2020中考数学模拟套卷五pdf
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020中考数学模拟套卷(五)
考试时间:120分钟
一.选择题(共10小题,满分20分,每小题2分) 1.实数4的相反数是( ) A .14
-
B .4-
C .
14
D .4
2.2019年“五一”假期期间,我市共接待国内、外游客140.42万人次,实现旅游综合收入8.94亿元,则“旅游综合收入”用科学记数法表示正确的是( ) A .61.404210⨯
B .514.04210⨯
C .88.9410⨯
D .90.89410⨯
3.如图的几何体由六个相同的小正方体搭成,它的主视图是( )
A .
B .
C .
D .
4.已知6032α∠=︒',则α∠的余角是( ) A .2928︒'
B .2968︒'
C .11928︒'
D .11968︒'
5.估计-( ) A .5和6之间
B .6和7之间
C .7和8之间
D .8和9之间
6.下列命题正确的是( )
A .对角线相等的四边形是平行四边形
B .对角线相等的四边形是矩形
C .对角线互相垂直的平行四边形是菱形
D .对角线互相垂直且相等的四边形是正方形
7.温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:
表中表示零件个数的数据中,众数是( ) A .5个
B .6个
C .7个
D .8个
8.如图,等边三角形ABC 的边长为8,以BC 上一点O 为圆心的圆分别与边AB ,AC 相切,则O 的半径为( )
A .
B .3
C .4
D .49.已知一次函数1y ax b =+和2()y bx a a b =+≠,函数1y 和2y 的图象可能是( )
A .
B .
C .
D .
10.如图,在ABC ∆中,45B ∠=︒,60C ∠=︒,且AB =M 是边BC 上的一个动点,连接AM ,P 为AM 的中点,当M 点从点B 运动到点C 的过程中,P 点的运动路线长为( )
A .1+
B .1
C .
12+
D .
3
π 二.填空题(共6小题,满分12分,每小题2分) 11.因式分解:2()()a b b a ---= .
12.如图,直线//a b ,直线c 与直线a ,b 分别交于点A ,B .若145∠=︒,则2∠= .
13.从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为 . 14.如图,人字梯AB ,AC 的长都为2米,当50α=︒时,人字梯顶端离地面的高度AD 是 米(结果精确到0.1米.参考数据:sin 500.77︒≈,cos500.64︒≈,tan 50 1.19)︒≈.
15.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s 关于行走时间t 的函数图象,则两图象交点P 的坐标是 .
16.已知二次函数26y x x =-++及一次函数y x m =+,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,
图象的其余部分不变,得到一个新图象(如图所示),当直线y x m =+与这个新图象有四个交点时,m 的取值范围是 .
三.解答题(共9小题,满分68分,17-20题每题5分,21-23题每题8分,24、25题每题12分) 17.(1)化简
11()x x x x
-÷-. (2)解方程:25
32112x x x
+=--.
18.阅读下列题目的解题过程:
已知a 、b 、c 为ABC ∆的三边,且满足222244a c b c a b -=-,试判断ABC ∆的形状. 解:222244a c b c a b -=- (A )
2222222()()()c a b a b a b ∴-=+- (B )
222c a b ∴=+ (C ) ABC ∴∆是直角三角形
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ; (2)错误的原因为: ;
(3)本题正确的结论为: .
19.在66⨯的方格纸中,点A ,B ,C 都在格点上,按要求画图:
(1)在图1中找一个格点D ,使以点A ,B ,C ,D 为顶点的四边形是平行四边形. (2)在图2中仅用无刻度的直尺,把线段AB 三等分(保留画图痕迹,不写画法).
20.如图,在ABC ∆中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作//CF AB 交
ED 的延长线于点F . (1)求证:BDE CDF ∆∆≌.
(2)当AD BC ⊥,1AE =,2CF =时,求AC 的长.
21.如图,在平面直角坐标系中,直线AB 与x 轴交于点B ,与y 轴交于点A ,与反比例函数m y x =
的图象在第二象限交于点C ,CE x ⊥轴,垂足为点E ,1
tan 2
ABO ∠=,4OB =,2OE =.
(1)求反比例函数的解析式;
(2)若点D 是反比例函数图象在第四象限上的点,过点D 作DF y ⊥轴,垂足为点F ,连接OD 、BF .如果4BAF DFO S S ∆∆=,求点D 的坐标.
22.温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x 人生产乙产品.
(1)根据信息填表:
(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.
(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.
23.如图,已知锐角三角形ABC 内接于圆O ,OD BC ⊥于点D ,连接OA . (1)若60BAC ∠=︒, ①求证:1
2
OD OA =.
②当1OA =时,求ABC ∆面积的最大值.
(2)点E 在线段OA 上,OE OD =,连接DE ,设ABC m OED ∠=∠,(ACB n OED m ∠=∠,