应力为:
《钢结构原理》 第4章 轴心受力构件
4.4 轴心受压构件的整体稳定
概念:在压力作用下,构件的外力必须和内力相平衡。 平衡有稳定、不稳定之分。当为不稳定平衡时,轻微的扰 动就会使构件产生很大的变形而最后丧失承载能力,这种 现象称为丧失稳定性,简称失稳,也称屈曲。 特点:与强度破坏不同,构件整体失稳时会导致完全 丧失承载能力,甚至整体结构倒塌。失稳属于承载能力极 限状态。与混凝土构件相比,钢构件截面尺寸小、构件细 长,稳定问题非常突出。只有受压才有稳定问题。
第四章 轴心受力构件的性能与计算
第四章轴心受力构件的性能与计算1、为什么轴心受拉构件开裂后,当裂缝增至一定数量时,不再出现新的裂缝?答:相邻裂缝之间距离不足以使将混凝土开裂的拉力传递给混凝土。
2、如何确定受拉构件的开裂荷载和极限荷载?答:开裂荷载:混凝土与钢筋的应变达到混凝土的峰值应变。
极限荷载:钢筋达到屈服强度。
3、在轴心受压短柱的短期荷载试验中,随着荷载的增加,钢筋的应力增长速度和混凝土的应力增长速度那个快?为什么?答:钢筋的增长速度快。
钢筋的弹性模量大。
4、如何确定轴心受压短柱的极限承载力?为什么在轴压构件中不宜采用高强钢筋?答:极限承载力:混凝土的应变达到峰值。
当钢筋的抗压强度大于400MPa时,只取400。
5、构件设计时,为什么要控制轴心受力构件的最小配筋率?如何确定轴心受拉和轴心受压构件的最小配筋率?答:为保证所设计的极限承载力大于截面的开裂弯矩,避免在极限状态下出现脆性破坏。
最小配筋率近似等于f t/f y。
6、配有普通箍筋的钢筋混凝土轴心受压构件中,箍筋的作用主要是什么?答:防止纵向钢筋压屈,并与纵筋形成钢筋骨架,使截面中间部分混凝土成为约束混凝土,提高构件的强度和延性。
7、钢筋混凝土轴心受压构件在长期荷载作用下,随着荷载作用时间的增长,钢筋的应力和混凝土的应力各发生什么变化?混凝土的徐变是否会影响短柱的承载力?答:徐变使钢筋的变形也随之变大,钢筋的应力相应地增大,混凝土的应力减小。
8、钢筋混凝土轴心受压构件的承载力计算公式中为什么要考虑稳定系数φ,稳定系数φ与构件两端的约束情况有何关系?答:柱子的长细比对轴心受压强度有较大的影响。
两端铰接:l0=H 一端自由,一端固定:l0=2H一端固定,一端铰接:l0=0.7H 一端固定,一段滑动:l0=0.5H9、为什么长细比l0/b>12的螺旋筋柱,不考虑螺旋筋对柱承载力的有利作用?答:此时的长细比比较大,易发生失稳现象。
10、如箍筋能起到约束混凝土的横向变形作用,则轴心受压短柱的承载力将发生什么变化?为什么?答:承载力将变大。
第四章 轴心受力构件
§4-6 格构式轴心受压柱的截面设计
§4-6 格构式轴心受压柱的截面设计
一、格构式轴心受压柱的组成 分肢
缀板
缀件
缀条
§4-6 格构式轴心受压柱的截面设计
二、格构式轴心受压柱的实轴和虚轴
垂直于分肢腹板平面的主轴--实轴;
垂直于分肢缀件平面的主轴--虚轴;
格构式轴心受压构件的设计应考虑:
§4-3 轴心受压构件的整体稳定
1.0
0.8 d 0.6 c b
a
0.4
0.2
0
50
100
150
200
250
(Q235)
a类为残余应力影响较小,c类为残余应力影响较大, 并有弯扭失稳影响,a、c类之间为b类,d类厚板工字 钢绕弱轴。
§4-3 轴心受压构件的整体稳定
构件长细比的确定
y x x
截面为双轴对称构件:
§4-2 轴心受力构件的强度和刚度
二、刚度计算(正常使用极限状态) 保证构件在运输、安装、使用时不会产生过大变形。
l0 [ ] i
l0 构件的计算长度;
i
I 截面的回转半径; A
[ ] 构件的容许长细比
§4-3 轴心受压构件的整体稳定
§4-3 轴心受压构件的整体稳定
强度 (承载能力极限状态) 刚度 (正常使用极限状态) 强度 轴心受压构件
轴 心 受 力 构 件
稳定
(承载能力极限状态)
刚度 (正常使用极限状态)
§4-2 轴心受力构件的强度和刚度
§4-2 轴心受力构件的强度和刚度
一、强度计算(承载能力极限状态)
N f An
其中: N — 轴心拉力或压力设计值; An— 构件的净截面面积; f— 钢材的抗拉强度设计值。 轴心受压构件,当截面无削弱时,强度不必计算。
轴心受力构件
4
k
I
2z
2y
2z
2
4 1 a02
/ i02
2y2z
1/
2
通常Nyz恒比Ny和Nw小,因此a0/i0越大, Nyz越小,但可能大
于N
,因此对称截面的承载力决定于
Ex
N
Ex
和Nyz中的较小者。
第四章 轴心受力构件
§4.3.2 初始缺陷对轴心压杆的整体稳定承载力影响
前面介绍的是理想压杆的临界力,实际构件与理想状态有 很大的差别,构件总有初弯曲、初偏心、残余应力存在。理 想的轴心压杆是不存在的。其中初弯曲、初偏心及残余应力 的影响为不利影响,而边界条件的影响往往是有利的(悬臂 杆除外)。
4.3.1 理想轴心压杆的临界力
轴心受力构件由于截面形式不同,可能有三种不同的屈 曲形式而丧失稳定。
弯曲屈曲 对称平面内失稳
扭转屈曲 十字截面
弯扭屈曲 非对称平面内失稳
4.3 轴心压杆的整体稳定
第四章 轴心受力构件
4.3.1 理想轴心压杆的临界力
4.3 轴心压杆的整体稳定
第四章 轴心受力构件
4.3.1 理想轴心压杆的临界力
β为与截面形状有关的系数。
d2y dx2
N EI
y
N
GA
d2y dx2
y(1 N ) N y 0
GA EI
k
2
N E I (1
N
)
GA
y k 2 y 0
代入边界条件x=0和x=l时,y=0,满足上式的最小k值
k2
N E I (1
N
)
2
l2
第四章-轴心受力构件
2
300
200
有重 级工 作制 吊车 旳
厂房
250
-
受压构件旳允许长细比
项次
构件名称
允许长 细比
柱、桁架和天窗架中旳杆件
1 柱旳缀条、吊车梁或吊车桁架 150 下列旳柱间支撑
支撑(吊车梁或吊车桁架下列
旳柱间支撑除外)
2
200
用以降低受压构件长细比旳杆
件
第二节 轴心受压构件旳整体稳定
3、理想构件旳弹性弯曲失稳
根据右图列平衡方程
d2y EI dx2 Ny 0
解平衡方程:得
欧拉临界力只合用
N cr
π2 EI l02
π2 E λ2
A
于材料为弹性时旳 情况,应力一旦超 出材料旳百分比极
σ cr
N cr A
π2 E λ2
限,则欧拉公式不 再合用。
4、理想构件旳弹塑性弯曲失稳
构件失稳时假如截面应力超出弹性
ix( y)
Ix( y) A
实腹式轴心受压构件旳稳定性应按下式计算:
N ≤f
A
A为杆件毛截面面积
式中 为整体稳定系数,实质是临界应力与屈
服点旳比值。柱旳临界应力与截面形状、力作用方
向等有关,
— 轴心受压构件的整体稳定系数
根据构件截面分类取由λx,λy,λyz
fy 决定的
235
max
(1)规范现对t 40mm旳轴压构件作了专门要求。同步补充了d 类
r
2Er 2
5、实际构件旳整体稳定 实际构件与理想构件间存在着初始缺陷,缺陷主要有:
初始弯曲、残余应力、初始偏心。 ⑴、初始弯曲旳影响
1.一经加载产生 挠度,先慢后快
轴心受力构件A
f y / 235
三、实腹式轴心受压构件的局部稳定 • 1、关于局部稳定问题的概述 • 1.局部稳定的基本概念 • 组成构件的板件出现鼓曲称为板 件失稳,即局部失稳。 • 板件的局部失稳并不一定导致整 个构件丧失承载能力,但由于失 稳板件退出工作,将使能承受力 的截面(称为有效截面)面积减 少,同时还可能使原本对称的截 面变得不对称,促使构件整体破 坏。 • 板件的四边支承情况 • 翼板按三边简支一边自由考虑。 同理,腹板可按四边简支考虑。
弯曲屈曲是最基本和简单的屈曲形式.
•
• 经推导可得:
λ p E / f p
2 EI
1 N cr 2 l 2 EI 1 2 1 l • 式中γ1是单位剪力作用下的剪切角。 • 不计γ1的影响有: 2 EI N cr 2 l
• 相应的临界应力为: • • (2)切线模量理论
2)箱形截面轴心受压构件 b1 235 • 自由外伸翼缘: 15 t fy • • • •
h0 b1 235 • 焊接T形钢: t (或 t ) (13 0.17 ) f w y
h0 b0 235 (或 ) 40 腹板(腹板间无支撑翼缘): t w t fy 式中 b0——为翼缘在两腹板之间的无支撑宽度。 3)T形截面轴心受压构件 h0 b1 235 热轧剖分T形钢: (或 ) (15 0.2 ) t tw fy
四、轴心受压构件的刚度 • 控制长细比:
l0 [ ] i
横向加劲肋
项次 1
构 件 名 称
柱、桁架和天窗架中的 杆件 柱的缀条、吊车梁或吊 车桁架以下的柱间支撑 支撑(吊车梁或吊车桁 架以下的柱间支撑除外)
容许长 细比
150
纵向加劲肋
钢结构设计原理4轴心受力构件
轧制普通工字钢,腹板较薄,热轧后首先冷却;翼缘在
冷却收缩过程中受到腹板的约束,因此翼缘中产生纵向
残余拉应力,而腹板中部受到压缩作用产生纵向压应力
。轧制H型钢,由于翼缘较宽,其端部先冷却,因此具
有残余压应力,其值为=0.3
f
左右,残余应力在翼缘宽
y
度上的分布,常假设为抛物线或取为直线。翼缘是轧制
边或剪切边的焊接工字形截面,其残余应力分布情况与
Ncrx
2EIx 2
x
I ex Ix
2EIx 2
x
2t(kb)h2 / 4 2tbh2 / 4
2EIx 2
x
k
N cry
2EI y 2
y
I ey Iy
2EI y 2
y
2t(kb)3 /12 2tb3 /12
2EI y 2
y
k3
由于k<l.0,故知残余应力对弱轴的影响比对强轴的影 响要大得多 。
N f
An
采用高强度螺栓摩擦型连接的构件,验算净截面强度时 应考虑一部分剪力已由孔前接触面传递,验算最外列螺 栓处危险截面的强度时,应按下式计算
N' f
An
N ' N (1 0.5 n1 ) n
摩擦型连接的拉杆,除验算净截面强度外,还应验算毛 截面强度
N f
A
4.2.2轴心受力构件的刚度计算 为满足正常使用要求,构件应具有一定的刚度,保证构 件不会在运输和安装过程中产生弯曲或过大的变形,以 及使用期间因自重产生明显下挠,还有在动力荷载作用 下发生较大的振动。
GIt
1 i02
2E 2z
A
z
I
/ l2
Ai02 GIt
第四章 轴心受力构件
13
二、实腹式轴心受压构件的整体稳 定
欧拉临界力计算公式
N cr
相应的临界应力为
EI
2
l
2
cr
N cr E 2 A
2
14
(1)轴心受压构件稳定承载力传统计算方法
②改进的欧拉公式——切线模量理论。众所 周知,构件越细长,越容易失稳,即失稳的临界 应力越低。当欧拉公式计算的临界应力 cr f P (比例极限)时,欧拉假定中的线弹性假定才成立, 欧拉公式的计算结果才接近实际情况。当构件较 cr >f P 为粗短,失稳时的临界应力较高, 时,杆 件进入弹塑性阶段,虽仍可采用欧拉公式的形式 进行计算,但应采用弹塑性阶段的切线模量代替 欧拉公式中的弹性模量。
式(4-10)实质上是稳定验算公式,但都是强度(应力) 验算形式。 上述由条件 x = y 得出两主轴方向等稳定只有在临 界应力和长细比一一对应的情况下才正确。钢结构中,由
于考虑了残余应力等的影响,临界应力 cr 或稳定系数
与长细比不再一一对应,从而有多条柱子曲线( — 是 x
23
(2)强度问题和稳定问题的区别及提高稳定承载力的措施
④在弹性阶段,强度问题采用的一阶(线性)分析方法,
出于内力与荷载成正比,与结构变形无关,因此可应用叠加
原理,即对同一结构,两组荷载产生的内力等于各组荷载产 生的内力之和。在二阶分析中,由于结构内力与变形有关, 因此稳定分析不能采用叠加原理。 不难看出,提高构件稳定承载力的一般措施是:增加截
面惯性矩、减小构件支撑间距、增加支座对构件的约束程度。
总之,减少构件变形的措施均是提高构件稳定承载力的措施。
24
2.实际轴心受压构件的受力性能
4钢筋混凝土轴心受力构件
N 0 ( G N gk Q C Nqk ) 1.1 (1.351851.4 0.7 70) 350.2kN
N 35210 2 As 1173 mm fy 300
3
【解】(3)满足构造要求的配筋
As min 0.4% A 0.4% 200 250 200m m2 As min
在截面尺寸、配筋、强度相同的条件下,长 柱的 承载力低于短柱,(采用降低系数来考虑)
三、轴心受压构件的受力分析
1. 短柱
钢筋屈 服
混凝土压碎
h
N
As
N
b
Hale Waihona Puke ANol
混凝土压碎
钢筋凸出
第一阶段:加载至钢筋屈服 第二阶段:钢筋屈服至混凝土压碎
三、轴心受压短柱的受力分析
1. 短柱
平衡方程 变形协调方程
轴心受力构件 (a) 轴心受拉; (b) 轴心受压;
工程实例
压 压 拉 压
拉
多层房屋的内柱
第一节、轴心受拉构件的受力特点
1. 受拉构件的配筋形式
纵筋
h
箍筋
b
纵筋
第一节、轴心受拉构件的受力特点
2. 试 验 研 究
N N
Ncr
箍筋
Ncr
Nc
Nc
第一节、轴心受拉构件的受力特点
2. 试 验 研 究
先选用直径较小的钢筋。
第二节、轴心受拉构件的承载力计算
3. 例 题
【例4.1】某钢筋混凝土屋架下弦,其截面尺寸 为b×h=140mm×140mm,混凝土强度等级为 C30,钢筋为HRB335级,承受轴向拉力设计值 为N=200kN,试求纵向钢筋截面面积As。 【解】由式(4-11)得 As=N/fy=666.67mm2 配置4Φ16(As=806mm2)
第四章 轴心受力构件
第四章轴心受力构件§4-1 概述1、工程实例(假设节点为铰接,无节间荷载作用时,构件只受轴心力作用)(1)桁架(2)塔架(3)网架、网壳2、分类⑴按受力来分:①轴心受拉构件②轴心受压构件到某临界值时,理想轴心受压构件可能以三种屈曲形式丧失稳定。
(1) 弯曲屈曲构件的截面只绕一个主轴旋转,构件的纵轴由直线变为曲线,这是双轴对称截面构件最常见的屈曲形式。
如图4-2 (a)就是两端铰接工字形截面构件发生的绕弱轴的弯曲屈曲。
(2) 扭转屈曲失稳时构件除支承端外的各截面均绕纵轴扭转,图4-2 (b)为长度较小的十字形截面构件可能发生的扭转屈曲。
(3) 弯扭屈曲单轴对称截面构件绕对称轴屈曲时,在发生弯曲变形的同时必然伴随着扭转。
图4-2 (c)即T 形截面构件发生的弯扭屈曲。
图4-2 轴心受压构件的三种屈曲形式欧拉临界力和欧拉临界应力临界应力其中:——单位剪力时的轴线转角,;通常剪切变形的影响较小,忽略其对临界力或临界应力的影响。
E N E σ1222211γλπλπσ⋅⋅+⋅⋅==EAEAN cr cr1γ)(1GA βγ=这样,※上述推导基于材料处于弹性阶段,即,或。
(二)初始缺陷对轴心受压构件稳定承载力的影响 1. 残余应力的影响残余压应力对压杆弯曲失稳的影响: 对弱轴的影响比对强轴的影响要大的多。
稳定应力上限,弱轴:强轴:其中:,0<<1.0。
2.初弯曲的影响图4-3 考虑初弯曲的压力—挠度曲线图示压力—挠度曲线有如下特点:1有初弯曲时,挠度v 不是随着N 按比例增加;N 较小时,挠度增加较慢,N 趋于时,挠度增加较快,并趋向于无限大;2相同压力N 的作用下,压杆的初挠度值越大,杆件的挠度也越大;Ecr N EAlEI N =⋅=⋅=2222λππEcr cr E AN σλπσ=⋅==22pcr f E≤⋅=22λπσpp f E λπλ=≥322kEx crx ⋅⋅=λπσkEycry⋅⋅=22λπσ翼缘宽度翼缘弹性区宽度=k k E N3由于有的存在,轴心压杆的承载力总是低于,因此是弹性压杆承载力的上限。
第四章 轴心受力构件 -公式整理
( 4 27b )
B、等边双角钢截面,图(b)
b
y
b
当 b t 0.58 l 0 y b时:
4 0 . 475 b yz y 1 2 2 l0 y t 当 b t 0.58 l 0 y b时:
y
(b)
( 4 28a )
yz
a x
1 分肢对最小刚度轴 1 1的长细比, 1 l 01 i1 ;
l 01 分肢计算长度,焊接时 ,取相邻缀板间净距 离;螺栓连接时,取相 邻两缀板边缘螺栓的 距离。
1
x
3、缀材的设计
计算证明,在常用的常细比范围内 85 235 f y ,
l
z
N
因此平行于缀材面的最大柱剪力:
当 b1 t 0.56 l 0 y b 1 时:
2 2 l b1 0yt 3 .7 1 t 52.7b14
( 4 30a )
yz
( 4 30b )
④、单轴对称的轴心受压构件在绕非对称轴以外的任意轴失稳时 ,应按弯扭屈曲计算其稳定性。
当计算等边角钢构件绕平行轴(u轴)稳 定时,可按下式计算换算长细比,并按b类 截面确定 值:
热 扎 剖 分T 形 钢 :
自由边受拉时:
h0 235 15 0 .2 tw fy
h0 235 13 0 .17 tw fy
( 4 46 )
tw
( 4 47 )
h0
tw
h0
焊 接T形 钢 :
t
( 4 48 )
D
3、圆管截面
D 235 100 t fy
( 4 52 )
第四章轴心受力构件公式整理
第四章轴心受力构件公式整理1.应变公式:轴心受力构件的应变公式描述了受力构件在轴向受力作用下的变形情况。
应变公式主要有以下两种形式:(1)需要计算伸长形变的情况下:在受力过程中,轴心受力构件发生的伸长形变与受力大小和材料的弹性模量有关。
应变公式可表示为:ε=ΔL/L其中,ε表示轴向应变;ΔL表示受力构件发生的伸长形变;L表示受力构件的初始长度。
(2)不需要考虑伸长形变的情况下:在一些情况下,受力构件的长度相对较短,可以忽略伸长形变的影响。
此时,应变公式可以表示为:ε=δ/h其中,ε表示轴向应变;δ表示构件上其中一截面上的位移;h表示受力构件的高度。
2.应力公式:轴心受力构件的应力公式描述了受力构件在轴向受力作用下的应力分布情况。
应力公式主要有以下两种形式:(1)线性弹性应力公式:在弹性阶段,应力与应变成正比,最常用的应力公式是线性弹性应力公式:σ=E*ε其中,σ表示轴向应力;E表示受力构件材料的弹性模量;ε表示轴向应变。
(2)线性弹塑性应力公式:在考虑弹塑性情况下,应力与应变的关系不再是线性的。
此时,应力公式可以表示为:σ=σe+σp其中,σ表示轴向应力;σe表示弹性应力;σp表示塑性应力。
3.弯矩公式:轴心受力构件在受到弯矩作用时,会引起构件的弯曲变形。
弯矩公式描述了轴心受力构件在弯矩作用下的变形情况。
弯矩公式主要有以下几种形式:(1)切线法公式:根据切线法,弯曲截面上的任意一点都受到一个弯矩的作用。
弯矩公式可以表示为:M=σ*S其中,M表示弯矩;σ表示轴向应力;S表示截面的静矩。
(2)一阶弹性理论公式:在一阶弹性理论中,构件的截面仍然平面,但允许在截面平面上有变形。
弯矩公式可以表示为:M=σ*I/y其中,M表示弯矩;σ表示轴向应力;I表示截面的惯性矩;y表示截面上任一点到中性轴的距离。
(3)符合木尔斯定理的公式:木尔斯定理适用于构件截面受平面弯矩时产生的应力。
弯矩公式可以表示为:M=W*y/I其中,M表示弯矩;W表示截面上的轴向力;y表示截面上任一点到中性轴的距离;I表示截面的惯性矩。
钢结构第四章
14.1轴心受力构件的截面形式4.2轴心受力构件的强度和刚度计算4.2.1 轴心受力构件的强度计算4.2.2 轴心受力构件的刚度计算4.3 轴心受压构件的整体稳定4.3.1 轴心受压构件的弹性弯曲屈曲4.3.2 轴心受压构件的弹塑性弯曲屈曲4.3.3初始缺陷对压杆稳定承载力的影响4.3.4 轴心受压构件的整体稳定计算24.4 实腹式轴心受压构件的局部稳定4.4.1 薄板屈曲(1) 薄板的弹性屈曲(2) 薄板的弹塑性屈曲4.4.2 受压构件局部稳定计算4.4.2.1 确定板件宽厚比(高厚比)限值的准则4.4.2.2 板件宽厚比(高厚比)限值4.4.2.3受压构件的腹板不满足高厚比限值时的处理例题-格构柱例题-轴压柱,截面削弱34.5.2 格构式轴压构件的整体稳定计算(1) 格构式构件绕实轴的整体稳定计算(2) 格构式构件绕虚轴的整体稳定计算①换算长细比②格构式构件绕虚轴的整体稳定计算4.5.3 格构式轴心受压构件分肢的稳定(1) 缀条柱(2) 缀板柱4.5.1 格构式轴心受压构件的截面形式与组成4.5 格构式轴压构件44.5.4 格构式轴心受压构件缀材计算(1) 缀材面承担的剪力①单缀条强度设计值的调整②斜缀条承受的轴向力(2) 缀条设计(3) 缀板设计③斜缀条整体稳定计算④缀条与分肢连接焊缝计算⑤缀条与分肢连接形式(4) 横隔设置①缀板受力②缀板与分肢连接③缀板线刚度54.6 轴心受压构件截面设计4.6.1 实腹式轴心受压构件截面设计4.6.2 格构式轴心受压构件截面设计(3) 截面验算(1) 确定截面所需的面积、回转半径、截面高度、截面宽度等(2) 确定型钢号或组合截面各板件尺寸(1) 根据绕实轴的稳定性确定分肢截面尺寸(2) 根据虚轴和实轴的等稳性确定分肢的间距(3) 截面验算(4)缀材设计7轴心受力构件:承受通过构件截面形心轴线的轴向力作用的构件。
(轴心受拉构件和轴心受压构件)截面形式型钢截面组合截面热轧型钢截面冷弯薄壁型钢截面实腹式组合截面格构式组合截面4.1轴心受力构件的截面形式应用:屋架、托架、塔架和网架、工作平台和其它结构的支柱等8实腹式构件:格构式构件:优点:构造简单、制造方便,整体受力和抗剪性能好缺点:截面尺寸大时钢材用量较多。
第四章-轴心受力构件
y
t
h
N cr 2 lE 2xe Il2E 2 xI I I e
t
2021/4/6
kb
cr 2 2 E I I e 21
t
仍以忽略腹板的热轧H型钢柱为例,
推求临界应力:
当σ>fp=fy-σc时,截面出现塑性
欧拉临界力和临界应力表达式为
N cr l2 2 E I2 E 2 A
cr 2 2 E
2021/4/6
14
推导过程中,假定E为常量(材料满足虎克定律),所 以σcr不应大于材料的比例极限fp,即:
或 长 细 比 :
cr
2E 2
fp
p
E fP
2021/4/6
15
实际结构中,压杆端部不可能都为铰接,任意端部支承 的压杆,临界力表达式
2021/4/6 c截 面 中 绝 对 值 最 大 的 残 余 应 力 。
20
(3)仅考虑残余应力影响的轴压柱的临界应力
根据压杆屈曲理论,当 NAfp或fyc 时p , Efp
可采用欧拉公式计算临界应力;
当 NA或fpfyc 时,截p 面出E现f塑p 性区,
柱屈曲时, 塑性区应力不变而变形增加,微弯时截面的
y
区,应力分布如图。
x
x
h
t
柱屈曲可能的弯曲形式有两种:
沿强轴(x轴)和沿弱轴(y轴)
kb
因此,临界应力为:
b
对 xx轴屈曲时:
cr x22 x EIIexx22 x E2t2 (tkb )b 2 h2 4 h422 x Ek
对 yy轴屈曲时:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式中:N —轴心受压构件的压力设计值; A—构件的毛截面面积;
—轴心受压构件的稳定系数;
f —钢材的抗压强度设计值。
4.3 轴心受力构件的整体稳定
4.3.2 轴心受压构件稳定系数 的分类
理想轴心受压构件的稳定系数仅仅与构件长细比有关,但对于实际 轴心受压构件,初始缺陷、截面残余应力的分布(与截面类型、加 工方式相关)对稳定系数由重要影响: 实际轴心受压构件的稳定系数在图4.3中所示两条虚线之间, 经过数理统计分析认为,把诸多柱曲线划分为四类比较经济合理。 截面的分类根据:残余应力的分布及其峰值与初弯曲的影响 分为a、b、c、d四类。 单轴对称截面绕对称轴屈曲时属于弯扭屈曲问题,其屈曲应力 较弯曲屈曲要小,《钢结构设计规范》规定这类问题需要通过 换算长细比转换为弯曲屈曲。
y x y
实 轴
x
虚 轴
4.4 轴心受力构件的局部稳定
4.4.1 板件的宽厚比
1)对于板件的屈曲有两种考虑方法:
一种是不允许板件的屈曲先于构件的整体屈曲,并以此来 限制板件的宽厚比,《钢结构设计规范》对轴心压杆就是这 样规定的; 另一种是允许局部屈曲。因为局部屈曲并不一定导致构件 整体失稳,这就可以把构件截面设计得更加开展,提高整体 刚度,从而提高承载力和节省钢材。 2)板件宽厚比限值确定原则: 基于局部屈曲不先于整体屈曲的原则,即板件的临界应力 和构件的临界应力相等的原则。
4.3.1 轴心受压构件的实际承载力
挠度v增大到一定程度,杆件中点截面边缘( A或A′), 塑 性区增加——弹塑性阶段, 压力小于Ncr(欧拉力)丧失 承载力。 A点表示压杆跨中截面边缘屈服——“边缘屈服准则” ——最大强度准则:以NA作为最大承载力
压力超过NA后,构件进入弹塑 性阶段,塑性区↑, v↑ B点是具有初弯曲压杆真正的 极限承载力 ——“最大强度准则” ——以NB作为极限承载力。
4.3 轴心受力构件的整体稳定
4.3.2 轴心受压构件稳定系数 的分类
图4-3
轴心受压构件稳定系数
4.3 轴心受力构件的整体稳定
4.3.3 轴心受压构件整体稳定计算的构件计算长度
1)截面为双轴对称或极对称的构件
x lox ix
y loy iy
(4-4)
对于双轴对称十字形截面构件,为了防止扭转屈曲,尚应
b 为悬伸板件宽厚比) 满足:x 或 y 不得小于 5.07 b(其中 t t
4.3 轴心受力构件的整体稳定
4.3.3 轴心受压构件整体稳定计算的构件计算长度
2)截面为单轴对称的构件,绕非对称的长细比仍按式 4 4 计算,但绕对称轴应取计及扭转效应的下列换算长细比 代替y:
1 2 2 yz y z 2
4.3.3 轴心受压构件整体稳定计算的构件计算长度
4)构件长细比计算注意事项:
(1)无任何对称轴且又非极对称的截面(单面连接的不等边单 角钢除外)不宜用作轴心受压构件。 (2)对单面连接的单角钢轴心受压构件,按《钢结构设计规范 》(GB50017-2003)中第3.4.2条考虑折减系数后,可不考虑弯 扭效应。 (3)当槽形截面用于格构式构件的分肢,计算分肢绕对称轴( 轴)的稳定性时,不必考虑扭转效应,直接用 y 查出 y 值。
1、符合强度、刚度的要求;
2、制作简便,便于和相邻的构件连接; 3、符合经济要求。
对轴心受压构件截面形式的要求:
1、符合强度、刚度的要求; 2、制作简便,便于和相邻的构件连接;
3、符合经济要求;
4、符合稳定性的要求,包括整体稳定和局部稳定。
4.2 轴心受力构件的强度和刚度
4.2.1 强度
轴心受力构件是以截面平均应力达到钢材的屈服强度 作为计算准则;对于有孔洞削弱的轴心受力构件,宜以
2 y
2 2 z
2 2 2 2 4 1 e0 i0 (4-5) y z
1 2
2 2 z2 i0 A I t 25.7 I l (4-6)
i e i i
2 0 2 0 2 x
2 y
4.3 轴心受力构件的整体稳定
4.3.3 轴心受压构件整体稳定计算的构件计算长度
用以减小受压构件长细比的杆件
200
4.3 轴心受力构件的整体稳定
4.3.1 轴心受压构件的实际承载力
实际的轴心受压构件不可避免地都存在初始缺陷(初弯曲、 初偏心、残余应力),在理论分析中,只考虑初弯曲和残 余应力两个最主要的不利因素。
图4、5 轴心压杆极限承载力理论
4.3 轴心受力构件的整体稳定
钢结构设计原理
第四章
轴心受力构件
本 章 内 容
4.1 轴心受力构件的特点和截面形式
4.2
4.3 4.4 4.5 4.6
轴心受力构件的强度和刚度
轴心受压构件的整体稳定 轴心受压构件的局部稳定 实腹式轴心受压构件设计 格构式轴心受压构件设计
4.7
柱头和柱脚的构造设计
4.1 轴心受力构件的特点和截面形式
桁架的杆件 吊车梁或吊车桁架以 下的柱间支撑 其他拉杆、支撑、系 杆(张紧的圆钢除外)
4.2 轴心受力构件的强度和刚度
4.2.2
项次
1
刚度
表4.2 受压构件的容许长细比
构 件 名 称
柱、桁架和天窗架构件 柱的缀条、吊车梁或吊车桁架以下的柱间支撑
容许长细比
150
2
支撑(吊车梁或吊车桁架以下的柱间支撑除外)
当b t 0.69 l0u b时: 0.25b 4 uz u 1 2 2 l0ut 当b t 0.69 l0u b时: (4 14)
u b u
b uz 5.4 (4 15) t 式中:u l0u i0u ,构件对u轴的长细比。
(ቤተ መጻሕፍቲ ባይዱ)
4.3 轴心受力构件的整体稳定
其净截面的平均应力达到屈服强度为强度极限状态:
强度设计表达式:
N f An (4 1)
f — 钢材强度设计值, An —构件净截面面积
4.2 轴心受力构件的强度和刚度
4.2.2 刚度
l0 x [ ] ix l0 y y [ ] iy
正常使用极限状态:保证构件的刚度—限制其长细比轴心
2)计及扭转效应的换算长细比计算表达式中:
e0 截面形心至剪切中心的 距离;A 毛截面面积; i0 截面对剪心的极回转半 径;
z 扭转屈曲的换算长细比 ;I t 毛截面抗扭惯性矩;
I 毛截面扇性惯性矩;对 T形截面(轧制、双板焊接、 双角钢组合)、十字形截面和角形截 面近似取I 0; l 扭转屈曲的计算长度, 对两端铰接端部可自由 翘曲 或两端嵌固完全约束的 构件,取l l0 y。
4.4 轴心受力构件的局部稳定
4.4.1 板件的宽厚比
1、工字型截面的宽厚比
翼缘: b1
t
10 0.1
235 fy
(4-18)
腹板: h0 25 0.5 235 tw fy
(4-19)
式中 - 取件中长件中长细比较 大者, 而当 30时,取 30;当 100 时,取 100 。
弹塑性阶段 压力挠度曲线
轴心压杆极限承载力与初弯曲关系
4.3 轴心受力构件的整体稳定
4.3.1 轴心受压构件的实际承载力
《钢结构设计规范》规定初弯曲的矢高取柱长度的千分之一,而残 余应力则根据柱的加工条件确定。 柱的极限承载能力N u 可以用数 值方法确定,平均应力 u N u A,用 表示 u 和f y的比值,并考虑 抗力分项系数 ,故《钢结构设计规范》对轴心受压构件的整体 稳定按下式计算: N f A (4 3)
4.3.3 轴心受压构件整体稳定计算的构件计算长度
3)单角钢截面和双角钢组合T形截面可采取以下简化计算公式:
5
单轴对称的轴心受压构件在绕非对称轴以外的任意轴失稳时, 应按弯扭屈曲计算其稳定性。 当计算等边单角钢构件绕平行轴(图e)稳定时,可用下式计 算其换算长细比uz,并按b类截面确定值。
4.3 轴心受力构件的整体稳定
4.3.3
式:
轴心受压构件整体稳定计算的构件计算长度
y
3)单角钢截面和双角钢组合T形截面可采取以下简化计算公
(1)等边单角钢截面,图(a)
当b t 0.54 l0 y b时: 0.85b 4 yz y 1 2 2 l0 y t 当b t 0.54 l0 y b时: l02yt 2 b yz 4.78 1 t 13.5b 4 (4 7)
轴心受压构件整体稳定计算的构件计算长度
3)单角钢截面和双角钢组合T形截面可采取以下简化计算公
b y b
(b)
y
(4 10)
4.3 轴心受力构件的整体稳定
4.3.3
式: (3)长肢相并的不等边角钢截面,图(c)
当b2 t 0.48 l0 y b2 时:
4 1.09b2 yz y 1 2 2 l t 0 y 当b2 t 0.48 l0 y b 2 时: 2 2 l b2 0 yt yz 5.1 1 4 t 17.4b2
轴心受力构件类型:轴心受拉构件;轴心受压构件 截面形式可分为四类:
c o i min i min c o c o
(a)普通桁架杆件截面
(b)轻型桁架杆件截面
(c)实腹式构件截面 1 虚轴 实轴 1 1
1 (d)格构式构件截面
图4-2 轴心受力构件的截面形式
4.1 轴心受力构件的特点和截面形式
对轴心受拉构件截面形式的要求:
b1 y y b1 b2
当b1 t 0.56 l0 y b1 时,近似取: