鄂尔多斯市中考数学试题与答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年鄂尔多斯市初中毕业升学考试
数 学(课标)
注意事项:
1.本试题满分120分,考试用时120分钟; 2.答题前将密封线内的项目填写清楚;
3.考试结束后将试卷按页码顺序排好,全部上交.
一、选择题(本大题10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一个是正确的,请把正确选项的标号填在下面的选项栏内.) 题号 1 2 3 4 5 6 7 8 9 10 选项 1.3-的相反数是( ) A .3-
B .3
C .13
-
D .
13
2.图1是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )
3.我市2006年财政收入近150亿元,居自治区首位.150亿用科学记数法可表示为( ) A .8
1.510⨯
B .9
1.510⨯
C .10
1.510⨯
D .11
1.510⨯
4.能够刻画一组数据离散程度的统计量是( )
A .平均数
B .众数
C .中位数
D .方差 5.将圆柱形纸筒沿母线AB 剪开铺平,得到一个
矩形(如图2).如果将这个纸筒沿线路
B M A →→剪开铺平,得到的图形是( ) A .平行四边形 B .矩形
C .三角形
D .半圆
6.鄂尔多斯市成陵旅游区到响沙湾旅游区之间的
距离为105公里,在一张比例尺为1:2000000的交通旅游图上,它们之间的距离大约相当于( )
A .一根火柴的长度
B .一支钢笔的长度
C .一支铅笔的长度
D .一根筷子的长度 7.下列说法正确的有( ) (1)如图3(a ),可以利用刻度尺和三角板测量圆形工件的直径; (2)如图3(b ),可以利用直角曲尺检查工件是否为半圆形; (3)如图3(c ),两次使用丁字尺(CD 所在直线垂直平分线段AB )可以找到圆形工件的圆心;
(4)如图3(d ),测倾器零刻度线和铅垂线的夹角,就是从P 点看A 点时仰角的度数.
图1 A . B . C . D . A B M
A
B M ()A ()B 图2
A .1个
B .2个
C .3个
D .4个
8.一种蔬菜加工后出售,单价可提高20%,但重量减少10%.现有未加工的这种蔬菜30千克,加工后可以比不加工多卖12元,则这种蔬菜加工前和加工后每千克各卖多少元?设这种蔬菜加工前每千克卖x 元,加工后每千克卖y 元,根据题意,所列方程组正确的是( ) A .(120)30(110)3012y x
y x =+⎧⎨
+-=⎩
%%
B .(120)30(110)3012y x
y x =+⎧⎨
--=⎩
%%
C .(120)30(110)3012
y x
y x =-⎧⎨
--=⎩%%
D .(120)30(110)3012
y x
y x =-⎧⎨
+-=⎩%%
9.如图4,一只蚂蚁以均匀的速度沿台阶12345A A A A A →→→→爬行,那么蚂蚁爬行的高度..h 随时间t 变化的图象大致是( )
10.观察表1,寻找规律.表2是从表1中截取的一部分,其中a b c ,,的值分别为( ) 表1 表2 1 2 3 4 …… 2 4 6 8 …… 3 6 9 12 …… 4 8 12 16 …… ……
……
……
……
……
A .20,25,24
B .25,20,24
C .18,25,24
D .20,30,25
二、填空题(本大题8个小题,每小题3分,共24分)
11.如图5,AB CD ∥,58B =o
∠,20E =o
∠,则D ∠的度数为 .
16 a
20 b
c
30
图3(a )
图3(b )
图3(c )
图3(d )
A
A
B
C
D
P
图4 1
A 2A 3A 4A 5A O h t A . O h t
B . O h t
C . O h
t D .
图5 A B
C D E F
图6
B (12)A , y
x O 1 2
12.若
43x y =,则y x y
=+ . 13.如图6,双曲线1
k y x
=
与直线2y k x =相交于A B ,两点,如果A 点的坐标是(12),,那么B 点的坐标为 .
14.不等式组30
240x x -⎧⎨+>⎩
≤的解集是 .
15.如图7,以O 为圆心的两个同心圆中,大圆的弦AB 切小圆于P ,如果4cm AB =,则图中阴影部分的面积为 2
cm (结果用π表示).
16.如图
8,点P 在AOB ∠的平分线上,若使AOP BOP △≌△,则需添加的一个条件是 (只写一个即可,不添加辅助线). 17.在边长为a 的正方形纸片中剪去一个边长为b 的小正方形()a b >(如图9(1)),把余下的部分沿虚线剪开,拼成一个矩形(如图9(2)),分别计算这两个图形阴影部分的面积,可以验证的乘法公式是 (用字母表示).
18.如图10,房间里有一只老鼠,门外蹲着一只小猫,如果每块正方形地砖的边长为1米,那么老鼠在地面上能避开小猫视线的活动范围为 平方米(不计墙的厚度).
三、解答题(本大题8个小题,共66分.解答时要写出必要的文字说明、演算步骤或推证过程) 19.(本小题满分8分)
(1)计算:1
1(12)42-⎛⎫
++-- ⎪⎝⎭
.
图7 A B P O
图8
A
B
P O
图9(1) 图9(2) a
b
图10 猫 房间 门 1米
(2)化简:2
121
11a a a a a -+⎛⎫+- ⎪-⎝⎭
.
20.(本小题满分6分)
某市教育行政部门为了解初中学生参加综合实践活动的情况,随机抽取了本市初一、初二、初三年级各500名学生进行了调查.调查结果如图11所示,请你根据图中的信息回答问题.
(1)在被调查的学生中,参加综合实践活动的有多少人?参加科技活动的有多少人? (2)如果本市有3万名初中学生,请你估计参加科技活动的学生约有多少名? 21.(本小题满分6分) 有四张背面相同的纸牌A B C D ,,,,
其正面分别画有四个不同的几何图形(如图12).小明将这4张纸牌背面朝上洗匀后摸出一张,将剩余3张洗匀后再摸出一张. (1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A B C D ,,,表示);
(2)求摸出的两张牌面图形既是轴对称图形又是中心对称图形纸牌的概率.
22.(本小题满分6分) 如图13,A B ,两镇相距60km ,小山C 在A 镇的北偏东60o
方向,在B 镇的北偏西30o
方向.经探测,发现小山C 周围20km 的圆形区域内储有大量煤炭,有关部门规定,该区域内禁止建房修路.现计划修筑连接A B ,两镇的一条笔直的公路,试分析这条公路是否会经过该区域?
初一 初二 初三 年级
人数 0
100 200 300 400 500 450 350 150 参加综合实践活动人数统计图
60% 14% 16%
文体活动 社会调查 社区服务 科技活动 参加综合实践活动人数分布统计图 图11
正三角形 A 正方形 B 菱 形 C 等腰梯形
D
图12 北
北 A C B
60o
30o 图13
23.(本小题满分9分)
如图14,在ABC △中,90ACB =o
∠,D 是AB 的中点,以DC 为直径的O e 交ABC △的边于G F E ,,点. 求证:(1)F 是BC 的中点;(2)A GEF =∠∠.
24.(本小题满分10分)
有甲、乙两家通迅公司,甲公司每月通话的收费标准如图15所示;乙公司每月通话收费标准如表3所示.
表3
(1)观察图15,甲公司用户月通话时间不超过100分钟时应付话费金额是 元;甲公司用户通话100分钟以后,每分钟的通话费为 元;
(2)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通迅公司更合算?如果她的月通话时间超过100分钟,又将如何选择? 25.(本小题满分9分) 我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称 , ; (2)如图16(1),已知格点(小正方形的顶点)(00)O ,,(30)A ,,(04)B ,,请你画出以格点为顶点,OA OB ,为勾股边且对角线相等的勾股四边形OAMB ;
(3)如图16(2),将ABC △绕顶点B 按顺时针方向旋转60o
,得到DBE △,连结
月租费 通话费 2.5元 0.15元/分钟
A B C D E F G
O
图14
图15 ()t 分
()y 元
O 100 200
20 40 y B O A x 图16(1)
AD DC ,,30DCB =o ∠.
求证:222
DC BC AC +=,即四边形ABCD 是勾股四边形. 26.(本小题满分12分)
如图17,抛物线2
2
29y x nx n =-++-(n 为常数)经过坐标原点和x 轴上另一点C ,顶点在第一象限.
(1)确定抛物线所对应的函数关系式,并写出顶点坐标;
(2)在四边形OABC 内有一矩形MNPQ ,点M N ,分别在OA BC ,上,点Q P ,在x 轴上.当MN 为多少时,矩形MNPQ 的面积最大?最大面积是多少?
2007年鄂尔多斯市初中毕业升学考试 数学试题参考答案及评分说明(课标)
(一)阅卷评分说明
1.正式阅卷前先进行试评,在试评中认真阅读参考答案,明确评分标准,不得随意拔高或降低评分标准.试评的试卷必须在阅卷后期全部予以复查,防止阅卷前后期评分标准宽严不一致.
2.评分方式为分步累计评分,解答过程的某一步骤发生笔误,只要不降低后继部分的难度,而后继部分再无新的错误,后继部分可评应得分数的50%;若是几个相对独立的得分点,其中一处错误不影响其它得分点的评分.
A
B
C
D
E
60o
图16(2)
y
O
C x
图17
3.最小记分单位为1分,不得将评分标准细化至1分以下(即不得记小数分).
4.解答题题头一律记该题的实际得分,不得用记负分的方式记分.对解题中的错误须用红笔标出,并继续评分,直至将解题过程评阅完毕,并在最后得分点处标上该题实际得分.
5.本参考答案只给出一至两种解法,凡有其它正确解法都应参照本评分说明分步确定得分点,并同样实行分步累计评分.
6.合理精简解题步骤者,其简化的解题过程不影响评分. (二)参考答案及评分标准
一、选择题(本大题10个小题,每小题3分,共30分.) 题号 1 2 3 4 5 6 7 8 9 10 选项 B C C D A A D B B A 二、填空题(本大题8个小题,每小题3分,共24分.) 11.38o
(或38)
12.
3
7
13.(12)--, 14.23x -<≤ 15.4π
16.OA OB =(或OAP OBP =∠∠或APO BPO =∠∠)
17.2
2
()()a b a b a b -=+-(或2
2
()()a b a b a b +-=-)
18.17(填空正确给3分,图形不正确不扣分;图形正确,计算不正确可给1分.) 三、解答题(本大题8个小题,共66分.) 19.(本小题满分8分)
(1)计算:1
1(12)42-⎛⎫
++-- ⎪⎝⎭
解:原式124=+- ······················································· 3分(一处计算正确给1分) 1=- ······························································································· 4分
(2)化简:2
121
11a a a a a -+⎛⎫+- ⎪-⎝⎭
解:原式2
(1)(1)1
a a a -=+-- ············································ 2分(一处计算正确给1分)
(1)(1)a a =+-- ··············································································· 3分 2= ········································································································· 4分 20.(本小题满分6分) 解:(1)450350150950++=(人) ······································· 1分(无单位不扣分)
950(1601614)95⨯---=%%%(人) ···································· 3分(无单位不扣分)
答:参加综合实践活动的有950人,参加科技活动的有95人. ································ 4分
(2)950
30000105003
⨯
⨯⨯% ············································································· 5分
95201900=⨯=(人) ··················································· 6分(无单位不扣分)
答:参加科技活动的学生估计有1900人. 21.(本小题满分6分)
树状图: 列表:
··········································································· 4分 注:出现3处(共12处)错误扣1分,扣完为止.
(2)21
126P =
= ·
·························································································· 6分 答:概率是1
6
.
22.(本小题满分6分)
解:作CD AB ⊥于D ,由题意知:30CAB =o
∠
60CBA =o ∠ 90ACB =o
∠ ································· 1分 30DCB ∴=o
∠ ··················································· 2分 ∴在Rt ABC △中,1
302
BC AB =
= ·
······························································· 3分 在Rt DBC △中,cos30CD BC =o
································································ 4分 3
302
=⨯
··································································· 5分 15320=> ································································ 6分 答:这条公路不经过该区域. 23.(本小题满分9分) 证法一: (1)连结DF ,
90ACB =o Q ∠,D 是AB 的中点
1
2
BD DC AB ∴==
············································· 2分 DC Q 是O e 的直径
DF BC ∴⊥ ·
······················································ 4分 BF FC ∴=,即F 是BC 的中点. ·
························ 5分 (2)D F Q ,分别是AB BC ,的中点
A B C D A A B
A C A D
B A B B
C B
D C A C B C D C D A D B D D C A
B C D D B C A D C A B D A B C 1 北
北
A
D C
B
60o
30o
A
B
C
D
E
F G
O
DF AC ∴∥ ·
································································································ 6分 A BDF ∴=∠∠ ·
··························································································· 7分 BDF GEF ∴=∠∠ ······················································································· 8分 A GEF ∴=∠∠ ···························································································· 9分 证法二:
(1)连结DF DE , DC Q 是O e 直径
90DEC DFC ∴==o ∠∠ ·
··············································································· 1分 90ECF =o Q ∠ ∴四边形DECF 是矩形
EF CD ∴=,DF EC = ·
······································ 2分 D Q 是AB 的中点,90ACB =o
∠
1
2
EF CD BD AB ∴=== ····································· 3分 DBF EFC ∴△≌△ ·
············································ 4分 BF FC ∴=,即F 是BC 的中点. ·
························ 5分 (2)DBF EFC Q △≌△
BDF FEC ∴=∠∠,B EFC =∠∠ ·
································································ 6分 90ACB =o Q ∠(也可证AB EF ∥,得A FEC =∠∠)
A FEC ∴=∠∠·
···························································································· 7分 FEG BDF =Q ∠∠ ······················································································· 8分 A GEF ∴=∠∠ ·
··························································································· 9分 (此题证法较多,大纲卷参考答案中,又给出了两种不同的证法,可供参考.)
24.(本小题满分10分) (1)20;0.2 ············································································ 4分(每空2分) (2)通话时间不超过100分钟选甲公司合算 ························································ 5分 解:设通话时间为t 分钟(100t >),甲公司用户通话费为1y 元,乙公司用户通话费为2y 元. 则:1200.2(100)0.2y t t =+-= ·························· 6分(条件100t >没有写出不扣分)
2250.15y t =+ ····························································································· 7分
当12y y = 即:0.2250.15t t =+时,500t = ···················································· 8分 当12y y > 即:0.2250.15t t >+时,500t >
当12y y < 即:0.2250.15t t <+时,500t < ······················································ 9分 答:通话时间不超过500分钟选甲公司;500分钟选甲、乙公司均可;超过500分钟选乙公司. ··········································································································· 10分 25.(本小题满分9分)
A B
C
D E F G
O
(1)正方形、长方形、直角梯形.(任选两个均可) ··············· 2分(填正确一个得1分) (2)答案如图所示.(34)M ,或(43)M ,.
(没有写出不扣分)
······· 2分(根据图形给分,一个图形正确得1分)
(3)证明:连结EC
ABC DBE Q △≌△ ·
······················································································ 5分 AC DE ∴=,BC BE = ·
················································································ 6分 60CBE =o Q ∠ EC BC ∴=,60BCE =o ∠ ······················································ 7分 30DCB =o Q ∠ 90DCE ∴=o ∠ 222DC EC DE ∴+= ······································· 8分 222DC BC AC ∴+=,即四边形ABCD 是勾股四边形 ·········································· 9分
26.(本小题满分12分)
解(1)Q 抛物线过(00),点.2
90n ∴-= ·························································· 1分 3n ∴=± ·
····································································································· 2分 Q 顶点在第一象限,
02b
n a
∴-=>且
22244044ac b n n a --==>-(不写不扣分) 3n ∴= ·
······································································································· 3分 ∴抛物线26y x x =-+ ···················································································· 4分
顶点坐标为(39), ···························································································· 5分 (2)①B 点的坐标为(48), ·············································································· 6分 ②如图所示,作AH x ⊥轴于H .设M 点的坐标为()x y ,
OMQ OAH ∴△∽△ OQ MQ
OH AH
∴= ······················· 7分
28
x y
∴= 4y x ∴= ·············································· 8分 由抛物线的对称性可知:62QP MN x ==- ············· 9分
y B O M
M
A x A
B
C D
E 60o y A M
O Q H (39),
B N
P C x。