图形的相似与位似(中考真题练习)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的相似与位似
命题点1 比例线段
1. (郴州15题3分)若a b =12,则a +b
b
=______.
2. (娄底16题3分)湖南地图出版社首发的竖版《中华人民共和国地图》,将南海诸岛与中国大陆按同比例尺1∶6700000表示出来,使读者能够全面、直观地认识我国版图.若在这种地图上量得我国南北的图上距离是82.09厘米,则我国南北的实际距离大约是________千米(结果精确到1千米).
3. (湘潭13题3分)如图,直线a ∥b ∥c,点B 是线段AC 的中点,若DE =2,则EF =________.
第3题图 第4题图
命题点 2 相似三角形的性质与判定
4. (张家界5题3分)如图,D 、E 分别是△ABC 的边AB,AC 上的中点,如果△ADE 的周长是6,则△ABC 的周长是( ) A. 6 B. 12 C. 18 D. 24
5. (株洲7题3分)如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F,且AB =1,CD =3,那么EF 的长是( )
A. 13
B. 23
C. 34
D. 45
第5题图 第6题图
6. (湘西州17题4分)如图,在△ABC 中,DE ∥BC,DB =2AD,△ADE 的面积为1,则四边形DBCE 的面积为( ) A. 3 B. 5 C. 6 D. 8
7. (衡阳16题3分)若△ABC 与△DEF 相似且面积之比为25∶16,则△ABC 与△DEF 的周长之比为________.
8. 湘潭14题3分)如图,在△ABC 中,D 、E 分别是边AB 、AC 的中点,则△ADE 与△ABC 的面积比S △ADE ∶S △ABC =________.
第8题图 第9题图 第10题图
9. (娄底14题3分)如图,已知∠A =∠D,要使△ABC ∽△DEF,还需添加一个条件,应该添加的条件是________.(只需写一个条件,不添加辅助线和字母)
10. (邵阳14题3分)如图,在▱ABCD 中,F 是BC 上的一点,直线DF 与AB 的延长线相交于点E,BP ∥DF,且与AD 相交于点P.请从图中找出一组相似的三角形:________.
11. (岳阳22题8分)如图,正方形ABCD 中,M 为BC 上一点,F 是AM 的中
点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
(1)求证:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的长.
第11题图
12. (株洲22题8分)如图,正方形ABCD的顶点A在等腰直角三角形DEF 的斜边EF上,EF与BC交于点G,连接CF.
(1)求证:△DAE≌△DCF;
(2)求证:△ABG∽△CFG.
第12题图
命题点 3 相似三角形的实际应用
13. (永州10题4分)圆桌面(桌面中间有一个直径为0.4 m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2 m,桌面离地面1 m,若灯泡离地面3 m,则地面圆环形阴影的面积是( )
A. 0.324π m2
B. 0.288π m2
C. 1.08π m2
D. 0.72π m2
第13题图第14题图
14. (娄底17题3分)如图,小明用长为3 m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点O,此时O点与竹竿的距离OD=6 m,竹竿与旗杆的距离DB=12 m,则旗杆AB的高为________m.
15. (邵阳24题8分)如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF 与地面保持平行,并使边DE与旗杆顶点A在同一直线上,延长DF交AB 于点C,已知DE=0.5 m,EF=0.25 m,目测点D到地面的距离DG=1.5 m,到旗杆的水平距离DC=20 m,求旗杆的高度.
第15题图
16. (岳阳22题8分)如图,矩形ABCD为台球桌面,AD=260 cm,AB=130 cm. 球目前在E点位置,AE=60 cm. 如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.
(1)求证:△BEF∽△CDF;
(2)求CF的长.
第16题图第17题图
命题点 4 图形的位似(郴州2考)
17.(郴州14题3分)如图,在平面直角坐标系中,矩形OABC的顶点坐标分别是O(0,0),A(2,0)、B(2,1)、C(0,1).以坐标原点O为位似中心,将矩形OABC放大为原图形的2倍,记所得矩形为OA1B1C1,B的对应点为B1,且B1在OB的延长线上,则B1的坐标为
数学文化讲堂
《海岛算经》
刘徽,公元3世纪人,中国古代伟大的数学家.他的杰作《九章算术注》和《海岛算经》是我国最宝贵的数学遗产.《海岛算经》共九问,都是用表尺重复从不同位置测望,取测量所得的差数,进行计算从而求得山高或谷深.此书是中国最早的一部测量数学专著,也是中国古代高度发达的地图学的数学基础.
刘徽在他的杰作《海岛算经》中提出九个测量问题,其中一题为:有望深谷,偃矩岸上,令勾高六尺,从勾端望谷底,入下股九尺一寸.又设重矩于上,其矩间相去三丈.更从勾端望谷底,入上股八尺五寸.问谷深几何?题目的大意是:测量一个山谷AE的深度,拿一个
高AB为6尺的矩尺△ABD放在岸上,从B端看谷底EG(D在BG上),下股AD为9尺1寸,向上平移矩尺3丈,现从B′端看谷底EG,上股A′D′为