三角函数公式总结与推导(全)
三角函数推导公式及公式大全
锐角三角函数锐角三角函数三角关系倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1商的关系:平方关系:三角函数公式2公式相关编辑两角和公式cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ -cosαsinβtan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)三角和公式sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cos γ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sin γ-sinα·cosβ·sinγ-sinα·sinβ·cosγ诱导公式三角函数的诱导公式(六公式)[1]公式一:sin(α+k*2π)=sinαcos(α+k*2π)=cosαtan(α+k*π)=tanα公式二:sin(π+α) = -sinαcos(π+α) = -cosαtan(π+α)=tanα公式三:sin(-α) = -sinαcos(-α) = cosαtan (-α)=-tanα公式四:sin(π-α) = sinαcos(π-α) = -cosαtan(π-α) =-tanα公式五:sin(π/2-α) = cosαcos(π/2-α) =sinα由于π/2+α=π-(π/2-α),由公式四和公式五可得公式六:sin(π/2+α) = cosαcos(π/2+α) = -sinα诱导公式记背诀窍:奇变偶不变,符号看象限。
角函数公式大全及推导过程
三角函数公式大全及推导过程一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:xy =αtan 二、同角三角函数的基本关系式 商数关系:αααcos sin tan =,平方关系:1cos sin 22=+αα,221cos 1tan αα=+ 三、诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα 公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinα cos(-α)= cosα tan(-α)= -tanα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα 公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π-α)= cosα cos(2π-α)= sinα sin (2π+α)= cosα cos(2π+α)= -sinα sin (23π-α)= -cosα cos(23π-α)= -sinα sin (23π+α)= -cosα cos(23π+α)= sinα 三、两角和差公式βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=-βαβαβαsin sin cos cos )cos(⋅-⋅=+βαβαβαsin sin cos cos )cos(⋅+⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+ βαβαβαtan tan 1tan tan )tan(⋅+-=- 四、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -= 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角) αα2cos 22cos 1=+ αα2sin 22cos 1=-2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-其它公式 五、辅助角公式:)sin(cos sin 22ϕ++=+x b a x b x a (其中ab =ϕtan ) 其中:角ϕ的终边所在的象限与点),(b a 所在的象限相同,(以上k ∈Z)六、其它公式:1、正弦定理:R Cc B b A a 2sin sin sin ===(R 为ABC ∆外接圆半径) 2、余弦定理 A bc c b a cos 2222⋅-+=B ac c a b cos 2222⋅-+=C ab b a c cos 2222⋅-+=3、三角形的面积公式 高底⨯⨯=∆21ABC S B ca A bc C ab S ABC sin 21sin 21sin 21===∆(两边一夹角)万能公式推导sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,(因为cos^2(α)+sin^2(α)=1)再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))然后用α/2代替α即可。
三角函数公式大全及其推导方法
三角函数公式大全及其推导方法三角函数是高中数学课程中重要的内容之一、在学习三角函数时,我们会学习各种不同的三角函数公式,这些公式有助于解决三角函数相关的各种问题。
本文将介绍常用的三角函数公式及其推导方法。
一、基本三角函数公式1. 正弦函数(sin):在直角三角形中,正弦函数定义为对边与斜边的比值。
sin(A) = 对边 / 斜边2. 余弦函数(cos):在直角三角形中,余弦函数定义为邻边与斜边的比值。
cos(A) = 邻边 / 斜边3. 正切函数(tan):在直角三角形中,正切函数定义为对边与邻边的比值。
tan(A) = 对边 / 邻边二、三角函数的诱导公式1.正弦函数的诱导公式:sin(α ± β) = sin(α)cos(β) ± cos(α)sin(β)sin(2α) = 2sin(α)cos(α)2.余弦函数的诱导公式:cos(α ± β) = cos(α)cos(β) ∓ sin(α)sin(β)cos(2α) = cos²(α) - sin²(α) = 2cos²(α) - 1 = 1 -2sin²(α)3.正切函数的诱导公式:tan(α ± β) = (tan(α) ± tan(β)) / (1 ∓ tan(α)tan(β)) tan(2α) = 2tan(α) / (1 - tan²(α))三、倍角公式1.正弦函数的倍角公式:sin(2α) = 2sin(α)cos(α)2.余弦函数的倍角公式:cos(2α) = cos²(α) - sin²(α) = 2cos²(α) - 1 = 1 -2sin²(α)3.正切函数的倍角公式:tan(2α) = 2tan(α) / (1 - tan²(α))四、和差公式1.正弦函数的和差公式:sin(α + β) = sin(α)cos(β) + cos(α)sin(β)sin(α - β) = sin(α)cos(β) - cos(α)sin(β)2.余弦函数的和差公式:cos(α + β) = cos(α)cos(β) - sin(α)sin(β)cos(α - β) = cos(α)cos(β) + sin(α)sin(β)3.正切函数的和差公式:tan(α + β) = (tan(α) + tan(β)) / (1 - tan(α)tan(β))tan(α - β) = (tan(α) - tan(β)) / (1 + tan(α)tan(β))五、万能公式sin(A) = (e^(iA) - e^(-iA)) / (2i)cos(A) = (e^(iA) + e^(-iA)) / 2以上是一些常用的三角函数公式及其推导方法。
三角函数推导,公式应用大全,实例
一、两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotA cotB 1cotAcotB -+推导:1、应用三角函数线推导差角公式的方法设角α的终边与单位圆的交点为P 1,∠POP 1=β,则∠POx =α-β.过点P 作PM ⊥x 轴,垂足为M ,那么OM 即为α-β角的余弦线,这里要用表示α,β的正弦、余弦的线段来表示OM .过点P 作PA ⊥OP 1,垂足为A ,过点A 作AB ⊥x 轴,垂足为B ,再过点P 作PC ⊥AB ,垂足为C ,那么cos β=OA ,sin β=AP ,并且∠PAC =∠P 1Ox =α,于是OM =OB +BM =OB +CP =OA cos α+AP sin α=cos βcos α+sin βsin α.综上所述,.说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解. 但这种推导方法对于如何能够得到解题思路,存在一定的困难. 此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推广问题.2、设α、β是两个任意角,把α、β两个角的一条边拼在一起,顶点为O,过B点作OB的垂线,交α另一边于A,交β另一边于C,则有S△OAC=S△OAB+S△OBC..根据三角形面积公式,有,∴.∵,,,∴,∵,∴sin(α+β)=sinαcosβ+sinβcosα.或者:sin(a+b)=cos[(π/2)-(a+b)]=cos[(π/2-a)-b]=cos(π/2-a)cosb-sin(π/2-a)sinb=sinacosb-cosasinb(就是利用π/2的诱导公式)3、tan(a+b)=sin(a+b)/cos(a+b)=(sinacosb+cosasinb)/(cosacosb-sinasinb) 分子分母同除以cosacosb 得(tana+tanb)/【1-tanatanb 】 二、倍角公式tan2A =Atan 12tanA2Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A1、公式sin2α=2sinα·cosα推导过程sin2α=sin(α+α)=sinα·cosα+cosα·sinα=2sinα·cosα2、公式余弦二倍角公式有三组表示形式,三组形式等价: cos2α=2cos²α-1 cos2α=1-2sin²α cos2α=cos²α-sin²α推导过程cos2α=cos(α+α)=cosα·cosα-sinα·sinα=cos²α-sin²α=2(cos²α)-1 =1-2(sin²α)3、正切二倍角公式tan2α=2tanα/[1-tan²α] 推导过程:tan2α=sin2α/cos2α=2sinα·cosα/cos²α-sin²α=[2sinα·cosα/cos²α]/[cos²α-sin²α/cos²α]=2tanα/[1-tan²α]三、半角公式(正负由所在的象限决定)(正负由所在的象限决定)(正负由所在的象限决定)推导过程:……①sin由等式①,整理得: 将 代入α,整理得:开方,得cos在等式①两边加上1,整理得:将代入 ,整理得:开方,得tansina=cos (π/2-a )注:四、三倍角公式(常用)四、五、六、七、八、九、十、N 倍角公式(不常用)sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)推导: sin3a =sin(2a+a)=sin2acosa+cos2asina =2sina(1-sin ²a)+(1-2sin ²a)sina =3sina-4sin ³a cos3a =cos(2a+a)=cos2acosa-sin2asina=(2cos ²a-1)cosa-2(1-cos ²a)cosa =4cos ³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)四倍角公式sin4A=-4*(cosA*sinA*(2*sinA^2-1)) cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角公式sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6) 八倍角公式sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8) 九倍角公式sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tan A^6+9*tanA^8)十倍角公式sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4)) cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^ 4+210*tanA^6-45*tanA^8+tanA^10)N倍角公式根据棣美弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ) 为方便描述,令sinθ=s,cosθ=c 考虑n为正整数的情形:cos(nθ)+ i sin(nθ) = (c+ i s)^n = C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 +C(n,4)*c^(n-4)*(i s)^4 + ... +C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... =>比较两边的实部与虚部实部:cos(nθ)=C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 +C(n,4)*c^(n-4)*(i s)^4 + ... i*(虚部):i*sin(nθ)=C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... 对所有的自然数n,1. cos(nθ):公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c(也就是cosθ)表示。
三角函数公式及推导祥尽版
余弦三倍角公式推导:(证明)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα =(2cos^2(α)-1)cosα-2cosαsin^2(α) =2cos^3(α)-cosα+(2cosα-2cos^3(α)) =4cos^3(α)-3cosα
三倍角公式联想记忆
记忆方法:谐音、联想 正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”)) 余弦三倍角:4元3角 减 3元(减完之后还有“余”)
r2 112sinsin coscos r2 22sinsin coscos 2r2 1sinsin coscos
由余弦定理得:
AB2 AC 2 BC 2 2AC BC cos ACB
r2 r2 2r r cos 2r2 2r2 cos r2 2 2 cos 2r2 1 cos
sin
cos cos
sin sin
co 1
s sin
cos sin
cos cos
tan tan 1 tan tan
两角差的正切
tan tan tan tan
1 tan tan
tan tan 1 tan tan
4---二倍角公式 二倍角的正弦、余弦和正切公式(也称为:升幂缩角公式)
口诀总结
上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈z),-α、180°±α,360°-α所在象限的原 三角函数值的符号可记忆 水平诱导名不变;符号看象限。 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四 余弦”. 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内切函数是“+”,弦函数是“-”; 第四象限内只有余弦是“+”,其余全部是“-”.
三角函数公式及推导
三角函数公式及推导
三角函数是数学中常见的函数之一,常用于解决与角度相关的问题。
三角函数公式是三角函数的基本知识点之一,掌握了三角函数公式,就能更好的理解和应用三角函数。
三角函数公式主要包括正弦、余弦、正切、余切、正割、余割等六种函数的公式。
这些公式可以通过三角函数的定义和性质来推导得到。
正弦函数公式:sin(a+b)=sinacosb+cosasinb
余弦函数公式:cos(a+b)=cosacosb-sinasinb
正切函数公式:tan(a+b)= (tana + tanb)/ (1 - tana*tanb) 余切函数公式:cot(a+b)= (cota*cotb - 1) / (cota + cotb) 正割函数公式:sec(a+b)= (secacosb+sinasectanb) / (secb) 余割函数公式:csc(a+b)= (cscacosc+b) / (sincosb)
以上公式都可以通过三角函数的定义和一些基本的代数运算及恒等式推导出来。
了解这些公式,可以在解决复杂三角函数问题时更灵活应用。
除了以上推导的公式,还有许多其它的三角函数公式,比如二倍角公式、半角公式、余角公式等等,这些公式也是非常重要的。
在学习三角函数时,需要重点掌握这些公式,才能更好地理解和运用三角函数。
三角函数公式的推导并不是一件容易的事情,需要对三角函数的性质和一些基本的代数运算非常熟练才能够推导得出。
因此,在学习
三角函数时,需要认真掌握每一个知识点,努力理解和应用三角函数公式,才能在以后的学习和工作中发挥更大的作用。
三角函数推导及公式应用大全
三角函数公式1、两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)2、倍角公式tan2A = 2tanA/(1-tan^2 A)Sin2A=2SinA•CosACos2A = Cos^2 A--Sin^2 A=2Cos^2 A—1=1—2sin^2 A三倍角公式sin3A = 3sinA-4(sinA)^3;cos3A = 4(cosA)^3 -3cosAtan3a = tan a •tan(π/3+a)•tan(π/3-a) 半角公式sin(A/2) = √{(1--cosA)/2}cos(A/2) = √{(1+cosA)/2}tan(A/2) = √{(1--cosA)/(1+cosA)}cot(A/2) = √{(1+cosA)/(1-cosA)}tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)3、和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB4、积化和差sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]5、诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)sin(π-a) = sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tgA=tanA = sinA/cosA6、万能公式sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2}tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}7、其它公式a•sin(a)+b•cos(a) = [√(a^2+b^2)]*sin(a+c) [其中,tan(c)=b/a]a•sin(a)-b•cos(a) = [√(a^2+b^2)]*cos(a-c) [其中,tan(c)=a/b]1+sin(a) = [sin(a/2)+cos(a/2)]^2;1-sin(a) = [sin(a/2)-cos(a/2)]^2;;8、其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)9、双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z)三角函数公式大全锐角三角函数公式sin α=∠α的对边/ 斜边cos α=∠α的邻边/ 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A))三倍角公式sin3α=4sinα•sin(π/3+α)sin(π/3-α)cos3α=4cosα•cos(π/3+α)cos(π/3-α)tan3a = tan a •tan(π/3+a)•tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin³acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-sin²a)cosa=4cos³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα•cosβ•cosγ+cosα•sinβ•cosγ+cosα•cosβ•sinγ-sinα•sinβ•sinγcos(α+β+γ)=cosα•cosβ•cosγ-cosα•sinβ•sinγ-sinα•cosβ•sinγ-sinα•sinβ•cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα•tanβ•tanγ)/(1-tanα•tanβ-tanβ•tanγ-tanγ•tanα)两角和差cos(α+β)=cosα•cosβ-sinα•sinβcos(α-β)=cosα•cosβ+sinα•sinβsin(α±β)=sinα•cosβ±cosα•sinβtan(α+β)=(tanα+tanβ)/(1-tanα•tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα•tanβ)和差化积sinθ+sinφ= 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ= 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ= 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ= -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinαsinβ= [cos(α-β)-cos(α+β)] /2cosαcosβ= [cos(α+β)+cos(α-β)]/2sinαcosβ= [sin(α+β)+sin(α-β)]/2cosαsinβ= [sin(α+β)-sin(α-β)]/2诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/〔1+tan^(α/2)〕cosα=〔1-tan^(α/2)〕/1+tan^(α/2)〕tanα=2tan(α/2)/〔1-tan^(α/2)〕其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0一,诱导公式口诀:(分子)奇变偶不变,符号看象限.1. sin (α+k•360)=sin αcos (α+k•360)=cos atan (α+k•360)=tan α2. sin(180°+β)=-sinαcos(180°+β)=-cosa3. sin(-α)=-sinacos(-a)=cosα4*. tan(180°+α)=tanαtan(-α)=tanα5. sin(180°-α)=sinαcos(180°-α)=-cosα6. sin(360°-α)=-sinαcos(360°-α)=cosα7. sin(π/2-α)=cosαcos(π/2-α)=sinα8*. Sin(3π/2-α)=-cosαcos(3π/2-α)=-sinα9*. Sin(π/2+α)=cosαcos(π/2+a)=-sinα10*.sin(3π/2+α)=-cosαcos(3π/2+α)=sinα二,两角和与差的三角函数1. 两点距离公式2. S(α+β): sin(α+β)=sinαcosβ+cosαsinβC(α+β): cos(α+β)=cosαcosβ-sinαsinβ3. S(α-β): sin(α-β)=sinαcosβ-cosαsinβC(α-β): cos(α-β)=cosαcosβ+sinαsinβ4. T(α+β):T(α-β):5*.三,二倍角公式1. S2α: sin2α=2sinαcosα2. C2a: cos2α=cos2α-sin2a3. T2α: tan2α=(2tanα)/(1-tan2α)4. C2a': cos2α=1-2sin2αcos2α=2cos2α-1四*,其它杂项(全部不可直接用)1.辅助角公式asinα+bcosα=sin(a+φ),其中tanφ=b/a,其终边过点(a, b) asinα+bcosα=cos(a-φ),其中tanφ=a/b,其终边过点(b,a) 2.降次,配方公式降次:sin2θ=(1-cos2θ)/2cos2θ=(1+cos2θ)/2配方1±sinθ=[sin(θ/2)±cos(θ/2)]21+cosθ=2cos2(θ/2)1-cosθ=2sin2(θ/2)3. 三倍角公式sin3θ=3sinθ-4sin3θcos3θ=4cos3-3cosθ4. 万能公式5. 和差化积公式sinα+sinβ=sinα-sinβ=cosα+cosβ=cosα-cosβ=6. 积化和差公式sinαsinβ=1/2[sin(α+β)+sin(α-β)]cosαsinβ=1/2[sin(α+β)-sin(α-β)]sinαsinβ-1/2[cos(α+β)-cos(α-β)]cosαcosβ=1/2[cos(α+β)+cos(α-β)]7. 半角公式另:三角函数口诀三角知识,自成体系,记忆口诀,一二三四.一个定义,三角函数,两种制度,角度弧度.三套公式,牢固记忆,同角诱导,加法定理.同角公式,八个三组,平方关系,导数商数.诱导公式,两类九组,象限定号,偶同奇余.两角和差,欲求正弦,正余余正,符号同前.两角和差,欲求余弦,余余正正,符号相反.两角相等,倍角公式,逆向反推,半角极限.加加减减,变量替换,积化和差,和奇互变.锐角三角函数公式sin α=∠α的对边/ 斜边cos α=∠α的邻边/ 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A))三倍角公式sin3α=4sinα•sin(π/3+α)sin(π/3-α)cos3α=4cosα•cos(π/3+α)cos(π/3-α)tan3a = tan a •tan(π/3+a)•tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin³acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-sin²a)cosa=4cos³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα•cosβ•cosγ+cosα•sinβ•cosγ+cosα•cosβ•sinγ-sinα•sinβ•sin γcos(α+β+γ)=cosα•cosβ•cosγ-cosα•sinβ•sinγ-sinα•cosβ•sinγ-sinα•sinβ•cos γtan(α+β+γ)=(tanα+tanβ+tanγ-tanα•tanβ•tanγ)/(1-tanα•tanβ-tanβ•tanγ-tan γ•tanα)两角和差cos(α+β)=cosα•cosβ-sinα•sinβcos(α-β)=cosα•cosβ+sinα•sinβsin(α±β)=sinα•cosβ±cosα•sinβtan(α+β)=(tanα+tanβ)/(1-tanα•tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα•tanβ)和差化积sinθ+sinφ= 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ= 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ= 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ= -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinαsinβ= [cos(α-β)-cos(α+β)] /2cosαcosβ= [cos(α+β)+cos(α-β)]/2sinαcosβ= [sin(α+β)+sin(α-β)]/2cosαsinβ= [sin(α+β)-sin(α-β)]/2诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0。
三角函数公式大全及其推导方法
三角函数公式大全及其推导方法1.基本关系:三角函数的定义是将角的信息转化为边长比值的函数。
主要有正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)、余切函数cot(x)、正割函数sec(x)和余割函数csc(x)。
2.三角函数的和差公式:(1)正弦函数的和差公式:sin(a ± b) = sin(a)cos(b) ± cos(a)sin(b)(2)余弦函数的和差公式:cos(a ± b) = cos(a)cos(b) ∓ sin(a)sin(b)(3)正切函数的和差公式:tan(a ± b) = (tan(a) ± tan(b)) / (1 ∓ tan(a)tan(b))(4)余切函数的和差公式:cot(a ± b) = (cot(a)cot(b) ∓ 1) / (cot(b) ± cot(a))3.三角函数的倍角公式:(1)正弦函数的倍角公式:sin(2a) = 2sin(a)cos(a)(2)余弦函数的倍角公式:cos(2a) = cos^2(a) - sin^2(a) = 2cos^2(a) - 1 = 1 - 2sin^2(a)tan(2a) = 2tan(a) / (1 - tan^2(a))(4)余切函数的倍角公式:cot(2a) = (cot^2(a) - 1) / (2cot(a))4.三角函数的半角公式:(1)正弦函数的半角公式:sin(a/2) = ± √((1 - cos(a)) / 2)(2)余弦函数的半角公式:cos(a/2) = ± √((1 + cos(a)) / 2)(3)正切函数的半角公式:tan(a/2) = ± √((1 - cos(a)) / (1 + cos(a)))5.诱导公式:(1)正切函数的诱导公式:tan(a ± b) = (tan(a) ± tan(b)) / (1 ∓ tan(a)tan(b))(2)余切函数的诱导公式:cot(a ± b) = (cot(a)cot(b) ∓ 1) / (cot(b) ± cot(a))6.三角函数的倒角公式:(1)正弦函数的倒角公式:sin(a/2) = ± √((1 - cos(a)) / 2)cos(a/2) = ± √((1 + cos(a)) / 2)(3)正切函数的倒角公式:tan(a/2) = ± √((1 - cos(a)) / (1 + cos(a)))这些都是三角函数的重要公式。
三角函数推导及公式大全
三角函数诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系sin(π/2+α)=cosαsin(π/2-α)=cosαcos(π/2+α)=-sinαcos(π/2-α)=sinαtan(π/2+α)=-cotαtan(π/2-α)=cotαcot(π/2+α)=-tanαcot(π/2-α)=tanα诱导公式记忆口诀:“奇变偶不变,符号看象限”。
“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。
(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。
以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα。
三角函数诱导公式万能公式和差化积公式倍角公式等公式总结及其推导
三角函数诱导公式万能公式和差化积公式倍角公式等公式总结及其推导一、三角函数诱导公式1、万能公式a sin(A+B) = a sinAcosB + a cosAsinBa cos(A+B) = a cosAcosB - a sinAsinB2、差化积公式sinAcosB - cosAsinB = sin(A-B)cosAcosB + sinAsinB = cos(A-B)3、倍角公式sin2A = 2sinAcosAcos2A = cos2A - sin2A = 2cos2A - 1 = 1 - 2sin2A4、和差公式sin(A±B) = sinAcosB±cosAsinBcos(A±B) = cosAcosB∓sinAsinB二、推导1、万能公式推导过程设定A+B=C,则有:a sin(A + B)= a sinC左右两侧同时乘以cosB:a sin(A + B)cosB = a sinCcosB左右两侧同时乘以sinB:a sin(A + B)sinB = a sinCsinB将上式整合即可得:a sin(A + B)= a sinAcosB + a cosAsinB同理,可推导出:a cos(A + B) = a cosAcosB - a sinAsinB2、差化积公式推导过程设定A=B,则有:sinAcosB - cosAsinB = sinAcosA - cosAcosA 经过整合可得:sinAcosB - cosAsinB = sinA -cosA将A=B替换为A-B,即可得sinAcosB - cosAsinB = sin(A-B)同理:cosAcosB + sinAsinB = cosAcosA + sinAsinA 经过整合可得:cosAcosB +sinAsinB = cosA +sinA将A=B替换为A-B,即可得cosAcosB +sinAsinB = cos(A-B)3、倍角公式的推导过程由于A为任意角度,对其两侧两边可以分别进行乘以cosA及sinA,得到:sinAcosA + sinAcosA = cosA*sinA + cosA*sinA经过整合可得:sin2A = 2sinAcosAcos2A = cosAcosA - sinAcosA经过整合可得:cos2A = 2cos2A - 1再把上式中的cos2A代入:2cos2A - 1 = 1 - 2sin2A4、和差公式推导过程设定A+B=C,则有:sin(A + B)= sinC将左右两侧分别乘以cosB及sinB:。
三角函数公式总结与推导--很全很实用
三角函数公式总结与推导1. ①与(0°≤<360°)终边相同的角的集合(角与角的终边重合):αααβ{}Zk k ∈+⨯=,360|αββ ②终边在x 轴上的角的集合:{}Z k k ∈⨯=,180|ββ③终边在y 轴上的角的集合:{}Zk k ∈+⨯=,90180|ββ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ⑥终边在轴上的角的集合:x y -={}Zk k ∈-⨯=,45180| ββ⑦若角与角的终边关于x 轴对称,则角与角的关系:αβαββα-=k 360⑧若角与角的终边关于y 轴对称,则角与角的关系:αβαββα-+= 180360k ⑨若角与角的终边在一条直线上,则角与角的关系:αβαββα+=k 180⑩角与角的终边互相垂直,则角与角的关系:αβαβ90360±+=βαk 2. 角度与弧度的互换关系:360°=2 180°= 1°=0.01745 1=57.30°=57°18′ππ注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =°≈57.30°=57°18ˊ.1°=≈0.01745(rad )π180180π3、弧长公式:. 扇形面积公式:r l⋅=||α211||22s lr r α==⋅扇形4、三角函数:设是一个任意角,在的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为ααr ,则 ; ; ; ; ;.ry =αsin rx =αcos xy =αtan yx =αcot xr =αsec .yr=αcsc 5、三角函数在各象限的符号:(一全二正弦,三切四余弦)、、、、、、、、、、、、、、、1¡¢2¡¢3¡¢4表示第一、二、三、四象限一半所在区域的6、三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.7. 三角函数的定义域:三角函数定义域sin x=)(x f {}R x x ∈|cos x =)(x f {}R x x ∈|tan x =)(x f ⎭⎬⎫⎩⎨⎧∈+≠∈Z k k x R x x ,21|ππ且cot x =)(x f {}Z k k x R x x ∈≠∈,|π且sec x =)(x f ⎭⎬⎫⎩⎨⎧∈+≠∈Z k k x R x x ,21|ππ且csc x=)(x f {}Z k k x R x x ∈≠∈,|π且8、同角三角函数的基本关系式:αααtan cos sin =αααcot sin cos =1cot tan =⋅αα1sin csc =α⋅α1cos sec =α⋅α 1cos sin 22=+αα1tan sec 22=-αα1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为:“奇变偶不变,符号看象限” 三角函数的公式:(一)基本关系公式组二公式组三x x k x x k xx k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππxx x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=-公式组四 公式组五 公式组六x x x x xx x x cot )cot(tan)tan(cos )cos(sin )sin(=+=+-=+-=+ππππx x x x xx x x cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππxx x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ(二)角与角之间的互换公式组一sin x ·csc x =1tan x =x x cos sin sin 2x +cos 2x =1cos x ·sec x x =xxsin cos 1+tan 2x =sec 2xtan x ·cot x =11+cot 2x =csc 2x=1(3) 个 o<x<2,个sinx<x<tanx16. 个个个个个个:公式组一 公式组二 βαβαβαsin sin cos cos )cos(-=+αααcos sin 22sin = βαβαβαsin sin cos cos )cos(+=-ααααα2222sin 211cos 2sin cos 2cos -=-=-=βαβαβαsin cos cos sin )sin(+=+ααα2tan 1tan 22tan -= βαβαβαsin cos cos sin )sin(-=-2cos 12sinαα-±=βαβαβαtan tan 1tan tan )tan(-+=+2cos 12cosαα+±=βαβαβαtan tan 1tan tan )tan(+-=-公式组三公式组四 公式组五2tan 12tan2sin 2ααα+= 2tan 12tan 1cos 22ααα+-= 2tan 12tan2tan 2ααα-=,,,.42675cos 15sin -== 42615cos 75sin +== 3275cot 15tan -== 3215cot 75tan +== 10. 正弦、余弦、正切、余切函数的图象的性质:()ϕω+=x A y sin (A 、>0)ω定义域RRR值域]1,1[+-]1,1[+-R R []A A ,-周期性 π2π2ππωπ2奇偶性奇函数偶函数奇函数奇函数当非奇非偶,0≠ϕ当奇函数,0=ϕ()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2cos 2sin 2sin sin βαβαβα-+=+2sin 2cos 2sin sin βαβαβα-+=-2cos 2cos 2cos cos βαβαβα-+=+2sin 2sin 2cos cos βαβαβα-+-=-αααααααsin cos 1cos 1sin cos 1cos 12tan-=+=+-±=⎭⎬⎫⎩⎨⎧∈+≠∈Z k k x R x x ,21|ππ且{}Z k k x R x x ∈≠∈,|π且xy cot =x y tan =xy cos =xy sin =ααπsin )21cos(-=+ααπcos )21sin(=+ααπcot )21tan(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-单调性]22,22[ππππk k ++-上为增函数;]223,22[ππππk k ++上为减函数()Z k ∈()]2,12[ππk k -;上为增函数()]12,2[ππ+k k 上为减函数()Z k ∈⎪⎭⎫⎝⎛++-ππππk k 2,2上为增函数()Z k ∈上为减函()()ππ1,+k k 数()Z k ∈⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--+--)(212),(22A k A k ωϕππωϕππ上为增函数;⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--+-+)(232),(22A k A k ωϕππωϕππ上为减函数()Z k ∈注意:①与的单调性正好相反;与的单调性也同样相反.一般地,若x y sin -=x y sin =x y cos -=x y cos =在上递增(减),则在)(x f y =],[b a )(x f y -=],[b a ②与的周期是.x y sin =x y cos =π③或()的周期.)sin(ϕω+=x y )cos(ϕω+=x y 0≠ωωπ2=T 的周期为2(,如图,翻折无效).2tanx y =ππωπ2=⇒=T T ④的对称轴方程是(),对称中心();的对称轴方程是)sin(ϕω+=x y 2ππ+=k x Z k ∈0,πk )cos(ϕω+=x y (),对称中心();的对称中心().πk x =Z k ∈0,21ππ+k )tan(ϕω+=x y 0,2πk xx y x y 2cos )2cos(2cos -=--=−−−→−=原点对称⑤当·;·.αtan ,1tan =β)(2Z k k ∈+=+ππβααtan ,1tan -=β)(2Z k k ∈+=-ππβα⑥与是同一函数,而是偶函数,则x y cos =⎪⎭⎫ ⎝⎛++=ππk x y 22sin )(ϕω+=x y )cos()21sin()(x k x x y ωππωϕω±=++=+=.⑦函数在上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,为x y tan =R x y tan =增函数,同样也是错误的].⑧定义域关于原点对称是具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原)(x f 点对称(奇偶都要),二是满足奇偶性条件,偶函数:,奇函数:))()(x f x f =-)()(x f x f -=-奇偶性的单调性:奇同偶反. 例如:是奇函数,是非奇非偶.(定义域不关于原x y tan =)31tan(π+=x y 点对称)奇函数特有性质:若的定义域,则一定有.(的定义域,则无此性质)x ∈0)(x f 0)0(=f x ∉0⑨x y sin =不是周期函数;为周期函数()x y sin =π=T 是周期函数(如图);为周期函数(x y cos =x y cos ==T 的周期为(如图),并非所有周期函数都有最小正周期,例如: 212cos +=x y π.R k k x f x f y ∈+===),(5)(⑩ 有.abb a b a y =+++=+=ϕϕαβαcos )sin(sin cos 22y b a ≥+2211、三角函数图象的作法:1)、几何法:2)、描点法及其特例——五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).3)、利用图象变换作三角函数图象.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数y =Asin (ωx +φ)的振幅|A|,周期,频率,相位初相(即当x =02||T πω=1||2f T ωπ==;x ωϕ+ϕ时的相位).(当A >0,ω>0 时以上公式可去绝对值符号),由y =sinx 的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y =Asinx 的图象,叫做振幅变换或叫沿y 轴的伸缩变换.(用y/A 替换y )由y =sinx 的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的倍,得到y =sin ω x 的图象,叫做周期变换或叫做沿x 轴的伸缩变换.(用ωx 替换x)1||ω由y =sinx 的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y =sin (x +φ)的图象,叫做相位变换或叫做沿x 轴方向的平移.(用x +φ替换x)由y =sinx 的图象上所有的点向上(当b >0)或向下(当b <0)平行移动|b |个单位,得到y =sinx +b 的图象叫做沿y 轴方向的平移.(用y+(-b)替换y )由y =sinx 的图象利用图象变换作函数y =Asin (ωx +φ)(A >0,ω>0)(x ∈R )的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x 轴量伸缩量的区别。
三角函数推导及公式大全
三角函数诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系sin(π/2+α)=cosαsin(π/2-α)=cosαcos(π/2+α)=-sinαcos(π/2-α)=sinαtan(π/2+α)=-cotαtan(π/2-α)=cotαcot(π/2+α)=-tanαcot(π/2-α)=tanα诱导公式记忆口诀:“奇变偶不变,符号看象限”。
“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。
(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。
以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα。
三角函数公式及推导公式
三角函数公式及推导公式三角函数是数学中的重要概念之一,它们在几何学、物理学、工程学和数学分析等领域中被广泛应用。
本文将介绍常见的三角函数公式及其推导。
一、正弦函数(sin)1.定义正弦函数表示的是一个角的对边与斜边的比值,通常用sin来表示。
2.常见公式(1)和差公式:sin(A ± B) = sin A · cos B ± cos A · sin B(2)倍角公式:sin 2A = 2 · sin A · cos A(3)半角公式:sin(A/2) = ±√[(1 - cos A) / 2]二、余弦函数(cos)1.定义余弦函数表示的是一个角的邻边与斜边的比值,通常用cos来表示。
2.常见公式(1)和差公式:cos(A ± B) = cos A · cos B ∓ sin A · sin B(2)倍角公式:cos 2A = cos² A - sin² A = 2 · cos² A - 1 = 1 - 2 · sin² A (3)半角公式:cos(A/2) = ±√[(1 + cos A) / 2]三、正切函数(tan)1.定义正切函数表示的是一个角的对边与邻边的比值,通常用tan来表示。
2.常见公式(1)和差公式:tan(A ± B) = (tan A ± tan B) / (1 ∓ tan A · tan B)(2)倍角公式:tan 2A = (2 · tan A) / (1 - tan² A)(3)半角公式:tan(A/2) = ±√[(1 - cos A) / (1 + cos A)]四、余切函数(cot)1.定义余切函数表示的是一个角的邻边与对边的比值,通常用cot来表示。
三角函数公式及推导公式
三角函数公式及推导公式三角函数是解析几何中的重要内容,它研究的是角度和三角形的关系。
三角函数包括正弦函数、余弦函数、正切函数等,它们常用于求解角度、测量距离和角度的相关问题。
一、正弦函数正弦函数是三角函数中最基本的函数之一,它表示的是一个锐角的对边与斜边之间的比值。
正弦函数可以用如下公式表示:sinθ = 对边 / 斜边其中,θ是一个锐角,对边是与该锐角相对的边,斜边是与该锐角相邻的边。
二、余弦函数余弦函数是三角函数中的另一个基本函数,它表示的是锐角的邻边与斜边之间的比值。
余弦函数可以用如下公式表示:cosθ = 邻边 / 斜边其中,θ是一个锐角,邻边是与该锐角相邻的边,斜边是与该锐角相对的边。
三、正切函数正切函数是三角函数中的第三个基本函数,它表示的是锐角的对边与邻边之间的比值。
正切函数可以用如下公式表示:tanθ = 对边 / 邻边其中,θ是一个锐角,对边是与该锐角相对的边,邻边是与该锐角相邻的边。
四、推导公式1.和差公式sin(α + β) = sinαcosβ + cosαsinβsin(α - β) = sinαcosβ - cosαsinβcos(α + β) = cosαcosβ - sinαsinβcos(α - β) = cosαcosβ + sinαsinβtan(α + β) = (tanα + tanβ) / (1 - tanαtanβ)tan(α - β) = (tanα - tanβ) / (1 + tanαtanβ)2.积化和差公式sin2θ = (1 - cos2θ) / 2cos2θ = (1 + cos2θ) / 2tan2θ = (1 - cos2θ) / (1 + cos2θ)3.和差化积公式sinα + sinβ = 2sin((α + β) / 2)cos((α - β) / 2)sinα - sinβ = 2cos((α + β) / 2)sin((α - β) / 2)cosα + cosβ = 2cos((α + β) / 2)cos((α - β) / 2)cosα - cosβ = -2sin((α + β) / 2)sin((α - β) / 2)四、推导下面以正弦函数的推导为例进行详细说明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数公式总结与推导(全)1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180| ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57.30°=57°18ˊ. 1°=180π≈0.01745(rad )3、弧长公式:r l ⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形 4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则 ry =αsin ; rx =αcos ; xy =αtan ; y x =αcot ; x r =αsec ;. yr =αcsc .5、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割正弦、余割SIN \COS 三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域6、三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.7. 三角函数的定义域:8、同角三角函数的基本关系式:αααtan cos sin =αααcot sin cos =1cot tan =⋅αα 1sin csc =α⋅α 1cos sec =α⋅α1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限”三角函数的公式:(一)基本关系公式组二 公式组三x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=-公式组四公式组五 公式组六x x x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ x x x x x x x x cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ(二)角与角之间的互换公式组一sin x ·csc x =1tan x =xx cos sin sin 2x +cos 2x =1cos x ·sec x x =xx sin cos 1+tan 2x =sec 2xtan x ·cot x =11+cot 2x =csc 2x=1(3) 若 o<x<2,则sinx<x<tanx16. 几个重要结论:公式组一 公式组二 βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=- 2cos 12sinαα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan2sin 2ααα+= 2tan 12tan1cos 22ααα+-= 2tan 12tan2tan 2ααα-=42675cos 15sin -== ,42615cos 75sin +== ,3275cot 15tan -== ,3215cot 75tan +== .()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2cos 2sin 2sin sin βαβαβα-+=+2sin 2cos 2sin sin βαβαβα-+=-2cos 2cos 2cos cos βαβαβα-+=+2sin 2sin 2cos cos βαβαβα-+-=-αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=ααπsin )21cos(-=+ααπcos )21sin(=+ααπcot )21tan(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-)(x f y =在],[b a 上递增(减),则)(x f y -=在],[b a 上递减(增). ②x y sin =与x y cos =的周期是π.③)sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期ωπ2=T .2tan xy =的周期为2π(πωπ2=⇒=T T ,如图,翻折无效).④)sin(ϕω+=x y 的对称轴方程是2ππ+=k x (Z k ∈),对称中心(0,πk );)cos(ϕω+=x y 的对称轴方程是πk x =(Z k ∈),对称中心(0,21ππ+k );)tan(ϕω+=x y 的对称中心(0,2πk ). x x y x y 2cos )2cos(2cos -=--=−−−→−=原点对称⑤当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·,1tan -=β)(2Z k k ∈+=-ππβα.⑥x y cos =与⎪⎭⎫ ⎝⎛++=ππk x y 22sin 是同一函数,而)(ϕω+=x y 是偶函数,则)cos()21sin()(x k x x y ωππωϕω±=++=+=.⑦函数x y tan =在R 上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,x y tan =为增函数,同样也是错误的].⑧定义域关于原点对称是)(x f 具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-)奇偶性的单调性:奇同偶反. 例如:x y tan =是奇函数,)31tan(π+=x y 是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .(x ∉0的定义域,则无此性质)⑨x y sin =不是周期函数;x y sin =为周期函数(π=T )x y cos =是周期函数(如图);x y cos =为周期函数(=T 212cos +=x y 的周期为π(如图),并非所有周期函数都有最小正周期,例如: R k k x f x f y ∈+===),(5)(.⑩abb a b a y =+++=+=ϕϕαβαcos )sin(sin cos 22 有y b a ≥+22. 11、三角函数图象的作法: 1)、几何法:2)、描点法及其特例——五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线). 3)、利用图象变换作三角函数图象.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数y =Asin (ωx +φ)的振幅|A|,周期2||T πω=,频率1||2f T ωπ==,相位;x ωϕ+初相ϕ(即当x =0时的相位).(当A >0,ω>0 时以上公式可去绝对值符号),由y =sinx 的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y =Asinx 的图象,叫做振幅变换或叫沿y 轴的伸缩变换.(用y/A 替换y )由y =sinx 的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的1||ω倍,得到y =sin ω x 的图象,叫做周期变换或叫做沿x 轴的伸缩变换.(用ωx 替换x)由y =sinx 的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y =sin (x +φ)的图象,叫做相位变换或叫做沿x 轴方向的平移.(用x +φ替换x)由y =sinx 的图象上所有的点向上(当b >0)或向下(当b <0)平行移动|b |个单位,得到y =sinx +b 的图象叫做沿y 轴方向的平移.(用y+(-b)替换y )由y =sinx 的图象利用图象变换作函数y =Asin (ωx +φ)(A >0,ω>0)(x ∈R )的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x 轴量伸缩量的区别。
4、反三角函数: 函数y =sin x ,⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-∈22ππ,x 的反函数叫做反正弦函数,记作y =arcsin x ,它的定义域是[-1,1],值域是⎥⎦⎤⎢⎣⎡22ππ,-.函数y =cos x ,(x ∈[0,π])的反应函数叫做反余弦函数,记作y =arccos x ,它的定义域是[-1,1],值域是[0,π].函数y =tan x ,⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∈22ππ,x 的反函数叫做反正切函数,记作y =arctan x ,它的定义域是(-∞,+∞),值域是⎪⎭⎫⎝⎛-22ππ,.函数y =ctg x ,[x ∈(0,π)]的反函数叫做反余切函数,记作y =arcctg x ,它的定义域是(-∞,+∞),值域是(0,π).y=|cos2x +1/2|图象。