数据结构实验报告-树与二叉树

合集下载

数据结构二叉树实验报告

数据结构二叉树实验报告

一 、实验目的和要求(1)掌握树的相关概念,包括树、节点的度、树的度、分支节点、叶子节点、孩子节点、双亲节 点、树的深度、森林等定义。

(2)掌握树的表示,包括树形表示法、文氏图表示法、凹入表示法和括号表示法等。

(3)掌握二叉树的概念,包括二叉树、满二叉树和完全二叉树的定义。

(4)掌握二叉树的性质。

(5)重点掌握二叉树的存储结构,包括二叉树顺序存储结构和链式存储结构。

(6)重点掌握二叉树的基本运算和各种遍历算法的实现。

(7)掌握线索二叉树的概念和相关算法的实现。

(8)掌握哈夫曼树的定义、哈夫曼树的构造过程和哈夫曼编码的产生方法。

(9)掌握并查集的相关概念和算法。

(10)灵活运用二叉树这种数据结构解决一些综合应用问题。

二、实验内容注:二叉树b 为如图7-123所示的一棵二叉树图7-123+实验7.1 编写一个程序algo7-1.cpp,实现二叉树的各种运算,并在此基础上设计一个程序exp7-1.cpp 完成如下功能:(1)输出二叉树b ;(2)输出H 节点的左、右孩子节点值; (3)输出二叉树b 的深度; (4)输出二叉树b 的宽度; (5)输出二叉树b 的节点个数;(6)输出二叉树b 的叶子节点个数。

实验7.2设计一个程序exp7-2.cpp,实现二叉树的先序遍历、中序遍历和后序遍历和非递归算法, 以及层次变量里的算法。

并对图7-123所示的二叉树b 给出求解结果。

b+ACF GIKL+NM+E+HdJD₄B臣1607-1.CPPif(b?-HULL)re3P4+;Qu[rear]-p-b;Qu[rear].1no=1;while(reart=front){Front++;b=Qu[front]-P;lnum-Qu[front].1no;if(b->Ichildt=NULL)rpar+t;Qu[rear]-p=b->1child;Qu[rear].Ino-lnun+1;if(D->rch11d?=NULL)1/根结点指针入队//根结点的层次编号为1 1/队列不为空1/队头出队1/左孩子入队1/右孩子入队redr+t;qu[rear]-p=b->rchild;Qu[rear].1no-lnun*1;}}nax-0;lnun-1;i-1;uhile(i<=rear){n=0;whdle(i<=rear ge Qu[1].1no==1num)n+t;it+;Inun-Qu[i].1n0;if(n>max)nax=n;}return max;田1607-1.CPPreturn max;}elsereturn o;口×int Modes(BTNode *D) //求二叉树D的结点个数int nun1,nun2;if(b==NULL)returng,else if(b->ichild==NULL&D->rchild==NULL)return 1;else{num1-Hodes(b->Ichild);num2=Nodes(b->rchild);return(num1+nun2+1);LeafNodes(BINode *D) //求二叉树p的叶子结点个数int num1,num2;1f(D==NULL)return 0;else if(b->1chi1d==NULLc& b->rch11d==NULL)return 1;else{num1-LeafModes(b->lchild);num2=LeafNodes(b->rchild);return(nun1+nun2);int程序执行结果如下:xCProrn FlslirosfViu l SudiollyPrjecslro7 LJebuglFoj7 ex<1)输出二叉树:A<B<D,E<H<J,K<L,M<,N>>>>),C<F,G<,I>>)<2)'H’结点:左孩子为J石孩子为K(3)二叉树b的深度:7<4)二叉树b的宽度:4(5)二叉树b的结点个数:14(6)二叉树b的叶子结点个数:6<?>释放二叉树bPress any key to continue实验7 . 2程序exp7-2.cpp设计如下:坠eTPT-2.EPP#include<stdio.h》winclude<malloc.h>deFn Masie 00typde chr ElemTyetypede sruct nde{ElemType data;stuc node *lclldstruct node rchild;》BTHode;extern vod reaeBNodeBTNode extrn void DispBTHode(BTNodeuoid ProrderBTNode *b)if(b?-NULL)- 回1 / 数据元素1 / 指向左孩子1 / 指向右孩子*eb car *str)xb1 / 先序遍历的递归算法1 / 访问根结点/ / 递归访问左子树1 7 递归访问右子树/ / 根结点入栈//栈不为空时循环/ / 退栈并访问该结点/ / 右孩子入栈{》v oidprintf(*c“,b->data); Preorder(b->lchild); Pre0rder(b->rchild);Preorder1(BTNode *b)BTNode xSt[Maxsize],*p;int top=-1;if(b!-HULL)top++;St[top]-b;uhle (op>-)p-St[top];top--;printf("%c“,p->data);if(p->rchild?-HULL)A约e程p7-2.CPPprintF(”后序逅历序列:\n");printf(" 递归算法=");Postorder(b);printf("\n");printf(“非递归算法:“);Postorder1(b);printf("\n");序执行结果如下:xCAPrograFleicsoftVisal SudlyrjecsProj 2Debuzlroj72ex"二叉树b:A(B(D,ECH<J,K(L,M<,N)>))),C(F,GC.I>))层次遍历序列:A B C D E F G H I J K L M N先序遍历序列:递归算法:A B D E H J K L M N C F G I非归算法:A B D E H J K L M N C F G I中序遍历序列:递归算法: D B J H L K M N E A F C G I非递归算法:D B J H L K M N E A F C G I后序遍历序列:递归算法: D J L N M K H E B F I G C A非递归算法:D J L N H K H E B F I G C APress any key to continue臼p7-3.CPP15Pp a t h[p a t h l e n]-b->d a t a;//将当前结点放入路径中p a t h l e n t+;/7路任长度培1Al1Path1(b->ichild,patn,pathlen);1/递归扫描左子树Al1Path1(b->rchild,path,pathlen); //递归扫描右子树pathlen-- ; //恢复环境uoid Longpath(BTNode *b,Elemtype path[1,int pathlen,Elemtype longpath[],int elongpatnien) int i;1f(b==NULL){if(pathlen>longpatnlen) //若当前路径更长,将路径保存在1ongpatn中for(i-pathlen-1;i>-8;i--)longpath[i]=path[1];longpathlen-pathlen;elsepath[pathlen]=b->data; pathlen4; //将当前结点放入路径中//路径长度增1iongPath(b->lchild,path₇pathlen,langpath,longpathien);//递归扫描左子树LongPath(b->rchiid,path,pathien,longpath,longpathien);//递归扫描石子树pathlen--; /7饮其环境oid DispLeaf(BTNode xb)- 口凶uoid DispLeaf(BTNode xb)iE(D!=NULL){ if(b->1child--HULL B& b->rchild--HULL)printf("3c“,b->data);elsepispLeaf(b->ichild);DispLeaf(b->rchild);oid nain()8TNodexb;ElenType patn[Maxsize],longpath[Maxsize];int i.longpathien-U;CreateBTNode(b,"A(B(D,E(H(J,K(L,H(,N))))),C(F,G(,I)))");printf("\n二灾树b:");DispBTNode(b);printf("\n\n*);printf(”b的叶子结点:");DispLeaf(b);printf("\n\n");printf("A11Path:");A11Path(b);printf("m");printf("AiiPath1:n");AliPath1(b.path.);printf("");LongPath(b,path,8,longpath,longpathlen);printf(”第一条量长路径长度=d\n”,longpathlen);printf(”"第一茶最长路径:");for(i=longpathlen;i>=0;i--)printf("c",longpatn[1]);printf("\n\n");。

数据结构C语言版 实验报告

数据结构C语言版 实验报告

数据结构C语言版实验报告一、实验目的本次实验旨在通过使用 C 语言实现常见的数据结构,加深对数据结构基本概念、原理和操作的理解,提高编程能力和解决实际问题的能力。

二、实验环境操作系统:Windows 10编程环境:Visual Studio 2019编程语言:C 语言三、实验内容1、线性表顺序表的实现与操作链表的实现与操作2、栈和队列栈的实现与应用(表达式求值)队列的实现与应用(模拟排队)3、树和二叉树二叉树的遍历(前序、中序、后序)二叉搜索树的实现与操作4、图图的存储结构(邻接矩阵、邻接表)图的遍历(深度优先搜索、广度优先搜索)四、实验步骤及结果1、线性表顺序表的实现与操作定义顺序表的数据结构,包括数组和表的长度。

实现顺序表的初始化、插入、删除、查找等操作。

测试顺序表的各种操作,输出操作结果。

```cinclude <stdioh>include <stdlibh>define MAX_SIZE 100typedef struct {int dataMAX_SIZE;int length;} SeqList;//初始化顺序表void initList(SeqList L) {L>length = 0;}//插入元素到顺序表int insertList(SeqList L, int pos, int element) {if (L>length >= MAX_SIZE || pos < 0 || pos > L>length) {return 0;}for (int i = L>length 1; i >= pos; i) {L>datai + 1 = L>datai;}L>datapos = element;L>length++;return 1;}//删除顺序表中的元素int deleteList(SeqList L, int pos) {if (pos < 0 || pos >= L>length) {return 0;}for (int i = pos; i < L>length 1; i++){L>datai = L>datai + 1;}L>length;return 1;}//查找顺序表中的元素int searchList(SeqList L, int element) {for (int i = 0; i < Llength; i++){if (Ldatai == element) {return i;}}return -1;}int main(){SeqList L;initList(&L);insertList(&L, 0, 10);insertList(&L, 1, 20);insertList(&L, 2, 30);printf("顺序表元素: ");for (int i = 0; i < Llength; i++){printf("%d ", Ldatai);}printf("\n");int pos = searchList(L, 20);if (pos!=-1) {printf("元素 20 在顺序表中的位置: %d\n", pos);} else {printf("顺序表中未找到元素 20\n");}deleteList(&L, 1);printf("删除元素后的顺序表元素: ");for (int i = 0; i < Llength; i++){printf("%d ", Ldatai);}printf("\n");return 0;}```实验结果:成功实现顺序表的初始化、插入、删除、查找等操作,输出结果符合预期。

数据结构实验报告 二叉树

数据结构实验报告 二叉树

数据结构实验报告二叉树数据结构实验报告:二叉树引言:数据结构是计算机科学中的重要基础,它为我们提供了存储和组织数据的方式。

二叉树作为一种常见的数据结构,广泛应用于各个领域。

本次实验旨在通过实践,深入理解二叉树的概念、性质和操作。

一、二叉树的定义与性质1.1 定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树可以为空树,也可以是由根节点和左右子树组成的非空树。

1.2 基本性质(1)每个节点最多有两个子节点;(2)左子树和右子树是有顺序的,不能颠倒;(3)二叉树的子树仍然是二叉树。

二、二叉树的遍历2.1 前序遍历前序遍历是指首先访问根节点,然后按照先左后右的顺序遍历左右子树。

在实际应用中,前序遍历常用于复制一颗二叉树或创建二叉树的副本。

2.2 中序遍历中序遍历是指按照先左后根再右的顺序遍历二叉树。

中序遍历的结果是一个有序序列,因此在二叉搜索树中特别有用。

2.3 后序遍历后序遍历是指按照先左后右再根的顺序遍历二叉树。

后序遍历常用于计算二叉树的表达式或释放二叉树的内存。

三、二叉树的实现与应用3.1 二叉树的存储结构二叉树的存储可以使用链式存储或顺序存储。

链式存储使用节点指针连接各个节点,而顺序存储则使用数组来表示二叉树。

3.2 二叉树的应用(1)二叉搜索树:二叉搜索树是一种特殊的二叉树,它的左子树上的节点都小于根节点,右子树上的节点都大于根节点。

二叉搜索树常用于实现查找、插入和删除等操作。

(2)堆:堆是一种特殊的二叉树,它满足堆序性质。

堆常用于实现优先队列,如操作系统中的进程调度。

(3)哈夫曼树:哈夫曼树是一种带权路径最短的二叉树,常用于数据压缩和编码。

四、实验结果与总结通过本次实验,我成功实现了二叉树的基本操作,包括创建二叉树、遍历二叉树和查找节点等。

在实践中,我进一步理解了二叉树的定义、性质和应用。

二叉树作为一种重要的数据结构,在计算机科学中有着广泛的应用,对于提高算法效率和解决实际问题具有重要意义。

数据结构实验三实验报告

数据结构实验三实验报告

数据结构实验三实验报告数据结构实验三实验报告一、实验目的本次实验的目的是通过实践掌握树的基本操作和应用。

具体来说,我们需要实现一个树的数据结构,并对其进行插入、删除、查找等操作,同时还需要实现树的遍历算法,包括先序、中序和后序遍历。

二、实验原理树是一种非线性的数据结构,由结点和边组成。

树的每个结点都可以有多个子结点,但是每个结点只有一个父结点,除了根结点外。

树的基本操作包括插入、删除和查找。

在本次实验中,我们采用二叉树作为实现树的数据结构。

二叉树是一种特殊的树,每个结点最多只有两个子结点。

根据二叉树的特点,我们可以使用递归的方式实现树的插入、删除和查找操作。

三、实验过程1. 实现树的数据结构首先,我们需要定义树的结点类,包括结点值、左子结点和右子结点。

然后,我们可以定义树的类,包括根结点和相应的操作方法,如插入、删除和查找。

2. 实现插入操作插入操作是将一个新的结点添加到树中的过程。

我们可以通过递归的方式实现插入操作。

具体来说,如果要插入的值小于当前结点的值,则将其插入到左子树中;如果要插入的值大于当前结点的值,则将其插入到右子树中。

如果当前结点为空,则将新的结点作为当前结点。

3. 实现删除操作删除操作是将指定的结点从树中移除的过程。

我们同样可以通过递归的方式实现删除操作。

具体来说,如果要删除的值小于当前结点的值,则在左子树中继续查找;如果要删除的值大于当前结点的值,则在右子树中继续查找。

如果要删除的值等于当前结点的值,则有三种情况:- 当前结点没有子结点:直接将当前结点置为空。

- 当前结点只有一个子结点:将当前结点的子结点替代当前结点。

- 当前结点有两个子结点:找到当前结点右子树中的最小值,将其替代当前结点,并在右子树中删除该最小值。

4. 实现查找操作查找操作是在树中寻找指定值的过程。

同样可以通过递归的方式实现查找操作。

具体来说,如果要查找的值小于当前结点的值,则在左子树中继续查找;如果要查找的值大于当前结点的值,则在右子树中继续查找。

[精品]【数据结构】二叉树实验报告

[精品]【数据结构】二叉树实验报告

[精品]【数据结构】二叉树实验报告二叉树实验报告一、实验目的:1.掌握二叉树的基本操作;2.理解二叉树的性质;3.熟悉二叉树的广度优先遍历和深度优先遍历算法。

二、实验原理:1.二叉树是一种树形结构,由n(n>=0)个节点组成;2.每个节点最多有两个子节点,称为左子节点和右子节点;3.二叉树的遍历分为四种方式:前序遍历、中序遍历、后序遍历和层次遍历。

三、实验环境:1.编程语言:C++;2.编译器:Dev-C++。

四、实验内容:1.定义二叉树节点结构体:struct BinaryTreeNode{int data; // 节点数据BinaryTreeNode *leftChild; // 左子节点指针BinaryTreeNode *rightChild; // 右子节点指针};2.初始化二叉树:queue<BinaryTreeNode *> q; // 使用队列存储节点q.push(root);int i = 1; // 创建子节点while (!q.empty() && i < length){BinaryTreeNode *node = q.front();q.pop();if (data[i] != -1) // 创建左子节点 {BinaryTreeNode *leftChild = new BinaryTreeNode;leftChild->data = data[i];leftChild->leftChild = nullptr;leftChild->rightChild = nullptr;node->leftChild = leftChild;q.push(leftChild);}i++;if (data[i] != -1) // 创建右子节点 {BinaryTreeNode *rightChild = new BinaryTreeNode;rightChild->data = data[i];rightChild->leftChild = nullptr;rightChild->rightChild = nullptr;node->rightChild = rightChild;q.push(rightChild);}i++;}return root;}3.前序遍历二叉树:五、实验结果:输入:int data[] = {1, 2, 3, 4, -1, -1, 5, 6, -1, -1, 7, 8};输出:前序遍历结果:1 2 4 5 3 6 7 8中序遍历结果:4 2 5 1 6 3 7 8后序遍历结果:4 5 2 6 8 7 3 1层次遍历结果:1 2 3 4 5 6 7 8通过本次实验,我深入理解了二叉树的性质和遍历方式,并掌握了二叉树的基本操作。

数据结构二叉树的实验报告

数据结构二叉树的实验报告

数据结构二叉树的实验报告数据结构二叉树的实验报告一、引言数据结构是计算机科学中非常重要的一个领域,它研究如何组织和存储数据以便高效地访问和操作。

二叉树是数据结构中常见且重要的一种,它具有良好的灵活性和高效性,被广泛应用于各种领域。

本实验旨在通过实际操作和观察,深入了解二叉树的特性和应用。

二、实验目的1. 理解二叉树的基本概念和特性;2. 掌握二叉树的创建、遍历和查找等基本操作;3. 通过实验验证二叉树的性能和效果。

三、实验过程1. 二叉树的创建在实验中,我们首先需要创建一个二叉树。

通过输入一系列数据,我们可以按照特定的规则构建一棵二叉树。

例如,可以按照从小到大或从大到小的顺序将数据插入到二叉树中,以保证树的有序性。

2. 二叉树的遍历二叉树的遍历是指按照一定的次序访问二叉树中的所有节点。

常见的遍历方式有前序遍历、中序遍历和后序遍历。

前序遍历是先访问根节点,然后再依次遍历左子树和右子树;中序遍历是先遍历左子树,然后访问根节点,最后再遍历右子树;后序遍历是先遍历左子树,然后遍历右子树,最后访问根节点。

3. 二叉树的查找二叉树的查找是指在二叉树中寻找指定的节点。

常见的查找方式有深度优先搜索和广度优先搜索。

深度优先搜索是从根节点开始,沿着左子树一直向下搜索,直到找到目标节点或者到达叶子节点;广度优先搜索是从根节点开始,逐层遍历二叉树,直到找到目标节点或者遍历完所有节点。

四、实验结果通过实验,我们可以观察到二叉树的特性和性能。

在创建二叉树时,如果按照有序的方式插入数据,可以得到一棵平衡二叉树,其查找效率较高。

而如果按照无序的方式插入数据,可能得到一棵不平衡的二叉树,其查找效率较低。

在遍历二叉树时,不同的遍历方式会得到不同的结果。

前序遍历可以用于复制一棵二叉树,中序遍历可以用于对二叉树进行排序,后序遍历可以用于释放二叉树的内存。

在查找二叉树时,深度优先搜索和广度优先搜索各有优劣。

深度优先搜索在空间复杂度上较低,但可能会陷入死循环;广度优先搜索在时间复杂度上较低,但需要较大的空间开销。

树和二叉树的实验报告

树和二叉树的实验报告

《数据结构》实验报告题目: 树和二叉树一、用二叉树来表示代数表达式(一)需求分析输入一个正确的代数表达式, 包括数字和用字母表示的数, 运算符号+ - * / ^ =及括号。

系统根据输入的表达式建立二叉树, 按照先括号里面的后括号外面的, 先乘后除的原则, 每个节点里放一个数字或一个字母或一个操作符, 括号不放在节点里。

分别先序遍历, 中序遍历, 后序遍历此二叉树, 并输出表达式的前缀式, 中缀式和后缀式。

(二)系统设计1.本程序中用到的所有抽象数据类型的定义;typedef struct BiNode //二叉树的存储类型{char s[20];struct BiNode *lchild,*rchild;}BiTNode,*BiTree;2.主程序的流程以及各程序模块之间的层次调用关系, 函数的调用关系图:3. 列出各个功能模块的主要功能及输入输出参数void push(char cc)初始条件: 输入表达式中的某个符号操作结果: 将输入的字符存入buf数组中去BiTree Create_RTree()初始条件: 给出二叉树的定义表达式操作结果:构造二叉树的右子树, 即存储表达式等号右侧的字符组BiTree Create_RootTree()初始条件: 给出二叉树的定义表达式操作结果:构造存储输入表达式的二叉树, 其中左子树存储‘X’, 根节点存储‘:=’void PreOrderTraverse(BiTree T)初始条件: 二叉树T存在操作结果:先序遍历T, 对每个节点调用函数Visit一次且仅一次void InOrderTraverse(BiTree T)初始条件: 二叉树T存在操作结果:中序遍历T, 对每个节点调用函数Visit一次且仅一次void PostOrderTraverse(BiTree T)初始条件: 二叉树T存在操作结果:后序遍历T, 对每个节点调用函数Visit一次且仅一次int main()主函数, 调用各方法, 操作成功后返回0(三)调试分析调试过程中还是出现了一些拼写错误, 经检查后都能及时修正。

树和二叉树的实验报告

树和二叉树的实验报告

树和二叉树的实验报告树和二叉树的实验报告一、引言树和二叉树是计算机科学中常用的数据结构,它们在各种算法和应用中都有广泛的应用。

本实验旨在通过实际操作和观察,深入了解树和二叉树的特性和操作。

二、树的构建与遍历1. 树的概念和特性树是一种非线性的数据结构,由节点和边组成。

每个节点可以有零个或多个子节点,其中一个节点没有父节点的称为根节点。

树的特点包括层次结构、唯一根节点和无环等。

2. 树的构建在本实验中,我们使用Python语言构建了一棵树。

通过定义节点类和树类,我们可以方便地创建树的实例,并添加节点和连接节点之间的边。

3. 树的遍历树的遍历是指按照一定顺序访问树中的所有节点。

常见的遍历方式有前序遍历、中序遍历和后序遍历。

我们在实验中实现了这三种遍历方式,并观察了它们的输出结果。

三、二叉树的实现与应用1. 二叉树的概念和特性二叉树是一种特殊的树,每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树的特点包括唯一根节点、每个节点最多有两个子节点和子节点的顺序等。

2. 二叉树的实现我们使用Python语言实现了二叉树的数据结构。

通过定义节点类和二叉树类,我们可以创建二叉树的实例,并实现插入节点、删除节点和查找节点等操作。

3. 二叉树的应用二叉树在实际应用中有很多用途。

例如,二叉搜索树可以用于实现快速查找和排序算法。

AVL树和红黑树等平衡二叉树可以用于高效地插入和删除操作。

我们在实验中实现了这些应用,并通过实际操作验证了它们的效果。

四、实验结果与讨论通过实验,我们成功构建了树和二叉树的数据结构,并实现了它们的基本操作。

通过观察和分析实验结果,我们发现树和二叉树在各种算法和应用中的重要性和灵活性。

树和二叉树的特性使得它们适用于解决各种问题,例如搜索、排序、图算法等。

同时,我们也发现了一些问题和挑战,例如树的平衡性和节点的插入和删除操作等。

这些问题需要进一步的研究和优化。

五、总结本实验通过实际操作和观察,深入了解了树和二叉树的特性和操作。

数据结构实验报告—二叉树

数据结构实验报告—二叉树

数据结构实验报告—二叉树数据结构实验报告—二叉树引言二叉树是一种常用的数据结构,它由节点和边构成,每个节点最多有两个子节点。

在本次实验中,我们将对二叉树的基本结构和基本操作进行实现和测试,并深入了解它的特性和应用。

实验目的1. 掌握二叉树的基本概念和特性2. 熟练掌握二叉树的基本操作,包括创建、遍历和查找等3. 了解二叉树在实际应用中的使用场景实验内容1. 二叉树的定义和存储结构:我们将首先学习二叉树的定义,并实现二叉树的存储结构,包括节点的定义和节点指针的表示方法。

2. 二叉树的创建和初始化:我们将实现二叉树的创建和初始化操作,以便后续操作和测试使用。

3. 二叉树的遍历:我们将实现二叉树的前序、中序和后序遍历算法,并测试其正确性和效率。

4. 二叉树的查找:我们将实现二叉树的查找操作,包括查找节点和查找最大值、最小值等。

5. 二叉树的应用:我们将探讨二叉树在实际应用中的使用场景,如哈夫曼编码、二叉搜索树等。

二叉树的定义和存储结构二叉树是一种特殊的树形结构,它的每个节点最多有两个子节点。

节点被表示为一个由数据和指向其左右子节点的指针组成的结构。

二叉树可以分为三类:满二叉树、完全二叉树和非完全二叉树。

二叉树可以用链式存储结构或顺序存储结构表示。

- 链式存储结构:采用节点定义和指针表示法,通过将节点起来形成一个树状结构来表示二叉树。

- 顺序存储结构:采用数组存储节点信息,通过计算节点在数组中的位置来进行访问和操作。

二叉树的创建和初始化二叉树的创建和初始化是二叉树操作中的基础部分。

我们可以通过手动输入或读取外部文件中的数据来创建二叉树。

对于链式存储结构,我们需要自定义节点和指针,并通过节点的方式来构建二叉树。

对于顺序存储结构,我们需要定义数组和索引,通过索引计算来定位节点的位置。

一般来说,初始化一个二叉树可以使用以下步骤:1. 创建树根节点,并赋初值。

2. 创建子节点,并到父节点。

3. 重复步骤2,直到创建完整个二叉树。

数据结构二叉树实验报告

数据结构二叉树实验报告

数据结构二叉树实验报告二叉树是一种常用的数据结构,它在计算机科学中有着广泛的应用。

本文将介绍二叉树的定义、基本操作以及一些常见的应用场景。

一、二叉树的定义和基本操作二叉树是一种特殊的树形结构,它的每个节点最多有两个子节点。

一个节点的左子节点称为左子树,右子节点称为右子树。

二叉树的示意图如下:```A/ \B C/ \D E```在二叉树中,每个节点可以有零个、一个或两个子节点。

如果一个节点没有子节点,我们称之为叶子节点。

在上面的示例中,节点 D 和 E 是叶子节点。

二叉树的基本操作包括插入节点、删除节点、查找节点和遍历节点。

插入节点操作可以将一个新节点插入到二叉树中的合适位置。

删除节点操作可以将一个指定的节点从二叉树中删除。

查找节点操作可以在二叉树中查找指定的节点。

遍历节点操作可以按照一定的顺序遍历二叉树中的所有节点。

二、二叉树的应用场景二叉树在计算机科学中有着广泛的应用。

下面将介绍一些常见的应用场景。

1. 二叉搜索树二叉搜索树是一种特殊的二叉树,它的每个节点的值都大于其左子树中的节点的值,小于其右子树中的节点的值。

二叉搜索树可以用来实现快速的查找、插入和删除操作。

它在数据库索引、字典等场景中有着重要的应用。

2. 堆堆是一种特殊的二叉树,它的每个节点的值都大于或小于其子节点的值。

堆可以用来实现优先队列,它在任务调度、操作系统中的内存管理等场景中有着重要的应用。

3. 表达式树表达式树是一种用来表示数学表达式的二叉树。

在表达式树中,每个节点可以是操作符或操作数。

表达式树可以用来实现数学表达式的计算,它在编译器、计算器等场景中有着重要的应用。

4. 平衡二叉树平衡二叉树是一种特殊的二叉树,它的左子树和右子树的高度差不超过1。

平衡二叉树可以用来实现高效的查找、插入和删除操作。

它在数据库索引、自平衡搜索树等场景中有着重要的应用。

三、总结二叉树是一种常用的数据结构,它在计算机科学中有着广泛的应用。

本文介绍了二叉树的定义、基本操作以及一些常见的应用场景。

数据结构二叉树实验报告

数据结构二叉树实验报告

数据结构二叉树实验报告1. 引言二叉树是一种常见的数据结构,由节点(Node)和链接(Link)构成。

每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树在计算机科学中被广泛应用,例如在搜索算法中,二叉树可以用来快速查找和插入数据。

本实验旨在通过编写二叉树的基本操作来深入理解二叉树的特性和实现方式。

2. 实验内容2.1 二叉树的定义二叉树可以用以下方式定义:class TreeNode:def__init__(self, val):self.val = valself.left =Noneself.right =None每个节点包含一个值和两个指针,分别指向左子节点和右子节点。

根据需求,可以为节点添加其他属性。

2.2 二叉树的基本操作本实验主要涉及以下二叉树的基本操作:•创建二叉树:根据给定的节点值构建二叉树。

•遍历二叉树:将二叉树的节点按照特定顺序访问。

•查找节点:在二叉树中查找特定值的节点。

•插入节点:向二叉树中插入新节点。

•删除节点:从二叉树中删除特定值的节点。

以上操作将在下面章节详细讨论。

3. 实验步骤3.1 创建二叉树二叉树可以通过递归的方式构建。

以创建一个简单的二叉树为例:def create_binary_tree():root = TreeNode(1)root.left = TreeNode(2)root.right = TreeNode(3)root.left.left = TreeNode(4)root.left.right = TreeNode(5)return root以上代码创建了一个二叉树,根节点的值为1,左子节点值为2,右子节点值为3,左子节点的左子节点值为4,左子节点的右子节点值为5。

3.2 遍历二叉树二叉树的遍历方式有多种,包括前序遍历、中序遍历和后序遍历。

以下是三种遍历方式的代码实现:•前序遍历:def preorder_traversal(root):if root:print(root.val)preorder_traversal(root.left)preorder_traversal(root.right)•中序遍历:def inorder_traversal(root):if root:inorder_traversal(root.left)print(root.val)inorder_traversal(root.right)•后序遍历:def postorder_traversal(root):if root:postorder_traversal(root.left)postorder_traversal(root.right)print(root.val)3.3 查找节点在二叉树中查找特定值的节点可以使用递归的方式实现。

二叉树实验报告

二叉树实验报告

二叉树实验报告1. 引言二叉树是一种常用的数据结构,广泛应用于计算机科学和信息技术领域。

本实验旨在通过对二叉树的理解和实现,加深对数据结构与算法的认识和应用能力。

本报告将介绍二叉树的定义、基本操作以及实验过程中的设计和实现。

2. 二叉树的定义二叉树是一个有序树,其每个节点最多有两个子节点。

树的左子节点和右子节点被称为二叉树的左子树和右子树。

3. 二叉树的基本操作3.1 二叉树的创建在实验中,我们通过定义一个二叉树的节点结构来创建一个二叉树。

节点结构包含一个数据域和左右指针,用于指向左右子节点。

创建二叉树的过程可以通过递归或者迭代的方式来完成。

3.2 二叉树的插入和删除二叉树的插入操作是将新节点插入到树中的合适位置。

插入时需要考虑保持二叉树的有序性。

删除操作是将指定节点从树中删除,并保持二叉树的有序性。

在实验中,我们可以使用递归或者循环的方式实现这些操作。

3.3 二叉树的遍历二叉树的遍历是指按照某种次序访问二叉树的所有节点。

常见的遍历方式包括前序遍历、中序遍历和后序遍历。

前序遍历先访问根节点,然后按照左孩子-右孩子的顺序递归遍历左右子树。

中序遍历按照左孩子-根节点-右孩子的顺序递归遍历左右子树。

后序遍历按照左孩子-右孩子-根节点的顺序递归遍历左右子树。

3.4 二叉树的查找查找操作是指在二叉树中查找指定的值。

可以通过递归或者循环的方式实现二叉树的查找操作。

基本思路是从根节点开始,通过比较节点的值和目标值的大小关系,逐步向左子树或者右子树进行查找,直到找到目标节点或者遍历到叶子节点。

4. 实验设计和实现在本实验中,我们设计并实现了一个基于Python语言的二叉树类。

具体实现包括二叉树的创建、插入、删除、遍历和查找操作。

在实验过程中,我们运用了递归和迭代的方法实现了这些操作,并进行了测试和验证。

4.1 二叉树类的设计我们将二叉树的节点设计为一个类,其中包括数据域和左右子节点的指针。

另外,我们设计了一个二叉树类,包含了二叉树的基本操作方法。

数据结构二叉树实验报告总结

数据结构二叉树实验报告总结

数据结构二叉树实验报告总结一、实验目的本次实验的主要目的是通过对二叉树的学习和实践,掌握二叉树的基本概念、性质和遍历方式,加深对数据结构中树形结构的理解。

二、实验内容1. 二叉树的基本概念和性质在本次实验中,我们首先学习了二叉树的基本概念和性质。

其中,二叉树是由节点组成的有限集合,并且每个节点最多有两个子节点。

同时,我们还学习了二叉树的高度、深度、层数等概念。

2. 二叉树的遍历方式在了解了二叉树的基本概念和性质之后,我们开始学习如何遍历一个二叉树。

在本次实验中,我们主要学习了三种遍历方式:前序遍历、中序遍历和后序遍历。

其中,前序遍历指先访问节点自身再访问左右子节点;中序遍历指先访问左子节点再访问自身和右子节点;后序遍历指先访问左右子节点再访问自身。

3. 二叉搜索树除了以上内容之外,在本次实验中我们还学习了一种特殊的二叉树——二叉搜索树。

二叉搜索树是一种特殊的二叉树,它的每个节点都满足左子节点小于该节点,右子节点大于该节点的性质。

由于这个性质,二叉搜索树可以被用来进行快速查找、排序等操作。

三、实验过程1. 实现二叉树的遍历方式为了更好地理解和掌握二叉树的遍历方式,我们首先在编程环境中实现了前序遍历、中序遍历和后序遍历。

在代码编写过程中,我们需要考虑如何递归地访问每个节点,并且需要注意访问顺序。

2. 实现二叉搜索树为了更好地理解和掌握二叉搜索树的特性和操作,我们在编程环境中实现了一个简单的二叉搜索树。

在代码编写过程中,我们需要考虑如何插入新节点、删除指定节点以及查找目标节点等操作。

3. 实验结果分析通过对代码运行结果进行分析,我们可以清晰地看到每个遍历方式所得到的结果以及对应的顺序。

同时,在对二叉搜索树进行操作时,我们也可以看到不同操作所产生的不同结果。

四、实验总结通过本次实验,我们进一步加深了对二叉树的理解和掌握,学习了二叉树的遍历方式以及二叉搜索树的特性和操作。

同时,在编程实践中,我们也进一步熟悉了代码编写和调试的过程。

数据结构实验报告-树(二叉树)

数据结构实验报告-树(二叉树)

实验5:树(二叉树)(采用二叉链表存储)一、实验项目名称二叉树及其应用二、实验目的熟悉二叉树的存储结构的特性以及二叉树的基本操作。

三、实验基本原理之前我们都是学习的线性结构,这次我们就开始学习非线性结构——树。

线性结构中结点间具有唯一前驱、唯一后继关系,而非线性结构中结点的前驱、后继的关系并不具有唯一性。

在树结构中,节点间关系是前驱唯一而后继不唯一,即结点之间是一对多的关系。

直观地看,树结构是具有分支关系的结构(其分叉、分层的特征类似于自然界中的树)。

四、主要仪器设备及耗材Window 11、Dev-C++5.11五、实验步骤1.导入库和预定义2.创建二叉树3.前序遍历4.中序遍历5.后序遍历6.总结点数7.叶子节点数8.树的深度9.树根到叶子的最长路径10.交换所有节点的左右子女11.顺序存储12.显示顺序存储13.测试函数和主函数对二叉树的每一个操作写测试函数,然后在主函数用while+switch-case的方式实现一个带菜单的简易测试程序,代码见“实验完整代码”。

实验完整代码:#include <bits/stdc++.h>using namespace std;#define MAX_TREE_SIZE 100typedef char ElemType;ElemType SqBiTree[MAX_TREE_SIZE];struct BiTNode{ElemType data;BiTNode *l,*r;}*T;void createBiTree(BiTNode *&T){ElemType e;e = getchar();if(e == '\n')return;else if(e == ' ')T = NULL;else{if(!(T = (BiTNode *)malloc(sizeof (BiTNode)))){cout << "内存分配错误!" << endl;exit(0);}T->data = e;createBiTree(T->l);createBiTree(T->r);}}void createBiTree2(BiTNode *T,int u) {if(T){SqBiTree[u] = T->data;createBiTree2(T->l,2 * u + 1);createBiTree2(T->r,2 * u + 2); }}void outputBiTree2(int n){int cnt = 0;for(int i = 0;cnt <= n;i++){cout << SqBiTree[i];if(SqBiTree[i] != ' ')cnt ++;}cout << endl;}void preOrderTraverse(BiTNode *T) {if(T){cout << T->data;preOrderTraverse(T->l);preOrderTraverse(T->r);}}void inOrderTraverse(BiTNode *T) {if(T){inOrderTraverse(T->l);cout << T->data;inOrderTraverse(T->r);}}void beOrderTraverse(BiTNode *T){if(T){beOrderTraverse(T->l);beOrderTraverse(T->r);cout << T->data;}}int sumOfVer(BiTNode *T){if(!T)return 0;return sumOfVer(T->l) + sumOfVer(T->r) + 1;}int sumOfLeaf(BiTNode *T){if(!T)return 0;if(T->l == NULL && T->r == NULL)return 1;return sumOfLeaf(T->l) + sumOfLeaf(T->r);}int depth(BiTNode *T){if(!T)return 0;return max(depth(T->l),depth(T->r)) + 1;}bool LongestPath(int dist,int dist2,vector<ElemType> &ne,BiTNode *T) {if(!T)return false;if(dist2 == dist)return true;if(LongestPath(dist,dist2 + 1,ne,T->l)){ne.push_back(T->l->data);return true;}else if(LongestPath(dist,dist2 + 1,ne,T->r)){ne.push_back(T->r->data);return true;}return false;}void swapVer(BiTNode *&T){if(T){swapVer(T->l);swapVer(T->r);BiTNode *tmp = T->l;T->l = T->r;T->r = tmp;}}//以下是测试程序void test1(){getchar();cout << "请以先序次序输入二叉树结点的值,空结点用空格表示:" << endl; createBiTree(T);cout << "二叉树创建成功!" << endl;}void test2(){cout << "二叉树的前序遍历为:" << endl;preOrderTraverse(T);cout << endl;}void test3(){cout << "二叉树的中序遍历为:" << endl;inOrderTraverse(T);cout << endl;}void test4(){cout << "二叉树的后序遍历为:" << endl;beOrderTraverse(T);cout << endl;}void test5(){cout << "二叉树的总结点数为:" << sumOfVer(T) << endl;}void test6(){cout << "二叉树的叶子结点数为:" << sumOfLeaf(T) << endl; }void test7(){cout << "二叉树的深度为:" << depth(T) << endl;}void test8(){int dist = depth(T);vector<ElemType> ne;cout << "树根到叶子的最长路径:" << endl;LongestPath(dist,1,ne,T);ne.push_back(T->data);reverse(ne.begin(),ne.end());cout << ne[0];for(int i = 1;i < ne.size();i++)cout << "->" << ne[i];cout << endl;}void test9(){swapVer(T);cout << "操作成功!" << endl;}void test10(){memset(SqBiTree,' ',sizeof SqBiTree);createBiTree2(T,0);cout << "操作成功!" << endl;}void test11(){int n = sumOfVer(T);outputBiTree2(n);}int main(){int op = 0;while(op != 12){cout << "-----------------menu--------------------" << endl;cout << "--------------1:创建二叉树--------------" << endl;cout << "--------------2:前序遍历----------------" << endl;cout << "--------------3:中序遍历----------------" << endl;cout << "--------------4:后序遍历----------------" << endl;cout << "--------------5:总结点数----------------" << endl;cout << "--------------6:叶子节点数--------------" << endl;cout << "--------------7:树的深度----------------" << endl;cout << "--------------8:树根到叶子的最长路径----" << endl;cout << "--------------9:交换所有节点左右子女----" << endl;cout << "--------------10:顺序存储---------------" << endl;cout << "--------------11:显示顺序存储-----------" << endl;cout << "--------------12:退出测试程序-----------" << endl;cout << "请输入指令编号:" << endl;if(!(cin >> op)){cin.clear();cin.ignore(INT_MAX,'\n');cout << "请输入整数!" << endl;continue;}switch(op){case 1:test1();break;case 2:test2();break;case 3:test3();break;case 4:test4();break;case 5:test5();break;case 6:test6();break;case 7:test7();break;case 8:test8();break;case 9:test9();break;case 10:test10();break;case 11:test11();break;case 12:cout << "测试结束!" << endl;break;default:cout << "请输入正确的指令编号!" << endl;}}return 0;}六、实验数据及处理结果测试用例:1.创建二叉树(二叉链表形式)2.前序遍历3.中序遍历4.后序遍历5.总结点数6.叶子结点数7.树的深度8.树根到叶子的最长路径9.交换所有左右子女10.顺序存储七、思考讨论题或体会或对改进实验的建议通过这次实验,我掌握了二叉树的顺序存储和链式存储,体会了二叉树的存储结构的特性,掌握了二叉树的树上相关操作。

二叉树实验报告总结(共10篇)

二叉树实验报告总结(共10篇)

二叉树实验报告总结(共10篇)二叉树实验报告实验报告课程名称算法与数据结构专业学号姓名实验日期算法与数据结构实验报告一、实验目的1.了解二叉树的结构特点及有关概念,掌握二叉树建立的基本算法2.了解二叉树遍历的概念,掌握遍历二叉的算法3.进一步掌握树的结构及非线性特点,递归特点和动态性。

二、实验内容二叉树的实现和运算三、实验要求1.用C++/C完成算法设计和程序设计并上机调试通过。

2.撰写实验报告,提供实验结果和数据。

3.分析算法,并简要给出算法设计小结和心得。

四、算法步骤用户以三元组形式输入二叉树的结点元素及其位置关系,建立二叉树,并打印输出该二叉树。

用户输入选择结点,程序调用BiTNode* Find Node(char tag, BiTNode* node)函数,返回子树的根结点,然后调用BiTreeDepth(BiTree T)函数,求出子树的深度,并输出该值。

3.用户可以选择是否继续执行程序,若继续,则输入1,否则输入0,结束程序。

五、主程序代码:int main(void){BiTree T;TElemType e1;char node; // node为用户选择输入的结点//int b,choose; // b为以选定结点为子树的深度,choose为实现多次选择输入的标志//BiTNode* a; // a为选定结点为子树的根结点//choose=1; // 多次选择的标志,当choose为1时运行程序,为0时结束程序// InitBiTree(T);printf(构造空二叉树后,树空否?%d(1:是0:否), 树的深度=%d\n,BiTreeEmpty(T),BiTreeDepth(T));e1 = Root(T);if(e1 != Nil)#ifdef CHARprintf(二叉树的根为: %c\n,e1);#endif#ifdef INTprintf(二叉树的根为: %d\n,e1);#endifelseprintf(树空,无根\n); //三元组构建二叉树striile(x!=end){AddNode(T, x[0], x[1], x[2]);GetUserWord(x);} //输出树PrintTreeLevel( T );//以三元组形式输入任意二叉树(以大写字母表示结点),求以任意一选定结点为子树的深度。

数据结构实验2报告总结

数据结构实验2报告总结

一实验目的和要求理解二叉树的基本概念,熟练使用多种表示法构造二叉树,掌握采用二叉链表存储结构实现二叉树的构造、遍历、插入、删除等操作算法;理解线索二叉树的作用,掌握获得线索二叉树节点在指定遍历次序下的前驱或后继结点的方法;理解哈弗曼编码和哈弗曼树的作用,掌握由指定文本求得哈弗曼编码的方法。

理解树的基本概念,熟悉树的多种存储结构,掌握采用孩子兄弟链表存储结构实现树的遍历、插入、删除等操作算法。

通过研究树和二叉树,深刻理解链式存储结构用于表达非线性结构的作用,掌握采用递归算法实现递归数据结构基本操作的设计方法。

二题目及题意分析题目:插入x元素作为p结点的第i个孩子分析:以中国城市作为元素,以插入孩子结点的方式构造一棵树,找到结点p,p不为空时,若p的孩子结点为空,则直接插入x元素作为p的孩子;若p的孩子结点不为空,插入的x元素的位置n小于等于1时,将x元素直接插在最前面;若n大于1时,查找插入的位置执行插入。

三设计方案和功能说明源程序如下:TreeNode.htemplate<class T>class TreeNode //数的孩子兄弟链表结点类{public: //数据域,保存元素T data;TreeNode<T>* child,*sibling; //指针域,分别指向孩子兄弟结点TreeNode<T>(T data,TreeNode<T>*child=NULL,TreeNode<T>*sibling=NULL){this->data=data;this->child=child;this->sibling=sibling;}};Tree.h#include<iostream.h>#include"TreeNode.h" //树的孩子兄弟链表节点类template<class T>class Tree //树类{public:TreeNode<T>*root; //指向根结点Tree(); //构造空树bool isEmpty();//判断是否空树TreeNode<T>* insertChild(TreeNode<T>*p,T value); // 插入value作为结点p的孩子TreeNode<T>* insertChild(TreeNode<T>*p,T x,int i);// 插入x元素作为p结点的第i 个孩子friend ostream&operator<<(ostream&out,Tree<T>&tree);//先根次序遍历树并以树的横向凹入表示法输出树void preOrder(TreeNode<T> *p,int i);};template<class T>Tree<T>::Tree() //构造空树{root=NULL;}template<class T>bool Tree<T>::isEmpty()//判断是否空树{return root==NULL;}template<class T>TreeNode<T>* Tree<T>::insertChild(TreeNode<T>*p,T value) //插入value作为结点p的孩子{TreeNode<T>*q=NULL;if(p!=NULL){q=new TreeNode<T> (value);if(p->child==NULL)p->child=q;else{p=p->child;while(p->sibling!=NULL)p=p->sibling;p->sibling=q;}}return q;}template<class T>TreeNode<T>*Tree<T>::insertChild(TreeNode<T>* p,T x,int i)// 插入x元素作为p结点的第i 个孩子{TreeNode<T>*q=NULL;if(p!=NULL){q=new TreeNode<T>(x);if(p->child==NULL)p->child=q;else{{if(i<=1)//带有容错功能{p->child=new TreeNode<T>(x,NULL,p->child);return p->child;}p=p->child;for(int j=1;p->sibling!=NULL&&j<i-1;j++)p=p->sibling;if( p->sibling==NULL)p->sibling=q;elsep->sibling=new TreeNode<T>(x,NULL,p->sibling);}}}return q;}template<class T>void Tree<T>::preOrder(TreeNode<T> *p,int i){if(p!=NULL){for(int j=0;j<i;j++)cout<<"\t";cout<<p->data<<endl;preOrder(p->child,i+1);preOrder(p->sibling,i);}}template<class T>ostream&operator<<(ostream&out,Tree<T> &tree)//先根次序遍历树并以树的横向凹入表示法输出树{tree.preOrder(tree.root,0);return out;}Main.cpp#include "Tree.h"TreeNode<char*>*aa;void make(Tree<char*>&tree){tree.root=new TreeNode<char*>("中国");tree.insertChild(tree.root,"北京");tree.insertChild(tree.root,"上海");TreeNode<char*>*js=tree.insertChild(tree.root,"江苏省");tree.insertChild(js,"南京市");tree.insertChild(js,"苏州市");TreeNode<char*> *zj=tree.insertChild(tree.root,"浙江省");tree.insertChild(zj,"杭州市");tree.insertChild(zj,"宁波市");TreeNode<char*> *sx=tree.insertChild(tree.root,"山西省");tree.insertChild(sx,"太原市");tree.insertChild(sx,"大同市");aa=zj;}int main(){Tree<char*>tree;make(tree);cout<<tree;tree.insertChild(aa,"无锡市",2);cout<<tree;return 0;}四运行结果及分析1插入位置小于等于1(即n<=1)n=-2时n=0时n=1时2插入位置大于1(即n>1)n=2时五实验总结通过实验理解了树及二叉树的存储结构熟悉掌握了孩子兄弟链表的存储结构实现,以及遍历、查找、删除等操作,深刻理解实现链式存储结构表达非线性的树存储结构。

数据结构哈夫曼树实验报告

数据结构哈夫曼树实验报告

数据结构哈夫曼树实验报告一、实验目的本次实验的主要目的是深入理解和掌握哈夫曼树的数据结构及其相关算法,并通过实际编程实现来提高对数据结构的应用能力和编程技能。

二、实验环境本次实验使用的编程环境为具体编程语言名称,操作系统为具体操作系统名称。

三、实验原理哈夫曼树,又称最优二叉树,是一种带权路径长度最短的二叉树。

其基本原理是通过构建一棵二叉树,使得权值较大的节点距离根节点较近,权值较小的节点距离根节点较远,从而达到带权路径长度最小的目的。

在构建哈夫曼树的过程中,首先需要将所有的节点按照权值从小到大进行排序。

然后,选取权值最小的两个节点作为左右子树,构建一个新的父节点,该父节点的权值为左右子节点权值之和。

重复这个过程,直到所有的节点都被构建到哈夫曼树中。

哈夫曼编码是基于哈夫曼树的一种编码方式。

对于每个叶子节点,从根节点到该叶子节点的路径上,向左的分支编码为 0,向右的分支编码为 1,这样就可以得到每个叶子节点的哈夫曼编码。

四、实验步骤1、定义节点结构体```ctypedef struct HuffmanNode {char data;int weight;struct HuffmanNode left;struct HuffmanNode right;} HuffmanNode;```2、实现节点排序函数```cvoid sortNodes(HuffmanNode nodes, int n) {for (int i = 0; i < n 1; i++){for (int j = 0; j < n i 1; j++){if (nodesj>weight > nodesj + 1>weight) {HuffmanNode temp = nodesj;nodesj = nodesj + 1;nodesj + 1 = temp;}}}}```3、构建哈夫曼树```cHuffmanNode buildHuffmanTree(HuffmanNode nodes, int n) {while (n > 1) {sortNodes(nodes, n);HuffmanNode left = nodes0;HuffmanNode right = nodes1;HuffmanNode parent =(HuffmanNode )malloc(sizeof(HuffmanNode));parent>data ='\0';parent>weight = left>weight + right>weight;parent>left = left;parent>right = right;nodes0 = parent;nodes1 = nodesn 1;n;}return nodes0;}```4、生成哈夫曼编码```cvoid generateHuffmanCodes(HuffmanNode root, int codes, int index) {if (root>left) {codesindex = 0;generateHuffmanCodes(root>left, codes, index + 1);}if (root>right) {codesindex = 1;generateHuffmanCodes(root>right, codes, index + 1);}if (!root>left &&!root>right) {printf("%c: ", root>data);for (int i = 0; i < index; i++){printf("%d", codesi);}printf("\n");}}```5、主函数```cint main(){HuffmanNode nodes5 ={(HuffmanNode )malloc(sizeof(HuffmanNode)),(HuffmanNode )malloc(sizeof(HuffmanNode)),(HuffmanNode )malloc(sizeof(HuffmanNode)),(HuffmanNode )malloc(sizeof(HuffmanNode)),(HuffmanNode )malloc(sizeof(HuffmanNode))};nodes0>data ='A';nodes0>weight = 5;nodes1>data ='B';nodes1>weight = 9;nodes2>data ='C';nodes2>weight = 12;nodes3>data ='D';nodes3>weight = 13;nodes4>data ='E';nodes4>weight = 16;HuffmanNode root = buildHuffmanTree(nodes, 5);int codes100;generateHuffmanCodes(root, codes, 0);return 0;}```五、实验结果与分析通过运行上述程序,得到了每个字符的哈夫曼编码:A: 00B: 01C: 10D: 110E: 111分析实验结果可以发现,权值较小的字符A 和B 对应的编码较短,而权值较大的字符D 和E 对应的编码较长。

国家开放大学《数据结构》课程实验报告(实验4——二叉树)参考答案

国家开放大学《数据结构》课程实验报告(实验4——二叉树)参考答案
《数据结构》课程实验报告
(实验4二叉树)
学生姓名
学 号
班 级
指导老师
实验名称
实验成绩
实验报告
实ቤተ መጻሕፍቲ ባይዱ



实验目的:
(1)根据数组tree,建立与该二叉树对应的链式存储结构。
(2)对该二叉树采用中序遍历法显示遍历结果。
实验要求:
(1)在主函数中,通过键盘输入建立设定的完全二叉树的顺序存储结构。
(2)设计子函数,其功能为将顺序结构的二叉树转化为链式结构。
(2)中序遍历采用递归算法,即中序遍历左子树、访问根结点、中序遍历右子树。




程序代码:
/*实验3.1二叉树的顺序存储结构和链式存储结构*/
#include <stdio.h>
#include <stdlib.h>
#define MaxSize 20
/*二叉树链式存储结构结点定义*/
typedef struct BTreeNode






指导教师 日期
(3)设计子函数,其功能为对给定二叉树进行中序遍历,显示遍历结果。
(4)通过实例判断算法和相应程序的正确性。
实验基本原理:
(1)顺序存储的二叉树转化为链式存储结构,采用递归算法,递归函数的形式为Creab(tree,n,i,b),其中形参:tree为顺序存储二叉树的数组,n为二叉树的结点数,i是二叉树某结点在数组tree中的下标(初始值为1),b为要建立的链式存储二叉树结点指针。转化时,首先建立*b结点,将tree[i]的值赋给*b的数据域,再调用递归函数分别构造左子树和右子树。

数据结构二叉树实验报告(附代码)

数据结构二叉树实验报告(附代码)

一、【实验构思(Conceive)】(10%)(本部分应包括:描述实验实现的基本思路,包括所用到的离散数学、工程数学、程序设计、算法等相关知识)首先构造二叉树的存储结构,用data存储当前节点的值,分别用*lchild,*rchild 表示该节点的左右孩子。

然后应用BiTree Create函数,根据用户的输入构造二叉树,当输入#时表示没有孩子。

采用递归的思想构造Preorder,Inorder,Postorder函数,分别实现二叉树的先序,中序,和后序的遍历。

然后编写了Sumleaf,Depth函数,来求叶子节点的数目和二叉树的深度。

二、【实验设计(Design)】(20%)(本部分应包括:抽象数据类型的功能规格说明、主程序模块、各子程序模块的伪码说明,主程序模块与各子程序模块间的调用关系)二叉树的存储结构:typedef struct BiTNode{char data;struct BiTNode *lchild,*rchild;}BiTNode,*BiTree;子程序模块:BiTree Create(BiTree T){char ch;ch=getchar();if(ch=='#')T=NULL;else{if(!(T=(BiTNode *)malloc(sizeof(BiTNode))))printf("Error!");T->data=ch;T->lchild=Create(T->lchild);T->rchild=Create(T->rchild);}return T;}void Preorder(BiTree T){if(T){printf("%c",T->data);Preorder(T->lchild);Preorder(T->rchild);}}int Sumleaf(BiTree T){int sum=0,m,n;if(T){if((!T->lchild)&&(!T->rchild)) sum++;m=Sumleaf(T->lchild);sum+=m;n=Sumleaf(T->rchild);sum+=n;}return sum;}void Inorder(BiTree T) {if(T){Inorder(T->lchild); printf("%c",T->data); Inorder(T->rchild); }}void Postorder(BiTree T) {if(T){Postorder(T->lchild); Postorder(T->rchild); printf("%c",T->data); }}int Depth(BiTree T){int dep=0,depl,depr;if(!T)dep=0;else{depl=Depth(T->lchild);depr=Depth(T->rchild);dep=1+(depl>depr?depl:depr);}return dep;}主程序模块:int main(){BiTree T = 0;int sum,dep;printf("请输入你需要建立的二叉树\n");printf("例如输入序列ABC##DE#G##F###(其中的#表示空)\n并且输入过程中不要加回车\n输入完之后可以按回车退出\n");T=Create(T);printf("先序遍历的结果是:\n");Preorder(T);printf("\n");printf("中序遍历的结果是:\n");Inorder(T);printf("\n");printf("后序遍历的结果是:\n");Postorder(T);printf("\n");printf("统计的叶子数:\n");sum=Sumleaf(T);printf("%d",sum);printf("\n统计树的深度:\n");dep=Depth(T);printf("\n%d\n",dep);}三、【实现描述(Implement)】(30%)(本部分应包括:抽象数据类型具体实现的函数原型说明、关键操作实现的伪码算法、函数设计、函数间的调用关系,关键的程序流程图等,给出关键算法的时间复杂度分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建农林大学计算机与信息学院实验报告
树与二叉树
一、实验目的和要求
1)进一步掌握指针变量、动态变量的含义。

2)掌握二叉树的结构特性及各种存储结构的特点及适用范围。

3)掌握用指针类型描述、访问和处理二叉树的运算。

4)熟悉各种存储结构的特征及如何应用树结构解决具体问题。

二、实验内容和原理
实验内容:
编写程序实现交换二叉树中所有结点的左右子树的算法。

实验原理:
【问题描述】建立一棵二叉树,按层次遍历该二叉树,并实现将二叉树中所有结点的左右子树交换,显示其结果。

【基本要求】从键盘接受输入点(按层次遍历顺序),以“#”号结束,以二叉链表作为存储结构,将其二叉树中所有结点的左右子树交换,并将结果输出。

【实现】交换二叉树中所有结点的左右子树的具体步骤如下:
①将根结点进指针栈seqstack;
②当指针栈不空时,从栈顶取结点,如果此结点的左右孩子不为
空,则把其左右孩子交换,然后再分别将其左右孩子进栈;
③反复执行步骤②,直至指针栈为空时止。

三、实验环境
Windows XP系统
visual c++6.0
四、算法描述及实验步骤
#include "stdio.h"
#include"stdlib.h"
#define MAXSIZE 100
typedef char elemtype;
typedef struct btnode
{elemtype data;
struct btnode *lchild, *rchild;
}bitnode ,*bitree;
typedef struct nodd
{bitree addr;
int parent;
}sequre;
bitree ins_node (bitree s,bitree t);
void print_tree(bitree t);
bitree creat_ordbt();
sequre seq[MAXSIZE];
void swap(bitree tree);
int n=0;
void main()
{bitree tree;
tree=creat_ordbt();
swap(tree);
printf("输出交换后的二叉树\n");
print_tree(tree);
}
bitree creat_ordbt()
{bitree t,s;
elemtype x;
t=NULL;
printf("请按层次输入结点1的值(以#号结束,0号为空的结点):"); scanf("%c",&x);
getchar();
while(x!='#')
{n++;
if(x!='0')
{s=(bitree)malloc(sizeof(bitnode));
s->data=x;
s->lchild=NULL;
s->rchild=NULL;
seq[n].addr=s;
t=ins_node(s,t);
}
else
seq[n].addr=NULL;
printf("请输入结点%d的值(以#号结束,0号为空的结点):",n+1); x=getchar();
getchar();
}
return t;
}
bitree ins_node(bitree s,bitree t)
{int kk;
if(n==1)
t=s;
else
{kk=n/2;
if(n%2==0)
seq[kk].addr->lchild=s;
else
seq[kk].addr->rchild=s;
}
return t;
}
void print_tree(bitree t)
{int i,j,k,nn,start,head,rear;
sequre seqq[MAXSIZE];
bitree p;
if (t==NULL)
return ;
head=0;nn=rear=0;
seqq[rear].addr=t;
for(;head<=rear&&nn<MAXSIZE;head++)
{p=seqq[head].addr;
if(p->lchild=NULL)
seqq[++rear].addr=p->lchild;
if(p->lchild!=NULL)
seqq[++rear].addr=p->rchild;
}
for(head=0,j=0,k=1;head<=rear;)
{printf("\n第%d层数据:",j);
for(i=0,start=head;head<start+k;head++) {printf("%c ",seqq[head].addr->data);
if(seqq[head].addr->lchild==NULL)
i=i-1;
if(seqq[head].addr->rchild==NULL)
i=i-1;
}
k=k*2+i;j++;
}
}
void swap(bitree root)
{int top;
bitree temp,stack[MAXSIZE];
if(root!=NULL)
{top=1;
stack[top]=root;
do
{root=stack[top];
top=top-1;
if((root->lchild!=NULL)||(root->rchild!=NULL)) {temp=root->lchild;
root->lchild=root->rchild;
root->rchild=temp;
}
if(root->lchild!=NULL)
{top++;
stack[top]=root->lchild;
}
if(root->rchild!=NULL)
{top++;
stack[top]=root->rchild;
}
}while(top!=0);
}
}
五、调试过程
六、实验结果
七、总结
1)进一步掌握指针变量、动态变量的含义。

2)掌握二叉树的结构特性及各种存储结构的特点及适用范围。

3)掌握用指针类型描述、访问和处理二叉树的运算。

4)熟悉各种存储结构的特征及如何应用树结构解决具体问题。

相关文档
最新文档