高中数学应用题

合集下载

(完整版)高中数学应用题

(完整版)高中数学应用题

函数、不等式型1、某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中3<x<6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (Ⅰ)求a 的值;(Ⅱ)若该商品的成品为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.解:(Ⅰ)因为x=5时,y=11,所以1011, 2.2aa +== (Ⅱ)由(Ⅰ)可知,该商品每日的销售量2210(6),3y x x =+--所以商场每日销售该商品所获得的利润222()(3)[10(6)]210(3)(6),363f x x x x x x x =-+-=+--<<-. 从而,2'()10[(6)2(3)(6)]30(4)(6)f x x x x x x =-+--=--,于是,当x 变化时,'(),()f x f x 的变化情况如下表:由上表可得,x=4是函数()f x 在区间(3,6)内的极大值点,也是最大值点,所以,当x=4时,函数()f x 取得最大值,且最大值等于42.答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.2、某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为0.7x ,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量. (1)若年销售量增加的比例为0.4x ,为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内?(2)年销售量关于x 的函数为)352(32402++-=x x y ,则当x 为何值时,本年度的年利润最大?最大利润为多少?解:(1)由题意得:本年度每辆车的投入成本为10×(1+x ); 出厂价为13×(1+0.7x );年销售量为5000×(1+0.4x ), …………2分 因此本年度的利润为[13(10.7)10(1)]5000(10.4)y x x x =⨯+-⨯+⨯⨯+(30.9)5000(10.4)x x =-⨯⨯+即:21800150015000(01),y x x x =-++<< ……………6分 由2180015001500015000x x -++>, 得506x << ……8分 (2)本年度的利润为)55.48.49.0(3240)352(3240)9.03()(232++-⨯=++-⨯⨯-=x x x x x x x f则),3)(59(972)5.46.97.2(3240)(2'--=+-⨯=x x x x x f ……10分由,395,0)('===x x x f 或解得 当)(,0)()95,0('x f x f x >∈时,是增函数;当)(,0)()1,95('x f x f x <∈时,是减函数.∴当95=x 时,20000)95()(=f x f 取极大值万元, ……12分因为()f x 在(0,1)上只有一个极大值,所以它是最大值, ……14分所以当95=x 时,本年度的年利润最大,最大利润为20000万元. ……15分 3、某民营企业生产,A B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图甲,B 产品的利润与投资的算术平方根成正比,其关系如图乙(注:利润与投资单位:万元).甲 乙(Ⅰ)分别将,A B 两种产品的利润表示为投资x (万元)的函数关系式;(Ⅱ)该企业已筹集到10万元资金,并全部投入,A B 两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元?解:(Ⅰ)设投资为x 万元,A 产品的利润为()f x 万元,B 产品的利润为()g x 万元. 由题设x k x g x k x f 21)(,)(==由图知(1)f =41,故1k =41又45,25)4(2=∴=k g从而)0(45)(),0(41)(≥=≥=x x x g x x x f .(Ⅱ)设A 产品投入x 万元,则B 产品投入10-x 万元,设企业利润为y 万元.)100(104541)10()(≤≤-+=-+=x x x x g x f y 令x t -=10,则)100(1665)25(414541022≤≤+--=+-=t t t t y .当75.3,1665,25m ax ===x y t 此时时.答:当A 产品投入3.75万元,B 产品投入6.25万元,企业最大利润为1665万元. 4、如图所示,一科学考察船从港口O 出发,沿北偏东α角的射线OZ 方向航行,而在离港口a 13(a 为正常数)海里的北偏东β角的A 处有一个供给科考船物资的小岛,其中31tan =α,132cos =β.现指挥部需要紧急征调沿海岸线港口O 正东m (a m 37>)海里的B 处的补给船,速往小岛A 装运物资供给科考船,该船沿BA 方向全速追赶科考船,并在C 处相遇.经测算当两船运行的航向与海岸线OB 围成的三角形OBC 的面积最小时,这种补给最适宜.⑴ 求S 关于m 的函数关系式)(m S ; ⑵ 应征调m 为何值处的船只,补给最适宜.【解】 ⑴以O 为原点,OB 所在直线为x 轴,建立平面直角坐标系,则直线OZ 方程为x y 3=. ………………2分 设点()00,y x A , 则a a a x 313313sin 130=⋅==β,a a a y 213213cos 130=⋅==β,即()a a A 2,3,又()0,m B ,所以直线AB 的方程为()m x ma ay --=32.上面的方程与x y 3=联立得点)736,732(am ama m am C -- ……………5分)37(733||21)(2a m a m am y OB m S C >-=⋅=∴ ………………8分⑵328)3149492(314)37(949)37()(222a a a a a a m a a m a m S =+≥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-= ……12分 当且仅当)37(949372a m a a m -=-时,即a m 314=时取等号, ……………14分 答:S 关于m 的函数关系式)37(733||21)(2a m a m am y OB m S C >-=⋅=∴⑵ 应征调a m 314=处的船只,补给最适宜. ………………15分5、某生产饮料的企业准备投入适当的广告费,对产品进行促销.在一年内,预计年销量Q (万件)与广告费x (万元)之间的函数关系为)0(113≥++=x x x Q .已知生产此产品的年固定投入为3万元,每生产1万件此产品仍需要再投入32万元,若每件售价为“年平均每件成本的150%”与“年平均每件所占广告费的50%”之和. (1) 试将年利润W 万元表示为年广告费x 万元的函数;(2) 当年广告费投入多少万元时,企业年利润最大,最大年利润为多少? (1)年生产成本为)332(+Q 万元,年收入为]%50)332%(150[x Q ++万元.所以)332(21x Q W -+==)311332(21x x x -+++⨯=)0()1(235982≥+++-x x x x (7分) (2))1(264)1(100)1(2+-+++-=x x x W =42)13221(50≤+++-x x (12分)当7,13221=+=+x x x 时,等号成立. 所以当年广告费投入7万元时, 年利润最大为42万元.(14分)6、为迎接2010年上海世博会,要设计如图的一张矩形广告,该广告含有大小相等的左中右三个矩形栏目,这三栏的面积之和为260000cm ,四周空白的宽度为10cm ,栏与栏之间的中缝空白的宽度为5cm ,怎样确定广告矩形栏目高与宽的尺寸(单位:cm ),能使整个矩形广告面积最小.解:设矩形栏目的高为acm ,宽为bcm ,则20000ab =,20000b a∴= 广告的高为(20)a cm +,宽为(330)b cm +(其中0,0a b >>) 广告的面积40000(20)(330)30(2)6060030()60600S a b a b a a=++=++=++3060600120006060072600≥⨯=+= 当且仅当40000a a=,即200a =时,取等号,此时100b =. 故当广告矩形栏目的高为200cm ,宽为100cm 时,可使广告的面积最小.7、某地发生特大地震和海啸,使当地的自来水受到了污染,某部门对水质检测后,决定往水中投放一种药剂来净化水质。

高一数学应用题(不等式的应用题和函数的应用题)

高一数学应用题(不等式的应用题和函数的应用题)

高一上学期期中复习应用题一.不等式的应用题1.(本题满分 4+4+4 分) 如图,长方形 ABCD 表示一张6 12 (单位:分米)的工艺木板,其四周有边框(图中阴影部 分),中间为薄板.木板上一瑕疵(记为点P )到外边框 AB ,AD 的距离分别为1分米,2分米.现 欲经过点P 锯掉一块三角形废料MAN ,其中M ,N 分别在 AB ,AD 上.设 AM , AN 的长 分别为m 分米,n 分米.(1)求证:(2)为使剩下木板MBCDN 的面积最大,试确定m ,n 的值; (3)求剩下木板MBCDN 的外边框长度(MB ,BC ,CD ,DN 的长度之和)的最大值及取 得最大值时m ,n 的值.2.如皋中学为创建高品质高中,计划在校园内建造一个长方形文化展览区ABCD ,展览区由长方形1111D C B A 的展览馆和环展览馆人行道(阴影部分)组成.已知展览馆A 1B 1C 1D 1的面积为4 000平方米,人行道的宽分别为4米和10米(如图所示).(1)若设展览馆的长和宽的比)1(1111>=x x C B B A ,写出文化展览区ABCD 所占 面积s 与x 的关系式;(2)要使文化展览区所占面积最小,则展览馆1111D C B A 的长和宽该如何设计?3、如图,有一长80cm,宽60cm的矩形不锈钢薄板,用此薄板折成一个长方体无盖容器,要分别过矩形四个顶点处各挖去一个全等的小正方形,按加工要求,长方体的高不小于10cm不大于20cm,设长方体的高为xcm,体积为V cm3.问x为多大时,V最大?并求这个最大值.4. 围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元)。

(Ⅰ)将y表示为x的函数:(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。

高中数学应用题专项练习

高中数学应用题专项练习

高中数学应用题专项练习1. 题目一已知一条直线与x轴交于点A(2,0),与y轴交于点B(0,3)。

求直线的斜率k及方程的解析式。

2. 题目二一只小猪在厨房里吃食物。

已知小猪每天吃食物的质量是它上一天吃食物质量的1/4,第一天吃了800克。

请问,第五天它吃了多少克食物?3. 题目三某地的人口数量年增长率为3%。

已知该地的人口数量在2010年是500万人,请问到了2020年这里的人口数量是多少人?4. 题目四小明身高150cm,目标是长到170cm。

每一年他的身高会增长5cm。

请问,需要几年才能达到他的目标身高?5. 题目五一辆汽车从A地沿直线道路以每小时60公里的速度开往B地,途中耗时4小时。

然后汽车以60公里/小时的速度返回A地。

请问,汽车返回A地需要多长时间?6. 题目六有一条跑步道,每800米设有一块标志石。

小明从起点开始在跑步道上跑步,每分钟跑300米,他跑到第5块标志石时停下来休息。

请问,小明跑步的总时间是多少分钟?7. 题目七某项工程需要15个人在30天内完成。

目前已经有10个人参与,已经过了7天。

请问,剩余的工程需要多少人才能在剩下的时间内完成?8. 题目八一部手机总共有100个应用程序,其中有60%的应用程序是社交类应用。

已知手机用户每天平均使用手机3小时,其中1小时是用于社交类应用。

请问,用户每天平均使用手机的社交类应用的个数是多少个?9. 题目九一个蔬菜市场上有100件土豆,其中20%的土豆是坏的。

顾客每次购买4个土豆。

请问,如果顾客每天购买20个土豆,他需要几天才能购买到不坏的土豆?10. 题目十数列1,3,6,10,15等是一种特殊的数列,每一项的值都是前一项的值加上当前项的下标值。

请问第10项的值是多少?。

高中数学应用题

高中数学应用题

高中应用题专题复习例1.建筑一个容积为48米3,深为3米的长方体蓄水池,池壁每平方米的造价为a 元,池底每平方米的造价为2a 元。

把总造价y 表示为底的一边长x 米的函数,并指出函数的定义域。

解:容积=底面积×高= 48 ⇒ 底面积×3 = 48 ⇒ 底面另一边长:m =x 16 池壁造价=池壁面积×a = 2(3x + 3m )×a = 6( x +x 16)a = 6(x +x 16)a 池底造价=底面积×2a =16×2a = 32a∴ y = 6(x +x16)a + 32a ( x > 0 ) 例2. 有根木料长为6米,要做一个如图的窗框,已知上框架与下框架的高的比为1∶2,问怎样利用木料,才能使光线通过的窗框面积最大(中间木档的面积可忽略不计.解:如图设x, 则竖木料总长= 3x + 4x = 7x, 三根横木料总长= 6 -7x∴ 窗框的高为3x ,宽为376x - 即窗框的面积 y = 3x ·376x -= -7x 2 + 6x ( 0 < x <76) 配方:y =79)73(72+--x ( 0 < x < 2 ) ∴ 当x =73米时,即上框架高为73米、下框架为76米、宽为1米时,光线通过窗框面积最大. 3.利润问题:(1)利润=收入-成本 (2)利润=单位利润×销售量例3. 将进货单价为8元的商品按单价10元销售,每天可卖出100个。

若该商品的单价每涨1元,则每天销售量就减少10个。

如何确定该商品的销售单价,使利润最大?分析:(1)每出售一个商品的利润=销售单价-进货单价= 10- 8 = 2(2)以单价10元为基础:单价每次涨1元,当涨了x 元(即可看成涨了x 次)时,则每出售一个商品的利润= 2+ x 元, 销售量为100 -10x 个∴ 每个商品的利润y = (2 + x )( 100 -10x ) = -10x 2 + 80x + 200 = -10( x - 4)2 + 360即当x = 4时,y 有最大值360∴ 当每个商品的单价为14元时,利润最大.4.与增长率相关的问题:〖要点〗增长率为正:原产量×(1 + 增长的百分率)经过x 年增长率为负:原产量×(1 - 增长的百分率)经过x 年例5. 一种产品的年产量原来是a 件,在今后m 年内,计划使年产量每年比上一年增加p %. 写出年产量随经过年数变化的函数关系式.解:设经过x 年后,年产量为y, 则y = a ( 1 + p %)x例9. 画一个边长2角线为边画第3个正方形,这样一共画了10个正方形,求:(1) 第10个正方形的面积(2) 这10个正方形的面积的和解:(1)设{a n }表示各正方形的面积∵ a 1 = 22 = 4, a 2 = (22)2, a 3 = 42 = 8∴ {a n }是公比为2的等比数列第10个正方形的面积a 10 = a 1q 9 = 4×29 = 2048 (厘米2)(2)这10个正方形的面积和409221)21(41)1(1010110=--=--=q q a S (厘米2) 例10.一个球从100米高处自由落下,每次着地后又回到原高度的一半再落下. 当它第10次着地时,共经过了多少米?解:设球落下的高度依次为a 1, a 2, …, a 10 .x 2xMPAB ∵ a 1 = 100, a 2 = 50, a 3 = 25 ∴ {a n }是公比为21的等比数列 则球第10次落下时落下的路程为20012825575211])21(1[1001010≈=--=S ∴本球共经过的路程为S = 2S 10 - 100 ≈300 (米)一.解析几何中的应用题例16.抛物线拱桥顶部距水面2米时,水面宽4米. 当水面下降1米时,水面的宽是多少?解:如图建立直角坐标系,则抛物线方程为x 2 = -2py 依题意知:x = 2时,y = -2代入方程得p = 1即抛物线方程为 x 2 = -y, 当水面下降1米时,y = -3 ⇒ x =3∴ 水面宽为2x =32≈3.5 (米)例17.我国发射的第一颗人造地球卫星的运行轨道是以地球的中心F 2为一个焦点的椭圆,近地点A 距地面439千米,远地点距地面2384千米,地球半径大约为6371千米,求卫星的轨道方程.解:如图建立坐标系∵ a -c = |OA| - | OF 2| = |F 2A| = 6371 + 439 = 6810a + c = |OB| + |OF 2| = |F 2B| = 6371 + 2384 = 8755∴ a = 7782.5, c = 972.5 ⇒ b 2 = 7721.52 即卫星的轨道方程是:步1772277832222=+y x 例18.在相距1400米的A 、B 两哨所,听到炮弹爆炸声的时间相差3秒,已知声速是340米/秒,炮弹爆炸点在怎样的曲线上?并求出轨迹方程.解:设爆炸t 秒后A 哨所先听到爆炸声,则B 哨所t + 3 则 |MA| = 340t, |MB| = 340( t + 3 ) = 340t + 1020两式相减:|MA| - |MB| = 1020 (|AB| = 1400> 1020)∴ 炮弹爆炸点的轨迹是以A 、B 为焦点的双曲线以AB 为x 轴、AB 中点为原点建立直角坐标系(如图)∴ A(-700, 0 ), B( 700, 0 ) ⇒ c = 700且 2a = 1020 ⇒ a = 510 ⇒ b 2 =229900炮弹爆炸的轨迹方程是:122990026010022=-y x ( x > 0 ) 例19.如图,某灾区的灾民分布在一个矩形地区,现要将救灾物资从P 处紧急运往灾区. P 往灾区有两条道路PA 、PB ,且PA=110公里,PB=150公里,AB= 50公里. 为了使救灾物资尽快送到灾民手里,需要在灾区划分一条界线,使从PA 和PB 两条路线到灾民所在地都比较近. 求出该界线的方程.解:要使沿PA 、PB 两条线路到救灾地点都比较近,有三种情况:(1)沿PA 线路 (2)沿PB 线路 (3)沿PA 、PB 线路都相同 故分界线以第(3)种情况划分:即|PA| + |MA| = |PB| + |MB| ⇒ 110 + |MA| = 150 + |MB| ∴ |MA|-|MB| = 40, 即知分界线是以A 、B 为焦点的双曲线AB = 50 ⇒ 2c = 50 ⇒ c = 25, 2a = 40 ⇒ a = 20 ⇒ b 2 = 225若以AB 为x 轴、AB 的中点为原点建立直角坐标系则分界线方程是:122540022=-y x (在矩形内的一段) 注意:确定分界线的原则是:从P 沿PA 、PB 到分界线上点的距离. 练习:1某森林出现火灾,火势正以每分钟2m 100的速度顺风蔓延,消防站接到警报立即派消防队员前去,在火灾发生后五分钟到达救火现场,已知消防队员在现场平均每人每分钟灭火2m 50,所消耗的灭火材料、劳务津贴等费用为每人每分钟125元,另附加每次救火所耗损的车辆、器械和装备等费用平均每人100元,而烧毁一平方米森林损失费为60元.(1)设派x 名消防队员前去救火,用t 分钟将火扑灭,试建立t 与x 的函数关系式;(2)问应该派多少消防队员前去救火,才能使总损失最少?2有一座大桥既是交通拥挤地段,又是事故多发地段,为了保证安全,交通部门规定。

高三数学应用题50练(全国百所重点高中)

高三数学应用题50练(全国百所重点高中)

BCDAOP1. 如图,某地有三家工厂,分别位于矩形ABCD 的两个顶点A ,B 及CD 的中点P 处.AB =20km ,BC =10km .为了处理这三家工厂的污水,现要在该矩形区域上(含边界)且与A ,B 等距的一点O 处,建造一个污水处理厂,并铺设三条排污管道AO ,BO ,PO .记铺设管道的总长度为y km . (1)按下列要求建立函数关系式:(i )设BAO θ∠=(rad ),将y 表示成θ的函数;(ii )设OP x =(km ),将y 表示成x 的函数; (2)请你选用(1)中的一个函数关系确定污水处理厂的位置,使铺设的污水管道的总长度最短。

(Ⅰ)①由条件知PQ 垂直平分AB ,若∠BAO=θ(rad) ,则10cos cos AQ OA θθ==, 故 10cos OB θ=,又OP =1010tan θ-, 所以10101010tan cos cos y OA OB OP θθθ=++=++-,所求函数关系式为2010sin 10cos y θθ-=+04πθ⎛⎫≤≤ ⎪⎝⎭②若OP=x (km) ,则OQ =10-x ,所以()222101020200x x x -+=-+所求函数关系式为)2220200010y x x x x =+-+≤≤(Ⅱ)选择函数模型①,()()()'2210cos cos 2010sin 102sin 1cos cos sin y θθθθθθθ-----== 令'y =0 得sin 12θ=,因为04πθ<<,所以θ=6π,当0,6πθ⎛⎫∈ ⎪⎝⎭时,'0y < ,y 是θ的减函数;当,64ππθ⎛⎫∈⎪⎝⎭时,'0y > ,y 是θ的增函数,所以当θ=6π时,min 10103y =+P 位于线段AB 的中垂线上,在矩形区域内且距离AB 边33km 处。

2. 某兴趣小组测量电视塔AE 的高度H(单位:m ),如示意图,垂直放置的标杆BC 的高度h=4m ,仰角∠ABE=α,∠ADE=β。

高中数学中的排列组合应用题

高中数学中的排列组合应用题

高中数学中的排列组合应用题在高中数学学习中,排列组合是一个非常重要的内容。

它不仅能够帮助我们理解数学概念,还可以应用于实际生活中的问题。

本文将介绍一些高中数学中常见的排列组合应用题,以加深我们对这个概念的理解。

一、购买礼物假设小明要为他的朋友买生日礼物,商店里有3种不同的礼物供他选择。

如果他打算买2件礼物作为生日礼物,那么他有多少种不同的选择方式?解析:根据排列组合的知识,我们可以用组合的公式来计算小明的选择方式。

因为他要购买的礼物是无序的,所以使用组合公式。

根据组合公式,我们有C(3,2) = 3 种不同的选择方式。

二、选课方案某高中有10门不同的选修课供学生选择,每个学生必须选择5门。

那么学生有多少种不同的选课方案?解析:根据排列组合的知识,我们可以用组合的公式来计算学生的选课方案。

因为选修课的顺序对学生来说是无关紧要的,所以使用组合公式。

根据组合公式,我们有C(10,5) = 252 种不同的选课方案。

三、分组问题某班级有20名学生,他们要分成4个小组参加活动。

每个小组的人数可以不同,但要求每个小组至少有1人。

那么有多少种不同的分组方式?解析:根据排列组合的知识,我们可以用组合的公式来计算分组方式。

因为每个小组的人数可以不同,所以使用组合公式。

根据组合公式,我们有C(19,3) * C(16,3) * C(13,3) = 846720 种不同的分组方式。

四、密码问题某交易平台的密码由4位数字组成,每位数字可以是0-9的任意一个数字。

那么共有多少种不同的密码组合?解析:根据排列组合的知识,我们可以用排列的公式来计算密码组合。

因为每位数字可以重复出现,所以使用排列公式。

根据排列公式,我们有P(10,4) = 5040 种不同的密码组合。

五、编码问题某公司对员工的编号规则是3位数字和3位字母的组合,数字和字母都可以重复使用,且顺序可以任意排列。

那么共有多少种不同的员工编号方式?解析:根据排列组合的知识,我们可以用排列的公式来计算员工编号方式。

高考数学应用题及答案

高考数学应用题及答案

高考数学应用题及答案1. 题目:某工厂生产一种产品,该产品的成本函数为 \( C(x) =3000 + 50x \),其中 \( x \) 表示生产的产品数量。

如果每件产品的销售价格为 \( 150 \) 元,求生产多少件产品时,工厂的利润最大。

答案:首先,我们需要找到利润函数 \( P(x) \)。

利润等于总收入减去总成本,即 \( P(x) = R(x) - C(x) \)。

总收入 \( R(x) \) 为 \( 150x \),因此利润函数为:\[ P(x) = 150x - (3000 + 50x) = 100x - 3000 \]为了找到利润最大的生产数量,我们需要求 \( P(x) \) 的最大值。

由于 \( P(x) \) 是关于 \( x \) 的线性函数,其最大值出现在\( x \) 取最大值时。

然而,实际生产中 \( x \) 必须是非负整数。

因此,我们需要考虑实际的生产限制。

由于 \( P(x) \) 是一个递增的线性函数,所以当 \( x \) 越大,利润 \( P(x) \) 也越大。

但是,实际生产中可能存在生产能力的限制,例如机器的最大生产能力、原材料的限制等。

假设生产能力限制为\( x_{\text{max}} \),那么在 \( 0 \leq x \leq x_{\text{max}} \) 的范围内,利润函数 \( P(x) \) 是递增的。

因此,在没有额外限制的情况下,生产的产品数量越多,利润越大。

但是,实际中需要考虑生产能力的限制。

2. 题目:某商店销售两种商品,商品A的售价为 \( 20 \) 元,成本为 \( 15 \) 元;商品B的售价为 \( 30 \) 元,成本为 \( 25 \) 元。

如果商店计划销售这两种商品,使得总利润最大化,且商品A和商品B的销售数量比为 \( 3:2 \),求商店应该销售多少件商品A和商品B。

答案:设商品A的销售数量为 \( 3k \) 件,商品B的销售数量为\( 2k \) 件,其中 \( k \) 为正整数。

高中生数学应用题练习题及讲解

高中生数学应用题练习题及讲解

高中生数学应用题练习题及讲解### 高中生数学应用题练习题及讲解#### 练习题1:几何问题题目:在一个直角三角形中,已知直角边AB的长度为3,斜边AC的长度为5,求另一直角边BC的长度。

解答:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。

设BC的长度为x,则有:\[ AC^2 = AB^2 + BC^2 \]\[ 5^2 = 3^2 + x^2 \]\[ 25 = 9 + x^2 \]\[ x^2 = 16 \]\[ x = 4 \]所以,BC的长度为4。

#### 练习题2:函数应用题目:某工厂生产一种产品,每件产品的成本为10元,售价为20元。

如果生产x件产品,求总利润y与产品数量x之间的关系。

解答:每件产品的利润为售价减去成本,即20 - 10 = 10元。

总利润y等于每件产品的利润乘以产品数量x,即:\[ y = 10x \]所以,总利润y与产品数量x之间的关系是线性关系,且斜率为10。

#### 练习题3:概率问题题目:一个袋子中有5个红球和3个蓝球,随机抽取2个球,求至少抽到1个红球的概率。

解答:首先计算总的可能情况,即从8个球中抽取2个球的组合数,用组合公式C(n, k)表示:\[ C(8, 2) = \frac{8!}{2!(8-2)!} = 28 \]然后计算没有抽到红球的情况,即抽到2个蓝球的组合数:\[ C(3, 2) = \frac{3!}{2!(3-2)!} = 3 \]至少抽到1个红球的概率为1减去没有抽到红球的概率:\[ P(至少1红) = 1 - \frac{C(3, 2)}{C(8, 2)} = 1 -\frac{3}{28} = \frac{25}{28} \]#### 练习题4:线性规划问题题目:一个农民有10000平方米的土地,他想种植小麦和玉米。

每平方米小麦的利润是10元,每平方米玉米的利润是15元。

如果小麦的种植面积不超过玉米的种植面积的2倍,求最大利润。

高中数学高级应用考试试题

高中数学高级应用考试试题

高中数学高级应用考试试题1. 题目一:在直角三角形ABC中,AB=5,AC=12。

P为BC中点,Q为AC上的一点,且有AP=2PQ。

求三角形ABC的面积。

解析:设PC为x,AQ为y。

根据题意,可以得到以下几个等式:(1) AQ = 12 - x(2) AP = 2PQ = 2(x/2) = x(3) AB² + BC² = AC²根据勾股定理,可得:(4) AB² + BC² = AC²(5) 5² + (2x)² = 12²解方程组(4)和(5),得到:(6) x = 3(7) AQ = 9因此,三角形ABC的面积为:面积 = (1/2) * AB * AC = (1/2) * 5 * 12 = 302. 题目二:已知函数f(x) = 2x - 1,g(x) = x² - 4x + 3。

求f(g(2))的值。

解析:首先,求出g(2)的值:g(2) = 2² - 4*2 + 3 = 4 - 8 + 3 = -1然后,将g(2)的值代入f(x)中:f(g(2)) = f(-1) = 2*(-1) - 1 = -2 - 1 = -3因此,f(g(2))的值为-3。

3. 题目三:某公司共有500名员工,其中男性占总人数的40%。

现在要从这500名员工中随机选取10名员工,问其中恰有2名男性员工的概率是多少?解析:首先,计算男性员工人数:男性员工人数 = 总人数 * 男性占比 = 500 * 0.4 = 200然后,计算从男性员工中选取2名员工的组合数:C(200, 2) = 200! / (2! * (200-2)!)接着,计算剩余的女性员工中选取8名员工的组合数:C(300, 8) = 300! / (8! * (300-8)!)最后,计算恰有2名男性员工的概率:概率 = (选取2名男性员工的组合数 * 选取8名女性员工的组合数) / (总的选取员工的组合数)根据计算公式进行计算,最终得到概率为:概率 = (C(200, 2) * C(300, 8)) / C(500, 10)4. 题目四:一座桥上有5个人,分别是A、B、C、D、E。

高考数学应用题

高考数学应用题

高考数学应用题
1. 解析几何题: 设直线l经过点A(1,2)且平行于向量u=(3,4),求直线l的方程。

2. 概率题: 一个骰子投掷三次,求至少出现一次6的概率。

3. 函数题: 已知函数f(x)=3x^2-2x+1,求f(-2)的值。

4. 三角函数题: 在直角三角形ABC中,sinA=3/5,cosB=4/5,求sin(A+B)的值。

5. 利息问题: 一笔本金5000元,年利率为4.5%,计算存款三年后的本息和。

6. 几何题: 设正方形ABCD的边长为2,点E和F分别为AB 和BC的中点,求AD与EF的交点G的坐标。

7. 统计题: 一学校调查了1000名学生的身高,数据显示其中男生的平均身高为170cm,标准差为5cm,女生的平均身高为165cm,标准差为4cm,问全校学生的平均身高和标准差分别是多少?
8. 方程题: 解方程2x^2+5x-3=0。

9. 数列题: 求等差数列an=2n-1的前10项和。

10. 逻辑推理题: 若命题p为真,则下列命题哪些为真?
- p∨(¬p∧q)
- p∧(¬q∨p)
- (p∨q)∧(¬p∨¬q)。

(完整版)高中数学应用题

(完整版)高中数学应用题

函数、不等式型1、某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中3<x<6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (Ⅰ)求a 的值;(Ⅱ)若该商品的成品为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.解:(Ⅰ)因为x=5时,y=11,所以1011, 2.2aa +== (Ⅱ)由(Ⅰ)可知,该商品每日的销售量2210(6),3y x x =+--所以商场每日销售该商品所获得的利润222()(3)[10(6)]210(3)(6),363f x x x x x x x =-+-=+--<<-. 从而,2'()10[(6)2(3)(6)]30(4)(6)f x x x x x x =-+--=--,于是,当x 变化时,'(),()f x f x 的变化情况如下表:由上表可得,x=4是函数()f x 在区间(3,6)内的极大值点,也是最大值点,所以,当x=4时,函数()f x 取得最大值,且最大值等于42.答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.2、某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为0.7x ,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量. (1)若年销售量增加的比例为0.4x ,为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内?(2)年销售量关于x 的函数为)352(32402++-=x x y ,则当x 为何值时,本年度的年利润最大?最大利润为多少?解:(1)由题意得:本年度每辆车的投入成本为10×(1+x ); 出厂价为13×(1+0.7x );年销售量为5000×(1+0.4x ), …………2分 因此本年度的利润为[13(10.7)10(1)]5000(10.4)y x x x =⨯+-⨯+⨯⨯+(30.9)5000(10.4)x x =-⨯⨯+即:21800150015000(01),y x x x =-++<< ……………6分 由2180015001500015000x x -++>, 得506x << ……8分 (2)本年度的利润为)55.48.49.0(3240)352(3240)9.03()(232++-⨯=++-⨯⨯-=x x x x x x x f则),3)(59(972)5.46.97.2(3240)(2'--=+-⨯=x x x x x f ……10分由,395,0)('===x x x f 或解得 当)(,0)()95,0('x f x f x >∈时,是增函数;当)(,0)()1,95('x f x f x <∈时,是减函数.∴当95=x 时,20000)95()(=f x f 取极大值万元, ……12分因为()f x 在(0,1)上只有一个极大值,所以它是最大值, ……14分所以当95=x 时,本年度的年利润最大,最大利润为20000万元. ……15分 3、某民营企业生产,A B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图甲,B 产品的利润与投资的算术平方根成正比,其关系如图乙(注:利润与投资单位:万元).甲 乙(Ⅰ)分别将,A B 两种产品的利润表示为投资x (万元)的函数关系式;(Ⅱ)该企业已筹集到10万元资金,并全部投入,A B 两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元?解:(Ⅰ)设投资为x 万元,A 产品的利润为()f x 万元,B 产品的利润为()g x 万元. 由题设x k x g x k x f 21)(,)(==由图知(1)f =41,故1k =41又45,25)4(2=∴=k g从而)0(45)(),0(41)(≥=≥=x x x g x x x f .(Ⅱ)设A 产品投入x 万元,则B 产品投入10-x 万元,设企业利润为y 万元.)100(104541)10()(≤≤-+=-+=x x x x g x f y 令x t -=10,则)100(1665)25(414541022≤≤+--=+-=t t t t y .当75.3,1665,25m ax ===x y t 此时时.答:当A 产品投入3.75万元,B 产品投入6.25万元,企业最大利润为1665万元. 4、如图所示,一科学考察船从港口O 出发,沿北偏东α角的射线OZ 方向航行,而在离港口a 13(a 为正常数)海里的北偏东β角的A 处有一个供给科考船物资的小岛,其中31tan =α,132cos =β.现指挥部需要紧急征调沿海岸线港口O 正东m (a m 37>)海里的B 处的补给船,速往小岛A 装运物资供给科考船,该船沿BA 方向全速追赶科考船,并在C 处相遇.经测算当两船运行的航向与海岸线OB 围成的三角形OBC 的面积最小时,这种补给最适宜.⑴ 求S 关于m 的函数关系式)(m S ; ⑵ 应征调m 为何值处的船只,补给最适宜.【解】 ⑴以O 为原点,OB 所在直线为x 轴,建立平面直角坐标系,则直线OZ 方程为x y 3=. ………………2分 设点()00,y x A , 则a a a x 313313sin 130=⋅==β,a a a y 213213cos 130=⋅==β,即()a a A 2,3,又()0,m B ,所以直线AB 的方程为()m x ma ay --=32.上面的方程与x y 3=联立得点)736,732(am ama m am C -- ……………5分)37(733||21)(2a m a m am y OB m S C >-=⋅=∴ ………………8分⑵328)3149492(314)37(949)37()(222a a a a a a m a a m a m S =+≥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-= ……12分 当且仅当)37(949372a m a a m -=-时,即a m 314=时取等号, ……………14分 答:S 关于m 的函数关系式)37(733||21)(2a m a m am y OB m S C >-=⋅=∴⑵ 应征调a m 314=处的船只,补给最适宜. ………………15分5、某生产饮料的企业准备投入适当的广告费,对产品进行促销.在一年内,预计年销量Q (万件)与广告费x (万元)之间的函数关系为)0(113≥++=x x x Q .已知生产此产品的年固定投入为3万元,每生产1万件此产品仍需要再投入32万元,若每件售价为“年平均每件成本的150%”与“年平均每件所占广告费的50%”之和. (1) 试将年利润W 万元表示为年广告费x 万元的函数;(2) 当年广告费投入多少万元时,企业年利润最大,最大年利润为多少? (1)年生产成本为)332(+Q 万元,年收入为]%50)332%(150[x Q ++万元.所以)332(21x Q W -+==)311332(21x x x -+++⨯=)0()1(235982≥+++-x x x x (7分) (2))1(264)1(100)1(2+-+++-=x x x W =42)13221(50≤+++-x x (12分)当7,13221=+=+x x x 时,等号成立. 所以当年广告费投入7万元时, 年利润最大为42万元.(14分)6、为迎接2010年上海世博会,要设计如图的一张矩形广告,该广告含有大小相等的左中右三个矩形栏目,这三栏的面积之和为260000cm ,四周空白的宽度为10cm ,栏与栏之间的中缝空白的宽度为5cm ,怎样确定广告矩形栏目高与宽的尺寸(单位:cm ),能使整个矩形广告面积最小.解:设矩形栏目的高为acm ,宽为bcm ,则20000ab =,20000b a∴= 广告的高为(20)a cm +,宽为(330)b cm +(其中0,0a b >>) 广告的面积40000(20)(330)30(2)6060030()60600S a b a b a a=++=++=++3060600120006060072600≥⨯=+= 当且仅当40000a a=,即200a =时,取等号,此时100b =. 故当广告矩形栏目的高为200cm ,宽为100cm 时,可使广告的面积最小.7、某地发生特大地震和海啸,使当地的自来水受到了污染,某部门对水质检测后,决定往水中投放一种药剂来净化水质。

高中数学三年级上册归一归总应用题练习

高中数学三年级上册归一归总应用题练习

高中数学三年级上册归一归总应用题练习
1. 甲、乙两市到丙市分别有两条公路,甲市到丙市有直达公路
和绕道公路两个方案,乙市到丙市也有直达公路和绕道公路两个方案。

已知直达公路的行驶时间比绕道公路少15分钟,而甲市到丙
市的直达公路的行驶时间比乙市到丙市的直达公路行驶时间多6分钟。

现在要求从甲市到丙市行驶时间最少,请问选择直达公路还是
绕道公路?为什么?
2. 某商场在周末进行促销活动,对于购买额在100元及以上的
顾客,可以打8折优惠;对于购买额在200元及以上的顾客,可以
打7折优惠;对于购买额在300元及以上的顾客,可以打6折优惠。

现有一顾客购买了一件商品,原价400元,那么他应该享受几折优
惠呢?
3. 甲、乙两个人一起修理一台机器,他们分工协作,其中甲独
立工作时间是乙的2倍,如果甲独立工作时间再加上乙独立工作时
间的3倍,正好完成整个修理工作,求甲完成整个修理工作需要多
长时间?
以上是一些高中数学三年级上册归一归总应用题练习的例子,希望能帮助学生们更好地理解和应用相关知识点。

请学生们根据题目进行思考和解答,然后对照答案进行自我评估和订正。

如果仍有疑问,可以向老师请教。

加油!。

高三数学应用题专题复习(含答案)

高三数学应用题专题复习(含答案)

高三数学应用题专题复习(含答案)1. 提高大桥的车辆通行能力可改善整个城市的交通状况.一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当车流密度不超过50辆/千米时,车流速度为30千米/小时.研究表明:当50<x ≤200时,车流速度v 与车流密度x 满足.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0xk x v --=25040)(千米/小时.(Ⅰ)当0<x ≤200时,求函数v (x )的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到个位,参考数据)236.25≈2.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为803π立方米,且2l r ≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >千元.设该容器的建造费用为y 千元.(Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的r .1. 提高大桥的车辆通行能力可改善整个城市的交通状况.一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当车流密度不超过50辆/千米时,车流速度为30千米/小时.研究表明:当50<x ≤200时,车流速度v 与车流密度x 满足.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0xk x v --=25040)(千米/小时.(Ⅰ)当0<x ≤200时,求函数v (x )的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到个位,参考数据)236.25≈1.解:(1) 由题意:当0<x ≤50时,v (x )=30;当50≤x ≤200时,由于,kk x v --=25040)(再由已知可知,当x =200时,v (0)=0,代入解得k =2000.故函数v (x )的表达式为.………………6⎪⎩⎪⎨⎧≤<--≤<=20050,250200040500,30)(x x x x v 分(2) 依题意并由(1)可得, ⎪⎩⎪⎨⎧≤<--≤<=20050,250200040500,30)(x x x x x x x f 当0≤x ≤50时,f (x )=30x ,当x =50时取最大值1500. 当50<x ≤200时,20002000(250)20002504040(250)4025025025050000012000[40(250)1200025012000120004000 2.2363056()xx x x x x x x f x --⨯-=--+⨯+--=--+≤--=-≈-⨯==取等号当且仅当,即250138x =-≈时,f (x )取最大值.xx -=-250500000)250(40(这里也可利用求导来求最大值)综上,当车流密度为138 辆/千米时,车流量可以达到最大,最大值约为3056辆/小时. ………………14分2.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为803π立方米,且2l r ≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >千元.设该容器的建造费用为y 千元.(Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的r .2. (Ⅰ)因为容器的体积为803π立方米, 所以3243r r l ππ+=803π,解得280433r l r =-, 由于2l r ≥,因此02r <≤.所以圆柱的侧面积为2rl π=28042(33r r r π-=2160833r r ππ-, 两端两个半球的表面积之和为24r π,所以建造费用y =21608r rππ-+24cr π,定义域为(0,2]. (Ⅱ)因为'y =216016r r ππ--+8cr π=328[(2)20]c r r π--,02r <≤ 由于c>3,所以c-2>0,所以令'0y >得:r >令'0y <得:0r <<(1)当932c <≤时,2≥时,函数y 在(0,2)上是单调递减的,故建造费最小时r=2.(2)当92c >时,即02<<时,函数y 在(0,2)上是先减后增的,故建造费最小时r =.。

高中数学经典应用题及答案解析

高中数学经典应用题及答案解析

高中数学经典应用题及答案解析一、数列与数列求和1. 数列的等差数列通项公式为 $a_n = a_1 + (n-1)d$,其中$a_n$ 为第 n 项,$a_1$ 为首项,d 为公差。

2. 数列的等差数列求和公式为 $S_n = \frac{n}{2}(a_1 + a_n)$,其中 $S_n$ 为前 n 项和。

3. 数列的等比数列通项公式为 $a_n = a_1 * q^{(n-1)}$,其中$a_n$ 为第 n 项,$a_1$ 为首项,q 为公比。

4. 数列的等比数列求和公式为 $S_n = \frac{a_1 * (q^n - 1)}{q - 1}$,其中 $S_n$ 为前 n 项和。

二、函数与方程1. 一次函数的一般式为 $y = kx + b$,其中 k 为斜率,b 为截距。

2. 二次函数的一般式为 $y = ax^2 + bx + c$,其中 a 为二次项系数,b 为一次项系数,c 为常数项。

3. 求解一元二次方程可使用求根公式 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$。

4. 求解一元二次方程的判别式 $\Delta = b^2 - 4ac$ 可判断方程的根类型。

三、三角函数1. 正弦定理为 $\frac{a}{\sin A} = \frac{b}{\sin B} =\frac{c}{\sin C}$,其中 a、b、c 为三角形的边长,A、B、C 为对应的角度。

2. 余弦定理为 $c^2 = a^2 + b^2 - 2ab \cos C$,其中 a、b、c 为三角形的边长,C 为对应的角度。

3. 正弦函数图像的周期为2π,幅值为 1,周期函数为 $y = A\sin(\omega x + \varphi)$。

4. 余弦函数图像的周期为2π,幅值为 1,周期函数为 $y = A\cos(\omega x + \varphi)$。

四、概率与统计1. 事件 A 和 B 的并集为 $A \cup B$,相应的概率为 $P(A \cupB) = P(A) + P(B) - P(A \cap B)$。

高中数学应用题汇总(精选.)

高中数学应用题汇总(精选.)

高中数学应用题汇总(精选.)高中数学应用题汇总1.两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065.(1)将y表示成x的函数;(11)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由。

解(1)如图,由题意知AC⊥BC,,其中当时,y=0.065,所以k=9所以y表示成x的函数为(2)令得所以即当时,即所以函数为单调减函数,当时, ,即所以函数为单调增函数.所以当时, 即当C点到城A 的距离为时, 函数有最小值(注:该题可用基本不等式求最小值。

)2.某化工厂生产某种产品,每件产品的生产成本是3元,根据市场调查,预计每件产品的出厂价为x元(7≤x≤10)时,一年的产量为(11-x)2万件;若该企业所生产的产品全部销售,则称该企业正常生产;但为了保护环境,用于污染治理的费用与产量成正比,比例系数为常数k (1≤k≤3)。

(1)求该企业正常生产一年的利润F(x)与出厂价x的函数关系式;(2)当每件产品的出厂价定为多少元时,企业一年的利润最大,并求最大利润.(1)依题意,F(x)=(x-3)(11-x)2-k(11-x)2=(x-3-k)(11-x)2,x∈[7,10].(2)因为F′(x)=(11-x)2-2(x-3-k)(11-x)=(11-x)(11-x-2x+6+2k)=(x-11)[3x-(17+2k)].由F′(x)=0,得x=11(舍去)或x=.(6分)因为1≤k≤3,所以≤≤.①当≤≤7,即1≤k≤2时,F′(x)在[7,10]上恒为负,则F(x)在[7,10]上为减函数,所以[F(x)]max=F(7)=16(4-k).(9分)②当7<≤,即2<k≤3时,[F(x)]max=F()=(8-k)3.(12分)即当1≤k≤2时,则每件产品出厂价为7元时,年利润最大,为16(4-k)万元.当2<k≤3时,则每件产品出厂价为元时,年利润最大,为(8-k)3万元.(14分)3.某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元).通过市场分析,若每件售价为500元时,该厂当年生产该产品能全部销售完.(1)写出年利润(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该厂在这一产品的生产中所获利润最大,最大利润是多少•解.(Ⅰ)(Ⅱ)当∴当当时∴当且仅当综上所述,当最大值1000,即年产量为100千件时,该厂在这一商品的生产中所获利润最大4.某工厂生产一种产品的成本费由三部分组成:①职工工资固定支出元;②原材料费每件40元;③电力与机器保养等费用为每件元,其中是该厂生产这种产品的总件数.(1)把每件产品的成本费(元)表示成产品件数的函数,并求每件产品的最低成本费;(2)如果该厂生产的这种产品的数量不超过件,且产品能全部销售.根据市场调查:每件产品的销售价与产品件数有如下关系:,试问生产多少件产品,总利润最高?(总利润=总销售额—总的成本)•(Ⅰ) ,成本的最小值为元(Ⅱ) 当时,解析:(1)……2分由基本不等式得……4分当且仅当,即时,等号成立…6分∴,成本的最小值为元.………7分(2)设总利润为元,则………9分……12分当时,………13分答:生产件产品时,总利润最高,最高总利润为元. (14)5.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为.设该容器的建造费用为千元.(Ⅰ)写出关于的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的【解析】(Ⅰ)因为容器的体积为立方米,所以,解得,所以圆柱的侧面积为=,两端两个半球的表面积之和为,所以+,定义域为(0,).(Ⅱ)因为+=,所以令得:; 令得:,所以米时, 该容器的建造费用最小.6.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用年的隔热层,每厘米厚的隔热层建造成本为万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为万元.设为隔热层建造费用与年的能源消耗费用之和.(1)求的值及的表达式;(2)隔热层修建多厚时,总费用达到最小,并求最小值.解:(1)设隔热层厚度为,由题设,每年能源消耗费用为,由,∴,∴……2分而隔热层建造费用为……4分最后得隔热层建造费用与年的能源消耗费用之和为……6分(2),令,则所以,……8分(当且仅当,即时,不等式等式成立)……10分故是的取得最小值,对应的最小值为……13分答:当隔热层修建厚时,总费用达到最小值万7.如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.(1)设AD=x(x≥0),ED=y,求用x表示y的函数关系式;(2)如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里(3)如果DE是参观线路,则希望它最长,DE的位置又应在哪里?解:(1)在△ADE中,y2=x2+AE2-2x·AE·cos60°y2=x2+AE2-x·AE,①又S△ADE=S△ABC=a2=x·AE·sin60°x·AE=2.②②代入①得y2=x2+-2(y>0), ∴y=(1≤x≤2)……4分.(2)如果DE是水管y=≥,当且仅当x2=,即x=时“=”成立,故DE∥BC,且DE=……8分(3)如果DE是参观线路,记f(x)=x2+,可知函数在[1,]上递减,在[,2]上递增,故f(x)max=f(1)=f(2)=5. ∴y max=.最新文件仅供参考已改成word文本。

高中一年级数学《比大小》应用题大全

高中一年级数学《比大小》应用题大全

高中一年级数学《比大小》应用题大全1. 邀请函小明邀请三位朋友参加他的生日聚会。

他安排了以下时间表并邀请他们参加。

请根据时间表,判断每个朋友应该在何时到达。

- 时间表如下:- 小明: 2:30 PM- 小红: 2:15 PM- 小华: 2:45 PM- 小李: 2:00 PM请问,谁应该最早到达?谁应该最晚到达?解答:根据时间表,可以比较每个朋友的到达时间。

- 小李: 2:00 PM- 小红: 2:15 PM- 小明: 2:30 PM- 小华: 2:45 PM由此可见,小李应该最早到达,小华应该最晚到达。

2. 水果比较小明去超市买了一些水果,他买了3个苹果,6个橙子和4个香蕉。

他想知道哪一种水果的数量最多,哪一种最少。

解答:- 苹果数量:3- 橙子数量:6- 香蕉数量:4由此可见,橙子的数量最多,苹果的数量最少。

3. 身高比较小明、小红和小华是同班同学,他们之间想比较一下身高。

根据测量结果,小明的身高是160厘米,小红的身高是165厘米,小华的身高是155厘米。

请判断谁的身高最高,谁的身高最低。

解答:- 小明的身高:160厘米- 小红的身高:165厘米- 小华的身高:155厘米由此可见,小红的身高最高,小华的身高最低。

4. 温度比较今天的气温是摄氏30度,小明想知道这个温度相对于32华氏度来说是比较高还是比较低。

解答:- 摄氏30度- 华氏32度由于32华氏度大于30摄氏度,可以判断今天的温度相对于32华氏度来说是比较低的。

5. 成绩排名小明、小红和小华参加一次数学考试,他们的成绩如下:- 小明:90分- 小红:95分- 小华:85分请判断谁的成绩最高,谁的成绩最低。

解答:- 小明的成绩:90分- 小红的成绩:95分- 小华的成绩:85分由此可见,小红的成绩最高,小华的成绩最低。

以上是高中一年级数学《比大小》应用题的一些例子。

这些题目可帮助学生巩固比较大小的概念,并应用于日常生活中的情境。

希望这些例题能够帮助学生更好地理解和掌握比较大小的技巧。

高中数学应用题

高中数学应用题

高中数学应用题
题目1
某公司规定每月销售额超过5000元的销售员可以享受提成,提成比例为销售额的5%。

现有一销售员A,他本月的销售额为6000元,请计算他本月的提成金额。

解答1
根据题目中规定的提成比例为销售额的5%,我们可以利用如下公式来计算提成金额:
提成金额 = 销售额 * 提成比例
其中,销售员A本月的销售额为6000元,提成比例为5%。

代入公式计算得到:
提成金额 = 6000 * 0.05 = 300元
所以,销售员A本月的提成金额为300元。

题目2
某校图书馆每人最多能借阅10本图书,每本图书借阅期限为15天。

请计算一位学生在借阅期限内最多能借阅的图书总数。

解答2
根据题目中规定,每位学生最多能借阅10本图书,每本图书的借阅期限为15天。

我们可以计算学生在借阅期限内最多能借阅的图书总数:
最多借阅图书总数 = 每位学生最多借阅图书的数量 * 图书借阅期限内的天数
代入题目中给出的数据计算得到:
最多借阅图书总数 = 10 * 15 = 150本
所以,一位学生在借阅期限内最多能借阅的图书总数为150本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开江中学——蔡ห้องสมุดไป่ตู้江
本节重点:实际问题向数学模型的转化. 本节难点:数学模型的选取
• 1.数学模型:就是把实际问题用数学语言抽 象概括,所得出的关于实际问题的数学描 述.它的形式一般有:几何图形、方程式、 函数解析式等. • 2.建立数学模型解决实际问题的过程:
• [例1] 如图所示是某厂老板和工会主席所画 的股东红利和工资增长的函数图,通过以下 两图能说出老板和工会主席各持什么观点吗?
例5 一辆汽车在一条水平的公路上向正东行驶,到A处时测得 公路南侧远处一山顶D在东偏南15°的方向上,行驶5km后到达 B处,测得此山顶在东偏南25°的方向上,仰角8°,求此山的 高度CD.
20 =lg0.001=lg20 000=lg2+lg104≈4.3 因此,这是一次约为里氏4.3级的地震. (2)由M=lgA-lgA0,可得 A A M=lg ⇔ =10M⇔A=A0· 10M. A0 A0
当M=7.6时,地震的最大振幅为A1=A0· 107.6; 当M=5时,地震的最大振幅为A2=A0· 105. 所以,两次地震的最大振幅之比是 A1 A0· 107.6 7.6-5 2.6 = = 10 = 10 ≈398. 5 A2 A0· 10 7.6级地震的最大振幅大约是5级地震最大振幅 的398倍.
(1)选用一个三角函数来近似描述这个港口的水深与时间的函数关系,
并给出在整点时的近似数值.
安全条例 (2)一条货船的吃水深度(船底与水面的距离)为 4 米,
该船何时 , 规定至 少要有 1.5 米的安全间隙(船底与海底的距离)
能进入港口?在港口能呆多久?
• (1)水深的最大值是7.5米,最小值是2.5 米. • (2)水的深度开始由5.0米增加到7.5米, 后逐渐减少一直减少到2.5,又开始逐渐变 深,增加到7.5米后,又开始减少
• 根据正弦型函数 ,
y A sin(x ) b
水深 5.5米得出
sin
x
6
x 2.5sin 5 5.5 6
0 .2
x 0.2014 , x 0.3848 6
解三角不等式 计算器计算
呈现图象.
在[0,24]范围内
sin
x
6
0.2点解一共有4个从小到大
例 4 海水受日月的引力,在一定的时候发生涨落的现象叫潮汐 一般的 早潮叫潮,晚潮叫汐.在通常的情况下,船在 涨潮时驶进 航道,靠近船坞;卸货后落潮时返回海洋.下面给出 了某港
口在某季节每天几个时刻的水深. 时
间 水 深 5.0 7.5 5.0 2.5 5.0 7.5 5.0 2.5 5.0 0.00 3.00 6.00 9.00 12.00 15.00 18.00 21.00 24.00
年份 股东红利(万元) 工资总额(万元) 2008 5 10 2009 7.5 12.5 2010 10 15
• [解析] 老板和工会主席都选择一次函数来 描述此问题,直线的倾斜程度反映出了增长 的快慢,老板从工资额增长的角度说明工资 总额和股东红利在数量上同步增长,工会主 席从增长率的角度说明股东红利提高的速度 比工资总额提高的速度要快.老板意在说明 工人收入和股东收益同步增长,工会主席则 强调股东收益比工人收入增长的快.
125 2 (2)因为P(x)=-20(x- ) +74 125, 2 所以当x=62或63时,P(x)max=74 120(元). 又MP(x)是减函数,所以当x=1时,取最大值 2440,说明生产第2台与生产第1台的总利润差最大,即 第二台报警系统利润最大,MP(x)是减函数,说明随着 产量的增加,每台利润与前一台利润相比较,利润在减 小.
• [例3] 20世纪30年代,查尔斯·里克特制订 了一种表明地震能量大小的尺度,就是使用 测震仪衡量地震能量的等级,地震能量越大, 测震仪记录的地震曲线的振幅就越大.这就 是我们常说的里氏震级M,其计算公式为: M=lgA-lgA0,其中,A是被测地震的最大振 幅,A0是“标准地震”的振幅(使用标准地震 振幅是为了修正测震仪距实际震中距离造成 的偏差.)
• [解析] (1)P(x)=R(x)-C(x) • =(3 000x-20x2)-(500x+4 000) • =- 20x2 + 2 500x - 4 000 (x∈[1,100] , x∈N). • MP(x)=P(x+1)-P(x) • = [ - 20(x + 1)2 + 2 500(x + 1) - 4 000] - ( - 20x2+2 500x-4 000) • =2 480-40x (x∈[1,100],x∈N).
• (1)假设在一次地震中,一个距离震中100千 米的测震仪记录的地震最大振幅是 20 ,此 时标准地震的振幅是 0.001 ,计算这次地震 的震级(精确到0.1); • (2)5级地震给人的震感已比较明显,计算7.6 级地震最大振幅是5级地震最大振幅的多少 倍(精确到1).
[解析]
(1)M=lg20-lg0.001
• [例2] 在经济学中,函数f(x)的边际函数 Mf(x)定义为Mf(x)=f(x+1)-f(x),某公司 每月最多生产100台报警系统装置,生产x 台的收入函数为R(x)=3 000x-20x2(单位: 元),其成本函数为C(x)=500x+4 000(单 位:元),利润是收入与成本之差.
• (1) 求利润函数 P(x) 及边际利润函数 MP(x) ; • (2) 利润函数 P(x) 与边际利润函数 MP(x) 是 否具有相等的最大值? • 你认为本题中边际利润函数 MP(x) 取最大 值时的实际意义是什么?
得到了4个交点的横坐标值后,结合图象说说货船应该选择什么 时间进港?什么时间出港呢?
例5 一辆汽车在一条水平的公路上向正东行驶,到A处时测得公 路南侧远处一山顶D在东偏南15°的方向上,行驶5km后到达B 处,测得此山顶在东偏南25°的方向上,仰角8°,求此山的 高度CD. 分析:要测出高CD,只要 测出高所在的直角三角形 的另一条直角边或斜边的 长。根据已知条件,可以 计算出BC的长。
相关文档
最新文档