行列式的计算方法

合集下载

行列式的几种计算方法

行列式的几种计算方法

行列式的几种计算方法行列式是线性代数中非常重要的概念,它可以帮助我们理解向量空间的性质和线性变换的特征。

在实际应用中,计算行列式有多种方法,包括拉普拉斯展开、按行(列)展开、特征多项式等。

本文将详细介绍行列式的几种常见计算方法,并举例说明其应用。

拉普拉斯展开法是计算行列式最常用的方法之一。

在计算n阶行列式时,通过选取任意一行或者一列,我们可以将行列式展开为n个n-1阶的代数余子式的和。

具体步骤如下:以一个具体例子来说明,计算3阶行列式:|A| = |1 2 3||4 5 6||7 8 9|选择第一行展开,展开过程为:|A| = 1*|5 6| - 2*|4 6| + 3*|4 5|4*|8 9| 5*|7 9| 6*|7 8|= 1*(5*9-6*8) - 2*(4*9-6*7) + 3*(4*8-5*7)= 1*(45-48) - 2*(36-42) + 3*(32-35)= 1*(-3) - 2*(-6) + 3*(-3)= -3 + 12 - 9= 0行列式的值为0。

特征多项式是计算行列式的另一种方法。

如果A是一个n阶矩阵,那么它的特征多项式定义为p(λ) = |A-λI|其中I是单位矩阵,λ是一个标量。

行列式的值等于特征多项式在λ=0处的值p(0)。

特征多项式的计算可以借助行列式的展开法来进行,通过计算A-λI的行列式,展开得到一个n次多项式,然后求解该多项式在λ=0处的值即可得到行列式的值。

下面举一个具体的例子来说明特征多项式的计算方法。

考虑一个2阶矩阵A的特征多项式:A = |a b||c d|则特征多项式为p(λ) = |A-λI|= |a-λ b||c d-λ|展开得到p(λ) = (a-λ)(d-λ) - bc= λ^2 - (a+d)λ + (ad-bc)= λ^2 - tr(A)λ + det(A)其中tr(A)是A的迹,det(A)是A的行列式。

行列式的值等于特征多项式在λ=0处的值,即为det(A)。

行列式的几种计算方法

行列式的几种计算方法

行列式的几种计算方法行列式是线性代数中一个重要的概念,它在矩阵运算中起着至关重要的作用。

在实际应用中,我们经常会遇到需要计算行列式的情况,因此掌握行列式的计算方法对于线性代数的学习和应用都是非常重要的。

本文将介绍行列式的几种常用的计算方法,希望能够对读者有所帮助。

1. 二阶行列式的计算方法我们来看二阶行列式的计算方法。

对于一个二阶行列式,其表示形式为:D = |a b||c d|a、b、c、d为任意实数。

二阶行列式的计算方法非常简单,只需用左上角的元素乘以右下角的元素,再减去左下角的元素乘以右上角的元素即可,即:这就是二阶行列式的计算方法。

通过这个公式,我们可以很容易地计算出任意给定二阶行列式的值。

同样地,a、b、c、d、e、f、g、h、i为任意实数。

三阶行列式的计算方法稍微复杂一些,但也是很容易理解的。

我们通过第一行的元素a、b、c与其余两行的元素d、e、f 和g、h、i构成的二阶行列式来计算出一个值,即a(ei - fh) - b(di - fg) + c(dh - eg)。

这样,我们就得到了原三阶行列式的值。

这个计算方法的核心就是利用代数余子式来计算三阶行列式的值。

代数余子式是指把一个元素及其所在的行和列去掉后所剩下的元素构成的二阶行列式的值。

通过不断地利用代数余子式,我们就可以顺利地计算出任意给定三阶行列式的值。

除了二阶行列式和三阶行列式之外,我们还可以通过递归的方法来计算其他阶行列式的值。

递归的思想在计算机科学中非常常见,它可以大大简化复杂问题的求解过程。

在计算行列式的情况下,递归的思想同样适用。

具体来说,我们可以通过下述公式来递归地计算n阶行列式的值:D = a1* A11 + a2* A12 + ... + an* A1na1、a2、... an为第一行的元素,A11、A12、... A1n为以a1、a2、... an为第一行元素的n-1阶行列式。

通过不断地利用代数余子式,我们就可以层层递归地计算出任意给定阶数的行列式的值。

行列式的几种计算方法

行列式的几种计算方法

行列式的几种计算方法行列式是线性代数中的重要概念,通常用于计算矩阵的逆、解线性方程组等问题。

本文将介绍行列式的几种计算方法,帮助读者更好地理解和应用这一概念。

二阶行列式就是二阶矩阵的行列式,计算公式为:$$\begin{vmatrix}a_{11} & a_{12}\\a_{21} & a_{22}\end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$其中,$a_{11}$、$a_{12}$、$a_{21}$、$a_{22}$ 分别表示矩阵的四个元素。

计算二阶行列式时,可以直接套用上面的公式进行计算。

$$ \begin{vmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} +a_{13}a_{21}a_{32} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12} $$其中,$a_{11}$、$a_{12}$、$a_{13}$、$a_{21}$、$a_{22}$、$a_{23}$、$a_{31}$、$a_{32}$、$a_{33}$ 分别表示矩阵的九个元素。

计算三阶行列式时,可以采用如下方法:(1)按照第一行、第一列、第二列的顺序计算,得到三个二阶行列式;(2)按照上述公式计算三个二阶行列式对应的乘积和。

3. 拉普拉斯展开法拉普拉斯展开法是一种通用的行列式计算方法。

它的基本思想是,将行列式按照一行或一列进行展开,转化为若干个小的行列式之和。

具体步骤如下:(1)选择一行或一列作为基准行(列);(2)对于基准行(列)中的每个元素,求它所在子矩阵的行列式,乘以对应的余子式(代数余子式);(3)将所有乘积相加。

行列式的几种计算方法7篇

行列式的几种计算方法7篇

行列式的几种计算方法7篇第1篇示例:行列式是线性代数中的一个重要概念,它是一个方阵中的一个数值,可以帮助我们判断矩阵的性质,计算行列式的值是线性代数中的基础技能之一。

下面我们将介绍几种行列式的计算方法以及其应用。

一、直接展开法计算行列式最基本的方法就是直接展开法。

以3阶行列式为例,一个3阶方阵的行列式可以表示为:\[\begin{vmatrix}a &b &c \\d &e &f \\g & h & i\end{vmatrix}\]通过公式展开,可以得到:\[\begin{aligned}\begin{vmatrix}a &b &c \\d &e &f \\g & h & i\end{vmatrix} & = aei + bfg + cdh - ceg - bdi - afh \\& = a(ei - fh) - b(di - fg) + c(dh - eg)\end{aligned}\]这样就可以直接计算出行列式的值。

但是这种方法比较繁琐,不适用于高阶行列式的计算。

二、拉普拉斯展开法\[\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn} \\\end{vmatrix}\]以第一行为例,可以按照以下公式展开:\[ \text{det}(A) = a_{11}C_{11} + a_{12}C_{12} + \cdots +a_{1n}C_{1n} \]C_{ij}表示元素a_{ij}的代数余子式,通过递归计算代数余子式,最终可以得到行列式的值。

计算行列式的方法

计算行列式的方法

计算行列式的方法
计算行列式的方法有以下几种:
1. 代数余子式展开法:根据行列式的定义,可以将行列式转化为一系列元素相乘的和的形式。

通过选择一行或一列,在该行或该列的元素上除去所在行和所在列的元素,得到的余子式再乘以该元素的代数余子式,最后将所有元素相乘再求和,即可得到行列式的值。

2. 初等行变换法:通过对行(列)进行初等行变换,将行列式转化为上三角形矩阵或者对角矩阵,再计算对角元素的乘积即可得到行列式的值。

3. 克莱姆法则:对于n阶方阵,如果其中一个行(列)向量是常数向量,那么行列式的值为零。

如果矩阵的秩(rank)小于n,则行列式的值也为零。

如果秩等于n,则行列式的值等于解向
量的唯一性解的行列式的乘积。

4. 拓展拉普拉斯定理:对于n阶方阵,如果其中一行(列)全是零元素,那么行列式的值为零。

对于非零元素的行列式,可以选择行、列中的一个固定不变,然后计算每个代数余子式的值再与该行(列)元素相乘,最后相加得到行列式的值。

计算行列式的常见方法

计算行列式的常见方法

计算行列式的常见方法行列式是线性代数中的一个重要概念,用于描述线性方程组的性质以及矩阵的可逆性。

计算行列式的常见方法有代数余子式展开法、性质法和初等变换法。

下面将分别介绍这三种方法。

一、代数余子式展开法代数余子式展开法也叫拉普拉斯展开法,是计算行列式常用的方法之一、其基本思想是将行列式的计算转化为较小规模行列式的计算。

具体步骤如下:1.选择行列式的一行或一列。

一般来说,选择行或列的元素个数较少的那一行或列,可以简化计算。

2.对选定的行列进行代数余子式的计算。

代数余子式是指将选定的行列删除后剩余元素构成的子行列式。

3.计算所得的代数余子式与对应元素相乘,生成代数余子式矩阵。

4.将代数余子式矩阵中的元素按照正负号相间的规则求和,得到最终结果即为原行列式的值。

二、性质法性质法是一种更加抽象的方法,通过行列式的性质进行计算。

根据性质法,行列式的值具有以下几个性质:1.互换行列式的两行(列),行列式变号。

2.行列式的其中一行(列)的元素都乘以一个常数,行列式的值变为原来的常数倍。

3.行列式的两行(列)相等,行列式的值为0。

利用这些性质,我们可以通过不断进行行列式的简化运算,将行列式计算转化为一个简单的形式进行求解。

具体步骤如下:1.通过性质1,将行列式转化为上(或下)三角行列式,这样可以使计算更加方便。

2.通过性质2,将行列式中的公因子提取出来。

3.利用性质3,判断行列式是否为零。

三、初等变换法初等变换法是一种通过初等行(列)变换来简化行列式的计算方法。

初等行(列)变换包括以下几种操作:1.交换行(列)的位置。

2.以一个非零实数乘以其中一行(列)的所有元素。

3.第二行(列)的倍数加到第一行(列)上。

利用这些变换,可以将行列式变化成一个更为简化的形式,便于计算。

具体步骤如下:1.利用初等行(列)变换,将行列式变换为上(或下)三角行列式。

2.上(或下)三角行列式的值就是对角线上所有元素的乘积。

除了以上的方法,还有一些特殊类型的行列式可以通过直接计算来求解,如对角行列式、三角行列式和Vandermonde行列式等。

矩阵行列式的计算方法

矩阵行列式的计算方法

矩阵行列式的计算方法行列式是矩阵的一种重要性质,它可以用来表示矩阵的大小、形状和特征,并且在矩阵的计算中起着重要的作用。

下面介绍一些常见的行列式的计算方法。

1. 递归法递归法是行列式计算方法中最常见的方法之一。

该方法通过矩阵的行和列依次相加,直到矩阵的行数或列数等于 1 时停止计算。

具体来说,设矩阵 A 的行数和列数为 n,则行列式的递归式为:|A| = |I| + |A - I| + |A - 2I| + ... + (-1)^n|A - nI| 其中,I 是单位矩阵,|A - I|表示 A 减去单位矩阵的行列式,|A - 2I|表示 A 减去两个单位矩阵的行列式,以此类推。

公式中的 (-1)^n 表示矩阵 A 的 n 行 n 列中每行元素都乘以 (-1)^n,从而产生一个负号。

递归法的优点是可以计算任意阶的行列式,但需要消耗大量的时间和内存。

因此,在实际应用中,通常采用其他更高效的计算方法。

2. 高斯 - 约旦消元法高斯 - 约旦消元法是另一种常用的行列式计算方法。

该方法首先将矩阵 A 分解成素矩阵的乘积,然后通过交换某些元素来将这些素矩阵的行列式相加。

具体来说,设矩阵 A 的行数和列数为 n,选取一个 k,使得 n-k 是奇数,并令 P 为 n-k 阶方阵,则 A 可以表示为:A = P^(-1)*B*P其中,B 为 k 阶方阵,P 为 P^(-1) 的矩阵,即:P^(-1) = (1 2 3 ... k)^(-1)高斯 - 约旦消元法的计算步骤如下:(1) 将 P^(-1) 中的每个元素都乘以一个非零常数,使得 P^(-1) 中的每个元素都小于等于 0。

(2) 将 B 的行向量与 P^(-1) 中的行向量线性变换,使得 B 的行向量中只有非零元素。

(3) 对 B 进行初等行变换,将其化为上三角矩阵。

(4) 计算 B 的行列式,并将其加到 A 的行列式上。

高斯 - 约旦消元法的计算效率较高,可以计算任意阶的行列式,但需要选取合适的 k,以确保计算过程中不会出现错误。

行列式怎么计算

行列式怎么计算

行列式怎么计算
1、利用行列式定义直接计算:行列式是由排成n阶方阵形式的n²个数aij(i,j=1,2,...n)确定的一个数,其值为n项之和。

2、利用行列式的性质计算。

3、化为三角形行列式计算:若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。

因此化三角形是行列式计算中的一个重要方法。

1行列式
行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或|A|。

无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。

行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。

或者说,在n维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。

2行列式的性质
①行列式A中某行(或列)用同一数k乘,其结果等于kA。

②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

④行列式A中两行(或列)互换,其结果等于-A。

⑤把行列式A 的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,
结果仍然是A。

行列式的运算法则公式

行列式的运算法则公式

行列式的运算法则公式
行列式的运算法则公式如下:
1.一个行列式,如果交换它的两行(或两列),则行列式的值变为相反数。

2.一个行列式,如果某一行(或某一列)的元素全为0,则行列式的值为0。

3.一个行列式,如果它的某一行(或某一列)的元素可以表示为其他行(或其他列)对应元素的线性组合,则该行列式的值为0。

4.一个行列式,如果它的某一行(或某一列)的元素都乘以一个数k,那么该行列式的值也将乘以k。

5.一个行列式,如果它的两行(或两列)完全相同,则该行列式的值为0。

6.一个行列式,如果它的某一行(或某一列)的元素都乘以一个数k,并加到另一行(或另一列)对应元素上,得到的新行列式与原行列式的值相等。

行列式还有其他一些拓展的性质和定理,如:
1.行列式的性质可以推广到n阶行列式,其中元素不再是数值,
而是其他类型,如多项式或函数,得到的结果也是相应的类型。

2.行列式的值和行列式元素的排列有关,可以用排列的符号进行
表示,即行列式的值等于符号乘以对应排列的元素积之和。

3.行列式的值可以通过代数余子式和余子式的行列式之和来计算。

4.行列式的展开可以按照行或列进行,分别得到代数余子式。

5.行列式的值和矩阵的特征值有关,特别是方阵的特征值可以通
过行列式的值来确定。

行列式计算方法法则

行列式计算方法法则

行列式计算方法法则
1、利用行列式定义直接计算:行列式是由排成n阶方阵形式的n²个数aij(i,j=1,2,...n)确定的一个数,其值为n项之和。

2、利用行列式的性质计算。

3、化为三角形行列式计算:若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。

因此化三角形是行列式计算中的一个重要方法。

1行列式
行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或|A|。

无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。

行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。

或者说,在n维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。

2行列式的性质
①行列式A中某行(或列)用同一数k乘,其结果等于kA。

②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

④行列式A中两行(或列)互换,其结果等于-A。

⑤把行列式A 的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

行列式计算方法

行列式计算方法

行列式计算方法1、 定义法:适用于0比较多的行列式.2、 按行(列)展开 ─ 降阶.适用于某行(列)0较多的行列式.3、 利用7条基本性质,化为三角形行列式4、 其他方法1)、析因子法例:计算221123122323152319x D x -=-解:由行列式定义知D 为x 的4次多项式.又,当1x =±时,1,2行相同,有0D =, 1x ∴=±为D 的根.当2x =±时,3,4行相同,有0D =, 2x ∴=±为D 的根.故D 有4个一次因式,1,1,2,2x x x x +-+-设 (1)(1)(2)(2),D a x x x x =+-+-令0x =,则112312231223152319D ==-, 即:1(1)2(2)12.a ⋅⋅-⋅⋅-=- 3.a ∴=-3(1)(1)(2)(2)D x x x x ∴=-+-+-2)、 ①、 可转为箭形行列式的行列式:箭形行列式:01211122000,0,1,2,3.0n n i nna b b b c a D c a a i n c a +=≠=箭形行列式解法:把所有的第1i +列(1,2)i n =的iic a -倍加到第1列,得: 11201()ni in n i ib c D a a a a a +==-∑某些行列式(关于对角线对称的行列式)可转为箭形行列式计算,例如12111111)1111na a a a +++ 12)n a x x xa xb xxxa方法:第2至第n 行分别减去第1行,转为箭形行列式,自己练习. ②、 么型的行列式:112232111231,0, 1,2,3.n i n n n n na b a ba D a i nb a bc c c c a ----=≠=解法:第1列的11b a -加于第2列;第2列的22b a -加于第3列;……;第1n -列的11n n b a ---加于第n 列,即可变为三角形行列式。

行列式的计算方法

行列式的计算方法

行列式的计算方法1 引言行列式的计算是《线性代数》和《高等代数》的一个重要内容.同时也是工程应用中具有很高价值的数学工具,本文针对几种常见的类型给出了计算行列式的几种典型的方法.2 一般行列式的计算方法2.1 三角化法利用行列式的性质把原来的行列式化为上(下)三角行列式,那么,上(下)三角行列式的值就是对角线各项的积.例 1 计算行列式12311212332125113311231 ------=n n n n n nn n n n D对这个行列式的计算可以用三角化方法将第1行乘以(-1)加到第2,3,n 行,得0001002000200010001231 ---=n n n n D再将其第1,2,1, -n n 列通过相邻两列互换依次调为第n ,,2,1 列,则得102001321)1(2)1(--=-n n D n n=)!1()1(2)1(---n n n2.2 加边法有时为了便于计算行列式,特意把行列式加边升阶进行计算,这种方法称之为升阶法.它的一般方法是:nn n n n n n n n a a a a a a a a a a a a a a a a D 321333323122322211131211==nnn n n n na a ab a a a b a a a b 212222121121110001(n b b b ,,21任意数)例如下面的例题: 例2 计算行列式nn a a a a D ++++=11111111111111111111321现将行列式n D 加边升阶,得na a a D +++=111011101110111121第1行乘以(-1)加到第1,3,2+n 行,得na a a D10001001001111121----=第2列乘以11a 加到第1列,第3列乘以21a 加到第1列,依次下去直到第1+n 列乘以n a 1加到第1列,得)11(00011111121211∑∑==+=+=ni in nni ia a a a a a a a D2.3 降阶法利用按一行(列)展开定理或Laplace 展开定理将n 阶行列式降为阶较小且容易计算的行列式来计算行列式的方法称为降阶法. 例 3 计算nD 222232222222221=解 首先我们应考虑D 能不能化为上(下)三角形式,若将第一行乘以(-2)加到第n ,3,2 行,数字反而复杂了,要使行列式出现更多的“0”,将D 的第一行乘以(-1)加到第第n ,3,2 行,得2001010100012221-=n D这样仍然不是上(下)三角行列式,我们注意到,第二行除了第一项是1,后面的项全是0,这样我们按第二行展开,降阶得到:201222)1(21--=+n D)!2(2--=n2.4 对于所谓二条线的行列式,可直接展开降阶,再利用三角或次三角行列式的结果直接计算. 例4 计算行列式nnn n n a b b a b a b a D 112211--=解 按第1列展开,得11221111221)1(--+---+=n n n n nn n n b a b ab b a b a b a a Dn n n b b b a a a 21121)1(+-+=2.5 递推法通过降阶等途径,建立所求n 阶行列式n D 和比它低阶的但是结构相同的行列式之间的关系,并求得n D 的方法叫递推法.当n D 与1-n D 是同型的行列式,可考虑用递推法.例 5 计算n 级行列式 2112000002100012100012------=n D 对于形如这样的三角或次三角行列式,按第1行(列)或第n 行(列)展开得到两项的递推关系式,再利用变形递推的技巧求解.解 按第1行展开,得210120000012000011)1)(1(2211-------+=+-n n D D212---=n n D D 直接递推不易得到结果,变形得1221121232211=---=-==-=-=------D D D D D D D D n n n n n n于是 1)1(2)1(21121+=-+=-+==+=+=--n n n D D D D n n n例6 计算n 2级行列式nnn n n n nnn d c d c d c b a b a b a D 111111112----=对于形如这样的所谓两条线行列式,可直接展开得到递推公式. 解 按第1行展开,得)1(1111111121111111112nn n n n nn n n n n nn c d c d c b a b a b d c d c b a b a a D ----+-----+=1111111111111111---------=n n n n nn n n n n nn d c d c b a b a c b d c d c b a b a d a)1(2)(--=n n n n n D c b d a)1(22)(--=n n n n n n D c b d a D)2(21111))((-------=n n n n n n n n n D c b d a c b d a)())((11111111c b d a c b d a c b d a n n n n n n n n ---=----2.6 连加法 例 7 计算mx x x x m x x x x m x D n n n n ---=212121这种行列式的特点是:各行元素之和都相等.先把第2列到第n 列元素同时加到第1列,并提出公因式,得mx x x m x x x m x D n n n ni i n ---=∑=2221111)(然后将第1行乘以(-1)加到第n ,3,2行,得mm x x m x D n ni i n ---=∑=001)(21)()(11m x m ni i n --=∑=-2.7 乘积法根据拉普拉斯定理,所得行列式乘法运算规则如下:nnn nnn n n nn n n c c c c b b b b a a a a 111111111111=⋅ (其中tj ni it ij b a c ∑==1)两个行列式的乘积可以像矩阵的乘法一样来计算,假若两个行列式的阶数不同,只要把它们的阶数化为相同就可以应用上面的公式了.这种方法的关键是寻找有特殊结构的已知行列式去乘原行列式,从而简化原行列式的计算,这也是较为常用的方法.例 8 计算行列式 ab c db a dc cd a bd c b aD =解 取行列式 1111111111111111------=H显然 0≠H ,由行列式的乘法规则:=DH ⋅ab c d ba d c c d a bd c b a 1111111111111111------ H d c b a d c b a d c b a d c b a d c b a ))()()()((+---+--++--++++=等式两边消去,H 得=D ))()()()((d c b a d c b a d c b a d c b a d c b a +---+--++--++++2.8 对称法这是解决具有对称关系的数学问题的常用方法. 例 9 计算n 阶行列式βαβααββααββα++++=1010001000 n D解 按第1行展开,得21)(---+=n n n D D D αββα即 )(211----=-n n n n D D D D αβα由此递推,即得 nn n D D βα=--1因为n D 中αβ与对称,又有 nn n D D αβ=--1当 βα≠ 时,从上两式中消去1-n D ,得 11n n n D αβαβ++-=-当 βα= 时,1-+=n nn D D ββ)(21--++=n n n D ββββ 222-+=n n D ββ11)1(D n n n-+-=ββ )()1(1βαββ++-=-n n nnn β)1(+= 2.9 数学归纳法当n D 与1-n D 是同型的行列式,可考虑用数学归纳法. 例 10 计算n 级行列式ααααcos 2100cos 210001cos 210001cos =n D解 当2=n 时,ααcos 211cos 2=D αα2cos 1cos 22=-=结论成立,假设对级数小于n 的行列式结论成立,则n D 按第n 行展开,得21cos 2---=n n n D D D α由假设αααααααsin )1sin(cos )1cos(])1cos[()2cos(2-+-=--=-=-n n n n D n代入前一式,得]sin )1sin(cos )1[cos()1cos(cos 2αααααα-+---=n n n D nαααααn n n cos sin )1sin(cos )1cos(=---=故对一切自然数n ,结论成立.2.10 拆项法这是计算行列式常用的方法.一般地,当行列式的一列(行)或一列(行)以上的元素能有规律地表示为两项或多项和的形式,就可以考虑用拆为和的方法来进行计算.例 11 在平面上,以点),(),(),(233332332232222221311211x x x x M x x x x M x x x x M ------,,为顶点的三角形面积D S =,其中11121323233322222321212131x x x x x x x x x x x x D ------= )1()1()1()1()1()1(11121323222121332211------=x x x x x x x x x x x x )1()1()1()1()1()1()1()1()1(21323222121332211332211------+--+--+--=x x x x x x x x x x x x x x x x x x解 第1行拆为)1()1()1(11111121111)1)(1)(1(21332211321321232221321321------+----=x x x x x x x x x x x x x x x x x x x x x D32112132332121))()()(1)(1)(1(21x x x x x x x x x x x x +-------=232221321111x x x x x x )]1)(1)(1([))()((21321321121323----⋅---=x x x x x x x x x x x x 3 分块矩阵行列式的计算方法我们学习了矩阵的分块,知道一个矩阵⎥⎦⎤⎢⎣⎡B A 00通过分块若能转化成对角矩阵或上(下)三角矩阵⎥⎦⎤⎢⎣⎡B C A 0,那么行列式B A B C A B A ⋅==000,其中B A ,分别是r s ,阶可逆矩阵,C 是s r ⨯阶矩阵,0是n s ⨯阶矩阵.可以看出,这样可以把r s +阶行列式的计算问题通过矩阵分块转化为较低阶的s 阶和r 阶行列式计算问题,下面先根据上面的途径给出计算公式.设矩阵 ⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=B C D A b b c c b b c c d d a a d d a a G rr r rsr r s sr s ss s r s 1111111111111111其中B A ,分别是s 阶和r 阶的可逆矩阵,C 是s r ⨯阶矩阵,D 是r s ⨯阶矩阵,则有下面公式成立. C DB A B BCD A G 1--⋅==或C DA B A BCD A G 1--⋅==下面推导公式,事实上,当0≠A 时,有⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡---D BCA D A B C D A E CA E 1100 ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡---B C C DB A B C D A E DB E 0011 上面两式两边同取行列式即可得出上面的公式.例 12 计算 8710650143102101=D这道题的常规解法是将其化为上三角行列式进行计算,若用前面介绍的公式则可以直接得出结果.令 ⎥⎦⎤⎢⎣⎡=1001A ,⎥⎦⎤⎢⎣⎡=8765B , ⎥⎦⎤⎢⎣⎡=1001C , ⎥⎦⎤⎢⎣⎡=4321D 则 ⎥⎦⎤⎢⎣⎡=1001'A ,由公式(1) 知原行列式D CA B A BCD A 1--⋅==⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⋅=43211001100187651001 ⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⋅=432187651 4444==0这个题还有个特点,那就是C A =,如果我们把公式变形,即D CA B A BCD A 1--⋅=D ACA AB D CA B A 11)(---=-=当C A =时,D ACA AB 1--CD AB D CAA AB -=-=-1,所以当C A =时,我们有CD AB BCD A -=,这样例题就可以直接写出答案了.参考文献:[1] 北京大学数学系,高等代数[M] (第三版).北京:高等教育出版社,2003,9.[2] 张禾瑞,高等代数[M] (第四版).北京:高等教育出版社,1997.[3] 丘维生,高等代数[M].北京:高等教育出版社,1996,12.[4] 杨子胥,高等代数[M].山东:山东科学技术出版社,2001,9.[5] 王萼芳,高等代数题解[M].北京:北京大学出版社,1983,10.[6] Gelfand I M, Kapranov M M and Celvinskij A V. Discriminaants, redultants,and multidimensional determinants[M].Mathematics: Theory&Applications,Birkhauser Verlag,1994.[7] 徐仲,陆全等.高等代数导教·导学·导考.西安::西北工业大学出版社,2004.[8] 陈黎钦.福建:福建商业高等专科学校学报,2007年2月第1期.11。

关于行列式的计算方法

关于行列式的计算方法

关于行列式的计算方法行列式是线性代数中非常重要的一个概念,它在矩阵和线性方程组的求解中都有广泛的应用。

本文将介绍关于行列式的定义、计算方法及其性质,以及一些常用的行列式计算技巧。

一、行列式的定义行列式是一个方阵(只有行数和列数相等的矩阵才有行列式)所具有的一个确定的数值。

对于一个n阶的方阵,其行列式记作det(A),其中A 表示矩阵。

行列式的计算方法主要有三种:代数余子式法、按行(列)展开法和逆序数法。

二、代数余子式法对于一个n阶方阵A,它的第i行第j列元素的代数余子式表示为Mij,定义为:将A的第i行和第j列元素划去,然后找出剩余元素所形成的n-1阶方阵的行列式。

即:Mij = det(Aij)其中Aij表示由第i行和第j列元素删去后所得到的(n-1)阶方阵。

根据代数余子式的定义,行列式的计算可以通过以下公式进行求解:det(A) = a11M11 - a12M12 + a13M13 - ... + (-1)^(i+j)aijMij + ...其中a11,a12,a13,...是第一行元素,M11,M12,M13,...是它们对应的代数余子式。

三、按行(列)展开法按行(列)展开法是行列式计算中最常用的一种方法。

对于一个n阶方阵A,选择其中任意一行或者一列,然后按照一定规律展开计算。

以按第一行展开为例,按照以下规律进行展开:det(A) = a11C11 + a12C12 + a13C13 + ... + a1nC1n其中Cij表示第一行第j列元素aij的余子式,定义为:将A的第一行和第j列元素划去,然后找出剩余元素所形成的(n-1)阶方阵的行列式。

将Cij的计算公式中的行列式再按行(列)展开,可以得到更小阶的余子式,直到降阶为2阶方阵时,余子式的计算直接是两个元素之差。

四、逆序数法逆序数法是行列式计算中的另一种方法。

对于一个n阶方阵A,按照以下步骤进行计算:1.首先,将方阵A展开至最小的单位(1阶方阵)。

计算行列式常用的7种方法

计算行列式常用的7种方法

计算行列式常用的7种方法行列式是线性代数中的重要概念,用于描述线性方程组的性质和解的情况。

在计算行列式时,有多种方法可供选择,下面将介绍行列式的常用计算方法。

1.代数余子式展开法代数余子式展开法是计算行列式的最常用方法之一、对于n阶行列式,可以选择其中的任意一行或一列展开。

选择一行展开时,可以使用代数余子式,即将每一元素乘以其代数余子式后再求和。

例如,对于3阶行列式\(\begin{bmatrix}a & b & c\\ d & e & f\\ g & h &i\end{bmatrix}\)选择第一行展开,计算行列式的值为\(aA_{11} - bA_{12} +cA_{13}\),其中\(A_{ij}\)表示第i行第j列元素的代数余子式。

类似地,可以选择列展开,使用代数余子式计算行列式的值。

2.初等变换法初等变换法是计算行列式的另一种常用方法。

通过一系列的行变换或列变换,将行列式转化为三角形矩阵或对角矩阵。

对于三角形矩阵,行列式的值即为对角线上元素的乘积;对于对角矩阵,行列式的值即为对角线上元素的乘积。

初等变换包括行交换、行缩放和行加减,可以有效地简化行列式的计算过程。

3.拉普拉斯展开法拉普拉斯展开法是计算行列式的一种常用方法,适用于任意阶的行列式。

选择其中的一行或一列展开,将行列式拆解为一系列子行列式的乘积。

每个子行列式的阶数比原行列式小1,可以继续进行递归的计算。

拉普拉斯展开法可以使用代数余子式进行计算,也可以利用构造矩阵的方式计算。

4.三对角矩阵法三对角矩阵法适用于计算特殊形式的行列式,即矩阵中除了对角线和相邻对角线上的元素外,其他元素都为0的情况。

计算三对角矩阵的行列式可以通过逐步化简为二阶或一阶行列式进行计算。

这种方法可以加速计算过程,特别适用于较大阶数的行列式。

5.特殊行列式法对于特殊形式的行列式,例如范德蒙行列式、希尔伯特行列式等,可以利用其特殊性质进行计算。

行列式的计算

行列式的计算

行列式的计算是学习高等代数的基石,它是求解线性方程组,求逆矩阵及求矩阵特征值的基础,但行列式的计算方法很多,综合性较强,在行列式计算中需要我们多观察总结,便于能熟练的计算行列式的值。

目前我们常用的计算行列式的方法有对角线法则,化为三角形行列式,拆分法,降阶法,升阶法,待定系数法和数学归纳法,乘积法,加边法。

1.对角线法则此法则适用于计算低阶行列式的值(如2阶,3阶行列式的值),即主对角线的元素的乘积减去辅或次对角线上的元素的乘积,其主要思想是根据2阶,3阶行列式的定义计算行列式的值。

2.化为三角行行列式利用行列式的性质,把行列式化为上(下)三角形行列式,再利用上(下)三角形行列式的结论,可得到相应行列式的值上(下)三角形行列式及其值(1)上三角形行列式为D=|■(■(a_11&a_12@0_ &a_22 )&■(a_13&…&a_1n@a_23&…&a_2n )@■(0_ &0_ @⋮&⋮@0_&0_ )&■(a_33&…&a_3n@⋮&⋮&⋮@0_ &…&a_nn ))|D=|■(■(a_11&a_12@0_&a_22 )&■(a_13&…&a_1n@a_23&…&a_2n )@■(0_ &0_ @⋮&⋮@0_&0_ )&■(a_33&…&a_3n@⋮&⋮&⋮@0_ &…&a_nn ))|=|■(■(a_11&0&0@a_21&a_22&0@a_31&a_32&a_33 )&■(⋯&0@⋯&0@⋯&0)@■(⋮&⋮&⋮@a_n1&a_n2&a_n3 )&■(⋮&⋮@⋯&a_nn ))| = a_11 a_12⋯a_nn即上(下)三角形行列式的值等于主对角线上的元素的乘积。

各种行列式的计算方法

各种行列式的计算方法

各种行列式的计算方法宝子们,今天咱们来唠唠行列式的计算方法呀。

一、定义法。

这就像是最基础的招式啦。

按照行列式的定义,把所有可能的排列组合算出来。

不过呢,这个方法可有点费时间,就像你要一个一个数小珠子一样,要是行列式的阶数大一点,那可就累得够呛。

比如说二阶行列式,按照定义算起来还比较轻松,就是主对角线元素相乘减去副对角线元素相乘。

但是三阶或者更高阶的,那可就复杂得多喽。

二、三角形行列式法。

这个方法可就比较巧妙啦。

我们想办法把行列式通过行变换或者列变换变成上三角或者下三角行列式。

为啥呢?因为三角形行列式的值就等于主对角线元素的乘积呀,多方便。

就像把一堆乱乱的东西整理得整整齐齐的,然后一下子就能算出结果。

比如说给你一个行列式,你就观察一下,哪行或者哪列加上或者减去其他行或者列的倍数,能让它慢慢变成三角形的样子。

三、按行(列)展开法。

这个方法就像是拆积木一样。

你可以按照行列式的某一行或者某一列展开。

比如说按第一行展开,那这个行列式的值就等于这一行的每个元素乘以它对应的代数余子式然后相加。

代数余子式呢,就像是这个元素的小跟班,有自己的计算方法。

这个方法在行列式里有很多零元素的时候特别好用,就像走捷径一样,直接找那些简单的部分来计算。

四、行列式的性质法。

行列式有好多有趣的性质呢。

比如说两行(列)交换,行列式的值就变成原来的相反数;某一行(列)乘以一个数加到另一行(列),行列式的值不变。

我们就可以利用这些性质,把行列式变得简单一些再去计算。

就像给行列式做个小整容,让它变得更可爱(好计算)。

宝子们,行列式的计算方法就这么些啦,多做做练习,就会发现其实也没有那么难啦。

加油哦!。

行列式的计算方法总结

行列式的计算方法总结

行列式的计算方法总结行列式是一种矩阵数学表示,用于显示方阵(行数等于列数)中元素的等式关系。

行列式的计算是一个非常重要的研究内容,它的计算方法很多,下面就来总结几种常见的计算方法。

一、基本定义行列式的基本定义是由一个n阶行列式的n阶子式构成的,比如有一个3阶的行列式:a11 a12 a13a21 a22 a23a31 a32 a33它的子式就是第1行的3个元素的乘积(a11*a22*a33),第2行的3个元素的乘积(a12*a23*a31),第3行的3个元素的乘积(a13*a21*a32),这三项之和就是该行列式的值。

二、Cauchy-Binet公式Cauchy-Binet公式是一种由刘易斯凯西(LouisCauchy)和梅勒尔比乃(MerilBinet)发现的用于计算行列式的公式,它可以将一个行列式分解成几个较小的行列式之积,具体的计算方法如下:(1)计算矩阵A中行组合及列组合的元素,如a12、a13等;(2)用这些元素构成新的矩阵,如A12、A13等;(3)对于新构成的矩阵,计算它们各自的行列式,将此行列式相乘,就是原矩阵A的行列式。

三、分块计算分块计算,也叫做分解计算,可利用小行列式的特性,将大行列式逐块分解成一系列的小行列式,由于小行列式的简单性,可以简单地计算出它们的值,然后将各个小行列式值相乘,就可以求出大行列式的值。

四、Schur补充定理Schur补充定理是由Issai Schur在1903年提出的行列式计算方法,它可以从一个行列式中减去部分行或部分列,把一个大的行列式分解成几个小的行列式的乘积,这样可以大大简化计算过程:(1)从一个行列式中去掉一行(或一列);(2)对每一行(或列)的元素算出相应的行列式;(3)将各行列式的值乘起来,即可求出原行列式的值。

五、拆式法拆式法是一种将行列式分解为更小行列式之积的方法,它以行列式中每一行(或列)元素的乘积作为一个原子子式,把一个大行列式拆分为一系列小行列式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行列式的计算方法摘要:线性代数主要内容就是求解多元线性方程组,行列式产生于解线性方程组,行列式的计算是一个重要的问题。

本文依据行列式的繁杂程度,以及行列式中字母和数字的特征,给出了计算行列式的几种常用方法:利用行列式的定义直接计算、化为三角形法、降阶法、镶边法、递推法,并总结了几种较为简便的特殊方法:矩阵法、分离线性因子法、借用“第三者”法、利用范德蒙德行列式法、利用拉普拉斯定理法,而且对这些方法进行了详细的分析,并辅以例题。

关键词:行列式矩阵降阶The Methods of Determinant CalculationAbstract:Solving multiple linear equations is the main content of the linear algebra, determinants produced in solving linear equations, determinant calculation is an important issue.This article is based on the complexity degree of the determinant, and the characteristics of letters and numbers of the determinant ,and then gives several commonly used methods to calculate the determinant: direct calculation using the definition of determinant, into the triangle, reduction method, edging method , recursion, and summarizes several relatively simple and specific methods: matrix, linear separation factor method, to borrow "the third party" method, using Vandermonde determinant method, using Laplace theorem,also analyze these methods in detail,and supported by examples. Keywords:determinant matrix reduction.1.引言线性代数主要内容就是求解多元线性方程组,行列式产生于解线性方程组,然而它除了用于研究线性方程组、矩阵、特征多项式等代数问题外,还在各种工程领域有着广泛的应用,是一种不可缺少的运算工具,所以说行列式的计算是一个重要的问题。

二阶行列式:22211211a a a a 21121211a a a a -=⑴三阶行列式:332112322311312213322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++=⑵ 由此可以看出二阶、三阶行列式计算结果的一些规律:○1⑵中每项都是三个数的乘积,并由行标与列标可以看出,这三个数分别取自行列式的不同行与不同列;○2⑵式正好有6项,它恰好是1,2,3全排列的个数。

○3每项321321,,j j j a a a 前面的符号为)(321)1(j j j τ-,其中)(321j j j τ为321j j j 的逆序数。

这就是比较简单的采用对角线的方法计算行列式。

在行列式的定义中,虽然计算结果的每一项是n 个元素的乘积,但是由于这n 个元素是取自不同的行与列,所以对于某一确定的行中的n 个元素(譬如),11211n a a a 来说,每一项都含有其中的一个且只含有其中的一个元素,而n 级行列式一共有!n 项,计算它就需要做)1(!-n n 个乘法。

当n 较大时,!n 是一个相当大的数字,直接从定义采用对角线法计算行列式几乎是不可能的事,[1]本文依据行列式元素间的规律和行列式的性质总结了计算行列式几种常用和特殊的方法。

2. 计算行列式的常用方法2.1 利用行列式的定义直接计算 根据行列式的定义n D =∑-nn n j j j nj j j j j j a a a 21121221)()1(τ,可以利用行列式的定义直接计算低阶稀疏行列式。

例1. 利用行列式的定义计算n 阶行列式n D =000100002000010n n -解:根据行列式的定义,行列式展开后等于所有取自不同行不同列的n 个元素的乘积,通过观察可知n D 的展开式中只有一个非零项!)1(12n n n =- ,这一项行标排列具有自然顺序排列,对应的列标排列为123n ,其逆序数为1-n ,故!)1(1n D n n --=当行列式的元素中有较多0时,可以利用定义法进行计算,但如果元素中出现较多非0元素时,这种方法就不易求解。

2.2 利用化为三角形的方法计算利用行列式的性质把行列式通过一系列的变换转化成位于主对角线一侧的元素全为零的行列式,这样得到的行列式的值就等于主对角线上所有元素的乘积。

而对于非零元素位于次对角线的情形,行列式的值等于2)1()1(--n n 与次对角线上所有元素的乘积。

例2 利用上三角形法计算n 阶行列式nn nn n n x x x x D ----=λλλλλλλλλλλλλλλλ321332132213211解:nnn x x x x x x x D ----=000000131213211λλλλ 100101010011133221121----=n nnx x x x x x x λλλλ10000100001013322121----=∑=n nni iinx x x xx x x λλλλ∑=---=ni iin n x x x x 12111)1(λ在例2中,行列式的每一行对应元素中包含有相同的元素,这样使用化三角形法较为简便,但当行列式的元素不相同且无规律时,计算量就会增加不少,此时这种方法并不简单。

2.3 利用降阶法计算行列式在计算行列式的时候可以根据行列式元素间的规律,依据行列式的性质或行列式按行(列)展开定理,将一个n 阶行列式化为n 个1-n 阶行列式来计算。

若再继续使用按行(列)展开法,可以将n 阶行列式降阶然后一直化为多个2阶行列式来计算。

例3. 利用降阶法计算n 阶行列式=n D ab ba b a b a 000000000000解:依据行列式按行(列)展开的定理,将n D 按第一行展开,即得:a D n =aba ab a 0000000000 b -ab b a a b 0000000000b a n -=ab ba ab 0000000000然后将后面的行列式按第一列展开,即得bb a D n n -=(-1)n⨯ba b b a b 0000000000n n n b a 1)1(+-+= 值得注意的是,根据行列式的性质利用降阶法时,应该将某行(列)元素尽可能多地变成零,之后再按行(列)展开,这样计算才能体现出降阶法计算行列式的简便性,但是针对一些构造特殊的行列式,因为n 阶行列式n D 的第i 行构成的k 级子式有k n C 个,故一般行列式只是能降阶而不能减少其计算量,这种方法往往无效。

[2]利用降阶法可以计算行列式,那是不是也可以通过加边使其变成一个相等的1+n 阶行列式呢? 2.4 镶边法一个n 阶行列式nnn n nn a a a a a a a a a 212222111211,如果n a a a 11211 或12111n a a a 中除了11a 外其余元素全为0,那么该行列式便可利用行列式按行(列)展开定理将其转化为一个计算1-n 阶行列式。

反过来,也可以利用相同的方法把一个n 阶行列式转化为一个与之相等的1+n 阶行列式,这就是镶边法。

2.4.1 镶边法解题步骤○1通过加边(列)的方法把一个n 级行列式转化为一个与之相等的1+n 阶行列式;○2根据行列式的性质把添加进去的行(列)的适当的倍数加到其它行(列)使其它行(列)出现更多的0元素后再进行计算。

2.4.2 镶边的一般方式○1首行首列 ○2首行末列 ○3末行首列 ○4末行末列。

[3] 当然也可以添加在行列式任意某一行与某一列的位置,但是等价变形后,总变成上述四种情况之一。

例4 利用镶边法计算n 阶行列式)0(2121221211≠+++=n nn n n n y y y y x x x x y x x x x y x D解: nn n nn n y x x x x y x x x x y x x x x D +++=21221211210001 nn y y y x x x 0100100112121---=nnnn y y y x x x y x y x 000000001212111+++=)1(1121nn n y x y x y y y +++= 2.5 递推法递推法就是利用行列式元素间的规律,在n 阶与1-n 阶(或更低阶)行列式之间建立递推关系,再利用所得的关系式计算行列式的值。

递推法主要是降阶递推法,常见的有两种类型:1.1-=n n LD D 型;这时根据递推关系可推出关系式11D L D n n -=2.)0,2(21≠>+=--q n qD pD D n n n 型;这时可设α、β是方程02=--q px x 的根,则由根与系数的关系可得q p =-=+αββα,,于是有:n D -)(211----=n n n D D D βαβ (Ⅰ) )(211----=-n n n n D D D D αβα (Ⅱ)若βα≠,则由(Ⅰ)和(Ⅱ)得βααββα----=--)()(121121D D D D D n n n注意又由(Ⅰ)和(Ⅱ)递推可得)(1221D D D D n n n βαβ-=--- )(1221D D D D n n n αβα-=---若βα=,则(Ⅰ)和(Ⅱ)可变成)(211----=-n n n n D D D D ααα,即)(1221D D D D n n n ααα-=---,故)(1221D D D D n n n ααα-+=--=)())((1221232D D D D D n n n αααααα-+-+--- =)(212222D D D n n ααα-+--=)(2))((12212432D D D D D n n n αααααα-+-+--- =)(312233D D D n n ααα-+-- =……以此类推,最后可得: )()1(12211D D n D D n n n ααα--+=-- 例5 利用递推法计算n 阶行列式n D =2100012000002100012100012解:由于212---=n n n D D D ,则不妨设α、β是方程0122=+-x x 的根,则:1==βα。

相关文档
最新文档