第5章电容式传感器汇总

合集下载

电容传感器专题知识讲座

电容传感器专题知识讲座
量,电容量C 就是另一种变量旳一元函数。只要 想方法将被测非电量转换成极距或者面积、介电 常数旳变化,就能够经过测量电容量这个电参数 来到达非电量电测旳目旳。
2024/10/1
17
一、电容板材在线测厚仪
测量过程:
电容测厚仪用于测量金属带材在轧制过程中旳厚度变化。 带材是电容旳动极板,总电容Cx=C1+C2作为桥臂。 利C1、C2两个极板当带材上下波动时Cx=C1+C2总旳电容量 不变;而带材旳厚度变化使电容Cx变化。
Cx=C1+C2
蓝色为传动、辊绿色为轧辊、黄色为带材、红色为测
2024/10/1
量极板
18
二、硅微加工加速度传感器
图示加速度传感器以微细 加工技术为基础,既能测量交 变加速度(振动),也可测量 惯性力或重力加速度。其工作 电压为2.7~5.25V,加速度测 量范围为数个g,可输出与加 速度成正比旳电压也可输出占 空比正比于加速度旳PWM 脉 冲。
K
C X
b
结论:
增大极板长度,减小极板距离都可提升敏捷度
变面积式电容传感器敏捷度K为常数;
输出特征为线性;
2024/10/1 适合大位移测量。
4
变面积式电容传感器旳特征
同心圆筒变面积式:
2R
2r
x
电容变化及敏捷度为
Cx
2 (h
ln(R r )
x)
C
(1
x h
)
3
h0
K dCx 2
dx ln(R r )
C
x x
C
ε
敏捷度为:
K
dCx dx
(
S
x) 2
2024/10/1

CH5电容式传感器含答案传感器与检测技术第2版习题及解答

CH5电容式传感器含答案传感器与检测技术第2版习题及解答

第5章电容式传感器一、单项选择题1、如将变面积型电容式传感器接成差动形式,则其灵敏度将()。

A. 保持不变B.增大一倍C. 减小一倍D.增大两倍2、差动电容传感器采用脉冲调宽电路作测量电路时,其输出电压正比于()。

A.C1-C2 B. C1-C2/C1+C2C. C1+C2/C1-C2D. ΔC1/C1+ΔC2/C23、当变隙式电容传感器的两极板极间的初始距离d0增加时,将引起传感器的()A.灵敏度K0增加 B.灵敏度K0不变C.非线性误差增加 D.非线性误差减小4、当变间隙式电容传感器两极板间的初始距离d增加时,将引起传感器的()。

A.灵敏度会增加 B.灵敏度会减小C.非线性误差增加 D.非线性误差不变5、用电容式传感器测量固体或液体物位时,应该选用()。

A.变间隙式 B.变面积式C.变介电常数式 D.空气介质变间隙式6、电容式传感器通常用来测量()。

A.交流电流 B.电场强度 C.重量 D.位移7、电容式传感器可以测量()。

A.压力 B.加速度 C.电场强度 D.交流电压8、电容式传感器等效电路不包括()。

A. 串联电阻B. 谐振回路C. 并联损耗电阻D. 不等位电阻9、关于差动脉冲宽度调制电路的说法正确的是()。

A. 适用于变极板距离和变介质型差动电容传感器B. 适用于变极板距离差动电容传感器且为线性特性C. 适用于变极板距离差动电容传感器且为非线性特性D. 适用于变面积型差动电容传感器且为线性特性10、下列不属于电容式传感器测量电路的是()A.调频测量电路 B.运算放大器电路C.脉冲宽度调制电路 D.相敏检波电路11、在二极管双T型交流电桥中输出的电压U的大小与()相关A.仅电源电压的幅值和频率B.电源电压幅值、频率及T型网络电容C1和C2大小C.仅T型网络电容C1和C2大小D.电源电压幅值和频率及T型网络电容C1大小12、电容式传感器做成差动结构后,灵敏度提高了()倍A.1 B.2 C.3 D.0二、多项选择题1、极距变化型电容式传感器,其灵敏度与极距()。

电容式传感器

电容式传感器
1、特点: 1)温度稳定性好
电容值与电极材料无关,仅取决于电极的几何尺寸,且空 气等介质的损耗很小。因此仅需从强度、温度系数等机械性考 虑,合理选择尺寸即可,本身发热极小,影响稳定性甚微。 2)结构简单,适用性强。
3)动态响应好。 (固有频率很高,动态响应时间很短外,又由于其介质损耗小, 可以用较高频率供电,因此系统工作频率高。 4)可以实现非接触式测量,具有平均效应。
d d0
d d0
2
d d0
3
C
C1
C2
C0
2
d d0
2
d d0
3
2
d d0
C
0
1
d d0
2
d d0
4
略去高次项,则
C
2
d d0
C0
传感器的灵敏度为 K C 2C0 d d0
其非线性误差为
( d )3
d 0 (d /d 0)2 100%
( d ) d0
灵敏度较单组变极距型提高了一倍,非线性大大减小。
②等有U关sc ,与任电何源这电些压参U数的、波固动定都电将容使C0及输电出容特式性传产感生器误的差ε,0因、此A 固定电容C0必须稳定,且需要高精度的交流稳压源。 ③由于电容传感器的电容小,容抗很高,故传感器与放大器之 间的联结,需要有屏蔽措施。 ④不适用于差动式电容传感器的测量。
五、电容式传感器的特点及设计要点
主要缺点:
输出阻抗高,负载能力差 寄生电容影响大
输出特性是非线性
2、设计要点
设计时可从以下几个方面考虑:
1)减小环境温度、湿度等变化所产生的误差,保证绝缘材料
的绝缘性能;
2)消除和减小边缘效应 边缘效应不仅使电容传感器灵敏度降低而且产生非线性,

第5章--电容传感器

第5章--电容传感器

2. 变间隙(极距)型电容传感器的非线性分析
变间隙型电容传感器总结
•变间隙型电容传感器的输出特性是非线性的 •灵敏度Kg与极距的平方成反比,极距越小,灵敏度越 高,但线性误差增加
•差动式电容传感器的灵敏度比单边的提高了一倍,非 线性误差减小了一个数量级。
电容式传感器例题
一电容测微仪,其传感器的圆形极板半径 r=4mm ,工作初始间 隙d=0.3mm,介电常数ε=8.85×10-12F/m,试求: 1)工作中,若传感器与工件的间隙减小量Δd=2μm, 电容变化 量是多少? 2) 若测量电路的灵敏度 S1=100mv/PF, 读数仪表的灵敏度 S2=5 格/mv, 当Δd=2μm,时,读数仪表示值变化多少格? 解:
电容式传感器-实例
• 传声器(Microphone)俗称话筒 ,音译作麦克风,是一种声-电 换能器件,可分电动和静电两类 ,目前广播、电视和娱乐等方面 使用的传声器,绝大多数是动圈 式和电容式。 • 电容传声器以振膜与后极板间的 电容量变化通过前置放大器变换 为输出电压。它能提供非常高的 音响质量,频率响应宽而平坦, 是高性能传声器,但这种传声器 制造工艺复杂,价格高,需外加 60~200V的极化电压源,一般在 专业领域使用较多。
2.角位移变面积型 当动极板产生角位移 θ 时 , 与定极板间的有效覆盖面积改变 , 两极板间的电容量改变。
C C0
灵敏度
半圆形时
θ
当θ=0 时
当θ≠0时, 则:
C0
A
d
动极板
A 1 C C0 C0 d
定极板
C C0V/mm。
动极板 有了云母片极板间的起始间距
可大大减小。极大地提高了电容

电容式传感器

电容式传感器
电容式传感器与电阻式、电感式传感器相比具有以下优点: ①测量范围大。 ②灵敏度高。 ③动态响应时间短。由于电容式传感器可动部分质量很小,
因此其固有频率很高,适用于动态信号的测量。 ④机械损失小。电容式传感器电极间相互吸引力十分微小,
又无摩擦存在,其自然热效应甚微,从而保证传感器具有较 高的精度。
上一页 下一页 返回
第三节 电气火灾消防知识
(3)接触不良引起过热如接头连接不牢或不紧密、动触点压 力过小等使接触电阻过大,在接触部位发生过热而引起火灾。
(4)通风散热不良大功率设备缺少通风散热设施或通风散热 设施损坏造成过热而引发火灾。
(5)电器使用不当如电炉、电熨斗、电烙铁等未按要求使用, 或用后忘记断开电源,引起过热而导致火灾。
上一页 下一页 返回
第一节 安全用电知识
正确使用绝缘操作用具,应注意以下两点:
(1)绝缘操作用具本身必须具备合格的绝缘性能和机械强度。
(2)只能在和其绝缘性能相适应的电气设备上使用。
2.绝缘防护用具
绝缘防护用具则对可能发生的有关电气伤害起到防护作用。 主要用于对泄漏电流、接触电压、跨步电压和其他接近电气 设备存在的危险等进行防护。常用的绝缘防护用具有绝缘手 套、绝缘靴、绝缘隔板、绝缘垫、绝缘站台等,如图7-3所示。 当绝缘防护用具的绝缘强度足以承受设备的运行电压时,才 可以用来直接接触运行的电气设备,一般不直接触及带电设 备。使用绝缘防护用具时,必须做到使用合格的绝缘用具, 并掌握正确的使用方法。
3.变介电常数式电容传感器 因为各种介质的相对介电常数不同,所以在电容器两极板间
插入不同介质时,电容器的电容量也就不同,利用这种原理 制作的电容传感器称为变介电常数式电容传感器,它们常用 来检测片状材料的厚度、性质,颗粒状物体的含水量以及测 量液体的液位等。

电容式传感器

电容式传感器
C
电容量发生变化。
ΔC
o
传感器的输出特性 不是线性关系,而是如图所示的双曲线Δ关系。
(a)
(b)
工程上常采用以下两种近似处理方法: C
① 近似线性处理
② 近似非线性处理
ΔC
o
Δ
分析表明,提高传感器的灵
敏度和减小非线性误差是相互矛
1
盾的。在实际应用中,为了解决
这一矛盾,常采用如图所示的差
2
动结构。
12
3
1-被测带材; 2-轧辊; 3-电容极板
传感器与测试技术
1-电镀层(定极板);
5
1
2-膜片(动极板);
3-焊接密封圈;
p1
p2
4-隔离膜;5-硅油
4
2
3
2.电容式加速度传感器
加速度传感器均采用弹簧-质量-阻尼系统将被测加速度变换成力或 位移量,然后再通过传感器转换成相应的电参量。下图所示为电容式加速 度传感器的结构示意图。电容式加速度传感器的频率响应快、量程范围大, 阻尼物质采用空气或其他气体。
如图所示。
l
l
ax
x x
hx h
(a)
(a)测量介质厚度
(b)
(b)测量介质位置
d DБайду номын сангаас
(c)
(c)测量介质液位
1.2 电容式传感器的应用
1.电容式压差传感器
下图所示为电容式压差传感器的结构示意图,由一个金属膜片动极板和 两个在凹形玻璃圆盘上电镀成的定极板组成。电容式压差传感器的分辨率很 高,不仅用来测量压差,也可用来测量真空或微小绝对压力(0~0.75 Pa), 响应速度为100 ms。
传感器与测试技术

第5章 硅电容式微传感器

第5章 硅电容式微传感器
⑪平铺叉指型
图5-11 平铺叉指结构
⑫三明治叉指型结构
图5-12 三明治叉指结构
5.2 设计、建模与仿真
系统设计包括两个方面,即微传感器设
计与系统电子线路设计两大部分。 对于一个机电混合系统来讲,这两部分 的设计是密不可分的,任何孤立的单方 开发都无助于整个系统的最终形成。
5.2.1 硅微加速度传感器设计
5.3 典型接口电路
几乎所有用ห้องสมุดไป่ตู้测量电容式传感器的电路
是基于电容差值的测量方法,这是因为 被测量的电容值通常是在几个10-18F到 几百个10-12F范围内,而采用电容差值 的测量方法恰好可以满足这个测量范围 的要求。
5.3.1 CAV系列接口电路
图5-16 CAV424电路结构和应用电路图
第5章 硅电容式微传感器
硅是一种半导体,在元素周期表中处于
金属和非金属之间。 平板电容器的公式:
5.1 典型传感器结构及工作原理
目前实际应用的典型硅电容式微传感器
有微型硅加速度计、硅集成压力传感器 和CMOS集成电容湿度传感器。
5.1.1 微型硅加速度计
微型硅加速度计是一种新颖的加速
提高硅压力传感器可靠性的措施
通常有: ①在一定的功能下,其设计方案 愈减愈好,器件数量愈少愈好; ②对器件实行减额使用,减轻其 负荷量等。
5.3.2 XE2004接口电路
图5-19 XE2004内部结构框图
5.3.3 MS3110接口电路
MS3110采用调制解调的电容检测方法
。MS3110 芯片内部能够产生2路幅值 相同、相位相反的方波信号作为输出 电容的载波信号, 实现对电容变化的 调制, 调制信号通过电荷积器将电容 变化转换为电压变化, 采样保持电路 对调制信号进行解调, 经过低通滤波 、增益放大就得到与电容差成正比的 电压信号。

机械工程测试技术第5 章

机械工程测试技术第5 章
• 图5-18 所示为差动式电容加速度传感器结构。
上一页 下一页 返回
5. 4 测量电路
• 环形二极管电容测量电路原理如图5-14 所示,输入方波加在电桥 的A 点和地之间,Cx为被测电容,Cd为平衡电容传感器初始电容的 调零电容,C 为滤波电容,A 为直流电流表。 在设计时,由于方波脉冲 宽度足以使电容器Cx和Cd充、放电过程在方波平顶部分结束,因此, 电桥将发生如下的过程。
的ΔC 可以增大,从而使传感器灵敏度提高。
上一页 下一页 返回
5. 1 工作原理和结构
• 但d0 过小,容易引起电容器击穿或短路。 因此,极板间可采用高介电 常数的材料(云母、塑料膜等)作为介质,如图5-4 所示,此时电容变 为
• 云母片的相对介电常数是空气的7 倍,其击穿电压不小于1 000 k V/ mm,而空气仅为3 kV/ mm。 因此有了云母片,极板间起始距 离可大大减小。
• 一般变极板间距离电容式传感器的起始电容为20~100 pF,极板 间距离为25~200 μm。最大位移应小于间距的1/10,故在微位 移测量中应用最广。
上一页 下一页 返回
5. 1 工作原理和结构
• 5. 1. 2 变面积型电容式传感器
• 图5-5 所示为变面积型电容式传感器原理结构示意图。 被测量通 过动极板移动引起两极板有效覆盖面积S 改变,从而得到电容量的变 化。 当动极板相对于定极板沿长度方向平移Δx 时,则电容变化量为
薄膜等的厚度,也可用来测量粮食、纺织品、木材或煤等非导电固体 介质的湿度。 图5-8 所示为变介质型电容式传感器常用的结构形 式,图中两平行电极固定不动,极距为d0,相对介电常数为εr2 的电介 质以不同深度插入电容器中,从而改变两种介质的极板覆盖面积。 传 感器总电容量为

传感器习题第5章-电容式传感器

传感器习题第5章-电容式传感器

随意编辑第5章 电容式传感器(P99)5-3 图5—7为电容式液位计测量原理图。

请为该测量装置设计匹配的测量电路,要求输出电压0U图5-7 电容式液位变换器结构原理图解:电容式液位计的电容值为:dDnh C C 1)(210εεπ-+=,其中d D n HC 120πε=。

可见C 与液面高度h 呈线性关系。

可以看出,该结构不宜做成差动形式,所以不宜采用二极管双T 形交流电桥,也不宜采用脉冲宽度调制电路。

另外要求输出电压0U 与液位h 之间呈线性关系,所以不宜采用调频电路和运算放大器式电路。

可以采用环形二极管充放电法,具体电路如图所示。

可将直流电流表改为直流电压表与负载电阻R 的并联,R 上的电压为0U ,则有:)(0d x C C E Rf RI U -∆==其中,C x 为电容式液位计的电容值,f为方波的频率,ΔE =E 2-E 1为方波的幅值,C d为平衡电容传感器初始电容的dD n h C C 1)(210εεπ-+=环形二极管电容测量电路原理图E调零电容。

当h=0时调节dD n HC C d 120πε==,则输出电压0U 与液位h 之间呈线性关系。

5-5 题5—5图为电容式传感器的双T 电桥测量电路,已知Ω===k R R R 4021,Ω=k R L 20,V e 10=,MHz f 1=,pF C 100=,pF C 101=,pF C 11=∆。

求L U 的表达式及对于上述已知参数的L U 值。

解:()()V C C Uf R R R R R R U L L L L 18.010110110202040)20240(40)()()2(1262012=⨯⨯⨯⨯⨯⨯+⨯+⨯=-⋅++=-5-8 题5—8图为二极管环形电桥检波测量电路,p U 为恒压信号源,1C 和2C 是差动式电容传感器,0C 是固定电容,其值10C C >>,20C C >>,设二极管41~D D V V 正向电阻为零,反向电阻为无穷大,信号输出经低通滤波器取出直流信号AB e 。

5第五章电容式传感器1精品PPT课件

5第五章电容式传感器1精品PPT课件

5.2 电容传感器输出特性
1 变极距型( d )
传感器原理及工程应用
电容的总的变化量
C
C1
C2
2C0
[
d d0
( d d0
)3
]
电容的相对变化量 C 2 d [1 ( d )2 ( d )4 ]
C0
d0
d0
d0
电容特征方程忽略高次项得: C 2 d
C0
d0
提问与解答环节
Questions And Answers
d
d0
d0
非性线误性差误δ就差在和2%d~d0 1有0%关之,间如。果也当就d是d0 说0.,02在~ 0d.1产时生,微则小非变线
化△d时,会产生比较大的非线性误差。显然这种单极板
式变间距型传感器适用于微小位移的测量
第5章 电容式传感器
传感器原理及工程应用
5.2 电容传感器输出特性
1 变极距型(d)
第5章 电容式传感器 5.2 电容传感器输出特性
1 变极距型( d )
传感器原理及工程应用
差动结构的电容特征方程式为(当动极板向上移动时)
C1
C0
C
C0
1
1 d
d0
C0[1
d d0
( d )2 d0
]
定极板
C2
C0 [1
d d0
( d d0
)2
]
动极板
C1 d1 C2 d2
定极板
第5章 电容式传感器
A
d0 d
A
d0
(1
d d0
)
C01ຫໍສະໝຸດ 1 dd0增加的电容量为:
电容的相对变化量:
第5章 电容式传感器

电容式传感器产生误差的因素有几个怎么消除

电容式传感器产生误差的因素有几个怎么消除
• 工作原理:液位计是一根金属棒插入盛液容器 内,金属棒作为电容的一个极,容器壁作为电 容的另一极。电容式液位计原理是采用测量电 容的变化来测量液面的高低的。它两电极间的 介质即为液体及其上面的气体。由于液体的介 电常数ε1和液面上的介电常数ε2不同,比如: ε1>ε2,则当液位升高时,两电极间总的介电 常数值随之加大因而电容量增大。反之当液位 下降,ε值减小,电容量也减小。
• 电容触摸屏的优点:电容触摸屏的双玻璃不但能保护导体及
感应器,更有效地防止外在环境因素对触摸屏造成影响,就算屏幕沾 有污秽、尘埃或油渍,电容式触摸屏依然能准确算出触摸位置。 电 容式触摸屏是在玻璃表面贴上一层透明的特殊金属导电物质。当手指 触摸在金属层上时,触点的电容就会发生变化,使得与之相连的振荡 器频率发生变化,通过测量频率变化可以确定触摸位置获得信息。由 于电容随温度、湿度或接地情况的不同而变化,故其稳定性较差,往 往会产生漂移现象。该种触摸屏适用于系统开发的调试阶段。
• 料带前进过程中,采用激光区域传感器检测 料带左右位置,控制伺服驱动器纠偏.目标是 料带左右偏移正负0.25mm
12.电阻式触摸屏与电容式触摸屏比 较各有什么优缺点?为什么?
• 电容式触摸屏的介绍 :
• 电容式触摸屏的构造主要是在玻璃屏幕上镀一层透明的薄膜体层,再 在导体层外加上一块保护玻璃,双玻璃设计能彻底保护导体层及感应 器。 电容式触摸屏在触摸屏四边均镀上狭长的电极,在导电体内形 成一个低电压交流电场。在触摸屏幕时,由于人体电场,手指与导体 层间会形成一个耦合电容,四边电极发出的电流会流向触点,而电流 强弱与手指到电极的距离成正比,位于触摸屏幕后的控制器便会计算 电流的比例及强弱,准确算出触摸点的位置。
4. 边缘效应使设计计算复杂化、产生非线性及降低传感器 的灵敏度。消除和减小的方法是在结构上增设防护电极, 防护电极必须与备防护电极取相同的电位,尽量使它们同 为地电位。

电容式传感器资料课件

电容式传感器资料课件

软件校准
通过修改传感器的软件算 法,如补偿算法、滤波算 法等,来提高传感器的测 量精度。
综合校准
结合硬件和软件两种方式 ,对传感器进行全面校准 。
电容式传感器的标定实验及数据处理
实验设计
根据传感器的工作原理和实际应用场景,设 计标定实验方案。
数据采集
在实验过程中,采集传感器在不同条件下的 输出数据。
电容式传感器在温度测量中的应用
总结词
高精度、快速响应、稳定性好
详细描述
电容式传感器可将温度变化转化为电容量的变化,从而实现 对温度的精确测量。具有高精度、快速响应、稳定性好等优 点,适用于各种需要温度测量的场合,如环境监测、医疗设 备、工业生产等。
05
电容式传感器的校准与标 定
电容式传感器的误差来源及影响分析
展望电容式传感器的未来发展方向
高性能化 随着科技的不断进步,电容式传 感器的性能将不断提高,测量精 度和灵敏度将得到进一步提升。
微型化 随着微纳制造技术的发展,未来 的电容式传感器将更加微型化, 能够应用于更小的空间和更复杂 的场景。
智能化 未来的电容式传感器将更加智能 化,具备自校准、自补偿、自诊 断等功能,能够更好地适应复杂 环境下的测量需求。
电容式传感器所面临的挑战与对策
温度影响
电容式传感器的电容值会随温度变化而变化,给测量带来误差。为了减小温度影响,需要 采用温度补偿技术、选用具有良好温度特性的材料以及优化传感器结构设计等措施。
交叉灵敏
交叉灵敏是指电容式传感器对不同方向的干扰敏感,导致测量误差。为了减小交叉灵敏影 响,需要优化传感器结构设计、选用具有良好方向特性的材料以及采用信号处理技术等措 施。
电极材料
根据应用场景和敏感材料 选择电极材料,如金、银 、不锈钢等。

第五章 电容式传感器

第五章 电容式传感器

X
22
动极(圆柱)沿轴线移动△L时,电容的变化量为:
2l l C C ln(r2 / r1 ) l
(5-24)
若采用差动结构,动极向上移动Δl,则上面部分的电容量Ca增加, 下面部分的电容量Cb减少,使输出为差动形式,有:
2 (l l ) 2 (l l ) l C Ca Cb 2C ln(r2 / r1 ) ln(r2 / r1 ) l
(5-25)
结论:采用差动式结构,电容变化量增加一倍,则灵敏度也提高一倍。
X
23
角位移变面积型
X
24
(3)角位移式电容传感器
设两半圆极板重合时,电容量为: S r 2 C d 2d
动极2转过角,电容量变为: r 2 ( ) S (1 / )
第 5章
5.1 5.2
电容式传感器
电容式传感器 5.1.1 基本工作原理 5.1.2 电容式传感器的线性及灵敏度 电容式传感器的输出电路及等效电路 5.2.1 电容式传感器的等效电路 5.2.2 电容式传感器的输出电路 影响电容传感器精度的因素及提高精 度的措施 5.3.1 边缘效应的影响 5.3.2 寄生电容的影响 5.3.3 温度的影响 电容式传感器的应用 5.4.1 电容式压力传感器 5.4.2 电容式加速度传感器 5.4.3 电容式荷重传感器 5.4.4 振动、位移测量仪 5.4.5 电容测厚传感器
差动电容式传感器的相对非线性误差近似为:
结论:差动式比单极式灵敏度提高一倍,非线性误差减小。 结构上的对称性,能有效补偿温度变化所造成的误差。
X
12
(2)固定介质与可变间隙式电容传感器
减小极间隙可提高灵敏度,但易击穿。为此,经常在两 极板间加一层云母或塑料等介质,以改变电容的耐压性能。 由此,构成固定介质与可变间隙式电容传感器。

电容式传感器知识点

电容式传感器知识点

94第5章电容式传感器(知识点)知识点1电容式传感器概述电容式传感器利用了将非电量的变化转换为电容量的变化来实现对物理量的测量。

电容式传感器广泛用于位移、振动、角度、加速度,以及压力、差压、液面(料位或物位)、成份含量等的测量。

知识点2电容式传感器的结构电容式传感器的常见结构包括平板状和圆筒状,简称平板电容器或圆筒电容器。

平板电容式传感器的结构如图5.1所示。

在不考虑边缘效应的情况下,其电容量的计算公式为:0r AA C d dεεε⋅==(5.1)式中:A -两平行板所覆盖的面积ε-电容极板间介质的介电常数0ε-自由空间(真空)介电常数(等于8.854×10-12F m )r ε-极板间介质相对介电常数d-两平行板间的距离。

图5.1平板电容式传感器的结构由式(5.1)可见,当被测参数变化引起A 、r ε或d 变化时,将导致平板电容式传感器的电容量C 随之发生变化。

在实际使用中,通常保持其中两个参数不变,而只变其中一个参数,把该参数的变化转换成电容量的变化,通过测量电路转换为电量输出。

因此,平板电容式传感器可分为三种:变极板覆盖面积的变面积型、变介质介电常数的变介质型和变极板间距离的变极距型。

95圆筒电容式传感器的结构如图5.2所示。

在不考虑边缘效应的情况下,其电容量的计算公式为:02ln r lC R rπεε=(5.2)式中:l -内外极板所覆盖的高度R -外极板的半径r -内极板的半径0ε-自由空间(真空)介电常数(等于8.854×10-12F m )r ε-极板间介质的相对介电常数图5.2圆筒电容式传感器的结构由式(5.2)可见,当被测参数变化引起r ε或l 变化时,将导致圆筒电容式传感器的电容量C 随之发生变化。

在实际使用中,通常保持其中一个参数不变,而改变另一个参数,把该参数的变化转换成电容量的变化,通过测量电路转换为电量输出。

因此,圆筒电容式传感器可分为两种:变介质介电常数的变介质型和变极板间覆盖高度的变面积型。

第五章 电容式传感器

第五章 电容式传感器

5.1.3 变介电常数的电容式传感器
N4是灵敏度因子 N4是非线性因子 N4与间隙比和介电常数有关
5.2 电容式传感器的等效电路
电容式传感器表现为纯电容特性吗?
实用情况下,大多数电容器,除了在高温、 高湿条件下,损耗可以忽略 低频工作时,电感效应可以忽略
在电容器的损耗和电感效应不能忽略时, 等效电路如图所示
R2
Ui
R1
C b Sn x d
5.1.3 变介电常数的电容式传感器
电容器的电容为
C
a d d /r
0 A
若相对介电常数增加Δεr时,电容相应增加
0 A C C a d d / r r
5.1.3 变介电常数的电容式传感器
电容的相对变化为 C r 1 N2 C r 1 N 3 r / r 1 N2 式中
ε
5.1 电容式传感器的工作原理
影响平板电容器电容值的因素
极板面积 极板间距离 介质的介电常数
被测物理量可以通过作用在这三个因素 之上而使得电容值发生改变
位移——极板间距离 角度——极板面积 液面——介电常数
5.1 电容式传感器的工作原理
电容式传感器的基本工作原理
被测物理量通过适当的形式使得极板面积A、 极板间距离d和介电常数ε中的某一项或多项 发生变化,从而改变电容值C 电容值的变化最终要进一步体现为电路中的 电压或电流的变化为我们所认识 被测物理量的变化将会按照一定的规律体现 为传感器输出电容的变化,而电容的变化又 会遵循一定的规律体现在后续电路的电压或 电流变化之中,我们能够通过电压或电流的 变化认知电容的变化,进一步认知被测量的 变化
改变极板间距离的变间隙式 改变极板面积的变面积式 改变介电常数的变介电常数式

电容式传感器的工作原理及结构形式课件

电容式传感器的工作原理及结构形式课件
新技术
引入新型制造工艺、纳米技术等,优化传感器结构和制造过程,降低成本和提高产量。
05
电容式传感器与其他传 感器的比较
电容式传感器与电阻式传感器的比较
总结词
电阻式传感器通过测量电阻的变化来检测物理量,而 电容式传感器则是通过测量电容量变化来实现。
详细描述
电阻式传感器利用电阻随环境变化(如温度、压力、湿 度等)的特性,通过测量电阻值的变化来检测物理量。 而电容式传感器则是利用电容器极板间电介质的变化, 改变电容器极板间的距离或相对面积,从而引起电容量 的变化,实现对物理量的检测。
加速度测量
电容式传感器通过测量加速度对电容器极板 的影响,从而检测加速度的变化。这种传感 器广泛应用于汽车安全气囊、碰撞测试等领 域。
其他应用领域
温度测量
电容式传感器通过测量温度对电容器极板的 影响,从而检测温度的变化。这种传感器广 泛应用于温度控制和监测领域。
湿度测量
电容式传感器通过测量湿度对电容器极板的 影响,从而检测湿度的变化。这种传感器广
平行板型电容传感器
总结词
平行板型电容传感器是最基本的电容式传感器,其结构简单 ,易于制造,灵敏度高,适用于测量微小位移和压力等参数 。
详细描述
平行板型电容传感器由两个平行、相对的金属板组成,其间 保持恒定的距离。当被测物体靠近或插入两金属板之间时, 传感器的电容值会发生变化,通过测量这个电容值的变化, 可以获得被测物体的位移或压力等信息。
电容式传感器与霍尔传感器的比较
总结词
霍尔传感器通过测量霍尔电压的变化来 检测物理量,而电容式传感器则是通过 测量电容量变化来实现。
VS
详细描述
霍尔传感器利用霍尔效应,通过测量磁场 变化引起的霍尔电压变化来检测物理量( 如磁场、电流等)。而电容式传感器则是 利用电容器极板间电介质的变化,改变电 容器极板间的距离或相对面积,从而引起 电容量的变化,实现对物理量的检测。

第5章胡向东传感器与检测技术PPT

第5章胡向东传感器与检测技术PPT

uN
ur
T2 (a) C1 C2
uM
ur
t
t
T1
uN
ur
t
t
T2
(b) C1 C2
u0=(uAB )DC
C1 C2 C1 C2
um
变极距型:u0
d d0
um
A
变面积型:u0 A0 um
差动脉冲宽度调制电路适用于变极板距离和变面积式 差动电容传感器,且为线性特性。
5.3 电容式传感器的应用
特点:
结构简单、体积小、分辨率高; 可实现非接触式测量; 动态响应好; 能在高温、辐射和强振动等恶劣条件下工作; 电容量小,功率小,输出阻抗高,负载能力差,易受外界干
扰产生不稳定现象。
5.1 电容式传感器的工作原理
A
d r
C= A=0r A
d
d
在实际使用中,通常保持其中两个参数不变, 而只变其中一个参数,把该参数的变化转换成 电容量的变化,通过测量电路转换为电量输出。
C0
2
d d0
2
d d0
3
2
d d0
5
C C0
=2
d d0
1
d d0
2
d d0
4
d d0
6
K C C0 2 d d0
3

2
d d0
2
d
100 %
100 %
2 d
d0
d0
差动的好处
灵敏度得到一倍的改 善
C d 2
C0
d0
线性度得到改善
2
d d0
C0
d0
1
d d0
C =d C0 d0

电容式传感器

电容式传感器

器 -解决方法:采用耐高压的材料作介质(如云母、 塑料膜等)。
▪适合于微位移的测量。
进一步分析: 22

C
C C0
s 0
s 0
非线性分析:

s 0 0
C0
1
/
/
0
0
式 传
C C
0
0
1
1
0
感 器
C C0
0
1
0
0
2
若: 1 0
略去2次方以上高次项:
( ) 2 2
0
0
式 传 感
1 2
m
最大绝对误差:
ym
1 4
m
2 0
2

最大相对误差为:
2
ef
ym C C F.S
100%
1 4
m 0
m 0
1
m 0
1 4
m 0
100%
26

非线性误差:
ef
1 4
m 0
100%
灵敏度:

式 k (C C0 ) F .S . 1 (1 m )

➢ 容抗大:几十兆欧~几百兆欧
➢ 视在功率小:mW级

➢ 信号弱,一般情况需放大

➢ 易受环境电磁场和寄生电容的干扰

➢ 当工作频率很高时,容抗将减小,视在 功率增大。
38
四、静电吸力

容 原理:克服电场力所做的功与电场能量W的增加
相等。 式

F d dW
F dW
d

对平板电容器的分析计算:

被测物理量 , S, C

电容式传感器知识点

电容式传感器知识点

94第5章电容式传感器(知识点)知识点1电容式传感器概述电容式传感器利用了将非电量的变化转换为电容量的变化来实现对物理量的测量。

电容式传感器广泛用于位移、振动、角度、加速度,以及压力、差压、液面(料位或物位)、成份含量等的测量。

知识点2电容式传感器的结构电容式传感器的常见结构包括平板状和圆筒状,简称平板电容器或圆筒电容器。

平板电容式传感器的结构如图5.1所示。

在不考虑边缘效应的情况下,其电容量的计算公式为:0r AA C d dεεε⋅==(5.1)式中:A -两平行板所覆盖的面积ε-电容极板间介质的介电常数0ε-自由空间(真空)介电常数(等于8.854×10-12F m )r ε-极板间介质相对介电常数d-两平行板间的距离。

图5.1平板电容式传感器的结构由式(5.1)可见,当被测参数变化引起A 、r ε或d 变化时,将导致平板电容式传感器的电容量C 随之发生变化。

在实际使用中,通常保持其中两个参数不变,而只变其中一个参数,把该参数的变化转换成电容量的变化,通过测量电路转换为电量输出。

因此,平板电容式传感器可分为三种:变极板覆盖面积的变面积型、变介质介电常数的变介质型和变极板间距离的变极距型。

95圆筒电容式传感器的结构如图5.2所示。

在不考虑边缘效应的情况下,其电容量的计算公式为:02ln r lC R rπεε=(5.2)式中:l -内外极板所覆盖的高度R -外极板的半径r -内极板的半径0ε-自由空间(真空)介电常数(等于8.854×10-12F m )r ε-极板间介质的相对介电常数图5.2圆筒电容式传感器的结构由式(5.2)可见,当被测参数变化引起r ε或l 变化时,将导致圆筒电容式传感器的电容量C 随之发生变化。

在实际使用中,通常保持其中一个参数不变,而改变另一个参数,把该参数的变化转换成电容量的变化,通过测量电路转换为电量输出。

因此,圆筒电容式传感器可分为两种:变介质介电常数的变介质型和变极板间覆盖高度的变面积型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d / d0 100%
允许极距最大变化量:
d d0 1 0.1% 0.001(mm)
例题
有一只变极距电容传 感器,二极板有效重叠 面积为8*10-4m2,两 极板距离为1mm,已 知空气的介电常数为 1.0006,试计算该传感 器的位移灵敏度.
解:
C
0r
A d
K
C d
C0 d
A
d2
仅适用于微小位移的测量。
非线性误差随极板距离d0的增加而减小, 但是增加极板距离d0,灵敏度相应降低。
变极距型电容传感器的输出特性曲线
为提高灵敏度和减小非线性,一般采用差动式电容传感器。
例:一变极距型平板电容传感器,d0=1mm,若要求测量非线性误差最 大为0.1%。求允许极距最大变化量是多少?
解:变极距型平板电容传感器非线性误差为:
=
当被测介质 r 2 进入极板L深度后,引起电容相对变化量为
C C C0 (r2 1)L
C0
C0
L0
显然,电容量的变化与电介质 r 2 的变化量成正比。
5.2.3 变介电常数型电容式传感器
D
右图是一种常见的用于液位测量的变
d
介电常数型电容传感器。假设被测介
质的介电常数为 1

液位高度h,传感器总高度H,内筒
深度插入电容器中,从而改变两种介质的极板覆盖面
积。
两个电容并联
C
C1
C2
0b0
r1(L0
L) r2L
d0
L0 L
r2
r1
d0
L0和b0——极板的长度和宽度,L——第二种介质进入极板 间的长度。
5.2.3 变介电常数型电容式传感器
若电介质 r 2 =1, 当L=0时,传感器初始电容
C0 0r L0b0 / d0
显然电容的变化与位移变化量 x之间呈
x
(a) 直线型
线性关系,其灵敏度为:
动极板
K C b
x d
定极板
(b) 角位移型
提高灵敏度的方法
K C b
x d
减小量极板间距离d,或增大极板边长b 均可提高传感器的灵敏度。
但d的减小受到电容器击穿电压限制,b 的增大则受传感器体积的限制。此外位移 △x不能太大,极板的另一边长a不宜过小, 否则会因边缘电场影响的增加而影响线性特 性。
如何提高 灵敏度?
增加极板面积、降 低初始极板距离。
一般变极距电容式传感器极板间距离在25~200μm 的范围内。最大位移应小于 间距的1/10, 故在微位移测量中应用最广
若考虑线性项与二次项 相对非线性误差为
C C0
d d0
1
d d0
d / d0 2
d / d0
100%
d / d0
100%
非线性误差与 d / d0 的大小有关,
解:传感器的电容量与被测液位的高度成正比,
当h=0时,电容最小:
C m in
2 0 H ln D
2 8.85 pF / m 1.2m ln 40
41.46 pF
当h=H时,电d 容最大: 8
C 2 0r H 41.46 2.1 87.07 pF D
ln d
储存罐的容积为:
V d '2 h (0.5m)2 1.2m 235 .6m3
C d
A d 2 (1
x)2
C0 d
(1 2x 3x2
4x4
...)
因此这种传感器是非线性的,灵敏度不是常数,而是取 决于极板间变化率和极板间初始距离。如果限制极板间 距离的变化率x为一个小量,即当 Δd/d=0 时可以近似认 为变极板间距离式电容传感器的灵敏度为
d2
=8.0048*10-10F/m 符号表示极板距离增加时电容减小.
5.2.2 变面积式电容传感器
根据面积变化方式分为: 直线型(图a)和角位移型(图b)
b
a d
x S
(a)直线型:两个极板间距离d固定, 极板长宽分别
为a,b,动极板引入位移变化量 x
C
C0
C
A A d
A bx d
C0
bx d
4
4
故传感器的灵敏度为:
K Cmax Cmin 87.07 41.46 0.19 pF / L
V
235.6
表5.1 几种介质的相对介电常数
介质名称 真空 空气 其他气体 变压器油 硅油 聚丙烯 聚苯乙烯
聚四氟乙烯
聚偏二氟乙烯
相对介电常数εr 1 略微>1 1~1.2 2~4 2~3.5 2~2.2 2.4~2.6


外径d,外筒内经D,则传感器的

电容值
H
C
C0
C
21h
1n D
21(H
1n D
h)
ɛ
d
d
h 1
2 H
1n D
2 h(1 )
1n D
C0
2 h(1 )
1n D
d
d
d
可见电容C的变化与液位高度h的变化也是线性关系
例:某电容式液位传感器由直径为40mm和8mm的两个同心圆柱体组成。 储存罐也是圆柱形,直径为50cm,高为1.2m。被储存液体 的 r 2.1 。计算传感器的最小电容和最大电容以及当传感器用 在该储存罐内时的灵敏度。
量的变化。当极板2移动d时,电容
大小为:
C
C0
C
0r
d
A d
A d (1
x)
1 C0 1 x
x d / d 为极板间距离变化率,
为求灵敏度,对上式求导并作泰勒展开
C d
A d 2 (1
x)2
C0 d
(1 2x 3x2
4x4
...)
定板
d
动板 定板
d
5.2.1 变极距式电容传感器
电容式角位移传感器
当动极板有一个角位移θ时,与定极板间 的有效覆盖面积就发生改变,面积改变量
动极板 定极板
因此电容值
A A0
C
C0
C
A A d
A A d
C0
C0
可以看出,传感器的电容量C与角位移θ呈线性关系
5.2.3 变介电常数型电容式传感器
下图极距为d0,相对介电常数为εr2的电介质以不同
C
0 r
A d
由此可见介电常 数、极板面积和 极板间距离变化,
式中
0 8.85 pF / m
是真空介电常数。 都会使电容量发 变化。
5.2电容式传感器的工作原理
电容式传感器分类: 变极板间距离 变面积 变介电常数三类。下面分别介绍。
5.2.1 变极距式电容传感器
极板1固定,极板2活动用来引入被测
第五章:电容式传感器
工作原理
误差及处理方法


电容式传感器
测量电路
实际应用

类型
5.1 什么是电容器
构成:两个用介质(固体、 液体或气体)或真 空隔离开的电导体 称为电容(如图5.1 a)。
电容: C Q V
两个导体上的电荷数Q 电导体之间的电压差V
可变电容器
对于两个面积为A的相同平行极板、极板间距离为d、介质为 介电常数为 r 的某种材料所形成的电容器,其电容为
相关文档
最新文档