盾构机液压系统原理海瑞克解读
海瑞克土压平衡式盾构机分析
海瑞克土压平衡式盾构机分析盾构机的工作原理1.盾构机的掘进液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。
2.掘进中控制排土量与排土速度当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。
3.管片拼装盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。
盾构机的组成及各组成部分在施工中的作用盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1577kW,最大掘进扭矩5300kN•m,最大推进力为36400kN,最陕掘进速度可达8cm/min。
盾构机主要由9大部分组成,他们分别是盾体、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。
1.盾体盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。
前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。
承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度的土压力。
前盾的后边是中盾,中盾和前盾通过法兰以螺栓连接,中盾内侧的周边位置装有30个推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后面已安装好的管片上,通过控制油缸杆向后伸出可以提供给盾构机向前的掘进力,这30个千斤顶按上下左右被分成A、B、c、D四组,掘进过程中,在操作室中可单独控制每一组油缸的压力,这样盾构机就可以实现左转、右转、抬头、低头或直行,从而可以使掘进中盾构机的轴线尽量拟合隧道设计轴线。
盾构机刀盘驱动系统液压故障案例分析
盾构机刀盘驱动系统液压故障案例分析一、海瑞克盾构刀盘驱动液压系统的故障分析及处理1.液压系统深圳某地铁项目使用的德国海瑞克盾构机,其刀盘驱动系统为泵、液压马达闭式回路,由3台并联的斜盘式轴向柱塞变量泵和8台并联的轴向柱塞液压马达组成。
系统附带补油液压泵、控制泵等元件。
整个系统为电比例调速,恒功率保护方式。
泵采用带有补油冲洗阀的双向变量泵。
2.故障及原因分析(1)故障现象盾构在掘进时,三个刀盘泵突然出现故障无法重新起动。
主控室显示补油液压泵压力不足,达不到设计要求的最低补油压力,此时补油液压泵压力显示为1.8MPa,而设定值为2.7MPa左右。
(2)原因分析1)检查油箱液位,液位常,可以排除吸油不足的因素。
2)检查补油液压泵溢流阀。
怀疑溢流阀被卡,造成卸荷。
清洗溢流阀后再装回原来位置仍不能建立正常压力,由此判断溢流阀无故障。
3)补油液压泵为螺杆泵,自身抗污染能力很强,由于补油液压泵自身原件损坏造成压力不足的可能性很小,而且在关闭补油液压泵出口球阀的情况下,调节补油液压泵溢流阀,压力显示与新泵相同,可以排除补油液压泵自身的问题。
至此可以判断补油液压泵压力不足是由于部分流量从某个地方非正常流走造成的。
4)补油液压泵除对闭式回路进行补油和对3台主泵进行壳体冷却外,还为螺旋输送机的减速器进行壳体冷却,在补油主管路上还装有蓄能器。
检查蓄能器回油管,没有油液流出;关闭通往螺旋输送机减速器管路上的球阀,补油压力还是达不到设计要求。
由此可以判断三个刀盘泵内部泄漏是造成补油压力不足的主要原因。
5)在观察三个刀盘泵泄漏油管时发现,3号刀盘泵泄漏油管有大量油液流动的迹象,同时发现斜盘没有归零,卡在5°左右的位置。
随即打开3号刀盘泵泄漏油口,发现有铜屑杂质,接着在冷却循环过滤器也发现了大量铜屑。
随即将3号刀盘泵送生产厂家拆检,发现泵的内部已严重损坏。
如滑靴磨损严重,其中的两个已碎裂成多块,固定回程盘的8颗螺栓也全部剪切断裂,且回程盘已断裂成三部分。
盾构机液压系统原理
盾构机液压系统原理一.液压系统原理盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说就是盾构机的心脏,起着非常重要的作用。
这些系统按其机构的工作性质可分为:1. 盾构机液压推进及铰接系统2. 刀盘切割旋转液压系统3. 管片拼装机液压系统4. 管片小车及辅助液压系统5. 螺旋输送机液压系统6. 液压油主油箱及冷却过滤系统7. 同步注浆泵液压系统8. 超挖刀液压系统以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。
有的系统还相互有联系。
下面就分别介绍一下以上8个液压系统的作用及工作原理。
(一)盾构机液压推进及铰接系统1. 盾构机液压推进(1)盾构机液压推进系统的组成盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的转弯调向及纠偏功能。
铰接系统的主要作用就是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。
(2)推进系统液压泵站:推进系统的液压泵站就是由一恒压变量泵(1P001)与一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。
恒压泵的压力可通过油泵上的电液比例溢流阀(A300)调整,流量在0-q ma x范围内变化时,调整后的泵供油压力保持恒定。
恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。
由恒压变量泵输出的高压油分别送达A、B、C、D四组并联的推进方向控制阀组,经过阀组的流量、压力调整与换向后再去控制推进油缸,从而使推进油缸的推进速度、推力大小及方向得到准确控制。
因每组油缸的控制原理都一样,下面就以B组中的第一个油缸控制为例,介绍其作用与工作原理。
海瑞克盾构机介绍PPT
刀具
目前盾构机刀具按切削原理划分,一般公认有滚刀和切削刀两 种类型(根据隧道围岩性质不同、切削目的不同,这两类刀具还 可进一步细分)。
滚刀的切削原理主要是刀具依靠挤压破岩,一般用于岩石隧道 的掘进。当虽然穿越松散地层但有大粒径的砾石(粒径大于 400mm)、并且含量达到一定比例时,也可采用滚刀型刀具。另 在隧道地质条件复杂多变、岩石(强度不算太高)与一般土体(或 粘土或砂土)交错频繁出现的情况,也有可能采用滚刀型刀具, 即在复合式盾构机中采用。
2008年至今先后在广州和深圳及南昌等城市参与地 铁施工,两台盾构机于2015年1月至9月运抵公司广 州盾构维修中心由中船重工公司进行全面维护保养, 该土压平衡盾构机整机长度约75米,盾体长度8.2米, 最小转弯半径200米,总重量约为429吨,总装机功 率约为1660kw,变压器容量2000kVA。
中盾处有20个分为4组的推进千斤顶,为盾 构机前进提供推力,千斤顶可以分组控制也 可以单独控制,可实现盾构机上、下、左、 右不同方向的调节。
16
17
18
人仓 中盾上安装有一个双舱的人仓结构,人仓的作用是
提供一个密闭的与土仓压力一致的施工环境,可在 施工过程中根据需要进行刀具的检查更换和土压传 感器的检修等工作,也为进入盾构机前方的施工人 员提供休息的空间。 人仓内的作业可分为常压和带压,开仓作业是有很 高风险的施工,需编制专项施工方案以及做好充足 的安全保障准备和人员、技术准备。
每一环的砂浆注入量通过计算得出,但是理论注入 值不一定能满足实际需要,因此需要根据实际情况 的变化,及时进行二次补浆。
36
37
38
2号台车
2号台车左侧为膨润土罐及膨润土泵、泡沫泵及泡 沫箱,可以理解为该部分为渣土改良剂部分,针对 不同地层条件,注入对应的渣土改良剂,降低施工 风险,保证设备安全及施工进度。
海瑞克S673盾构机刀盘驱动液压系统分析
关 键词 : 盾构 机 电 、 液 压控 制 系统 刀 盘
… … … 一 …
一
、
系统构成
三 台 各 由3 1 5 K W 电机 驱 动 的
2 . 2刀盘 的转 向和 转 速远 程控 制
I 2补 油 回 路
因 主工作 回路是 闭 式 回路 , 故设 置补 油 回路 对其 进 行补 油 和 散热 。为增
出 的油经 两个 滤 清器 进 入 3 个 主泵 的E口( 补 油 口) 对 泵进 行 补油 , 并通 过 两个 单 向 阀分别 对 闭 式 回路 的低 压 端 进行 补 油 ; 同时 , 还有 一 路油 进 入 3 个 主泵 U 口对 泵进 行 冲洗 。补油 回路 压力 设 定为 1 7 …3 0 b a r , 补油 压力 低 于 1 7 b a r , 系统 不能 启 动 ; 补 油 压力 高 于 3 0 b a r , 系统 报 警并 延 时停 止 ; 补油 回路 中并 联 的 1 0 L
蓄能 器 用 以保 持该 油路 的油压 稳定 。
榘维 l
7 5 0 e / U 3 O o / 3 o 0 b a r
3 2 * 3
1 P O O 1 / 1 P O O 2 t l P O 0 3 1 P O O 1 / 1 P O O 2 / 1 P O 0 3 8
主泵 出 口压 力 ( 或 马 达进 口压 力 ) [ 压力 】 和主 泵X口压力 f 流量] 分 别 反 馈 为功率 阀v 5 的P H D 和P S T , 通过对功率 阀v 5 的设定 , 使【 压力] 和[ 流量] 的乘积 不 超过 设 定值 , 实现 对 主泵 限制 功率 控制 。 压 力P H D 还 通过 手动 两 位 四通 阀 V 4 作 用 于溢 流 阀v 7 或v 8 。在 正常 掘 进 的情况 下 , 回路 的最 大工 作 压力 是 2 2 5 b a r ( V 7 ) ; 盾构 机 堵转 或 需要 脱 困 时 , 手 动切换 V 4 使 油路 至v8 ( 只 能短 时 间使用 ) , 此 时 系统 压力 可达 2 7 5 b  ̄。
盾构机推进系统液压故障案例分析
盾构机推进系统液压故障案例分析推进系统受到的制约条件很多,在盾构机掘进中推进系统有时无法推进,故障也很难排除。
一、海瑞克S266型土压平衡盾构机推进系统的故障排除以下以海瑞克S266型土压平衡盾构机用于在某市地铁四号线仑大盾构区间和地铁五号线杨珠盾构区间施工为例分析故障排除过程。
1.盾构机推进系统的工作原理图1-6所示为S266型盾构机推进液压系统A组原理及液压缸布置图。
在图1-6中推进液压缸Z1~Z30,共有30个,其中Z4、Z11、Z19、Z26是带有行程测量系统的液压缸,通过这4个液压缸可以在盾构机的操作室中显示各自代表组的液压缸行程(0~2000mm)。
液压缸按单缸和双缸间隔均匀布置,被分配以20个不同的编号(1~20),按上下左右分为4组,A组包括圆周上方的液压缸1、2、18、19和20,图1-6给出了A组推进液压缸控制阀和18号液压缸的回路,B、C、D组液压缸的回路与A组相同,盾构机的推进系统由75kW的电动机驱动推进液压泵9向各推进液压缸提供液压油。
盾构机的推进系统有两种工作模式:一种是掘进模式,另一种是管片拼装模式。
在掘进模式下,PLC控制系统根据盾构机操作人员的操作指令,通过调节电磁比例控制阀2和阀3输出的电信号来控制盾构机的掘进,通过阀2可以控制该组液压缸的流量,通过阀3可以控制该组液压缸的工作压力。
在盾构机需要调节方向时,控制阀2在保证该组液压缸流量充足的条件下调节阀3增加或减小该组液压缸的液压油压力,从而实现盾构机调节方向;在管片拼装模式下,PLC控制系统根据设定值向控制阀3、阀6和阀10输出电信号,通过阀6增大该组液压缸的流量,通过阀3控制该组液压缸的工作压力,通过阀10控制推进液压泵的工作压力。
在拼装模式下,阀3和阀10控制的工作压力值基本是相同的。
拼装模式下伸液压缸时通过控制阀5阀芯在右侧实现液压缸伸出,拼装模式下缩液压缸时阀7先打开约2s将液压缸无杆腔的高压油卸压后,阀1和阀5再同时动作,实现液压缸的缩回,这样可以减小液压缸的冲击。
盾构机控制系统原理(海瑞克)
盾构机控制系统原理(海瑞克)简介本文档介绍了盾构机控制系统的原理,重点关注了海瑞克(Heraeus)控制系统。
盾构机控制系统概述盾构机控制系统是指用于控制盾构机运行和操作的一系列电子设备和软件。
其中,海瑞克控制系统是一种先进的控制系统,具有高度自动化和智能化的特点。
海瑞克控制系统特点海瑞克控制系统采用先进的传感器技术和自动化控制算法,具有以下特点:1. 高精度:海瑞克控制系统能够实时监测和控制盾构机的运行状态,以保证施工精度和安全性。
2. 自动化:海瑞克控制系统能够自动调节盾构机的行进速度、转向角度和推进力等参数,提高施工效率和质量。
3. 智能化:海瑞克控制系统通过分析大量数据和运行经验,能够自主研究和优化控制策略,不断提升盾构机的自动化水平。
盾构机控制系统原理海瑞克控制系统的工作原理如下:1. 数据采集:海瑞克控制系统通过各类传感器实时采集盾构机的运行数据,包括推进力、转向角度、地层变化等。
2. 数据处理:海瑞克控制系统将采集的数据传输至控制单元,并进行数据处理和分析,生成对应的控制指令。
3. 控制指令传输:海瑞克控制系统将生成的控制指令传输至盾构机相关设备,包括电机、阀门等,实现对盾构机的精确控制。
4. 运行监测:海瑞克控制系统持续监测盾构机的运行状态,及时调整控制策略以应对不同的地质条件和施工要求。
海瑞克控制系统的应用海瑞克控制系统广泛应用于盾构机的控制和管理中。
它被用于地铁、隧道和地下工程等领域,提高了盾构机的施工效率和质量。
结论盾构机控制系统的核心原理是通过数据采集、处理和控制指令传输实现对盾构机的精确控制。
海瑞克控制系统作为一种先进的控制系统,具备高精度、自动化和智能化的特点,在地铁和隧道建设中发挥着重要作用。
(完整版)海瑞克盾构机技术说明
目录隧道掘进机的技术说明5.1 概述 (3)5.2 功能(EPB盾构) (4)5.2.1 土料挖掘 / 推进 (5)5.2.2 控制 (6)5.2.3 管环拼装周期 (7)5.3 技术数据/总览 (8)5.4 操作步骤 (16)5.4.1 进入开挖室 (16)5.4.2 人行气闸 (19)准备和注意事项 (19)加压 (21)加压步骤 (22)加压图 (24)通过通道室加压(加压附加人员) (26)附加人员加压图 (27)卸压 (28)卸压步骤: (29)卸压图 (31)对一个人员的紧急卸压图 (33)紧急情况下,通道室和主室内应分别采取的措施 (36)紧急情况卡卡样 (37)5.4.3 将开挖工具送入压力室 (38)5.4.4 拼装管环 (39)5.4.5 回填 (41)通过尾部机壳进行回填 (41)灌浆泵的工作原理 (42)5.4.6 压缩空气供给 (44)工业用空气 (44)压缩空气调节 (45)5.4.7 发泡设备说明 (46)安装设计 (46)设备功能 (47)高压聚合物系统 (47)5.5 隧道掘进机各部件 (48)5.5.1 盾构 (49)概述 (49)前部盾构 (49)中间盾构 (50)尾部机壳 (50)推力缸 (50)盾构关节油缸 (51)5.5.2 人行气闸 (52)5.5.3 刀盘驱动装置 (54)原理 (54)旋转工作机构系统,主轴承 (54)齿轮润滑 (54)密封系统 (55)5.5.4 拼装机 (56)技术说明 (56)支架梁 (56)行走机架 (57)旋转机架 (57)带抓取头的横向行走装置 (58)旋转机架的动力提供 (59)安全设备 (59)5.5.5 螺旋输送机 (60)一般说明 (60)伸缩缸 (60)前部闸阀 (60)前部闸阀 (61)驱动装置 / 密封系统 (62)安全装置 (62)5.5.6 后援装置 (63)一般说明 (63)桥 (64)龙门架1 (65)龙门架2 (66)龙门架3 (68)龙门架4 (69)龙门架5 (71)5.1 概述该设备是一种液压挖掘盾构机,采用土压支护隧道开挖面。
海瑞克盾构机液压系统说明
一、液压系统元件1液压泵液压泵是液压系统的动力元件,按结构可以分为柱塞泵、齿轮泵、叶片泵,按排量可以分为定量泵、变量泵,按输出出口方向又可以分为单向泵、双向泵。
泵都是由电动机或其他原动机带动旋转,通过这种往复的旋转将油不断地输送到管路中,通过各种阀的作用,控制着执行元件的运行。
在大连地铁盾构机中,螺旋输送机使用一个双向变量泵和一个定量泵,推进系统中使用一个大排量的单向变量泵,管片安装机种使用两个单向变量泵,注浆系统中使用一个单向变量泵,辅助系统使用一个单向变量泵。
1a.定量齿轮泵注:右侧油液进入泵内,齿轮旋转带动油液从左侧出口流出,排量是一定的2c.定量叶片泵注:转子转动,带动叶片推动油液1、2进油,3、4出油,排量一定d.斜盘式柱塞泵3注:斜盘由联轴器带动转动,往复吸油、压油,斜盘角度是可以调控的2液压阀液压阀根据作用可以分为压力控制阀、流量控制阀、方向控制阀。
压力控制阀可以控制液压回路的压力,如当液压回路中压力过大时,溢流阀或卸荷阀打开泄压。
流量控制阀可以控制液压回路中的流量大小,根据流量的不同可以控制执行元件的速度。
方向控制阀主要控制液压回路中液压油的流动方向,由此可以改变液压油缸的伸缩。
各种阀一般安装在靠近泵的油液管路中,相对来说比较集中,便于检查和维修。
4a.单向阀注:油液从P1口进入,克服弹簧力推开单向阀的阀芯,经孔隙从p2口流出,油液只能从p1流向p25b.溢流阀注:油从压力口进入,通过阻尼孔进入后腔,克服弹簧压力,推开阀芯,油液从溢流口6c.液控单向阀注:x口接压力油时,阀芯将a与b口堵死,当x口接油箱时,若Pa大于Pb,则从a口进油,打开阀芯,流向b口,若Pb大于Pa时,则油液从b 口流向a口,7d.插装阀8注:控制油路克服弹簧力,接通进出口,该阀一般用于主油路e.减压阀注:主要用于控制出口压力93液压马达液压马达属于液压系统的执行元件,与液压泵的工作原理相反,液压泵是将其他形式的能(如电能、风能)转化为液压油的动能,而液压马达是将液压油的动能转化为机械能,从而实现马达的旋转带动执行元件的转动。
(完整版)海瑞克盾构机技术说明
目录隧道掘进机的技术说明5.1 概述 (3)5.2 功能(EPB盾构) (4)5.2.1 土料挖掘 / 推进 (5)5.2.2 控制 (6)5.2.3 管环拼装周期 (7)5.3 技术数据/总览 (8)5.4 操作步骤 (16)5.4.1 进入开挖室 (16)5.4.2 人行气闸 (19)准备和注意事项 (19)加压 (21)加压步骤 (22)加压图 (24)通过通道室加压(加压附加人员) (26)附加人员加压图 (27)卸压 (28)卸压步骤: (29)卸压图 (31)对一个人员的紧急卸压图 (33)紧急情况下,通道室和主室内应分别采取的措施 (36)紧急情况卡卡样 (37)5.4.3 将开挖工具送入压力室 (38)5.4.4 拼装管环 (39)5.4.5 回填 (41)通过尾部机壳进行回填 (41)灌浆泵的工作原理 (42)5.4.6 压缩空气供给 (44)工业用空气 (44)压缩空气调节 (45)5.4.7 发泡设备说明 (46)安装设计 (46)设备功能 (47)高压聚合物系统 (47)5.5 隧道掘进机各部件 (48)5.5.1 盾构 (49)概述 (49)前部盾构 (49)中间盾构 (50)尾部机壳 (50)推力缸 (50)盾构关节油缸 (51)5.5.2 人行气闸 (52)5.5.3 刀盘驱动装置 (54)原理 (54)旋转工作机构系统,主轴承 (54)齿轮润滑 (54)密封系统 (55)5.5.4 拼装机 (56)技术说明 (56)支架梁 (56)行走机架 (57)旋转机架 (57)带抓取头的横向行走装置 (58)旋转机架的动力提供 (59)安全设备 (59)5.5.5 螺旋输送机 (60)一般说明 (60)伸缩缸 (60)前部闸阀 (60)前部闸阀 (61)驱动装置 / 密封系统 (62)安全装置 (62)5.5.6 后援装置 (63)一般说明 (63)桥 (64)龙门架1 (65)龙门架2 (66)龙门架3 (68)龙门架4 (69)龙门架5 (71)5.1 概述该设备是一种液压挖掘盾构机,采用土压支护隧道开挖面。
盾构机液压系统原理(海瑞克)
盾构机液压系统原理(海瑞克)盾构机液压系统原理一.液压系统原理盾构机得绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说就是盾构机得心脏,起着非常重要得作用。
这些系统按其机构得工作性质可分为:1.盾构机液压推进及铰接系统2.刀盘切割旋转液压系统3.管片拼装机液压系统4.管片小车及辅助液压系统5.螺旋输送机液压系统6.液压油主油箱及冷却过滤系统7.同步注浆泵液压系统8.超挖刀液压系统以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立得系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站、有得系统还相互有联系。
下面就分别介绍一下以上8个液压系统得作用及工作原理。
(一)盾构机液压推进及铰接系统1.盾构机液压推进(1)盾构机液压推进系统得组成盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布得安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力得区域,为盾构机前进提供推进力、推进速度,通过调整四个区域得压力差来实现盾构机得转弯调向及纠偏功能、铰接主就盾弯时半直而尾片、盾体与围岩间得摩擦阻力。
(2)推进系统液压泵站:推进系统得液压泵站就是由一恒压变量泵(1P001)与一定量泵(1P002)组成得双联泵,功率为75KW,恒压变量泵为盾构得前进供给恒定得动力。
恒压泵得压力可经由过程油泵上得电液比例溢流阀(A300)调解,流量在0-qmax范围内变化时,调整后得泵供油压力保持恒定。
恒压式变量泵常用于阀控系统得恒压油源以避免溢流损失。
系统得要作用是减小构机转或纠偏得曲率径上得线段,从减少盾与管由恒压变量泵输出得高压油分别送达A、B、C、D四组并联得推进方向控制阀组,经过阀组得流量、压力调整与换向后再去控制推进油缸,从而使推进油缸得推进速度、推力大小及方向得到准确控制。
因每组油缸得控制原理都一样,下面就以B组中得第一个油缸控制为例,介绍其作用与工作原理。
盾构机液压系统说明
盾构机液压系统说明盾构机是一种广泛应用于隧道挖掘的工程机械,其液压系统是实现其高效运作的重要部分。
本文将详细介绍盾构机液压系统的构成、工作原理及特点。
一、盾构机液压系统的构成盾构机液压系统主要由液压泵、液压缸、液压阀和其他辅助元件组成。
1、液压泵:是液压系统的核心部件,它负责将机械能转化为液压能。
在盾构机中,液压泵通常由电动机或柴油机驱动。
2、液压缸:是执行元件,负责将液压能转化为机械能,推动盾构机的刀盘进行挖掘。
3、液压阀:控制液压油的流向和压力,从而控制液压缸的动作。
4、辅助元件:包括油箱、滤油器、密封件、管道等,它们分别负责储存液压油、过滤杂质、保持密封和输送液压油。
二、盾构机液压系统的工作原理盾构机液压系统的工作原理可以概括为“压力传递”。
当液压泵运转时,它从油箱中吸入液压油,然后通过高压管道将液压油输送到液压缸。
在液压缸内,液压油的压力被转化为推动刀盘运动的机械能。
这个过程不断重复,从而实现了盾构机的连续挖掘。
三、盾构机液压系统的特点盾构机液压系统具有以下特点:1、高压大流量:盾构机在进行隧道挖掘时需要大量的机械能,因此其液压系统通常具有高压大流量的特点。
2、可靠性高:由于隧道挖掘工作的连续性和高强度性,盾构机的液压系统必须具有极高的可靠性。
3、耐高温:由于长时间的连续工作,盾构机的液压系统可能会产生高温,因此其设计和材料必须能够承受高温。
4、维护简便:为了降低运营成本和提高工作效率,盾构机的液压系统应易于维护和保养。
5、节能环保:现代盾构机的液压系统越来越注重节能和环保,例如采用能量回收技术、降低噪音和振动等措施。
6、远程控制:为了提高操作精度和安全性,一些先进的盾构机液压系统采用了远程控制技术,操作者可以在控制室中对设备进行远程操作。
四、总结盾构机的液压系统是实现其高效运作的重要部分。
本文通过对盾构机液压系统的构成、工作原理及特点的详细介绍,使读者对这种广泛应用于隧道挖掘的工程机械有了更深入的了解。
盾构机液压过滤器原理(海瑞克)
盾构机液压过滤器原理(海瑞克)盾构机液压过滤器原理(海瑞克)液压过滤器是盾构机中至关重要的部件之一,它的作用是过滤液压系统中的杂质和污染物,保证液压系统的正常运行。
本文将介绍盾构机液压过滤器的原理和海瑞克(Herrick)液压过滤器的特点。
盾构机液压过滤器的原理盾构机液压过滤器的原理基本上是通过过滤器内置的滤网将液压油中的固体杂质和污染物过滤掉,从而降低液压系统的污染程度。
过滤器一般由外壳、滤芯和阀芯组成。
液压油从液压系统中进入过滤器的外壳,经过滤芯的过滤作用后,干净的液压油通过阀芯回到液压系统中。
而被滤掉的杂质和污染物则保留在滤芯上,定期更换滤芯可保持良好的过滤效果。
海瑞克液压过滤器的特点海瑞克液压过滤器是一种高效、可靠的过滤器品牌,具有以下特点:1. 优异的过滤效率:海瑞克液压过滤器采用高质量的滤芯,能够有效地过滤液压油中的微小固体颗粒和污染物,保证液压系统的清洁度。
优异的过滤效率:海瑞克液压过滤器采用高质量的滤芯,能够有效地过滤液压油中的微小固体颗粒和污染物,保证液压系统的清洁度。
2. 创新的设计:海瑞克液压过滤器采用创新的设计和工艺,具有较大的过滤面积和更长的使用寿命。
它还具有阻塞指示器和压差报警装置等功能,可及时检测滤芯的阻塞情况,保证过滤器的正常运行。
创新的设计:海瑞克液压过滤器采用创新的设计和工艺,具有较大的过滤面积和更长的使用寿命。
它还具有阻塞指示器和压差报警装置等功能,可及时检测滤芯的阻塞情况,保证过滤器的正常运行。
3. 广泛的应用:海瑞克液压过滤器适用于各种盾构机液压系统,包括土压平衡盾构机、混凝土压平衡盾构机等。
它具有多种规格和型号可供选择,满足不同盾构机的需求。
广泛的应用:海瑞克液压过滤器适用于各种盾构机液压系统,包括土压平衡盾构机、混凝土压平衡盾构机等。
它具有多种规格和型号可供选择,满足不同盾构机的需求。
总之,盾构机液压过滤器是保证液压系统顺畅运行的重要组成部分。
选择海瑞克液压过滤器可以确保过滤效率高、使用寿命长的优秀品质,适用于各种盾构机应用场景。
盾构机推进系统电液控制基础学习知识原理探究
海瑞克盾构机推进系统电液控制原理探究海瑞克盾构机推进系统液压阀组众多,电气控制系统复杂,PLC 连锁条件繁琐。
加之现场维保人员对其工作原理认知不深,控制思路理解不透,无法将液压、电气及PLC控制有效融合,导致故障排查时间久效率低。
为此,现以海瑞克S465盾构机推进系统为例,结合液压、电气图纸及PLC控制程序详细阐述推进系统的电液控制原理,为快速排查液压电气故障提供理论依据。
另外,为方便探究原理,特将推进系统电磁阀、传感器、电位器在电路液压图、PLC中的标签及功效列表呈现。
一、操作原理上图为推进系统的操作面板,面板上包括两种工作模式按钮,15-6S4按钮为正常掘进模式,15-6S7按钮为管片拼装模式,红色按钮15-6S2为停止操作按钮。
在正常推进时,按一下15-6S4按钮,调节四组油缸的压力调节电位器,直到理想的压力值,然后调节速度电位器15-11R6,速度电位计控制所有四组油缸的比例阀开口相同;当需要调节某一组油缸的速度时,就根据需要调节改组油缸的推进压力电位器(A组15-27R5、B组15-45R5、C组15-63R5、D组15-82R5)。
需要整体增加推进速度时,需要调节速度旋钮15-45R5,当调节速度调节按钮不能满足掘进速度要求时,需要对各组压力提高。
当进行盾构机的姿态调整时,通过调节各组油缸的压力调节旋钮使盾构沿设计曲线掘进。
每组油缸中都设有位移传感器,显示每组油缸的行程。
二、推进系统速度、压力调节的电液控制原理1、基础设计为实现推进及拼装功能,海瑞克盾构机推进系统需具备以下能力:推进阀组满足推进速度的要求,能够实现方向调节、可远程连续调整推进方向及推进速度,能够实现推进油缸的快速回退。
(1)推进速度控制推进系统的自动控制模式在自动控制的模式下工作,PLC可以根据已建立的推进压力解算出当前在所处的地质状况下的推进速度,因为推进速度是由推进压力所决定的,在一定的推进速度下所需的最小工作流量是可以确定的,进而建立比例流量阀的合适开口,以提供合适的流量,进一步,根据比例流量阀的最小工作压差(可知的不变量),可以解算出泵出口的最小压力,从而使系统工作在最佳的效率点上。
盾构液压控制原理解析
海瑞克推进系统操作面板
电位器说明 对应的液压原理图上的阀说明
REXROTH液压泵变量控制的原理
配合外界压力的要求,通过泵排量的改变,自动达到流量的改变。利用 泵的出口压力或一些反馈的压差与输入原值(即设定值)比较,通过变 量控制机构的位置变化进而控制泵的排量。变量结构是一切变量泵的基 础,一般是指变量阀或缸。一般的变量采用位置反馈(例如电比例流量 控制泵)和位移力反馈(例如恒压泵,负荷敏感泵)的方式。
盾构液压系统原理
——2008年11月22日
主要内容
一、HERRENKNECH海瑞克土压平衡盾构原理 推进系统 刀盘驱动系统 管片安装机系统 螺旋输送机系统 二、KOMATUSU小松土压平衡盾构原理 推进系统 螺旋输送机系统 管片安装机系统 注浆系统 三、NFM土压盾构原理 推进系统 主驱动系统 四、泥水盾构液压原理 破碎机原理 泥水处理系统原理 五、常见问题及处理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海吉原公司培训讲稿盾构机液压系统原理一.液压系统原理盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。
这些系统按其机构的工作性质可分为:1. 盾构机液压推进及铰接系统2. 刀盘切割旋转液压系统3. 管片拼装机液压系统4. 管片小车及辅助液压系统5. 螺旋输送机液压系统6. 液压油主油箱及冷却过滤系统7. 同步注浆泵液压系统8. 超挖刀液压系统以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。
有的系统还相互有联系。
下面就分别介绍一下以上8个液压系统的作用及工作原理。
(一)盾构机液压推进及铰接系统1. 盾构机液压推进(1)盾构机液压推进系统的组成盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的- 1 -上海吉原公司培训讲稿转弯调向及径半的曲率转机弯或纠偏时接系统的主要作用是减小盾构能纠偏功。
铰。
阻力间围岩的摩擦减少盾尾与管片、盾体与,上的直线段从而:泵站进系统液压(2)推泵定量1P001)和一一是由恒压变量泵(统推进系的液压泵站提进构的前量恒压变泵为盾功)(1P002组成的双联泵,率为75KW,)(A300例比溢流阀过力可通油泵上的电液压恒的供恒定动力。
压泵的。
恒恒持定供油压力保的时围0-q整调,流量在范内变化,调整后泵xma压油源以避免溢恒统控于常量式压变泵用阀系的流损失。
- 2 -上海吉原公司培训讲稿进推联的D四组并别送达A、B、C、输由恒压变量泵出的高压油分,油缸控制推进调整和换向后再去过方向控制阀组,经阀组的流量、压力油每组控制。
因及方向得到准确推而使推进油缸的进速度、推力大小从其绍为例,介一个油缸控制就理都一样,下面以B组中的第制缸的控原。
作原理作用和工过(F1入,一路径压管路由B组的P口进高油泵输出的压油经高推进入液换向阀压力调整)→经电调滤)→A111(流量整)→A101(为A403装阀。
A783控制的插提。
缸缸的快进快退,高工作效率进油及,以溢流阀荷有还液控单向阀、载阀卸缸推进油底端预荷阀。
组中控液阀换向的电阀器程传感。
四组组中的液行油器传压A256力感和缸(1P002)经减压阀泵定油由量(1V034)提供。
- 3 -上海吉原公司培训讲稿种:式分三接装置工作模2. 铰,)泵(1P002站中的定量泵动力来源于推进系统的液压接铰装置的)A349由(加的载和卸载铰接装置。
控制两通电液阀两位或PULL收()铰接回(1间铰接式(减小模RETRACTION)阀油从的高压来),定量泵输送隙)H001此,时(2C001)P口进入(快,通得电导止,(H002)截不得电使腔有杆接油缸的铰高压油进入收。
接油缸回铰、(H001式,该模下)浮)(铰)接保持HOLD或FREE模式(动模式2(杆腔的油被封闭有油。
铰截得)都H002不电止接缸,油量保持不变,被- 4 -上海吉原公司培训讲稿封闭的油在所有相互并联的有杆腔内互相补偿,直线推进时保持铰接间隙,转弯时处于浮动状态。
(3)铰接释放(RELEASE或LOOSE)模式(伸长模式),当(H001)得电导通,(H002)无电截止时,铰接油缸有杆腔的油接通低压,在盾构机推进时,因盾尾的阻力使铰接油缸被拉长,达到增大铰接间隙的目的。
该油路中还设有负载溢流阀(V2)、压力传感器(H005)及铰接间隙长度传感器。
另外可以通过(2V003、2V004、)的导通和截止达到铰接保持和铰接释放功能。
但当(2V003、2V004)两个阀的截止,在铰接油缸有杆腔的压力过高时(盾构机推进时,盾尾如果被卡住),因无压力传感器的压力显示和载荷溢流阀的溢流,可能会使铰接油缸损坏或油管爆裂。
- 5 -上海吉原公司培训讲稿(二)刀盘旋转液压系统刀盘旋转系统可分为补油回路、主工作回路、外部控制供油泵、主泵外部控制回路、马达外部控制回路。
刀盘旋转系统是为刀盘切割岩石或土壤时提供转速和扭矩,要求根据岩石地质的变化转速能够方便的调整。
为了得到较大的功率和扭矩,该系统采用3台315KW的双向变量液压泵并联,带动8台双向两速低速大扭矩液压马达。
下面分别介绍各回路的作用及工作原理。
补油回路:因主工作回路是闭式回路,加之系统功率大,需要进行补油和散热,所以设置了一套补油回路对其进行补油和散热。
为增大散热效率,补油回路采用了55KW低压大流量的定量泵来带走闭式回路中的大量热量,同时也对其进行了补油。
补油泵从油箱泵出的油经两个滤清器(1F001、1F002)进入3个主泵的E口,并通过两个单向阀分别对闭式回路的低压端进行补油,然后经主泵的高压端为液压马达提供动力油。
从马达返回的携带热量的低压油又回到主泵,一部分又进入主泵的高压端,一部分经排放阀从主泵的K1口流出,并经一节流阀流回油箱进行冷却。
补油回路中还设有蓄能器和压力传感器,蓄能器是保证回路的压力平稳。
主工作回路由主泵和液压马达组成,主泵是一315KW的双向变量泵,在主泵的主回路中有补油单向阀、载荷溢流阀、及低压排放阀,主泵的控制回路有主泵斜盘伺服油缸及双向伺服控制阀,司服- 6 -上海吉原公司培训讲稿阀由外部控制回路调压控制,以便实现换向和无级调速。
两个补油单向阀分别向低压侧进行补油,另一个带弹簧符号的单向阀是当两侧回路都较高或相等时(如:主泵斜盘角度为0时),补油直接通过它,并经节流阀(1Z017)返回油箱。
载荷溢流阀当载荷过大时使过高的压力油泄至低压侧,以达到保护系统不受损坏。
排放阀用于闭式系统多余的热油经低压侧排放回油箱。
节流阀(1Z017)是保证排放出的压力油与油箱之间形成约20bar的压差。
主泵控制回路用于控制其斜盘的±角度,以实现刀盘的正反转及转速的无级调整。
外来控制油经换向阀(1V002)到达司服阀的左右端,使司服油缸的无杆腔进油和排油来实现活塞杆的左右移动,从而完成斜- 7 -上海吉原公司培训讲稿盘角度的控制。
外来控制油是通过外部控制回路中的电比例溢流阀(B006)提供,调整范围0-45bar。
马达回路含有司服油缸、司服阀及低压排放阀,司服阀由主回路压力及外部控制回路控制,当马达外载荷增大时,主回路高压侧的油压随之升高,高压油经过单向阀,一路到达司服阀左端,使司服阀右移,一路到达司服阀P 口经减压阀进入司服油缸无杆腔使斜盘角度增大,从而降低转速增加扭矩,外部控制回路由控制油泵提供控制油压,当无控制油压时,马达处于高速档,当外部提供油压时,司服阀右移,使马达处于低速档,从而实现了两速控制。
外部控制供油泵(2P001):控制油泵是一台5.5KW的恒压变量泵,泵中的两个司服阀上面一个与溢流阀联合控制泵的压力,下面一个以控- 8 -上海吉原公司培训讲稿制流量为主。
(B040)为加载电磁阀。
该泵的油通过滤清器(2F001)向刀盘旋转系统的主泵和液压马达以及螺旋输送机的控制回路供油。
一路去旋转主泵回路的控制阀,一路去旋转马达控制阀,另两路去两台螺旋输送机的主泵控制阀。
进入旋转主泵控制阀的油经节流和减压后在经电液比例溢流阀(B006)向旋转主泵司服阀提供0-45bar的可变压控制油压,以实现转速的无级调整。
另外从主泵P口(H88)和梭阀(V030、H92)反馈到控制到汇集(2C003)并阀感载荷溢流阀和两组手阀由组溢流知阀,两正,阀转换四动两位通溢边使用左常工作时用使矩时阀,增大扭流时能短只溢流阀(右边动阀自),手动间使用矩扭阀是在。
回位感知油的反馈然增大时,突,力流其溢压减压将低伺服的泵使控制主压力降低,从而减小主泵- 9 -上海吉原公司培训讲稿斜盘角降低刀盘转速。
进入旋转马达控制阀P口的油经节流阀(M10)又分两路,一路经减压阀、两位四通电磁阀(B032)到(H86)旋转马达控制马达的高低速。
另一路经减压阀、两位四通阀(B033)、单向节流阀去控制马达(1A002)的刹车(1G002)。
在(1A002)马达上装有旋转方向传感器(1S026、B035)、马达高低速传感器(1S025、B038)和油温传感器(1S023、B050)。
在刹车回路中设有蓄能器(2C002),与单向节流阀一起保证了刹车时的快杀慢放。
(三)管片拼装机液压系统为了提高管片的拼装效率及避免拼装中的管片损坏,要求系统要有一定的速度、准确的移动位置精度、足够的活动自由度及可靠的安全度。
速度由一55KW的双联恒压变量泵提高的流量控制,精度靠电液比例司度由,自服阀控制旋右的左有:管片右左升(可转、提时同升及分别提平后水升)、前提有,并个自由度六绕紧及片的抓管、微转头水平抓举调微微倾的前后。
功能联双55KW的拼为量泵恒压变当。
动力装机提供泵,双快用速档时档低速工作。
时同)1P002,时只(可度工作速装,PLC控制根据拼机的由C004C003阀加作工。
载(、)其进行分别控制对或同时控制。
- 10 -上海吉原公司培训讲稿旋转控制:油泵输出的高压油一路经减压阀(DM)减至30bar到达电液比例阀然后控制司服阀以达到控制流量来控制马达旋转速度。
各阀的功能如下,DM为控制油减压阀,DBV2为控制油溢流阀,DBV1与插装阀组成主溢流阀,进入司服阀前的减压阀经DUE4、DUE7节流阀后的反馈油控制,以达到动作启动时的平稳。
D1、D4为反馈油溢流阀,F1、DUE2是停止动作时起泄油的作用。
油的,高压侧达并联的回转马两后经控制阀控制压力油分别进入个转起阀回旁的单向减压减后去控制刹车,压阀(经一路减压阀1V001)作起时不此衡阀(阀进油经达路的止停时刹车泄油回。
进入马的油先平入下一个平衡阀进的出马转达动,用)驱马旋,达来油,该阀在进油有- 11 -上海吉原公司培训讲稿一定压力后经X口其慢慢打开回油通路,并保证一定的背压,避免马达因惯性吸空,当旋转惯性过大时平衡阀右边的压力会增加,使阀芯左移以减少回油来减小惯性产生的转速,当回油压力增大到最大设定值时平衡阀中的溢流阀工作,避免了液压元件被损坏。
制控与回转平移动的控制水衡平的油经控制阀出来,一样从,缸动油进)入水平移阀(1C004 。
移动油缸的前后控制回与原理:控制阀提升控制油反馈在司服阀转控制相同,但节置了路中设处出口只在提升回其,有设置降,下反馈口没流阀进阀司服快了较的提高目的是为下增加压减压力以口处减压阀的一映也同时反的降时反应速度,缸油提升问题。
两个衡个功率平,制同时控也以即可单控,可以以有两套单独得所司服控制阀,。
- 12 -上海吉原公司培训讲稿从控制阀出来的压力油先通过一个两位两通随动阀进入提升油缸,当达到一定压力后,油缸出油口的两位两通随动阀在进口压力的推动下打开,导通回油通道形成回路。