《二次函数》教材分析

合集下载

二次函数教案(优秀5篇)

二次函数教案(优秀5篇)

二次函数教案(优秀5篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教学心得体会、工作心得体会、学生心得体会、综合心得体会、党员心得体会、培训心得体会、军警心得体会、观后感、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as teaching experience, work experience, student experience, comprehensive experience, party member experience, training experience, military and police experience, observation and feedback, essay collection, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!二次函数教案(优秀5篇)课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。

2024年浙教版数学九年级上册1.1《二次函数》教学设计

2024年浙教版数学九年级上册1.1《二次函数》教学设计

2024年浙教版数学九年级上册1.1《二次函数》教学设计一. 教材分析《二次函数》是2024年浙教版数学九年级上册的教学内容,本节课主要让学生掌握二次函数的定义、性质以及图象。

通过学习,学生能够理解二次函数在实际生活中的应用,提高解决问题的能力。

教材内容安排合理,由浅入深,逐步引导学生掌握二次函数的知识。

二. 学情分析九年级的学生已经具备了一定的函数知识,对一次函数和二次函数有一定的了解。

但学生在学习二次函数时,可能会觉得比较抽象,难以理解。

因此,在教学过程中,需要注重引导学生从实际问题中提炼出二次函数模型,培养学生的抽象思维能力。

三. 教学目标1.了解二次函数的定义及其一般形式;2.掌握二次函数的性质,包括开口方向、对称轴、顶点等;3.能够通过实际问题,建立二次函数模型,并解决相关问题;4.提高学生的抽象思维能力和解决问题的能力。

四. 教学重难点1.二次函数的定义及其一般形式;2.二次函数的性质,特别是开口方向、对称轴、顶点的理解;3.实际问题中二次函数模型的建立和应用。

五. 教学方法1.采用问题驱动法,引导学生从实际问题中发现二次函数的规律;2.利用数形结合法,让学生直观地理解二次函数的图象和性质;3.运用讨论法,鼓励学生积极参与,培养学生的合作意识;4.采用案例分析法,使学生能够将理论知识应用于实际问题。

六. 教学准备1.准备相关的实际问题,用于引入和巩固二次函数的知识;2.制作PPT,展示二次函数的图象和性质;3.准备一些练习题,用于让学生在课堂上练习和巩固所学知识;4.准备一些拓展问题,激发学生的思考。

七. 教学过程1.导入(5分钟)利用一个实际问题,如抛物线运动,引出二次函数的概念。

让学生观察实际问题中的数量关系,引导学生发现二次函数的规律。

2.呈现(10分钟)通过PPT展示二次函数的图象,让学生直观地了解二次函数的性质。

同时,引导学生总结二次函数的一般形式。

3.操练(10分钟)让学生根据二次函数的定义和性质,解决一些相关问题。

湘教版数学九年级下册第1章《二次函数》教学设计

湘教版数学九年级下册第1章《二次函数》教学设计

湘教版数学九年级下册第1章《二次函数》教学设计一. 教材分析湘教版数学九年级下册第1章《二次函数》是学生在学习了初中阶段函数知识后,进一步深入研究函数性质的重要内容。

本章主要介绍二次函数的定义、性质、图象及其应用。

通过学习二次函数,学生可以更好地理解数学与实际生活的联系,提高解决问题的能力。

教材内容安排合理,由浅入深,逐步引导学生掌握二次函数的知识。

二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念、性质有所了解。

但二次函数相对于一次函数和反比例函数,其性质和图象更具复杂性,需要学生在已有的知识基础上,通过观察、分析、归纳等方法,自主探究二次函数的性质。

此外,学生在生活中接触到的一些现象和问题,也需要用二次函数来解释和解决。

三. 教学目标1.理解二次函数的定义,掌握二次函数的表示方法。

2.掌握二次函数的性质,能够分析二次函数图象的特点。

3.会利用二次函数解决实际问题,提高数学应用能力。

4.培养学生的观察、分析、归纳、总结能力,提高学生的自主学习能力。

四. 教学重难点1.二次函数的定义和表示方法。

2.二次函数的性质及其图象特点。

3.二次函数在实际问题中的应用。

五. 教学方法1.采用问题驱动法,引导学生主动探究二次函数的性质。

2.利用数形结合法,让学生直观地理解二次函数的图象特点。

3.运用实例分析法,让学生学会将二次函数应用于实际问题。

4.采用小组合作学习法,培养学生的团队协作能力。

六. 教学准备1.准备相关课件、图片、实例等教学资源。

2.安排适当的时间让学生进行自主学习和小组讨论。

3.准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用一个实际问题引入二次函数的概念,激发学生的兴趣。

例如:抛物线运动中,物体上升和下降的轨迹为什么是抛物线?2.呈现(10分钟)介绍二次函数的定义和表示方法,展示二次函数的一般形式:y=ax^2+bx+c(a≠0)。

通过示例,让学生理解二次函数的各项参数代表的意义。

二次函数教材分析

二次函数教材分析

二次函数教材分析本章主要介绍了二次函数的概念、性质和应用,旨在帮助学生深入理解函数知识,掌握二次函数的图象和性质,并能灵活应用于实际问题中。

本章的编写特点如下:1.以探索、分析和建立二次函数关系为主线,注重培养学生的数学思维和语言表达能力。

2.通过表格、关系式、图象等多种形式,帮助学生理解和描述变量之间的二次函数关系。

3.强调二次函数的图象和性质对于理解和掌握函数知识的重要性,注重培养学生的观察和分析能力。

4.重视实际问题的应用,帮助学生将二次函数理论知识应用于实际问题中,培养学生的数学建模能力。

5.难点在于帮助学生理解二次函数研究过程中所蕴含的数学思想方法,掌握函数图象的特征和变换,以及二次函数性质的灵活应用。

关于函数的内容在中学数学中是一个稳定的主题。

为了更好地帮助学生理解函数概念,教材在体例、结构、呈现方式等方面体现了以下特点:首先,强调背景和展现过程,让学生感受概念和结论的得出是水到渠成的。

例如,通过具体实例展示函数概念的产生背景,让学生理解如何用函数来描述变量之间的相互依赖关系。

同时,在丰富的背景中提出问题,引导学生思考和经历知识发展的过程,鼓励学生主动思考和自主探索。

其次,突出联系和应用,培养学生的应用意识。

函数的基础知识在现实生活、科技、经济和许多学科中都有着广泛的应用。

因此,教科书安排了较多的实际应用问题,并专门设置了函数的应用,让学生体会运用函数观点解决实际问题的作用,让学生初步体验建立函数模型的过程和方法。

最后,重视数学思想方法。

教材注重培养学生的数学思想方法,让学生在观察实例、归纳共性、逐层分析概念的过程中,感受函数概念的发展过程,提升学生的数学思维能力。

《二次函数y=a2+k的图象和性质》 说课稿

《二次函数y=a2+k的图象和性质》 说课稿

《二次函数y=a2+k的图象和性质》说课稿《二次函数 y = a²+ k 的图象和性质》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《二次函数 y = a²+ k 的图象和性质》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。

一、教材分析1、教材的地位和作用本节课是在学生学习了二次函数的基本概念和一次函数图象与性质的基础上进行的,是对二次函数研究的进一步深入。

通过对二次函数 y = a²+ k 图象和性质的探究,为后续学习更复杂的二次函数打下坚实的基础,同时也有助于培养学生的数形结合思想和逻辑推理能力。

2、教材内容本节课主要包括二次函数 y = a²+ k 的图象的绘制方法、图象的特点以及函数的性质等内容。

二、学情分析1、知识基础学生已经掌握了一次函数的图象和性质,对函数的概念有了一定的认识,并且具备了基本的作图能力和初步的代数推理能力。

2、学习能力八年级的学生正处于思维活跃、好奇心强的阶段,但他们的抽象思维能力和空间想象能力还相对较弱,对于函数图象的理解和性质的归纳可能会存在一定的困难。

3、学习态度学生在学习过程中可能会出现畏难情绪,需要通过引导和鼓励,激发他们的学习兴趣和积极性。

三、教学目标1、知识与技能目标(1)掌握二次函数 y = a²+ k 的图象的绘制方法。

(2)理解二次函数 y = a²+ k 的图象特点和性质。

(3)能运用二次函数 y = a²+ k 的图象和性质解决简单的实际问题。

2、过程与方法目标(1)通过动手操作、观察、比较、分析等活动,培养学生的动手实践能力和归纳总结能力。

(2)经历探索二次函数 y = a²+ k 图象和性质的过程,体会数形结合的思想方法。

3、情感态度与价值观目标(1)通过对二次函数图象和性质的探究,让学生体验数学活动的乐趣,增强学习数学的信心。

第十六章二次函数学情与教材分析

第十六章二次函数学情与教材分析

第十六章二次函数学情与教材分析简介本文档旨在分析第十六章关于二次函数的学情和教材。

通过对学生的研究情况和教材内容的分析,旨在为教师提供有关教学策略和教材优化的建议。

学情分析在学情分析中,我们对学生在研究二次函数方面的情况进行了观察和评估。

以下是我们的发现:1. 学生对二次函数的基本概念掌握较为牢固,如函数的表达形式和图像特征。

2. 学生在解二次方程和求解二次函数的最值方面还存在一定的困惑和错误。

3. 部分学生在应用二次函数解决实际问题时遇到难题,对于如何把问题转化为数学表达式的过程理解不够深入。

4. 学生在理解二次函数的变换和平移方面存在一定的困难,无法准确把握图像在坐标平面上的变化。

教材分析在教材分析中,我们对第十六章关于二次函数的内容进行了评估和研究。

以下是我们的观察和建议:1. 教材对于二次函数的基本概念和性质的介绍较为清晰和详细,学生易于理解。

2. 教材对于解二次方程和求解二次函数最值的方法讲解较为简单,可能需要更多的例题和练来加深学生的理解。

3. 教材在应用二次函数解决实际问题方面的例题较少,建议增加更多的实际问题来培养学生的应用能力。

4. 教材对于二次函数的变换和平移方面的讲解较为简略,可能需要更多的图示和实例来帮助学生理解。

教学策略和建议基于学情和教材分析的结果,我们提出以下教学策略和建议:1. 强调解二次方程和求解二次函数最值的方法,提供更多的例题和练,帮助学生掌握解题技巧。

2. 结合实际问题进行教学,给学生提供更多的实际应用场景,培养他们的解决问题的能力。

3. 在教学中注重二次函数的变换和平移的讲解,使用图示和实例来帮助学生理解这一概念。

4. 鼓励学生进行小组讨论和互动,加强合作研究和互助研究的氛围。

希望以上分析和建议对于第十六章二次函数的教学有所帮助。

二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!二次函数教学设计(精选6篇)二次函数教学设计(精选6篇)由好文档网本店铺整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数教案教学设计”。

二次函数教材分析

二次函数教材分析

1。
11*、知道给定不共线三点的坐标可以确定一个二次函数。
四、本章教学目标
1 .经历探索、分析和建立两个变量之间的二次函数关系的 过程,进一步体验如何用数学方法描述变量之间的数量关 系。通过队实际问题的分析,体会二次函数的意义,形成 模型思想。 2. 能用描点法画出二次函数的图象,并能根据图像对二次 函数的性质进行分析,进一步积累研究函数性质的经验, 发展几何直观。 3 .能用配方法将数字系数的二次函数的表达式化为 y=a(xh)2+k 的形式,由此得到二次函数的顶点坐标,说出图象 的开口方向,画出图象的对称轴。 4 、能利用二次函数的图象求一元二次方程的近似解,理解 一元二次方程与二次函数的关系。
4、鼓励学生采用多种方法、多个角度去理解和体会 知识的生成和应用。本章中,学生最容易得分的是 求函数解析式,所以在教学中鼓励学生用多种方法 求解析式。 5、注重知识之间的联系。如:一次函数、反比例函 数、二次函数之间与坐标轴交点、两个函数图象的 交点、增减性、比较函数值的大小、求面积、待定 系数法求解析式、函数图象与三角形四边形等几何 知识的结合、函数与方程不等式的联系等。 6、注意规律的理解与总结,如:平移与坐标的变化。 7、注重信息技术的应用,通过画图软件,让学生更 加生动形象的发现abc与函数图象的关系。
二次函数教材分析
一、本章教学内容及课时安排
教学内容 2. 1 2. 2 2. 3 二次函数 二次函数的图象与性质 确定二次函数的表达式 参考课时(约13) 1课时 4课时 2课时
2. 4
2. 5
二次函数的应用
二次函数的与一元二次方程
2课时
2课时 2课时
回顾与思考
二、本章知识结构
实际问题 二次函数

二次函数教案【精选3篇】

二次函数教案【精选3篇】

二次函数教案【精选3篇】总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,它能使我们及时找出错误并改正,快快来写一份总结吧。

那么如何把总结写出新花样呢?这里给大家分享一些关于数学二次函数解题技巧,方便大家学习。

为朋友们精心整理了3篇《二次函数教案》,亲的肯定与分享是对我们最大的鼓励。

二次函数教案篇一一、教材分析:《34.4二次函数的应用》选自义务教育课程标准试验教科书《数学》(冀教版)九年级上册第三十四章第四节,这节课是在学生学习了二次函数的概念、图象及性质的基础上,让学生继续探索二次函数与一元二次方程的关系,教材通过小球飞行这样的实际情境,创设三个问题,这三个问题对应了一元二次方程有两个不等实根、有两个相等实根、没有实根的三种情况。

这样,学生结合问题实际意义就能对二次函数与一元二次方程的关系有很好的体会;从而得出用二次函数的图象求一元二次方程的方法。

这也突出了课标的要求:注重知识与实际问题的联系。

本节教学时间安排1课时二、教学目标:知识技能:1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。

3.能够利用二次函数的图象求一元二次方程的近似根。

数学思考:1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。

2.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。

3.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。

解决问题:1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

2.通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。

《二次函数》的复习教学设计

《二次函数》的复习教学设计

《二次函数》的复习教学设计数学《二次函数》优秀教案篇一一、教材分析本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。

主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。

在具体探究过程中,从特殊的例子出发,分别研究a0和a0的情况,再从特殊到一般得出y=ax2+bx+c(a≠0)的图像和性质。

二、学情分析本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。

三、教学目标(一)知识与能力目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;2、能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。

(二)过程与方法目标通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。

(三)情感态度与价值观目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;2、在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。

四、教学重难点1、重点通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。

2、难点二次函数y=ax2+bx+c(a≠0)的图像的性质。

五、教学策略与设计说明本节课主要渗透类比、化归数学思想。

对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。

六、教学过程教学环节(注明每个环节预设的时间)(一)提出问题(约1分钟)教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。

数学《二次函数》优秀教案(精选8篇)

数学《二次函数》优秀教案(精选8篇)

数学《二次函数》优秀教案数学《二次函数》优秀教案(精选8篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。

优秀的教案都具备一些什么特点呢?下面是小编收集整理的数学《二次函数》优秀教案,仅供参考,欢迎大家阅读。

数学《二次函数》优秀教案篇1教学目标(一)教学知识点1、能够利用二次函数的图象求一元二次方程的近似根。

2、进一步发展估算能力。

(二)能力训练要求1、经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。

2、利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想。

(三)情感与价值观要求通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。

教学重点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

2、能够利用二次函数的图象求一元二次方程的近似根。

教学难点利用二次函数的图象求一元二次方程的近似根。

教学方法学生合作交流学习法。

教具准备投影片三张第一张:(记作§2.8.2A)第二张:(记作§2.8.2B)第三张:(记作§2.8.2C)教学过程Ⅰ、创设问题情境,引入新课[师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x 轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可。

但是在图象上我们很难准确地求出方程的解,所以要进行估算。

本节课我们将学习利用二次函数的图象估计一元二次方程的根。

数学《二次函数》优秀教案篇2一.学习目标1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。

2.了解二次函数关系式,会确定二次函数关系式中各项的系数。

二次函数说课稿

二次函数说课稿

二次函数说课稿(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、合同协议、条据文书、规章制度、策划方案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, work plans, contract agreements, documents, rules and regulations, planning plans, experiences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数说课稿二次函数说课稿在教学工作者实际的教学活动中,就难以避免地要准备说课稿,说课稿有利于教学水平的提高,有助于教研活动的开展。

初中数学_复习《二次函数》教学设计学情分析教材分析课后反思

初中数学_复习《二次函数》教学设计学情分析教材分析课后反思

《二次函数》学情分析二次函数的教学对象是九年级学生,在此之前他们学习了正比例函数,一次函数和反比例函数。

二次函数是描述变量之间关系的重要数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些单变量最优化问题的数学模型,如本章中所提及的求最大利润、最大面积等实际问题。

二次函数的图像抛物线,既是人们最为熟悉的曲线之一,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥,抛物线型隧道等。

和一次函数、反比例函数一样,二次函数也是一种非常基础的函数,对二次函数的研究将为学生进一步学习函数,体会函数的思想奠定基础和积累经验。

为高中阶段继续学习函数做好铺垫。

学生对一次函数、反比例函数的图象与性质有了一定的基础,对于解析式与图象的结合有了一定的整体把握,具备了一定的函数思想,基本上能运用函数观点解决实际问题。

二次函数的图像是它性质的直观体现,对了解和掌握二次函数的性质具有形象直观的优势,和一次函数、反比例函数一样要教会学生画图像,学会观察图像,借助图像理解与掌握二次函数的图像与性质解决相关问题,并能运用到解决实际问题中。

复习《二次函数》效果分析二次函数在初中数学函数教学中的地位不可忽视,二次函数已经成为中考命题的重点。

根据学生对二次函数的学习及掌握的情况,从梳理知识点出发采用以习题带知识点的形式,我精心准备了《二次函数》的复习课,教学重点为二次函数的图象性质及应用。

下面是我对二次函数的复习课的一些反思感受:首先,我认为在课堂上,我对知识的脉络掌握还是有一些欠缺,把二次函数的应用,用自己的眼光和感受想象的太简单,但是对于学生而言,这又是一个重点,更是一个难点。

所以在课堂上有的习题深度没有掌握好,没有做到面向全体学生。

其次,本节课体现的是分层教学,由于学生的素质不同,部分学生对图像性质掌握的不够扎实,在实际应用的时候不能做到得心应手。

而我只是在后面的习题竞赛中简单的体现分层,对于提问中的分层,习题中的分层还是做的不够好,这说明我对于分层教学的这种方法还是有待于进一步的提高,应该真正的站在学生的角度来分层。

2024北师大版数学九年级下册2.1《二次函数》教案

2024北师大版数学九年级下册2.1《二次函数》教案

2024北师大版数学九年级下册2.1《二次函数》教案一. 教材分析《二次函数》是北师大版数学九年级下册第2.1节的内容。

本节课主要让学生了解二次函数的定义、性质及图像,培养学生利用二次函数解决实际问题的能力。

教材通过引入二次函数的概念,让学生从图像和解析式两个方面理解二次函数的性质,为后续学习二次方程和二次不等式打下基础。

二. 学情分析九年级的学生已经掌握了函数的基本概念和一次函数的性质,具备了一定的函数思维。

但在二次函数方面,学生可能对函数图像的解读、对称性、顶点坐标的求解等方面存在困难。

因此,在教学过程中,要注重引导学生从实际问题中抽象出二次函数模型,培养学生运用数学知识解决实际问题的能力。

三. 教学目标1.了解二次函数的定义,理解二次函数的图像特征,掌握二次函数的性质。

2.能够从实际问题中识别二次函数模型,运用二次函数解决实际问题。

3.培养学生的抽象思维能力、数学表达能力及合作交流能力。

四. 教学重难点1.二次函数的定义及其图像特征。

2.二次函数的性质,包括对称性、顶点坐标、开口方向等。

3.运用二次函数解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出二次函数模型。

2.利用数形结合的方法,让学生直观地理解二次函数的图像特征。

3.采用合作交流的学习方式,培养学生的主体参与意识。

4.运用启发式教学,激发学生的思维,引导学生发现和总结二次函数的性质。

六. 教学准备1.准备相关的实际问题,用于引入二次函数的概念。

2.制作二次函数图像的课件,用于展示二次函数的图像特征。

3.准备一些关于二次函数性质的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用一个实际问题,引导学生从实际问题中抽象出二次函数模型。

例如:抛物线与x轴的交点问题。

2.呈现(15分钟)展示二次函数图像的课件,让学生直观地了解二次函数的图像特征,如顶点、开口方向等。

同时,引导学生观察图像,发现二次函数的性质。

二次函数说课稿(合集5篇)[修改版]

二次函数说课稿(合集5篇)[修改版]

第一篇:二次函数说课稿《二次函数》说课稿各位领导,老师大家好,很高兴有机会来到这里和大家一块儿交流。

我今天说课的题目是《二次函数》,下面我就从教材分析,教法,学法,教学过程的设计等方面谈自己的看法。

教材分析1、教材的地位及作用函数是一种重要的数学思想,是实际生活中数学建模的重要工具,二次函数的教学在初中数学教学中有着重要的地位。

本节内容的教学,在函数的教学中有着承上启下的作用。

它既是对已学一次函数及反比例函数的复习,又是对二次函数知识的延续和深化,为将来二次函数一般情形的教学乃至高中阶段函数的教学打下基础,做好铺垫。

教学目标(1) 掌握二此函数的概念并能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯。

[知识与技能目标](2)让学生经历观察、比较、归纳、应用,以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯。

[过程与方法目标](3) 让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦,[情感、态度、价值观目标]3、教学的重、难点重点:二次函数的概念和解析式难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力4、学情分析①学生已掌握一次函数,反比例函数的概念,图象的画法,以及它们图象的性质。

②学生个性活泼,积极性高,初步具有对数学问题进行合作探究的意识与能力。

③初三学生程度参差不齐,两极分化已形成。

二、教法学法分析1` 教法(关键词:情境、探究、分层)基于本节课内容的特点和初三学生的年龄特征,我以“探究式”体验教学法和“启发式”教学法为主进行教学。

让学生在开放的情境中,在教师的引导启发下,同学的合作帮助下,通过探究发现,让学生经历数学知识的形成和应用过程,加深对数学知识的理解。

教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二次函数》教材分析本章是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。

二次函数是描述现实世界变量之间关系的重要的数学模型。

伽利略所发现的、通过比萨斜塔实验验证的、著名的自由落体运动公式就是二次函数刻画物体运动的最好例证,是最重要的物理学公式之一。

二次函数也是某些单变量最优化问题的数学模型,如本章所提及的求最大利润、最大面积等实际问题。

二次函数曲线——抛物线,也是人们最为熟悉的曲线之一,喷泉的水流、标枪的投掷等都形成抛物线路径,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。

和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。

本章的主要内容有二次函数的概念、二次函数的图象、二次函数的性质和二次函数的应用。

函数是数学的核心概念,也是初中数学的基本概念,函数不仅仅可以看成变量之间的依赖关系,同时,函数的思想方法将贯穿整个数学学习过程。

学生在学习了正比例函数、一次函数和反比例函数之后学习二次函数,这是对函数及其应用知识学习的深化和提高,是学生学习函数知识的过程中的一个重要环节,起到承上启下的作用,为学生进入高中后进一步学习函数知识奠定基础。

本章的内容在日常生活和生产实际中有着广泛的应用,是培养学生数学建模和数学思想的重要素材。

二次函数的图象是它性质的直观体现,对了解和掌握二次函数的性质具有形象直观的优势,二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,因此本章的重点是二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。

本章的难点是体会二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换有及二次函数性质的灵活应用。

本章教学时间约需13课时,具体安排如下:2.1节二次函数…………………………1课时2.2节二次函数的图象…………………3课时2.3节二次函数的性质…………………1课时2.4节二次函数的应用…………………3课时复习、评价3课时,机动2课时,合计13课时。

一、教科书内容和课程教学目标(2)本章教学目标如下:(3)本章教学要求①经历描点法画函数图象的过程。

②学会观察、归纳、概括函数图象的特点。

③经历二次函数图象平移的过程。

④了解y =ax 2,y =a (x +m )2,y =a (x +m )2+n 三类二次函数图象之间的关系。

⑤归纳数学平移变换的特征并加以总结。

⑥经历二次函数解析式恒等变形的过程。

⑦会根据二次函数的解析式,确定二次函数的开口方向,对称轴,顶点坐标。

⑧能运用配方法将c bx ax y ++=2变换成k h x a y +-=2)(的的形式。

⑨了解二次函数与二次方程的相互关系。

探索二次函数的变化规律,掌握函数的最大值、最小值及函数的增减性的概念及方法。

⑩体会二次函数是一类最优化问题的数学模型。

经历数学建模的基本过程。

感受数学的应用价值。

发展应用数学解决问题的能力,体会数学与生活的密切联系和数学的应用价值。

(4)本章教材分析1.教材注重引入二次函数概念的现实背景,让学生感受其实际意义,激发学生的学习兴趣;并注意让学生在学习的过程和实际应用中逐步深化对概念的理解和认识。

2. 教材注重与学生已有知识的联系,引导学生与原有的知识联系、比较,经历对知识拓展、归纳、更新的过程。

3. 教材注意内容的呈现方式,让学生参与知识的发生、发展过程。

注重在具体二次函数的研究中掌握方法,理解原理(如图象的变换)。

4. 教材注意沟通二次函数和一元二次方程、不等式的联系和相互转化,提供学生进行探究性学习的题材,重视学生对知识综合应用能力的培养。

(5)本章教学目标1. 正确理解二次函数的概念,了解函数产生的背景,在原有的函数知识的基础上学习和掌握二次函数的概念和性质,能利用二次函数刻画事物的变化规律。

2. 理解二次函数的意义,掌握二次函数的概念、图象和性质,知道二次函数是描述客观世界变化规律的重要数学模型。

3. 了解二次函数与二次方程之间的关系,会利用函数图象求一些简单二次方程的近似解,了解二次函数模型及其意义,能准确、清晰、有条理地表述问题,会用二次函数知识分析问题,解决问题,使学生了解函数与方程是研究事物变化的重要工具。

4. 培养学生的理性思维能力,辩证思维能力,分析问题和解决问题的能力,创新意识与探究能力,数学建模能力以及数学交流能力。

5. 通过现代信息技术的合理应用,教师在教学中适度地使信息技术描绘函数图象,动态地变换函数图象,让学生体会到信息技术是认识世界的有效手段和工具。

6. 要使学生体验数学的文化价值,使学生感受数学美,培养学生利用运动变化的观点观察事物,进一步树立科学的人生观,价值观和辩证唯物主义世界观。

(6)本章内容安排1.本章通过章前图中的问题以及三个现实问题引入二次函数的概念,通过例1使学生理解和掌握二次函数的解析式、自变量的取值范围和自变量与函数值的对应关系,表2—1是函数的列表表示法。

2.由于二次函数的概念的引入避免了抽象的函数定义,因此利用待定系数法是确定二次函数的基本方法。

3.二次函数图象是本章的重点之一,二次函数的图象是它性质的直观体现,函数图象是函数的直观表示,图象法也是表示函数的基本方法。

函数图象对于了解和掌握二次函数的性质具有形象直观的优势,二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,因此本章的重点是二次函数的图象与性质的理解与掌握,要使学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。

4.函数图象的特征是函数性质的几何体现,教科书通过变换的观点,强调变与不变的辨证关系,重点是同一坐标系中具有相同二次项系数的二次函数图象间的位置关系的变换规律。

利用配方法研究二次函数解析式与二次函数图象的开口方向,对称轴和顶点坐标之间的关系,使学生认识二次函数的本质。

5.教科书通过是通过实例来归纳二次函数的性质,目的是通过直观的图示理解抽象的函数性质,通过二次函数图象使学生了解抛物线与x 轴交点的横坐标,即当y =0时对应的x 值就是方程02=++c bx ax 的根,利用这个二次方程根的判别式,可以判定抛物线与x 轴交点的个数,并且由此确定二次函数的的特征点,通过这些特征点可以方便画出其草图。

6.教科书从具体问题入手,以问题为背景,按照“问题情景—数学活动—数学应用—回顾反思”的顺序编制教材,通过实例巩固学生所学的知识。

试图发挥学生学习的主动性,引导学生联系自己的生活经历,使学生感受到函数就在身边,体会到数学知识的广泛性、应用性。

7.利用二次函数图象求方程的近似值,可以把方程的解看作是函数与x轴的交点的横坐标,也可以看成是两函数图象交点的横坐标,引导学生不断创新,可以结合信息技术的使用,如几何画板等软件的应用,不断地优化教学过程。

二、本章编写特点有关函数的内容是中学数学中的一条主线,也是中学数学中的一个稳定的内容。

因此,如何有助于教师和学生利用教材这一课程资源,丰富教与学的方式,帮助学生更好地认识和理解函数概念,了解函数与其它内容的联系,初步运用函数这一描述现实世界中变量之间依赖关系的重要数学模型去解决一些实际问题,关注信息技术与数学内容的有机整合,体现新课程的理念,是我们在编写教材时着力研究的问题。

在对上述各方面问题研究的基础上,我们在教材的体例、结构、呈现方式等方面作了新的尝试和努力,力求体现以下特点:(一)强调背景,展现过程,改进学习方式任何一个数学概念和结论的引入,总有它的现实或数学理论发展的背景或数学发展历史上的背景,因此,我们在教材的编排和内容的选择上,强调背景,展现过程,让学生感到概念和结论的得出是水到渠成的,自然的,而不是强加于人的。

以便有利于学生认识数学内容的实际背景。

具体地,针对本书中的数学概念,在教材编写过程中,我们力求选取贴近学生生活、具有时代气息的实例,创设学习数学概念和结论的背景情境。

例如在函数的相关内容中,通过典型的、丰富的具体实例(涉及运动变化、经济生活等),展示函数概念产生的背景,使学生理解如何用函数来刻画现实世界中变量之间的相互依赖关系,通过实例(最佳设计、销售方案、物体运动等),帮助学生理解二次函数模型。

在丰富的背景中,教科书在恰当的采用“合作学习”、“节前问题思考”、“设计题”及“章前问题”等形式提出问题,引导学生思考、经历知识发生发展的过程,经历观察、归纳、概括、交流、反思的思维过程;通过留白、留空等方式鼓励学生积极参与这个过程,主动思考、自主探索;等等。

例如在函数概念学习中,教科书通过观察实例、归纳共性、逐层分析概念,让学生将正比例函数、一次函数与二次函数学习相联系,通过比较、讨论,交流感受函数概念发生发展的过程,提升的过程。

(二)突出联系,体现应用,培养应用意识数学学习本身和新课程模块式的结构,都需要我们充分关注知识内容间的联系。

集合作为一种语言,它的使用几乎渗透到了数学的各个领域;而函数的基础知识在现实生活、科技、经济和许多学科中都有着广泛的应用。

因此,本册教科书非常注重体现知识之间的联系、知识与实际的联系、知识的广泛应用,等等。

以使学生能够感受到不同知识间的联系,从整体上把握所学的数学知识,加强学生的应用意识,提高学生的数学创造力。

对于二次函数函数,教科书安排了较多的实际应用问题,如储蓄问题、种植面积问题、最佳设计问题、船只运动问题、销售问题等等,并专门设置了第4节介绍函数的应用,其中就包括函数与方程的联系、函数模型及其应用,让学生体会运用函数观点解决实际问题的作用,让学生初步体验建立函数模型的过程和方法。

(三)重视数学思想方法数学的学习不仅是单纯的知识学习,更应注意提炼和逐渐掌握其中蕴含的数学思想方法。

本章中蕴含了丰富的数学思想方法,主要有数形结合、用函数观点研究问题、数学建模的思想方法。

数形结合的思想方法贯穿了本章的始末,在研究二次函数性质过程中函数图象、表格与解析式的相互结合使用;根据实际问题的数据画图、建立拟合函数的解析式、估计事物发展趋势等等。

用函数观点研究问题、数学建模的思想方法主要反映在第4节建立实际问题的二次函数模型的过程中。

(四)注重信息技术与数学课程的整合信息技术是一种有效的认知工具,能够为学生进行自主探究提供强有力的平台,呈现以往教材和其他教学手段难以呈现的内容,帮助学生更好地理解数学本质,从而主动地探索和研究数学。

在本章的编写中,我们在教学参考书中适宜与信息技术整合的内容用,都建议或提示使用信息技术,如在讨论函数的图象与性质的叙述中都做出了相应的建议或提示;此外,专门设置了“用计算机画二次函数图象”的阅读材料,介绍了用计算机画函数图象的方法。

相关文档
最新文档