导数恒成立问题(教师版)

合集下载

人教版导数如何解决含参数不等式恒成立问题

人教版导数如何解决含参数不等式恒成立问题

k ' ( x) 2 ln x
k (1) 0 ,因此 k ( x) 0 ,即 ( x ) 在 x (1, e) 单调递增。所以 ( x) min 0 (老师有话说:
(2)分类讨论法
出最值(或极限值)那么就需分类讨论法。 上面的习题也可以用分类讨论法: 法二(分类讨论法)令 g ( x ) 2ax 2a 1 , x
{ 1 或 1 1 , 由题意得 g ( )0 2 3 2
a 0
{a 0 1
g ( x ) 1 a 1 。 或 a 0 g ( )0
2
g (b) max g (1) x x 2 a ln x 0
法一(分类讨论法) :
h( x) x x 2 பைடு நூலகம் a ln x , x (1, e) 则 h ' ( x) 1 2 x a
出分类讨论点)
当 a
1 2x2 x a ( 利用判别式找 x x
第 2 页
e e 2 a 0 , a e 2 e ,所以 a
综上所述:取值范围为 a 1
(4e 1) 2 1 , 8
法二: (分类参数法) g (b) max g ( 1) x x a ln x 0 a (
2
x2 x ) min ln x
1 2 ' 时 ( 1) 2 4a 0 , h ( x ) 0 , h( x ) 在 x (1, e) 单 调 递 增 ; 8
h( x) min h(1) 0 , h(1) 0 0 ,不符合题意。
当a 当
1 1 8a 1 1 8a 1 2 ,由 2 x x a 0 得 x1 , x2 8 4 2

高中数学 恒成立汇总方法-教师版

高中数学 恒成立汇总方法-教师版

恒成立问题——参变分离法一、基础知识:1、参变分离:顾名思义,就是在不等式中含有两个字母时(一个视为变量,另一个视为参数),可利用不等式的等价变形让两个字母分居不等号的两侧,即不等号的每一侧都是只含有一个字母的表达式。

然后可利用其中一个变量的范围求出另一变量的范围2、如何确定变量与参数:一般情况下,那个字母的范围已知,就将其视为变量,构造关于它的函数,另一个字母(一般为所求)视为参数。

3、参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则:(1)已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行。

但有些不等式中由于两个字母的关系过于“紧密”,会出现无法分离的情形,此时要考虑其他方法。

例如:()21log a x x -<,111axx e x-+>-等 (2)要看参变分离后,已知变量的函数解析式是否便于求出最值(或临界值),若解析式过于复杂而无法求出最值(或临界值),则也无法用参变分离法解决问题。

(可参见”恒成立问题——最值分析法“中的相关题目)4、多变量恒成立问题:对于含两个以上字母(通常为3个)的恒成立不等式,先观察好哪些字母的范围已知(作为变量),那个是所求的参数,然后通常有两种方式处理(1)选择一个已知变量,与所求参数放在一起与另一变量进行分离。

则不含参数的一侧可以解出最值(同时消去一元),进而多变量恒成立问题就转化为传统的恒成立问题了。

(2)将参数与变量进行分离,即不等号一侧只含有参数,另一侧是双变量的表达式,然后按所需求得双变量表达式的最值即可。

例1:已知函数()x x f x e ae -=-,若'()f x ≥恒成立,则实数a 的取值范围是_______思路:首先转化不等式,'()x xf x e ae -=+,即x xa e e +≥a 与xe便于分离,考虑利用参变分离法,使,a x 分居不等式两侧,()2x x a e ≥-+,若不等式恒成立,只需()()2maxx xa e≥-+,令()()(223x xxg x ee =-+=-+(解析式可看做关于x e 的二次函数,故配方求最值)()max 3g x =,所以3a ≥ 答案:3a ≥例2:已知函数()ln a f x x x=-,若()2f x x <在()1,+∞上恒成立,则a 的取值范围是_________思路:恒成立的不等式为2ln ax x x-<,便于参数分离,所以考虑尝试参变分离法 解:233ln ln ln ax x x x a x a x x x x-<⇔-<⇔>-,其中()1,x ∈+∞ ∴只需要()3maxln a x x x >-,令()3ln g x x x x =-'2()1ln 3g x x x =+- (导函数无法直接确定单调区间,但再求一次导即可将ln x 变为1x,所以二阶导函数的单调性可分析,为了便于确定()'gx 的符号,不妨先验边界值)()'12g =-,()2''11660x g x x x x-=-=<,(判断单调性时一定要先看定义域,有可能会简化判断的过程) ()'gx ∴在()1,+∞单调递减,()()''10()g x g g x ∴<<⇒在()1,+∞单调递减()()11g x g ∴<=- 1a ∴≥- 答案:1a ≥-小炼有话说:求导数的目的是利用导函数的符号得到原函数的单调性,当导函数无法直接判断符号时,可根据导函数解析式的特点以及定义域尝试在求一次导数,进而通过单调性和关键点(边界点,零点)等确定符号。

用导数解决不等式恒成立问题(二)(市特级教师示范课)

用导数解决不等式恒成立问题(二)(市特级教师示范课)
证明1: 令 f (x) ex x
则:f (x) ex 1
令 f (x) 0 x 0
当x变化时, x, f (x), f (x) 变化情况如下表:
x (, 0) 0 (0, )
f ( x)

0
+
f (x)
极小值
f (x)min f (0) 1 ex x 0 ex x
二、例题分析:
二、例题分析:
变式一.证明 不等式 ex x
如何证明?
二、例题分析:
变式一.证明 不等式 ex x
分析一:要证明 不等式f(x)>g(x) 即等价于证明:
(A)f(x)min>g(x)
请选择?
(B)f(x)>g(x)max
(C)f(x)min>g(x)max
二、例题分析:
变式一.证明 不等式 ex x
1
二、例题分析:
变式二:求证 直线 y=x在曲线y=lnx 的上方.
本题小结: 要证明 f(x) 的图象在g(x) 的上方
思路
本题小结:
要证明 f(x) 的图象在g(x) 的上方
等 价
思路
只要证明 f(x) > g(x)
二、例题分析:
变式三:若对任意x>0
ln x
,x
bx恒成立,
求正数b的取值范围.
三、课堂小结:
本节课你收获了什么? 总结
三、课堂小结:
本节课你收获了什么? 总结
函数位置关系. 不等式. 函数的最值.
三、课堂小结:
本节课你收获了什么? 总结
函数位置关系. 不等式. 函数的最值.
转化:移项、去分母、恒等变形……
三、课堂小结:

高二数学(选修人教A版)利用导数研究恒成立问题1教案

高二数学(选修人教A版)利用导数研究恒成立问题1教案

教案教学基本信息课题利用导数研究恒成立问题学科数学学段:高中年级高二教材书名:普通高中课程标准实验教科书数学选修2-2 (A版)出版社:人民教育出版社出版日期:2007 年1 月教学目标及教学重点、难点1.通过从不同角度分析,理解恒成立问题等价转化的实质,形成有效利用导数解决恒成立问题的方法,并能学以致用解决有关问题.2.在恒成问题的解决中,体会特殊与一般、化归与转化、分类讨论、数形结合等数学思想方法.3.通过一题多解,学习、归纳、提炼,不同的解题方法,体验、积累不同的解题经验,提高方法识别与选择的能力.重点:会用导数确定函数最值进而解决不等式恒成立问题.难点:构建恰当的函数解决不等式恒成立问题.教学过程(表格描述)教学环节主要教学活动设置意图知识点回顾【回顾】如何利用导数确定函数的最值?复习回顾导数确定函数最值得方法,为本节课做好知识铺垫.思考探究【思考1】你能确定函数2()21f x x x=--在[2,3]上的最大值和最小值吗?【预设】1、求导函数'()22f x x=-'()0f x>在[2,3]上恒成立,所以()f x在[2,3]上单调递增,所以max()(3)2f x f==,min()(2)1f x f==-.2、对于二次函数2()21f x x x=--,其对称轴1x=,所以在对称轴右侧的区间[2,3]上()f x单调递增,所以max()(3)2f x f==,min()(2)1f x f==-.【探究】试判断下列说法是否正确?①对于任意的[2,3]x∈都有()0f x≤成立.②对于任意的[2,3]x∈都有()2f x≤成立.恒成立问题尤其是根据恒成立的条件确定参数问题是高考的热点,是利用导数研究函数的一种重要题型.有必要引导学生探究、归纳、积累这类问题的解决方法思考 探究【探究】若对于任意的[2,3]x ∈都有()f x c ≤成立,你能确定实数c 的取值范围吗? 【预设】1、 一方面实数c 不小于()f x 在[2,3]的 所有函数值,c 大于等于()f x 在[2,3]上 的最大值即可;2、另一方面可以看成函数()y f x =与常数函数y c =函数值的大小关系,借助函数图象可以看出c 的取值范围.【思考2】对于函数2()21f x x x =-- .【探究】试判断下列说法是否正确?③对于任意的[2,3]x ∈都有()0f x ≥成立.④对于任意的[2,3]x ∈都有()-1f x ≥成立.【探究】若对于任意的[2,3]x ∈都有()f x m ≥成立,你能确定实数m 的取值范围吗? 【预设】1、一方面实数m 不大于()f x 在[2,3]上的所有函数值,m 小于等于()f x 在[0,2]上的最小值即可;2、另一方面,可以看成函数()y f x =与常数函数y m =函数值的大小关系,同样借助函数图象可以看出m 的取值范围.【思考3】已知函数31()3f x x x =-.下面两个说法是否正确?①对于任意的[0,2]x ∈,都有()0f x ≥成立? ②对于任意的[0,2]x ∈,都有()1f x ≤成立?【分析】判断两个说法是否正确的关键点是的什么? 利用导数确定函数()f x 在[0,2]上的最值,借助函数图象,做出判断.【预设】31()3f x x x =-,[0,2]x ∈,2'()1f x x =-,令'()0f x =,解得11x =,21x =-当x 变化时,'()f x ,()f x 的变化情况如下表:x0 (0,1)1 (1,2)2 '()f x -0 +()f x极小值23因为(0)0f =,2(2)3f =,所以max 2()3f x =,min 2()(1)3f x f ==-.【探究】从学生熟悉的简单的二次函数入手,再到三次函数复习巩固确定函数最值的方法,通过设问让学生思考判断一些结论是否正确,逐步帮助学生理解恒成立问题的本质,体会恒成立问题与函数最值的关系。

高考数学真题07 导数中的问题(教师版)

高考数学真题07 导数中的问题(教师版)

专题07 导数中的问题【高考真题】1.(2022·新高考Ⅱ) 曲线y =ln|x|过坐标原点的两条切线的方程为____________,____________.1.答案 y =1e x y =-1e x 解析 因为y =ln|x|,当x >0时y =ln x ,设切点为(x 0,ln x 0),由y ′=1x,所以y ′|x =x 0=1x 0,所以切线方程为y -ln x 0=1x 0(x -x 0),又切线过坐标原点,所以-ln x 0=1x 0(-x 0),解得x 0=e ,所以切线方程为y -1=1e (x -e),即y =-1e x ;当x <0时y =ln(-x ),设切点为(x 1,ln(-x 1)),由y ′=1x,所以y ′|x =x 1=1x 1,所以切线方程为y -ln(-x 1)=1x 1 (x -x 1),又切线过坐标原点,所以-ln(-x 1)=1x 1(-x 1),解得x 0=-e ,所以切线方程为y -1=-1e (x +e),即y =-1e x ;故答案为y =1e x ;y =-1ex . 2.(2022·新高考Ⅱ)若曲线y =(x +a )e x 有两条过坐标原点的切线,则a 的取值范围是________.2.答案 (-∞,-4)∪(0,+∞) 解析 ∵y =(x +a )e x ,∴y ′=(x +1+a )e x ,设切点为(x 0,y 0),则y 0=(x 0 +a )e x 0,切线斜率k =(x 0+1+a )e x 0,切线方程为y -(x 0+a )e x 0=(x 0+1+a )e x 0(x -x 0).∵切线过原点,∴-(x 0+a )e x 0=(x 0+1+a )e x 0(-x 0),整理得,x 02+a x 0-a =0.∵切线有两条,∴△=a 2+4a >0,解得a <-4或a >0,∴a 的取值范围是(-∞,-4)∪(0,+∞),故答案为(-∞,-4)∪(0,+∞).3.(2022·全国乙文)函数f (x )=cos x +(x +1)sin x +1在区间[0,2π]的最小值、最大值分别为( )A .-π2,π2B .-3π2,π2C .-π2,π2+2D .-3π2,π2+2 3.答案 D 解析 f ′(x )=-sin x +sin x +(x +1)cos x =(x +1)cos x ,所以f (x )在区间(0,π2)和(3π2,2π)上f ′(x )>0, 即f (x )单调递增;在区间(π2,3π2)上f ′(x )<0,即f (x )单调递减,又f (0)=f (2π)=2,f (π2)=π2+2,f (3π2)=-(3π2+1)+1=-3π2,所以f (x )在区间[0,2π]上的最小值为-3π2,最大值为π2+2.故选D . 4.(2022·新高考Ⅱ)已知函数f (x )=x 3-x +1,则( )A .f (x )有两个极值点B .f (x )有三个零点C .点(0,1)是曲线y =f (x )的对称中心D .直线y =2x 是曲线y =f (x )的切线4.答案 AC 解析 由题,f ′(x )=3x 2-1,令f ′(x )>0得x >33或x <-33,令f ′(x )<0得-33<x <33, 所以f (x )在(-33,33)上单调递减,在(-∞,-33),(33,+∞)上单调递增,所以x =±33是极值点,故A 正确;因f (-33)=1+239>0,f (33)=1-239>0,f (-2)=-5<0,所以,函数f (x )在(-∞,-33)上有一个零点,当x ≥33时,f (x )≥f (33)>0,即函数f (x )在(33,+∞)上无零点,综上所述,函数f (x )有一个零点,故B 错误;令h (x )=x 3-x ,该函数的定义域为R ,h (-x )=(-x )3-(-x )=-x 3+x =-h (x ),则h (x )是奇函数,(0,0)是h (x )的对称中心,将h (x )的图象向上移动一个单位得到f (x )的图象,所以点(0,1)是曲线y =f (x )的对称中心,故C 正确;令f ′(x )=3x 2-1=2,可得x =±1,又f (1)=f (-1)=1,当切点为(1,1)时,切线方程为y =2x -1,当切点为(-1,1)时,切线方程为y =2x +3,故D 错误.故选AC .5.(2022·新高考Ⅱ) 已知函数f (x )=sin(2x +φ)(0<φ<π)的图像关于点(2π3,0)中心对称,则( ) A .f (x )在区间(0,5π12)单调递减 B .f (x )在区间⎝⎛⎭⎫-π12,11π12有两个极值点 C .直线x =7π6是曲线y =f (x )的对称轴 D .直线y =32-x 是曲线y =f (x )的切线 5.答案 AD 解析 由题意得,f (2π3)=sin(4π3+φ)=0,所以4π3+φ=k π,k ∈Z ,即φ=-4π3+k π,k ∈Z , 又0<φ<π,所以k =2时,φ=2π3,故f (x )=sin(2x +2π3).对A ,当x ∈(0,5π12)时,2x +2π3∈(2π3,3π2),由正弦函数y =sin u 图象知y =f (x )在(0,5π12)上是单调递减;对B ,当x ∈⎝⎛⎭⎫-π12,11π12时,2x +2π3∈(π2,5π2),由正弦函数y =sin u 图象知y =f (x )只有1个极值点,由2x +2π3=3π2,解得,即x =5π12为函数的唯一极值点;对C ,当x =7π6时,2x +2π3=3π,f (7π6)=0,直线x =7π6不是对称轴;对D ,由y ′=2cos(2x +2π3)=-1,得cos(2x +2π3)=-12,解得2x +2π3=2π3+2k π(k ∈Z )或2x +2π3=4π3+2k π(k ∈Z ),从而得,x =k π(k ∈Z )或x =π3+k π(k ∈Z ),所以函数y =f (x )在点(0,32)处的切线斜率为k =y ′|x =0=2cos 2π3=-1,切线方程为y =32-x .故选AD . 6.(2022·全国乙理)已知x =x 1和x =x 2分别是函数f (x )=2a x -ex 2(a >0且a ≠1)的极小值点和极大值点.若 x 1<x 2,则a 的取值范围是____________.6.答案 (1e,1) 解析 f ′(x )=2ln a a x -2ex ,因为x 1,x 2分别是函数f (x )=2a x -ex 2的极小值点和极大值 点,所以函数f (x )在(-∞,x 1)和(x 2,+∞)上递减,在(x 1,x 2)上递增,所以当x ∈(-∞,x 1)和(x 2,+∞)时,f ′(x )<0,当x ∈(x 1,x 2)时,f ′(x )>0,若a >1时,当x <0时,2ln a a x >0,2ex <0,则此时,f ′(x )>0,与前面矛盾,故a >1不符合题意,若0<a <1时,则方程2ln a a x -2ex =0的两个根为x 1,x 2,即方程ln a a x =ex 的两个根为x 1,x 2,即函数y =ln a a x 与函数y =e x 的图象有两个不同的交点,∵0<a <1,∴函数y =a x 的图象是单调递减的指数函数,又∵ln a <0,∴y =ln a a x 的图象由指数函数y =a x 向下关于x 轴作对称变换,然后将图象上的每个点的横坐标保持不变,纵坐标伸长或缩短为原来的|ln a |倍得到,如图所示:设过原点且与函数y =g (x )的图象相切的直线的切点为(x 0,ln a a x 0),则切线的斜率为g ′(x )=ln 2a a x 0,故切线方程为y -ln a a x 0=ln 2a a x 0(x -x 0),则有-ln a a x 0=-x 0 ln 2a a x 0,解得x 0=1 ln a ,则切线的斜率为122ln ln eln a a a a ⋅=,因为函数y =ln a a x 与函数y =e x 的图象有两个不同的交点,所以e ln 2a <e ,解得1e<a <e ,又0<a <1,所以1e <a <1,综上所述,a 的范围为(1e,1). 7.(2022·新高考Ⅱ) 已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3≤l ≤33,则该正四棱锥体积的取值范围是( )A .[18,814]B .[274,814]C .[274,643] D .[18,27] 7.答案 C 解析 ∵ 球的体积为36π,所以球的半径R =3,设正四棱锥的底面边长为2a ,高为h ,则l 2=2a 2+h 2,32=2a 2+(3-h )2.所以6h =l 2,2a 2=l 2-h 2,所以正四棱锥的体积V =13Sh =13×4a 2×h =23×(l 2-l 436)×l 26=19(l 4-l 636),所以V ′=19(4l 3-l 56)=19l 3 (24-l 26),当3≤l ≤26时,V ′>0,当26≤l ≤33时,V ′<0,所以当l =26时,正四棱锥的体积V 取最大值,最大值为643,又l =3时,V =274,l =33时, V =814.所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是[274,643].故选C . 【知识总结】1.导数的几何意义(1)f ′(x 0)的几何意义:曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,该切线的方程为y -f (x 0)=f ′(x 0)·(x -x 0).(2)切点的两大特征:①在曲线y =f (x )上;②在切线上.2.利用导数研究函数的单调性(1)求可导函数单调区间的一般步骤①求函数f (x )的定义域;②求导函数f ′(x );③由f ′(x )>0的解集确定函数f (x )的单调递增区间,由f ′(x )<0的解集确定函数f (x )的单调递减区间.(2)由函数的单调性求参数的取值范围①若可导函数f (x )在区间M 上单调递增,则f ′(x )≥0(x ∈M )恒成立;若可导函数f (x )在区间M 上单调递减,则f ′(x )≤0(x ∈M )恒成立;②若可导函数在某区间上存在单调递增(减)区间,f ′(x )>0(或f ′(x )<0)在该区间上存在解集;③若已知f (x )在区间I 上的单调性,区间I 中含有参数时,可先求出f (x )的单调区间,则I 是其单调区间的子集.3.利用导数研究函数的极值与最值(1)求函数的极值的一般步骤①确定函数的定义域;②解方程f ′(x )=0;③判断f ′(x )在方程f ′(x )=0的根x 0附近两侧的符号变化:若左正右负,则x 0为极大值点;若左负右正,则x 0为极小值点;若不变号,则x 0不是极值点.(2)求函数f (x )在区间[a ,b ]上的最值的一般步骤①求函数y =f (x )在区间(a ,b )内的极值;②比较函数y =f (x )的各极值与端点处的函数值f (a ),f (b )的大小,最大的一个是最大值,最小的一个是最小值.【同类问题】题型一 曲线的切线方程1.(2021·全国甲)曲线y =2x -1x +2在点(-1,-3)处的切线方程为________. 1.答案 5x -y +2=0 解析 y ′=⎝ ⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所 以切线方程为y +3=5(x +1),即5x -y +2=0.2.(2020·全国Ⅱ)函数f (x )=x 4-2x 3的图象在点(1,f (1))处的切线方程为( )A .y =-2x -1B .y =-2x +1C .y =2x -3D .y =2x +12.答案 B 解析 f (1)=1-2=-1,切点坐标为(1,-1),f ′(x )=4x 3-6x 2,所以切线的斜率为k =f ′(1) =4×13-6×12=-2,切线方程为y +1=-2(x -1),即y =-2x +1.3.(2018·全国Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程 为( )A .y =-2xB .y =-xC .y =2xD .y =x3.答案 D 解析 法一 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-x )=-f (x ),所以(-x )3+(a -1)(-x )2+a (-x )=-[x 3+(a -1)x 2+ax ],所以2(a -1)x 2=0.因为x ∈R ,所以a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D . 法二 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-1)+f (1)=0,所以-1+a -1-a +(1+a -1+a )=0,解得a =1,此时f (x )=x 3+x (经检验,f (x )为奇函数),所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D .法三 易知f (x )=x 3+(a -1)x 2+ax =x [x 2+(a -1)x +a ],因为f (x )为奇函数,所以函数g (x )=x 2+(a -1)x +a 为偶函数,所以a -1=0,解得a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D .4.(2020·全国Ⅰ)曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为________.4.答案 2x -y =0 解析 设切点坐标为(x 0,y 0),因为y =ln x +x +1,所以y ′=1x+1,所以切线的斜率 为1x 0+1=2,解得x 0=1.所以y 0=ln 1+1+1=2,即切点坐标为(1,2),所以切线方程为y -2=2(x -1),即2x -y =0.5.(2019·全国Ⅱ)曲线y =2sin x +cos x 在点(π,-1)处的切线方程为( )A .x -y -π-1=0B .2x -y -2π-1=0C .2x +y -2π+1=0D .x +y -π+1=05.答案 C 解析 设y =f (x )=2sin x +cos x ,则f ′(x )=2cos x -sin x ,∴f ′(π)=-2,∴曲线在点(π,-1) 处的切线方程为y -(-1)=-2(x -π),即2x +y -2π+1=0.故选C .6.(2021·新高考Ⅱ)若过点(a ,b )可以作曲线y =e x 的两条切线,则( )A .e b <aB .e a <bC .0<a <e bD .0<b <e a6.答案 D 解析 根据y =e x 图象特征,y =e x 是下凸函数,又过点(a ,b )可以作曲线y =e x 的两条切线, 则点(a ,b )在曲线y =e x 的下方且在x 轴的上方,得0<b <e a .故选D .7.已知曲线f (x )=x 3-x +3在点P 处的切线与直线x +2y -1=0垂直,则P 点的坐标为( )A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3)7.答案 C 解析 设切点P (x 0,y 0),f ′(x )=3x 2-1,又直线x +2y -1=0的斜率为-12,∴f ′(x 0)=3x 20-1 =2,∴x 20=1,∴x 0=±1,又切点P (x 0,y 0)在y =f (x )上,∴y 0=x 30-x 0+3,∴当x 0=1时,y 0=3;当x 0=-1时,y 0=3.∴切点P 为(1,3)或(-1,3).8.(2019·江苏)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e , -1)(e 为自然对数的底数),则点A 的坐标是________.8.答案 (e ,1) 解析 设A (m ,n ),则曲线y =ln x 在点A 处的切线方程为y -n =1m(x -m ).又切线过点 (-e ,-1),所以有n +1=1m(m +e).再由n =ln m ,解得m =e ,n =1.故点A 的坐标为(e ,1). 9.设函数f (x )=x 3+(a -1)·x 2+ax ,若f (x )为奇函数,且函数y =f (x )在点P (x 0,f (x 0))处的切线与直线x +y=0垂直,则切点P (x 0,f (x 0))的坐标为 .9.答案 (0,0) 解析 ∵f (x )=x 3+(a -1)x 2+ax ,∴f ′(x )=3x 2+2(a -1)x +a .又f (x )为奇函数,∴f (-x )=-f (x )恒成立,即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立,∴a =1,f ′(x )=3x 2+1,3x 20+1=1,x 0=0,f (x 0)=0,∴切点P (x 0,f (x 0))的坐标为(0,0).10.过定点P (1,e)作曲线y =a e x (a >0)的切线,恰有2条,则实数a 的取值范围是________.10.答案 (1,+∞) 解析 由y ′=a e x ,若切点为(x 0,0e x a ),则切线方程的斜率k =0'|x x y ==0e x a >0, ∴切线方程为y =0e x a (x -x 0+1),又P (1,e)在切线上,∴0e x a (2-x 0)=e ,即e a=0e x (2-x 0)有两个不同的解,令φ(x )=e x (2-x ),∴φ′(x )=(1-x )e x ,当x ∈(-∞,1)时,φ′(x )>0;当x ∈(1,+∞)时,φ′(x )<0,∴φ(x )在(-∞,1)上单调递增,在(1,+∞)上单调递减,∴φ(x )max =φ(1)=e ,又x →-∞时,φ(x )→0;x →+∞时,φ(x )→-∞,∴0<e a<e ,解得a >1,即实数a 的取值范围是(1,+∞). 题型二 曲线的公切线方程11.(2020·全国Ⅲ)若直线l 与曲线y =x 和圆x 2+y 2=15都相切,则l 的方程为( ) A .y =2x +1 B .y =2x +12 C .y =12x +1 D .y =12x +1211.答案 D 解析 易知直线l 的斜率存在,设直线l 的方程y =kx +b ,则|b |k 2+1=55①.设直线l 与曲线y =x 的切点坐标为(x 0,x 0)(x 0>0),则y ′|x =x 0=12x 0-12=k ②,x 0=kx 0+b ③,由②③可得b =12x 0,将b =12x 0,k =12x 0-12代入①得x 0=1或x 0=-15(舍去),所以k =b =12,故直线l 的方程y =12x +12. 12.已知f (x )=e x (e 为自然对数的底数),g (x )=ln x +2,直线l 是f (x )与g (x )的公切线,则直线l 的方程为 .12.答案 y =e x 或y =x +1 解析 设l 与f (x )=e x 的切点为(x 1,y 1),则y 1=1e x ,f ′(x )=e x ,∴f ′(x 1)=1e x ,∴切点为(x 1,1e x ),切线斜率k =1e x ,∴切线方程为y -1e x =1e x (x -x 1),即y =1e x ·x -11e x x +1e x,①,同理设l 与g (x )=ln x +2的切点为(x 2,y 2),∴y 2=ln x 2+2,g ′(x )=1x ,∴g ′(x 2)=1x 2,切点为(x 2,ln x 2+2),切线斜率k =1x 2,∴切线方程为y -(ln x 2+2)=1x 2(x -x 2),即y =1x 2·x +ln x 2+1,②,由题意知,①与②相同,∴111122121e e , e e ln 1,x x x x x x x x -⎧=⇒=⎪⎨⎪-+=+⎩③④把③代入④有-11e x x +1e x =-x 1+1,即(1-x 1)(1e x -1)=0,解得x 1=1或x 1=0,当x 1=1时,切线方程为y =e x ;当x 1=0时,切线方程为y =x +1,综上,直线l 的方程为y =e x 或y =x +1.13.若直线l 与曲线y =e x 及y =-14x 2都相切,则直线l 的方程为________.13.答案 y =x +1 解析 设直线l 与曲线y =e x 的切点为(x 0,0x e ),直线l 与曲线y =-14x 2的切点为 ⎝⎛⎭⎫x 1,-x 214,因为y =e x 在点(x 0,0x e )处的切线的斜率为y ′|x =x 0=0x e ,y =-x 24在点⎝⎛⎭⎫x 1,-x 214处的切线的斜率为y ′|x =x 1=⎝⎛⎭⎫-x 2|x =x 1=-x 12,则直线l 的方程可表示为y =0x e x -x 0e 0x e +0x e 或y =-12x 1x +14x 21,所以⎩⎨⎧ 0x e =-x 12,-x 00x e +0x e =x 214,所以0x e =1-x 0,解得x 0=0,所以直线l 的方程为y =x +1.14.曲线C 1:y =ln x +x 与曲线C 2:y =x 2有________条公切线.14.答案 1 解析 由y =ln x +x 得y ′=1x+1,设点(x 1,ln x 1+x 1)是曲线C 1上任一点,∴曲线C 1在点(x 1, ln x 1+x 1)处的切线方程为y -(ln x 1+x 1)=⎝⎛⎭⎫1x 1+1(x -x 1),即y =⎝⎛⎭⎫1x 1+1x +ln x 1-1.同理可得曲线C 2在点(x 2,x 22)处的切线方程为y -x 22=2x 2(x -x 2),即y =2x 2x -x 22.依题意知两切线重合,∴⎩⎪⎨⎪⎧ 1x 1+1=2x 2,ln x 1-1=-x 22,消去x 2得1x 21+2x 1+4ln x 1-3=0,①,令f (x )=1x 2+2x +4ln x -3(x >0),则f ′(x )=-2x 3-2x 2+4x =4x 2-2x -2x 3=2(2x +1)(x -1)x 3,当x ∈(0,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0,∴f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴f (x )min =f (1)=0,∴f (x )只有一个零点.即方程①只有一个解,故曲线C 1与C 2只有1条公切线.15.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a = .15.答案 8 解析 方法一 因为y =x +ln x ,所以y ′=1+1x,y ′|x =1=2.所以曲线y =x +ln x 在点(1,1) 处的切线方程为y -1=2(x -1),即y =2x -1.因为y =2x -1与曲线y =ax 2+(a +2)x +1相切,所以a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8.方法二 同方法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).因为y ′=2ax +(a +2),所以0|x x y '==2ax 0+(a +2).由⎩⎪⎨⎪⎧ 2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8. 16.(2016·课标全国Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =e x 的切线,则b =________.16.答案 0或1 解析 设直线y =kx +b 与曲线y =ln x +2的切点为(x 1,y 1),与曲线y =e x 的切点为(x 2,y 2),y =ln x +2的导数为y ′=1x ,y =e x 的导数为y ′=e x ,可得k =e x 2=1x 1.又由k =y 2-y 1x 2-x 1=e x 2-ln x 1-2x 2-x 1,消去x 2,可得(1+ln x 1)·(x 1-1)=0,则x 1=1e 或x 1=1,则直线y =kx +b 与曲线y =ln x +2的切点为⎝⎛⎭⎫1e ,1或(1,2),与曲线y =e x 的切点为(1,e)或(0,1),所以k =e -11-1e=e 或k =1-20-1=1,则切线方程为y =e x 或y =x +1,可得b =0或1.17.若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.17.答案 1-ln 2 解析 y =ln x +2的切线为y =1x 1·x +ln x 1+1(设切点横坐标为x 1).y =ln(x +1)的切线为 y =1x 2+1x +ln(x 2+1)-x 2x 2+1(设切点横坐标为x 2).∴⎩⎨⎧1x 1=1x 2+1,ln x 1+1=ln(x 2+1)-x 2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln2. 18.已知函数f (x )=x ln x ,g (x )=x 2+ax (a ∈R ),直线l 与f (x )的图象相切于点A (1,0),若直线l 与g (x )的图象也相切,则a 等于( )A .0B .-1C .3D .-1或318.答案 D 解析 由f (x )=x ln x 求导得f ′(x )=1+ln x ,则f ′(1)=1+ln 1=1,于是得函数f (x )在点A (1,0)处的切线l 的方程为y =x -1,因为直线l 与g (x )的图象也相切,则方程组⎩⎪⎨⎪⎧y =x -1,g x =x 2+ax ,有唯一解,即关于x 的一元二次方程x 2+(a -1)x +1=0有两个相等的实数根,因此Δ=(a -1)2-4=0,解得a =-1或a =3,所以a =-1或a =3.19.若曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线,则a 的取值范围为________.19.答案 ⎣⎡⎭⎫e 24,+∞ 解析 由y =ax 2(a >0),得y ′=2ax ,由y =e x ,得y ′=e x ,曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线,设公切线与曲线C 1切于点(x 1,ax 21),与曲线C 2切于点(x 2,2e x ),则2ax 1=222121e e ,x x ax x x -=-可得2x 2=x 1+2,∴a =1121e 2x x +,记f (x )=12e 2x x +,则f ′(x )=122e (2)4x x x +-,当x ∈(0,2)时,f ′(x )<0,f (x )单调递减;当x ∈(2,+∞)时,f ′(x )>0,f (x )单调递增.∴当x =2时,f (x )min =e 24.∴a 的取值范围是⎣⎡⎭⎫e 24,+∞. 20.已知曲线f (x )=ln x +1与g (x )=x 2-x +a 有公共切线,则实数a 的取值范围为 .20.答案 8 解析 设切线与f (x )=ln x +1相切于点P (x 0,ln x 0+1),f ′(x 0)=1x 0,∴切线方程为y -(ln x 0+ 1)=1x 0(x -x 0),即y =1x 0x +ln x 0,联立⎩⎪⎨⎪⎧ y =1x 0x +ln x 0,y =x 2-x +a ,得x 2-⎝⎛⎭⎫1+1x 0x +a -ln x 0=0,∴Δ=⎝⎛⎭⎫1+1x 02-4(a -ln x 0)=0,即1x 20+2x 0+1-4a +4ln x 0=0,即4a =1x 20+2x 0+1+4ln x 0有解,令φ(x )=1x 2+2x+1+4ln x (x >0),φ′(x )=-2x 3-2x 2+4x =4x 2-2x -2x 3=2(2x +1)(x -1)x 3,当x ∈(0,1)时,φ′(x )<0,当x ∈(1,+∞)时,φ′(x )>0,∴φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(x )min =φ(1)=4,又x →+∞时,φ(x )→+∞,故φ(x )的值域为[4,+∞),所以4a ≥4,即a ≥1,故实数a 的取值范围是[1,+∞). 题型三 函数的性质21.设函数f (x )=2(x 2-x )ln x -x 2+2x ,则函数f (x )的单调递减区间为( )A .⎝⎛⎭⎫0,12B .⎝⎛⎭⎫12,1 C .(1,+∞) D .(0,+∞) 21.答案 B 解析 由题意可得f (x )的定义域为(0,+∞),f ′(x )=2(2x -1)ln x +2(x 2-x )·1x-2x +2=(4x - 2)ln x .由f ′(x )<0可得(4x -2)ln x <0,所以⎩⎪⎨⎪⎧4x -2>0,ln x <0或⎩⎪⎨⎪⎧4x -2<0,ln x >0,解得12<x <1,故函数f (x )的单调递减区间为⎝⎛⎭⎫12,1,选B .22.已知定义在区间(0,π)上的函数f (x )=x +2cos x ,则f (x )的单调递增区间为 .22.答案 ⎝⎛⎭⎫0,π6,⎝⎛⎭⎫5π6,π 解析 f ′(x )=1-2sin x ,x ∈(0,π).令f ′(x )=0,得x =π6或x =5π6,当0<x <π6时,f ′(x )>0,当π6<x <5π6时,f ′(x )<0,当5π6<x <π时,f ′(x )>0,∴f (x )在⎝⎛⎭⎫0,π6和⎝⎛⎭⎫5π6,π上单调递增,在⎝⎛⎭⎫π6,5π6上单调递减.23.函数f (x )=2|sin x |+cos2x 在[-π2,π2]上的单调递增区间为( ) A .[-π2,-π6]和[0,π6] B .[-π6,0]和[π6,π2] C .[-π2,-π6]和[π6,π2] D .[-π6,π6] 23.答案 A 解析 由题意,因为f (-x )=2|sin(-x )|+cos(-2x )=2|sin x |+cos2x =f (x ),所以f (x )为偶函数,当0≤x ≤π2时,f (x )=2sin x +cos2x ,则f ′(x )=2cos x -2sin2x ,令f ′(x )≥0,得sin x ≤12,所以0≤x ≤π6,由f (x )为偶函数,可得当-π6≤x ≤0时,f (x )单调递减,则在[-π2,-π6]上单调递增,故选A . 24.设函数f (x )=2x+ln x ,则( ) A .x =12为f (x )的极大值点 B .x =12为f (x )的极小值点 C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点24.答案 D 解析 f ′(x )=-2x 2+1x =x -2x 2(x >0),当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0,所以x =2为f (x )的极小值点.25.已知函数f (x )=2e f ′(e)ln x -x e,则f (x )的极大值点为( )A .1eB .1C .eD .2e 25.答案 D 解析 f ′(x )=2e f ′(e)x -1e ,故f ′(e)=1e ,故f (x )=2ln x -x e ,令f ′(x )=2x -1e>0,解得0<x <2e ,令 f ′(x )<0,解得x >2e ,故f (x )在(0,2e)上递增,在(2e ,+∞)上递减,∴x =2e 时,f (x )取得极大值2ln 2,则f (x )的极大值点为2e .26.若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为( ) A .-1 B .-2e -3 C .5e -3 D .126.答案 A 解析 f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=[x 2+(a +2)x +a -1]e x -1.∵x =-2是f (x )的极值点,∴f ′(-2)=0,即(4-2a -4+a -1)e -3=0,得a =-1.∴f (x )=(x 2-x -1)e x -1,f ′(x )=(x 2+x -2)e x -1.由f ′(x )>0,得x <-2或x >1;由f ′(x )<0,得-2<x <1.∴f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,∴f (x )的极小值点为1,∴f (x )的极小值为f (1)=-1.27.设f ′(x )为函数f (x )的导函数,已知x 2f ′(x )+xf (x )=ln x ,f (1)=12,则下列结论不正确的是( ) A .xf (x )在(0,+∞)上单调递增 B .xf (x )在(0,+∞)上单调递减C .xf (x )在(0,+∞)上有极大值12D .xf (x )在(0,+∞)上有极小值1227.答案 ABC 解析 由x 2f ′(x )+xf (x )=ln x 得x >0,则xf ′(x )+f (x )=ln x x ,即[xf (x )]′=ln x x ,设g (x )=xf (x ), 即g ′(x )=ln x x,由g ′(x )>0得x >1,由g ′(x )<0得0<x <1,即xf (x )在(1,+∞)上单调递增,在(0,1)上单调递减,即当x =1时,函数g (x )=xf (x )取得极小值g (1)=f (1)=12.故选ABC . 28.(多选)已知函数f (x )=x 2+x -1e x,则下列结论正确的是( ) A .函数f (x )存在两个不同的零点B .函数f (x )既存在极大值又存在极小值C .当-e<k ≤0时,方程f (x )=k 有且只有两个实根D .若x ∈[t ,+∞)时,f (x )max =5e 2,则t 的最小值为2 28.答案 ABC 解析 由f (x )=0,得x 2+x -1=0,∴x =-1±52,故A 正确.f ′(x )=-x 2-x -2e x = -(x +1)(x -2)e x,当x ∈(-∞,-1)∪(2,+∞)时,f ′(x )<0,当x ∈(-1,2)时,f ′(x )>0,∴f (x )在(-∞,-1),(2,+∞)上单调递减,在(-1,2)上单调递增,∴f (-1)是函数的极小值,f (2)是函数的极大值,故B 正确.又f (-1)=-e ,f (2)=5e2,且当x →-∞时,f (x )→+∞,x →+∞时,f (x )→0,∴f (x )的图象如图所示,由图知C 正确,D 不正确.29.已知函数f (x )=2sin x +sin2x ,则f (x )的最小值是________.29.答案 -332解析 ∵f (x )的最小正周期T =2π,∴求f (x )的最小值相当于求f (x )在[0,2π]上的最小 值.f ′(x )=2cos x +2cos2x =2cos x +2(2cos 2x -1)=4cos 2x +2cos x -2=2(2cos x -1)(cos x +1).令f ′(x )=0,解得cos x =12或cos x =-1,x ∈[0,2π].∴由cos x =-1,得x =π;由cos x =12,得x =53π或x =π3.∵函数的最值只能在导数值为0的点或区间端点处取到,f (π)=2sinπ+sin2π=0,f ⎝⎛⎭⎫π3=2sin π3+sin 2π3=332,f ⎝⎛⎭⎫53π=-332,f (0)=0,f (2π)=0,∴f (x )的最小值为-332. 30.(多选)设函数f (x )=x +e |x |e|x |,则下列选项正确的是( ) A .f (x )为奇函数 B .f (x )的图象关于点(0,1)对称C .f (x )的最大值为1e +1D .f (x )的最小值为-1e+1 30.答案 BCD 解析 f (x )=x e |x |+1,不满足f (-x )=-f (x ),故A 项错误;令g (x )=x e |x |,则g (-x )=-x e|-x |= -x e |x |=-g (x ),所以g (x )为奇函数,则f (x )关于点(0,1)对称,B 项正确;设f (x )=x e|x |+1的最大值为M ,则g (x )的最大值为M -1,设f (x )=x e|x |+1的最小值为N ,则g (x )的最小值为N -1,当x >0时,g (x )=x e x ,所以g ′(x )=1-x ex ,当0<x <1时,g ′(x )>0,当x >1时,g ′(x )<0,所以当0<x <1时,g (x )单调递增,当x >1时,g (x )单调递减,所以g (x )在x =1处取得最大值,最大值为g (1)=1e,由于g (x )为奇函数,所以g (x )在x =-1处取得最小值,最小值为g (-1)=-1e ,所以f (x )的最大值为M =1e+1,最小值为N =-1e+1,故C 、D 项正确.故选B 、C 、D .。

“恒成立问题”解法例说

“恒成立问题”解法例说
如 下.
综 合题 中的“ 成 立问题 ” 恒
1 解 析 几 何 中 的 “ 成 立 问题 ” . 恒
、 选择墨 填 空墨中 的“ 成立 问题” 恒
近 年来 .恒 成 立 问题 ” 选择 题 、 空 题 中 频 繁 出 现 , 类 “ 在 填 该
问 题 背 景丰 富 , 知识 覆 盖 面 广 , 目形 式灵 活 , 以有 效 考 查 学 题 可
为q 0 N vO x ( > , " < < 下同解法一 , x 本文从略 ) .
ai
之 一 , 类 问 题 有 较 高 的 综 合 性 和灵 活性 。 往 通 过 一 道 综 合 该 往
试 题 即可 全 面 考 查学 生 灵 活 运 用 数 学知 识 、 学 思 想 方 法 的 能 数
理( z = 以-一 . 得 2xO , ) - , 帆 主 一 由 + 3所 2 上
0 60
投稿邮 sJ v 3 o 箱: k i1 r x @ p 6 cn
数 学 教 学 通 讯 ( 师版 ) … , 教 一… … - … … ~ 试 一 题研究 > {探究 试匾
解 () 1 易知C的 方 程 为 + =1 .
象可 知 'O <^ 时 ( ) 1 3 - 二 厂 < .又 因 为 o Ⅱ ∞ 0 所 以O 三 <- < l 2 >, > > <^ ^ _


所以 1 (1 , 都 立的 的 使( )1:,3 成 取值范 是f 一 < 2 ) 围 0 ,
A。 ) B。 ) c。 ) 。。 ) ., ., ., ., ( (2 (1 (2
解一 法
ai
)1 )由 0弓 _, 其 : 一 : 已 )f 1 ( , = ) 联系 图 r

高考数学一轮复习-导数中恒成立问题总结(可编辑修改word版)

高考数学一轮复习-导数中恒成立问题总结(可编辑修改word版)

姓名学生姓名填写时间学科数学年级高三教材版本人教 A 版课题名称导数中的恒成立问题课时计划 4 上课时间教学目标同步教学知识内容个性化学习问题解决教学重点教学难点教学过程教师活动一、要点精讲1.导数的概念函数y=f(x),如果自变量x 在x处有增量∆x,那么函数y 相应地有增量∆y=f(x 0+ ∆x)-f(x 0),∆y ∆y f (x +∆x) -f (x )比值叫做函数y=f(x)在x 到x + ∆x 之间的平均变化率,即= 00。

∆x 00∆x ∆x∆y如果当∆x → 0 时,∆x有极限,我们就说函数y=f(x)在点x处可导,并把这个极限叫做f(x)在点x处的导数,记作f’(x)或y’|x=x。

即f(x )= lim∆y= limf (x+∆x) -f (x)。

∆x→0 ∆x ∆x→0 ∆x说明:∆y ∆y(1)函数f(x)在点x 0 处可导,是指∆x → 0 时,∆x有极限。

如果∆x不存在极限,就说函数在点x 0处不可导,或说无导数。

(2)∆x 是自变量x 在x 0处的改变量,∆x ≠ 0 时,而∆y 是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f(x)在点x 0处的导数的步骤(可由学生来归纳):(1)求函数的增量∆y=f(x 0+ ∆x)-f(x 0);∆y f (x0+∆x) -f (x0 )(2)求平均变化率∆x=∆x;∆y(3)取极限,得导数f’(x0 )= lim 。

∆x→0 ∆x⎪2. 导数的几何意义函数 y=f (x )在点 x 0 处的导数的几何意义是曲线 y=f (x )在点 p (x 0 ,f (x 0 )处的切线的斜率。

也就是说,曲线 y=f (x )在点 p (x 0 ,f (x 0 ) 处的切线的斜率是 f’(x 0 )。

相应地,切线方程为 y -y 0 =f /(x 0 )(x -x 0 )。

3. 常见函数的导出公式.(1) (C )' = 0 (C 为常数)(2) (x n )' = n ⋅ x n -1(3) (sin x )' = cos x(5) (ln x )'= 1x(4) (cos x )' = -sin x(6) (e x )' = e x4. 两个函数的和、差、积的求导法则法则 1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( u ± v )' = u ' ± v '.法则 2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即: (uv )' = u 'v + uv '. 若C 为常数,则(Cu )' = C 'u + Cu ' = 0 + Cu ' = Cu ' .即常数与函数的积的导数等于常数乘以函数的导数: (Cu )' = Cu '.法则 3 两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: ⎛ u ⎫ ‘= v u ' v - uv ' v 2(v ≠ 0)。

高考数学复习知识点讲解教案第18讲 导数与不等式-第1课时 利用导数研究恒(能)成立问题

高考数学复习知识点讲解教案第18讲 导数与不等式-第1课时 利用导数研究恒(能)成立问题
4 ≥ 6ln 2 − 3ln 3,
3 ≥ 3 ,
3
4
解得 ln
4
3
≤<
2ln 2

3
3
4 2ln 2
故实数的取值范围为[ ln ,
).
4
3
3
探究点二 分类讨论法求参数范围
例2
(1)
[2023·厦门一中模拟] 已知函数 = ln + 1.
若 = 2, > 0,讨论函数 =
使得 0 < 0,则的取值范围是(
3 1
A.[− , )
4e 2
3 1
B.[ , )
4e 2
B
)
3 3
C.[− , )
2e 4

3
D.[ , 1)
2e
[思路点拨] 构造函数 = e 2 − 1 ,ℎ = 2 − 2,原问题转化为存在
唯一的整数0 ,使得 0 < ℎ 0 ,结合导数及图象求解即可.
设 = 2ln 2 − ln ,则′ = 2ln 2 − ln − 1 =
令′ > 0,即
令′ <
4
ln
e
4
0,即ln
e
− ln > 0,得0 < <
− ln < 0,得 >
4
,
e
4
ln
e
即当 ∈
4
,即当
e

当 → 0时, → 0,当 → +∞ 时, → −∞ .
若存在0 ≥ 1,使得ℎ 0 <
2 +2−1

2 −1

,则只需ℎ

高二数学利用导数研究恒成立问题公开课优秀课件(经典、值得收藏)

高二数学利用导数研究恒成立问题公开课优秀课件(经典、值得收藏)

即2 a
(5)对于x1 -1,1,x2 1,e,f ( x1)=g( x2 )求实数a 的取值范围
f ( x) g( x) 即-2,2 a, a e, 所以a不存在
恒成立问题
例3.函数f ( x) x3 ax2 4在(0,2)内单调递减, 则实数a的取值范围是_______
解析:因为f ( x)在(0,2)单调递减, 所以f ( x)=3x2 -2ax 0在(0,2)恒成立,
2 (2)若当x 0时,f (x) 0,求实数a 的取值范围
方法2: (2) f (x) x(ex 1 ax).令g(x) ex 1 ax,则g(x) ex a
若a 1,则当x 0,+时g(x) 0, g(x)为增函数,g(0)=0
故当x 0,+时,g(x) 0.
若a 1时,当x 0,ln a时,g(x) 0,g(x)为减函数,而g(0) 0 从而当x 0,ln a时,g(x) 0,即f (x) 0
所以,t(x)为增函数,而t(0)=0,故t(x) 0.
故g(x) 0, g(x)为0,+上的增函数。
a ex 1 a lim ex 1
x
x0 x
ex 1
(ex
lim = lim
x0 x
x0
1) (e0 x0
1)
(ex
1)
x0
1,所以a
1.
恒成立问题
例5.(2010新课标)设函数f (x) x(ex 1) ax2 (1)若a 1 ,求f (x)的单调区间;
恒成立问题
例2.设函数f ( x) x3-3x2 +2,g( x) x ln x+a
(1)对于x1 -1,1,x2 1,e,f ( x1) g( x2 )求实数a 的取值范围

导数中恒成立问题(最值问题)

导数中恒成立问题(最值问题)

导数中恒成立问题(最值问题)导数中恒成立问题(最值问题)恒成立问题是高考函数题中的重点问题,也是高中数学非常重要的一个模块,不管是小题,还是大题,常常以压轴题的形式出现。

知识储备(我个人喜欢将参数放左边,函数放右边)先来简单的(也是最本质的)如分离变量后,()a f x ≥恒成立,则有max ()a f x ≥ ()a f x ≤恒成立,则有min ()a f x ≤ (若是存在性问题,那么最大变最小,最小变最大) 1.对于单变量的恒成立问题如:化简后我们分析得到,对[],x a b ∀∈,()0f x ≥恒成立,那么只需min ()0f x ≥ [],x a b ∃∈,使得()0f x ≥,那么只需max ()0f x ≥ 2.对于双变量的恒成立问题如:化简后我们分析得到,对[]12,,x x a b ∀∈,12()()f x g x ≥,那么只需min max ()()f x g x ≥ 如:化简后我们分析得到,对[]1,x a b ∀∈,[]2,x c d ∃∈使12()()f x g x ≥,那么只需min min ()()f x g x ≥如:化简后我们分析得到,[]1,x a b ∃∈,[]2,x c d ∈使12()()f x g x ≥,那么只需max min ()()f x g x ≥ 还有一些情况了,这里不一一列举,总之一句话(双变量的存在性与恒成立问题,都是先处理一个变量,再处理另一个变量)3.对于带绝对值的恒成立问题,我们往往先根据函数的单调性,去掉绝对值,再转变成恒成立问题(2014.03苏锡常镇一模那题特别典型)今天呢,我会花很多时间来讲解一道二次函数,因为二次函数是最本质的,(甚至我提出这样一个观点,所有导数的题目95%归根结底就是带参数二次函数在已知定义域上根的讨论,3%是ax b +与3ax b +这种形式根的讨论,2%是观察法得到零点,零点通常是11,,e e之类),所以如果我们真正弄清楚了二次函数,那么对于千变万化的导数题,我们还会畏惧吗。

大题精做12 函数与导数:存在、恒成立与最值问题(理)(教师版)

大题精做12  函数与导数:存在、恒成立与最值问题(理)(教师版)

ex 1 x . x 2
【答案】 (1)见解析; (2)见解析. 【解析】 (1)当 m 1 时, f x x 1 e x , f x 1 e x ,令 f x 1 e x 0 ,则 x 0 . 当 x 0 时, f x 0 ;当 x 0 时, f x 0 , ∴函数 f x 的单调递增区间是 ,0 ;单调递减区间是 0, .
1 x 1 x f x x 1 e x e 1 xe e , x x
当 0 x 1时, f x 0 ;当 x 1 时, f x ]
f x min f ln a a a ln a 1 2a 2 a 1 ,
整理得 a ln a 2a2 2a 0 ,即 ln a 2a 2 0 . 令 g a ln a 2a 2(a 0) ,易知 g a 在 0, 上单调递增,且 g 1 0 ; 所以 lna 2a 2 0 的 解集为 0,1 ,所以 a 0,1 . 2.[2019· 咸阳模拟]设函数 f x x 1 me x , m R . (1)当 m 1 时,求 f x 的单调区间; (2)求证:当 x 0, 时, ln
所以函数 f x 的单调递减区间为 0,1 ,单调 递增区间为 1, . (2)证明:由(1)得 f x 的定义域是 0, , f x
x 1 x xe a , x
[来源: 学&科& 网Z&X&X &K]
令 g x xe x a ,则 g x x 1 e x 0 , g x 在 0, 上单调递增, 因为 a 0 ,所以 g 0 a 0 , g a ae a a a a 0 , 故存在 x0 0, a ,使得 g x0 x0 e x0 a 0 . 当 x 0, x0 时, g x 0 , f x

导数的零点问题及恒成立问题(教师版)

导数的零点问题及恒成立问题(教师版)

导数的零点问题与恒成立问题1.已知函数f (x )=ln x +ax +1.(1)讨论f (x )的单调性;(2)对任意x >0,xe 2x ≥f (x )恒成立,求实数a 的最大值.【答案】(1)答案见解析;(2)2.【解析】(1)f (x )=1x +a =1+axx(x >0)当a ≥0时,x ∈(0,+∞),f (x )=1+axx>0,所以f (x )在(0,+∞)上单调递增;当a <0时,x ∈0,-1a ,f (x )=1+ax x >0,所以f (x )在0,-1a上单调递增;x ∈-1a ,+∞ ,f (x )=1+ax x <0,所以f (x )在-1a,+∞ 上单调递减;综上:当a ≥0时,f (x )在(0,+∞)上单调递增;当a <0时,f (x )在0,-1a 上单调递增,在-1a,+∞ 上单调递减.(2)任意x >0,xe 2x ≥f (x ),即xe 2x -ln x -ax -1 ≥0恒成立,即e ln x +2x -ln x -ax -1≥0恒成立;令g (x )=e ln x +2x -ln x -ax -1,则任意x >0,g (x )=e ln x +2x -ln x -ax -1≥0,因为,存在正实数x 0,满足:ln x 0+2x 0=0且g (x 0)=eln x 0+2x 0-ln x 0-ax 0-1≥0,所以2x 0-ax 0≥0,所以a ≤2.下证:当a =2时成立:即证:e ln x +2x -ln x -2x -1≥0,因为∀x ∈R ,e x ≥x +1,所以:e ln x +2x -ln x -2x -1≥ln x +2x +1-ln x -2x -1=0显然成立;所以实数a 的最大值为2.2.已知函数f x =a ln x +2 -x a ∈R .(1)讨论f (x )的单调性和最值;(2)若关于x 的方程e x =2m -1m ln mx +2(m >0)有两个不等的实数根x 1,x 2,求证:e x 1+e x 2>2m.【答案】(1)见解析;(2)见解析【解析】(1)f x =a x +2-1=a -2-xx +2,其中x >-2若a ≤0,则f x <0在-2,+∞ 上恒成立,故f (x )在-2,+∞ 上为减函数,故f (x )无最值.若a >0,当x ∈-2,a -2 时,f x >0;当x ∈a -2,+∞ 时,f x <0;故f (x )在-2,a -2 上为增函数,在a -2,+∞ 上为减函数,故f (x )max =f a -2 =a ln a -a +2,f (x )无最小值.(2)方程e x =2m -1m ln mx +2(m >0)即为me x +x +ln m =x +2+ln x +2 ,故e x +ln m +ln e x +ln m =x +2+ln x +2 ,因为y =x +ln x 为0,+∞ 上的增函数,所以x +2=e x +ln m =me x所以关于x 的方程e x =2m -1m ln mx +2(m >0)有两个不等的实数根x 1,x 2即为:x +2=me x 有两个不同的实数根x 1,x 2.所以x 1+2=me x 1,x 2+2=me x 2,所以x 1-x 2=m e x 1-e x 2,不妨设x 1>x 2,t =x 1-x 2,故e x 1+e x 2=e x1+e x 2x 1-x 2m e x1-e x 2,要证:e x 1+e x 2>2m 即证e x 1+e x 2x 1-x 2m e x1-e x 2>2m ,即证e x 1-x 2+1 x 1-x 2e x 1-x2-1>2,即证e t +1 te t -1>2t >0 ,即证e t +1 t >2e t -2t >0 ,设s t =e t +1 t -2e t +2,则s t =e t +1+te t -2e t =t -1 e t +1,故s t =te t >0,所以s t 在0,+∞ 上为增函数,故s t >s 0 =0,所以s t 在0,+∞ 上为增函数,所以s t >s 0 =0,故e x 1+e x 2>2m成立.3.已知f x =sin n x ,g x =ln x +me x (n 为正整数,m ∈R ).(1)当n =1时,设函数h x =x 2-1-2f x ,x ∈0,π ,证明:h x 有且仅有1个零点;(2)当n =2时,证明:f x 2+g x <x +m e x -1.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)当n =1时,h x =x 2-1-2sin x 0<x <π 记φx =h x =2x -2cos x ,则φ x =2+2sin x >0所以φx =h x 在区间0,π 上单调递增而φ0 =-2<0,φπ2 =π>0所以存在x 0∈0,π2,使得φx 0 =0,即h x 0 =0当x ∈0,x 0 时,φx =h x <0,h x 单调递减当x ∈x 0,π 时,φx =h x >0,h x 单调递增又h 0 =-1<0,h x 0 <h 0 <0,h π =π2-1>0所以h x 在0,x 0 上没有零点,在x 0,π 上有一个零点,综上所述,函数h x 在0,π 内只有一个零点.(2)当n =2时,f x =2sin x cos x =sin2x ,要证f x 2+g x <x +m e x -1,即证sin2x2+ln x +1-xe x <0,令H x =sin2x -2x (x >0),则H x =2cos2x -2≤0,所以H x 在0,+∞ 单调递减,H x <H 0 =0,即sin2x <2x ,要证sin2x 2+ln x +1-xe x <0只需证x +ln x +1-xe x ≤0,令μx =e x -x -1,则μ x =e x -1,∴μx 在-∞,0 单调递减,在0,+∞ 单调递增,∴μx ≥μ0 =0,即e x ≥x +1,∴e x +ln x ≥x +ln x +1,即xe x ≥x +ln x +1,所以x +ln x +1-xe x ≤0成立,∴原命题得证.4.已知函数f x =e x -a ln x ,a ∈R .(1)当a =0时,若曲线y =f x 与直线y =kx 相切于点P ,求点P 的坐标;(2)当a =e 时,证明:f x ≥e ;(3)若对任意x ∈0,+∞ ,不等式f x >a ln a 恒成立,请直接写出a 的取值范围.【答案】(1)1,e ;(2)证明见解析;(3)0,e 【解析】(1)当a =0时,f x =e x ,f x =e x .设P x 0,e x 0 ,则切线斜率k =e x 0.由切点性质,得k =e x 0e x 0=kx 0 ,解得x 0=1.所以点P 的坐标1,e .(2)当a =e 时,f x =e x -e ln x ,其中x >0,则f x =e x -ex,令g x =e x -e x ,其中x >0,则g x =e x +e x 2>0,故函数f x 在0,+∞ 上单调递增,且f1 =0,当x 变化时,x ,f x ,f x 变化情况如下表:x 0,111,+∞f x -0+f x单调递减极小值单调递增由上表可知,f (x )min =f 1 =e.所以f x ≥e.(3)实数a 的取值范围0,e .理由如下:方法一:(数形结合)在0,+∞ 上f x =e x -a ln x >a ln a 恒成立,即e x >a ln x +ln a .因而函数y 1=e x 的图象在函数y 2=a ln x +a ln a 的图象上方.考虑函数y 1=e x 图象在函数y 2=a ln x +a ln a 图象恰好有一个公共点的临界情形(如图所示),此时它们在交点处有一条公切线m ,设交点的横坐标为x 0.又y '1=e x,y '2=a x,由切点性质知e x=a x 0e x 0=a ln x 0+a ln a,所以a x 0=a ln x 0+a ln a 即1x 0=ln x 0+ln a ,由e x 0=a x 0得x 0e x 0=a ,所以1x 0=ln x 0+ln x 0e x 0即2ln x 0+x 0-1x 0=0记h x =2ln x +x -1x ,x ∈0,+∞ ,则h x =2x +1+1x2>0,所以h x在0,+∞ 上是增函数.又因为h 1 =0,所以方程2ln x 0+x 0-1x 0=0的解是x 0=1.因此,当两函数恰好有一个交点时,交点坐标是1,e ,此处公切线方程是y =ex .所以当函数y 1=e x 的图象在函数y 2=a ln x +a ln a 的图象上方时,实数a 的取值范围0,e .方法二:(同构变形)显然a >0,在0,+∞ 上f x =e x -a ln x >a ln a 恒成立,即e x -ln a -ln x >ln a 恒成立即e x -ln a -ln a >ln x 恒成立,所以e x -ln a +x -ln a >x +ln x =e ln x +ln x 恒成立,构造函数g x =e x +x ,x ∈0,+∞ ,易知g x 在0,+∞ 上是增函数,所以x -ln a >ln x 恒成立,即ln a <(x -ln x )min ,令h x =x -ln x ,h x =x -1x(x >0),当x ∈0,1 时,h x <0,所以h x 在0,1 上单调递减,当x ∈1,+∞ 时,h x >0,所以h x 在1,+∞ 上单调递增,所以h (x )min =h 1 =1,所以ln a <1,解得0<a <e ,所以实数a 的取值范围0,e .5.已知函数f x =x -a ln x ,a ∈R(1)请讨论函数f x 的单调性(2)当x ∈1e ,+∞ 时,若e x≥λx ln ln x +x +1 +1 恒成立,求实数λ的取值范围【答案】(1)答案见解析;(2)λ≤1【解析】(1)f (x )=1-a x =x -ax(x >0)当a ≤0时,f (x )>0,f (x )在(0,+∞)上递增当a >0时,在(0,a )上f (x )<0,f (x )单调递减在(a ,+∞)上f (x )>0,f (x )单调递增(2)原式等价于xe x =e ln x +x ≥λ(ln (ln x +x +1)+1)设t =ln x +x ,x ∈1e ,+∞ 由(1)当a =-1时,f (x )=ln x +x 为增函数,∴t ∈1e-1,+∞ ,∴等式等价于e t ≥λ(ln (t +1)+1),t ∈1e-1,+∞恒成立,t =1e -1时,e 1e -1>0成立,t ∈1e -1,+∞ 时,λ≤e tln (t +1)+1,设g (t )=e t ln (t +1)+1,t ∈1e -1,+∞ ,g (t )=e t (ln (t +1)+1)-e t 1t +1 (ln (t +1)+1)2=e t ⋅ln (t +1)+1-1t +1(ln (t +1)+1)2,设h (t )=ln (t +1)+1-1t +1,h (t )=1t +1+1(t +1)2>0所以h (t )在1e -1,+∞ 上为增函数,又因为h (0)=0,所以在1e-1,0 上,h (t )<0,∴g (t )<0,g (t )为减函数,在(0,+∞)上,h (t )>0,∴g (t )>0,g (t )为增函数,∴g (t )min =g (0)=1,∴λ≤1.6.已知函数f x =ax 2-1ln x,其图象在x =e 处的切线过点2e ,2e 2 .(1)求a 的值;(2)讨论f x 的单调性;(3)若λ>0,关于x 的不等式λxf x ≤e 2λx -1在区间[1,+∞)上恒成立,求λ的取值范围.【答案】(1)1;(2)f x 在0,1 上递增,在1,+∞ 上递增;(3)1e ,+∞【解析】(1)因为函数f x =ax 2-1ln x,所以f e =ae 2-1,f x =2ax ln x -ax 2-1 1xln x2,则f e =ae +1e,所以函在x =e 处的切线方程为y -ae 2-1 =ae +1ex -e ,又因为切线过点2e ,2e 2,所以2e 2-ae 2-1 =ae +1e2e -e ,即2ae 2=2e 2,解得a =1;(2)由(1)知;f x =x 2-1ln x ,x >0且x ≠1,则fx =2x 2ln x -x 2+1x ln x 2,令g x =2x 2ln x -x 2+1,则g x =4x ln x ,当0<x <1时,g x <0,g x 单调递减;当x >1时,g x >0,g x 单调递增;所以g x ≥g 1 =0,f x ≥0,所以f x 在0,1 ,1,+∞ 上递增;(3)因为x 的不等式λxf x ≤e 2λx -1在区间[1,+∞)上恒成立,所以e 2λx -1λx≥x 2-1ln x 在区间[1,+∞)上恒成立,即f e λx ≥f x 在区间[1,+∞)上恒成立,因为f x 在1,+∞ 上递增,所以e λx ≥x 在区间[1,+∞)上恒成立,即λ≥ln xx在区间[1,+∞)上恒成立,令h x =ln x x ,则h x =1-ln xx 2,当0<x <e 时,h x >0,当x >e 时,h x <0,所以当x =e 时,h x 取得最大值h e =1e,所以λ≥1e.7.已知函数f x =e x -1-mx 2m ∈R .(1)选择下列两个条件之一:①m =12;②m =1;判断f x 在区间0,+∞ 是否存在极小值点,并说明理由;(2)已知m >0,设函数g x =f x +mx ln mx .若g x 在区间0,+∞ 上存在零点,求实数m 的取值范围.【答案】(1)答案见解析;(2)m ≥1.【解析】(1)若选择①m =12,f x =e x -1-12x 2,则f x =e x -1-x ,f x =e x -1-1,由f x 在R 上单调递增,且f 1 =0,所以f x 在0,1 上单调递减,1,+∞ 上单调递增,有f x ≥f 1 =0,则f x 在0,+∞ 上单调递增,不存在极小值点.若选择②m =1,f x =e x -1-x 2,则f x =e x -1-2x ,f x =e x -1-2,由f x 在R 上单调递增,且f 1+ln2 =0,所以f x 在0,1+ln2 上单调递减,1+ln2,+∞ 上单调递增,有f x ≥f 1+ln2 =-2ln2<0,而f 4 =e 3-8>0,所以存在极小值点x 0∈1+ln2,4 .(2)令g x =0,有e x -1-mx 2+mx ln mx =0,又mx >0,所以e x -1mx -x +ln mx =e x -1e ln mx -x +ln mx =e x -ln mx -1-x -ln mx=0,令t =x -ln mx ,即转化为e t -1-t =0有解,设h t=e t -1-t ,则由h t =e t -1-1可得,h t 在t ∈-∞,1 单调递减,在t ∈1,+∞ 单调递增,而h 1 =0,所以h t =e t -1-t 由唯一零点t =1.若g x 在区间0,+∞ 存在零点,即为1=x -ln mx 在0,+∞ 有解.整理得:1+ln m =x -ln x ,设l x =x -ln x ,由l x =1-1x知,l x 在x ∈0,1 单调递减,在x ∈1,+∞ 单调递增,则l x ≥l 1 =1,所以1+ln m ≥1,故有m ≥1.8.已知函数f x =e 2x +a -12ln x +a 2(1)若函数y =f x 在0,12上单调递减,求a 的取值范围;(2)若函数y =f x 在定义域内没有零点,求a 的取值范围.【答案】(1)a ≤-1-ln2;(2)a >-1-ln2.【解析】(1)f x =2e 2x +a -12x因为函数f x 在0,12 单调递减,所以f x =2e 2x +a -12x ≤0在0,12恒成立,两边取以e 为底的对数,即a ≤-2x -1n 4x 在0,12恒成立,设g x =-2x -ln4x ,g x =-2-1x<0所以g x 在0,12 递减,所以g (x )min =g 12=-1-ln2,所以a ≤-1-ln2;(2)f x =e 2x +a -12ln x +a2在0,+∞ 无零点,等价于方程e 2x +a -12ln x +a2=0在0,+∞ 无实根,亦即e 2x +a +2x +a 2=e ln x +ln x2在0,+∞ 无实根,因为e x +x2在0,+∞ 为单调增函数,原方程无零点等价于2x +a =ln x 在0,+∞ 无实根,即:a =ln x -2x 在0,+∞ 无实根,构造函数h x =ln x -2x ,h (x )=1x -2=1-2x x ,x ∈0,12 ,h (x )>0,x ∈12,+∞ ,h (x )<0所以h x 在0,12 上单调递增,在12,+∞ 上单调递减,且h (x )max =h 12=-1-ln2,x →0,h x →-∞所以a >-1-ln2.9.已知函数f (x )=ae x -ln (x +1)+ln a -1.(1)若a =1,求函数f (x )的极值;(2)若函数f (x )有且仅有两个零点,求a 的取值范围.【答案】(1)极小值0,无极大值;(2)0<a <1.【解析】(1)当a =1时,f (x )=e x -ln (x +1)-1,f ′(x )=e x -1x +1,x >-1,显然f ′(x )在(-1,+∞)单调递增,且f ′(0)=0,∴当-1<x <0时,f ′(x )<0,f (x )单调递减,当x >0时,f ′(x )>0,f (x )单调递增,∴f (x )在x =0处取得极小值f (0)=0,无极大值.(2)函数f (x )有两个零点,即f (x )=0⇒ae x +ln a +x =ln (x +1)+x +1有两个解,即ae x +ln ae x =ln (x +1)+(x +1)有两个解,设h (t )=t +ln t ,则h ′(t )=1+1t>0,h (t )单调递增,∴ae x =x +1(x >-1)有两个解,即a =x +1e x(x >-1)有两个解.令s (x )=x +1e x (x >-1),则s ′(x )=-xe x ,当x ∈(-1,0)时,s ′(x )>0,s (x )单调递增,当x ∈(0,+∞)时,s ′(x )<0,s (x )单调递减,又x =-1时,s (x )=x +1e x=0,且s (0)=1,当x →+∞时,s (x )→0,且s (x )>0所以当x >-1时,x +1ex ∈(0,1]∴0<a <1.10.已知f x =x ln x +a 2x 2+1.(1)若函数g x =f x +x cos x -sin x -x ln x -1在0,π2上有1个零点,求实数a 的取值范围.(2)若关于x 的方程xe x -a =f x -a 2x 2+ax -1有两个不同的实数解,求a 的取值范围.【答案】(1)0<a ≤8π2;(2)a >1【解析】(1)g (x )=a 2x 2+x cos x -sin x ,x ∈0,π2,所以g ′(x )=x (a -sin x ),当a ≥1时,a -sin x ≥0,所以g (x )在0,π2单调递增,又因为g (0)=0,所以g (x )在0,π2上无零点;当0<a <1时,∃x 0∈0,π2,使得sin x 0=a ,所以g (x )在x 0,π2 单调递减,在(0,x 0)单调递增,又因为g (0)=0,g π2 =a π28-1,所以若a π28-1>0,即a >8π2时,g (x )在0,π2 上无零点,若a π28-1≤0,即0<a ≤8π2时,g (x )在0,π2 上有一个零点,当a ≤0时,g ′(x )=a -x sin x <0,g (x )在0,π2上单调递减,g (x )在0,π2 上无零点,综上当0<a ≤8π2时,g (x )在0,π2 上有一个零点;(2)由xe x -a =f x -a2x 2+ax -1x >0 ,即xe x -a=x ln x +ax ,即e x -a =ln x +a ,则有e x -a +x -a =x +ln x ,令h x =x +ln x ,x >0,则h e x -a =e x -a +x -a ,h x =1+1x>0,所以函数h x 在0,+∞ 上递增,所以e x -a =x ,则有x -a =ln x ,即a =x -ln x ,x >0,因为关于x 的方程xe x -a =f x -a2x 2+ax -1有两个不同的实数解,则方程a =x -ln x ,x >0有两个不同的实数解,令φx =x -ln x ,则φ x =1-1x =x -1x,当0<x <1时,φ x <0,当x >1时,φ x >0,所以函数φx =x -ln x 在0,1 上递减,在1,+∞ 上递增,所以φx min =φ1 =1,当x →0时,φx →+∞,当x →+∞时,φx →+∞,所以a >1.11.在数学中,我们把仅有变量不同,而结构、形式相同的两个式子称为同构式,相应的方程称为同构方程,相应的不等式称为同构不等式.若关于a 的方程ae a =e 6和关于b 的方程b (ln b -2)=e 3λ-1(a ,b ∈R )可化为同构方程.(1)求ab 的值;(2)已知函数f (x )=x ln x +13λ.若斜率为k 的直线与曲线y =f '(x )相交于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,求证:.x 1<1k<x 2【答案】(1)e 8;(2)答案见解析.【解析】(1)对ae a =e 6两边取自然对数,得ln a +a =6(1),对b (ln b -2)=e 3λ-1(a ,b ∈R )两边取自然对数,得ln b +ln (ln b -2)=3λ-1,即ln b -2+ln (ln b -2)=3λ-3(2).,因为(1)(2)方程为两个同构方程,所以3λ-3=6,解得λ=3,设φ(x )=ln x +x ,x >0,则φ'(x )=1x+1>0 ,所以φ(x )在(0,+∞)单调递增,所以方程φ(x )=6的解只有一个,所以a =ln b -2,所以ab =(ln b -2)b =b (ln b -2)=e 3×3-1=e 8,故ab =e 8 .(2)由(1)知:f (x )=x ln x +13λ =x ln x +13×3 =x ln x +x ,x ∈(0,+∞).所以f(x )=ln x +2,k =f (x 2)-f (x 1)x 2-x 1=ln x 2-ln x 1x 2-x 1,要证x 1<1k<x 2,即证明x 1<x 2-x 1ln x 2-ln x 1<x 2,等价于1<x 2x 1-1ln x 2x 1<x 2x 1,令t =x 2x 1(t >1),则只要证明1<t -1ln t <t 即可,由t >1知,ln t >0,故等价于证ln t <t -1<t ln t (t >1).设g (t )=t -1-ln t (t >1), 则g '(x )=1-1t>0(t >1),即g (t )在(1,+∞)单调递增,故g (t )>g (1)=0,即t -1>ln t .设h (t )=t ln t -(t -1)(t >1),则h '(t )=ln t >0(t >1),即h (t )在(1,+∞)单调递增,故h (t )>h (1)=0,即t -1<t ln t 。

导数压轴3-恒成立问题之参变分离法教师

导数压轴3-恒成立问题之参变分离法教师

一、方法初探【例1】若()ln 10f x x ax =-+<恒成立,求a 。

解一:求导得1'()f x a x=- 若0a ≤,则'()0f x ≥恒成立;则()f x 在(0,)+∞上单增,有1()0af e e =-≥ ,不成立;若0a >时,()f x 在1(0,a 上单增,在1(,)a+∞上单减;则max ()ln f x a =-,令ln 0a -<得(1,)a ∈+∞。

【思路解析】以上解法是我们所熟悉的分类讨论解法,本题较为简单,因此即使是分类讨论也不是很复杂,但如果遇到有些复杂些的题目,用分类讨论的方法就会异常繁琐,甚至无法顺利求得结果,接下来我们就来引入另一种方法——即参变分离法。

解二:将参数和未知数分离到不等号两边,即转化成ln 1x a x+>恒成立问题; 令ln 1()x g x x +=,则问题即成为max ()a g x >,接下来就仅剩对()g x 性质分析;2ln '()xg x x=-,则()g x 在(0,1)上单增,在(1,)+∞上单减,max ()(1)1a g x g ∴>==;得到1a >。

【小结】相比于解法一,解法二避免了繁琐的讨论,只需要求得max ()g x 即可,【方法对话】参变分离方法的实质,就是将参数和未知数分离到等式两边,将问题转化为求含有未知数式子的最大或最小值,但需要注意的是,在进行参变分离的时候,要注意题干表达的是“恒成立”还是“能成立”,对于恒成立,是要使对任意的x ,该不等式都能成立,而对能成立,则只需要存在x 使式子成立即可。

因此,恒成立和能成立对应的参变分离后转化的需求问题也不同,简单来说恒成立:比它大,就比它的最大值都大,比它小,就比它的最小值都小。

能成立:比它大,就比它的最小值都大,比它小,就比它的最大值都小。

具体的部分推论如下:第三课:恒/能成立问题之参变分离法(1)若对x I ∀∈,()0f x >恒成立,则min ()0f x >. 若对x I ∀∈,()0f x <恒成立,则max ()0f x <. (2)若x I ∃∈,使得()0f x >成立,则max ()0f x >.若x I ∃∈,使得()0f x <成立,则min ()0f x <.(3)设()f x 与()g x 的定义域的交集为D ,若x ∀∈D ()()f x g x >恒成立,则有[]min ()()0f x g x ->(4)若对11x I ∀∈、22x I ∈ ,12()()f x g x >恒成立,则min max ()()f x g x >.若对11x I ∀∈,22x I ∃∈,使得12()()f x g x >,则min min ()()f x g x >. 若对11x I ∀∈,22x I ∃∈,使得12()()f x g x <,则max max ()()f x g x <.此类问题中需要特别注意的是:能转移成这样问题的,一定得满足()f x 中的1x 与()g x 中的2x 是两个独立变量!即两者必须毫无关联才能转化成这样的问题。

专题突破一利用导函数研究恒成立(教)

专题突破一利用导函数研究恒成立(教)

专题突破一 高考中的导数综合问题第1课时 利用导数研究恒(能)成立问题题型一 分离参数求参数范围例1 已知函数f (x )=a e x -2x +1.(1)当a =1时,求函数f (x )的极值;(2)若f (x )>0对x ∈R 恒成立,求实数a 的取值范围.解 (1)当a =1时,f (x )=e x -2x +1,则f ′(x )=e x -2,令f ′(x )<0,解得x <ln 2;令f ′(x )>0,解得x >ln 2.故函数f (x )在(-∞,ln 2)上单调递减,在(ln 2,+∞)上单调递增,故函数f (x )的极小值为f (ln 2)=2-2ln x +1=3-2ln 2,无极大值.(2)f (x )>0对x ∈R 恒成立,即a >2x -1e x 对任意x ∈R 都成立, 设g (x )=2x -1e x ,则a >g (x )max , g ′(x )=2e x -(2x -1)e x (e x )2=3-2x e x , 令g ′(x )>0,解得x <32;令g ′(x )<0,解得x >32. 故函数g (x )在⎝⎛⎭⎫-∞,32上单调递增,在⎝⎛⎭⎫32,+∞上单调递减, ∴g (x )max =g ⎝⎛⎭⎫32=322e =322e -.故实数a 的取值范围为322e -∞⎛⎫+ ⎪⎝⎭,. 思维升华 分离参数法解决恒(能)成立问题的策略(1)分离变量.构造函数,直接把问题转化为函数的最值问题.(2)a ≥f (x )恒成立⇔a ≥f (x )max ;a ≤f (x )恒成立⇔a ≤f (x )min ;a ≥f (x )能成立⇔a ≥f (x )min ;a ≤f (x )能成立⇔a ≤f (x )max .跟踪训练1 已知函数f (x )=ax -e x (a ∈R ),g (x )=ln x x. (1)求函数f (x )的单调区间;(2)∃x ∈(0,+∞),使不等式f (x )-g (x )+e x ≤0成立,求a 的取值范围.解 (1)因为f ′(x )=a -e x ,x ∈R .当a ≤0时,f ′(x )<0,f (x )在R 上单调递减;当a >0时,令f ′(x )=0,得x =ln a .由f ′(x )>0,得f (x )的单调递增区间为(-∞,ln a );由f ′(x )<0,得f (x )的单调递减区间为(ln a ,+∞).综上所述,当a ≤0时,f (x )的单调递减区间为(-∞,+∞),无单调递增区间;当a >0时,f (x )的单调递增区间为(-∞,ln a ),单调递减区间为(ln a ,+∞).(2)因为∃x ∈(0,+∞),使不等式f (x )-g (x )+e x ≤0成立,所以ax ≤ln x x ,即a ≤ln x x 2. 设h (x )=ln x x 2,则问题转化为a ≤⎝⎛⎭⎫ln x x 2max . 由h ′(x )=1-2ln x x 3,令h ′(x )=0,得x = e. 当x 在区间(0,+∞x (0,e) e(e ,+∞) h ′(x ) + 0 -h (x ) ↗ 极大值12e↘由上表可知,当x =e 时,函数h (x )有极大值,即最大值,为12e ,所以a ≤12e. 故a 的取值范围是⎝⎛⎦⎤-∞,12e .题型二 等价转换法求参数的范围例2 (2020·合肥六校联考)已知函数f (x )=(x +a -1)e x ,g (x )=12x 2+ax ,其中a 为常数. (1)当a =2时,求函数f (x )在点(0,f (0))处的切线方程;(2)若对任意的x ∈[0,+∞),不等式f (x )≥g (x )恒成立,求实数a 的取值范围.解 (1)因为a =2,所以f (x )=(x +1)e x ,所以f (0)=1,f ′(x )=(x +2)e x ,所以f ′(0)=2,所以所求切线方程为2x -y +1=0.(2)令h (x )=f (x )-g (x ),由题意得h (x )min ≥0在x ∈[0,+∞)上恒成立,因为h (x )=(x +a -1)e x -12x 2-ax , 所以h ′(x )=(x +a )(e x -1).①若a ≥0,则当x ∈[0,+∞)时,h ′(x )≥0,所以函数h (x )在[0,+∞)上单调递增,所以h (x )min =h (0)=a -1,则a -1≥0,得a ≥1.②若a <0,则当x ∈[0,-a )时,h ′(x )≤0;当x ∈[-a ,+∞)时,h ′(x )≥0,所以函数h (x )在[0,-a )上单调递减,在[-a ,+∞)上单调递增,所以h (x )min =h (-a ),又因为h (-a )<h (0)=a -1<0,所以不符合题意.综上,实数a 的取值范围为[1,+∞).思维升华 对不适合分离参数的不等式,常常将参数看成常数,直接构造函数,转化成求函数的最值问题. 跟踪训练2 已知函数f (x )=e x -ax .(1)讨论f (x )的单调性;(2)当x ∈[0,+∞)时,都有f (x )>-a ,求实数a 的取值范围.解 (1)f ′(x )=e x -a (x ∈R ),当a ≤0时,f ′(x )>0,∴f (x )在R 上单调递增;当a >0时,令f ′(x )>0⇒x >ln a ,令f ′(x )<0⇒x <ln a ,∴f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.(2)依题意知,当x ∈[0,+∞)时,f (x )min >-a ,由(1)知,当a ≤1时,f (x )在[0,+∞)上单调递增,∴f (x )min =f (0)=1>-a ,∴-1<a ≤1.当a >1时,f (x )在[0,ln a )上单调递减,在(ln a ,+∞)上单调递增,∴f (x )min =f (ln a )=e ln a -a ln a =a -a ln a >-a ,解得1<a <e 2.综上,函数a 的取值范围为(-1,e 2).题型三 双变量的恒(能)成立问题例3 设f (x )=a x+x ln x ,g (x )=x 3-x 2-3. (1)如果存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ;(2)如果对于任意的s ,t ∈⎣⎡⎦⎤12,2,都有f (s )≥g (t )成立,求实数a 的取值范围.解 (1)存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M 成立.g ′(x )=3x 2-2x =x (3x -2),令g ′(x )=0,得x =0或x =23, ∵g ⎝⎛⎭⎫23=-8527, 又g (0)=-3,g (2)=1,∴当x ∈[0,2]时,g (x )max =g (2)=1,g (x )min =g ⎝⎛⎭⎫23=-8527, ∴M ≤1-⎝⎛⎭⎫-8527=11227, ∴满足条件的最大整数M 为4.(2)对任意的s ,t ∈⎣⎡⎦⎤12,2有f (s )≥g (t ),则f (x )min ≥g (x )max .由(1)知当x ∈⎣⎡⎦⎤12,2时,g (x )max =g (2)=1,∴当x ∈⎣⎡⎦⎤12,2时,f (x )=a x+x ln x ≥1恒成立, 即a ≥x -x 2ln x 恒成立.令h (x )=x -x 2ln x ,x ∈⎣⎡⎦⎤12,2,∴h ′(x )=1-2x ln x -x ,令φ(x )=1-2x ln x -x ,∴φ′(x )=-3-2ln x <0,h ′(x )在⎣⎡⎦⎤12,2上单调递减,又h ′(1)=0,∴当x ∈⎣⎡⎦⎤12,1时,h ′(x )≥0,当x ∈[1,2]时,h ′(x )≤0,∴h (x )在⎣⎡⎦⎤12,1上单调递增,在[1,2]上单调递减,∴h (x )max =h (1)=1,故a ≥1.∴实数a 的取值范围是[1,+∞).思维升华 “双变量”的恒(能)成立问题一定要正确理解其实质,深刻挖掘内含条件,进行等价变换,常见的等价转换有(1)∀x 1,x 2∈D ,f (x 1)>g (x 2)⇔f (x )min >g (x )max .(2)∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2)⇔f (x )min >g (x )min .(3)∃x 1∈D 1,∀x 2∈D 2,f (x 1)>g (x 2)⇔f (x )max >g (x )max .跟踪训练3 已知函数f (x )=x -1-a ln x (a <0).(1)讨论函数f (x )的单调性;(2)当0<x 1<x 2≤1时,都有f (x 1)-f (x 2)x 1-x 2<4x 1x 2,求实数a 的取值范围. 解 (1)由题意知f ′(x )=1-a x =x -a x(x >0), 因为x >0,a <0,所以f ′(x )>0,所以f (x )在(0,+∞)上单调递增.(2)∵0<x 1<x 2≤1,∴x 1-x 2<0,∴原不等式等价于f (x 1)-f (x 2)>4(x 1-x 2)x 1x 2, 即f (x 1)-f (x 2)>4x 2-4x 1, 即f (x 1)+4x 1>f (x 2)+4x 2. 设g (x )=f (x )+4x,x ∈(0,1], |f (x 1)-f (x 2)|<4⎪⎪⎪⎪1x 1-1x 2等价于g (x )在(0,1]上单调递减,所以g ′(x )≤0在(0,1]上恒成立⇔1-a x -4x 2=x 2-ax -4x 2≤0在(0,1]上恒成立⇔a ≥x -4x在(0,1]上恒成立,易知y =x -4x在(0,1]上单调递增,其最大值为-3.因为a <0,所以-3≤a <0,所以实数a 的取值范围为[-3,0). 培优点 隐零点问题在求解导数问题时,我们一般对函数的零点设而不求,通过一种整体代换和过渡,再结合题目条件最终解决问题,我们称这类问题为“隐零点问题”.例1. 已知函数)2ln()(+-=x e x g x,证明)(x g >0.跟踪练习:已知函数x a e x f x ln )(-=.(I )讨论)(x f 的导函数)('x f 的零点的个数;(II )证明:当0>a 时,)ln 2()(a a x f -≥.课时精练1.设函数f (x )=ln x +a x(a 为常数). (1)讨论函数f (x )的单调性;(2)不等式f (x )≥1在x ∈(0,1]上恒成立,求实数a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f ′(x )=-a x 2+1x =x -a x 2, 当a ≤0时,又x >0,∴x -a >0,∴f ′(x )>0,∴f (x )在定义域(0,+∞)上单调递增;当a >0时,若x >a ,则f ′(x )>0,∴f (x )单调递增;若0<x <a ,则f ′(x )<0,∴f (x )单调递减.综上可知,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在区间(0,a )上单调递减,在区间(a ,+∞)上单调递增.(2)f (x )≥1⇔a x +ln x ≥1⇔a x≥-ln x +1⇔a ≥-x ln x +x 对任意x ∈(0,1]恒成立. 令g (x )=-x ln x +x ,x ∈(0,1].则g ′(x )=-ln x -x ·1x+1=-ln x ≥0,x ∈(0,1], ∴g (x )在(0,1]上单调递增,∴g (x )max =g (1)=1,∴a ≥1,故a 的取值范围为[1,+∞).2.已知函数f (x )=x ln x (x >0).(1)求函数f (x )的极值;(2)若存在x ∈(0,+∞),使得f (x )≤-x 2+mx -32成立,求实数m 的最小值. 解 (1)由f (x )=x ln x ,得f ′(x )=1+ln x ,令f ′(x )>0,得x >1e ;令f ′(x )<0,得0<x <1e.所以f (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增. 所以f (x )在x =1e 处取得极小值,且为f ⎝⎛⎭⎫1e =-1e,无极大值. (2)由f (x )≤-x 2+mx -32,得m ≥2x ln x +x 2+3x .问题转化为m ≥⎝⎛⎭⎫2x ln x +x 2+3x min . 令g (x )=2x ln x +x 2+3x =2ln x +x +3x (x >0).则g ′(x )=2x +1-3x 2=x 2+2x -3x 2=(x +3)(x -1)x 2. 由g ′(x )>0,得x >1;由g ′(x )<0,得0<x <1.所以g (x )在(0,1)上单调递减,在(1,+∞)上单调递增.所以g (x )min =g (1)=4,则m ≥4.故m 的最小值为4.3.已知f (x )=e x -ax 2.(1)若f (x )在x =1处的切线与直线(e -2)x -y =0平行,求a 的值;(2)当x ∈[0,+∞)时,恒有f (x )≥x +(1-x )e x ,求实数a 的取值范围. 解 (1)f ′(x )=e x -2ax ,∴f ′(1)=e -2a =e -2,∴a =1.(2)f (x )≥x +(1-x )e x ,即e x -ax 2≥x +e x -x e x ,即e x -ax -1≥0,x ≥0.令h (x )=e x -ax -1(x ≥0),则h ′(x )=e x -a (x ≥0),当a ≤1时,由x ≥0知h ′(x )≥0,∴h (x )在[0,+∞)上单调递增,∴在[0,+∞)上h (x )≥h (0)=0,原不等式恒成立.当a >1时,令h ′(x )>0,得x >ln a ;令h ′(x )<0,得0≤x <ln a .∴h (x )在[0,ln a )上单调递减,又∵h (0)=0,∴h (x )≥0不恒成立,∴a >1不合题意.综上,实数a 的取值范围为(-∞,1].4.已知函数f (x )=x 2+(a +1)x -ln x ,g (x )=x 2+x +2a +1.(1)若f (x )在(1,+∞)上单调递增,求实数a 的取值范围;(2)当x ∈[1,e]时,f (x )<g (x )恒成立,求实数a 的取值范围.解 (1)f (x )=x 2+(a +1)x -ln x ,f ′(x )=2x +(a +1)-1x. 依题意知x ∈(1,+∞)时,2x +(a +1)-1x≥0恒成立, 即a +1≥1x -2x .令k (x )=1x -2x ,x ∈(1,+∞),∴k ′(x )=-1x 2-2<0, ∴k (x )在(1,+∞)上单调递减,∴k (x )<k (1)=-1,∴a +1≥-1,即a ≥-2, ∴实数a 的取值范围为{a |a ≥-2}.(2)令φ(x )=f (x )-g (x )=ax -ln x -2a -1,x ∈[1,e],则只需φ(x )max <0即可,φ′(x )=a -1x =ax -1x. 当a ≤0时,φ′(x )<0,∴φ(x )在[1,e]上单调递减,∴φ(x )max =φ(1)=-a -1,∴-a -1<0,即a >-1,∴-1<a ≤0.当a >0时,当x ∈⎝⎛⎭⎫0,1a 时,φ′(x )<0,当x ∈⎝⎛⎭⎫1a ,+∞时,φ′(x )>0, ∴φ(x )在⎝⎛⎭⎫0,1a 上单调递减,在⎝⎛⎭⎫1a ,+∞上单调递增, ∴要使φ(x )max <0,只需⎩⎪⎨⎪⎧ φ(1)<0,φ(e )<0,a >0,即⎩⎪⎨⎪⎧ -a -1<0,a e -2a -2<0,a >0,解得0<a <2e -2, 综上,实数a 的取值范围为⎩⎨⎧⎭⎬⎫a ⎪⎪ -1<a <2e -2.5.已知函数f (x )=x -(a +1)ln x -a x (a ∈R ),g (x )=12x 2+e x -x e x . (1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)成立,求a 的取值范围.解 (1)f ′(x )=(x -1)(x -a )x 2. ①当a ≤1,x ∈[1,e]时,f ′(x )≥0,f (x )单调递增,f (x )min =f (1)=1-a . ②当1<a <e ,x ∈[1,a ]时,f ′(x )≤0,f (x )单调递减;x ∈[a ,e]时,f ′(x )≥0,f (x )单调递增;所以f (x )min =f (a )=a -(a +1)ln a -1. ③当a ≥e ,x ∈[1,e]时,f ′(x )≤0,f (x )在[1,e]上单调递减.f (x )min =f (e)=e -(a +1)-a e, 综上,当a ≤1时,f (x )min =1-a ;当1<a <e 时,f (x )min =a -(a +1)ln a -1;当a ≥e 时,f (x )min =e -(a +1)-a e. (2)由题意知f (x )(x ∈[e ,e 2])的最小值小于g (x )(x ∈[-2,0])的最小值. 由(1)知当a <1时f (x )在[e ,e 2]上单调递增,f (x )min =f (e)=e -(a +1)-a e.g ′(x )=(1-e x )x . 当x ∈[-2,0]时,g ′(x )≤0,g (x )单调递减,g (x )min =g (0)=1,所以e -(a +1)-a e <1,即a >e 2-2e e +1, 所以a 的取值范围为⎝⎛⎭⎫e 2-2e e +1,1.。

专题:恒成立问题及存在性问题 教师版 - 副本

专题:恒成立问题及存在性问题 教师版 - 副本

导数专题:“恒成立”及“存在性”问题恒成立问题及存在性问题重要结论:(1)对于任意的1[,]∈x a b ,总存在2[,]∈x m n ,使得121max 2max ()()()()≤⇔≤f x g x f x g x ;(2)对于任意的1[,]∈x a b ,总存在2[,]∈x m n ,使得121min 2min ()()()()≥⇔≥f x g x f x g x ; (3)若存在1[,]∈x a b ,对任意的2[,]∈x m n ,使得121min 2min ()()()()≤⇔≤f x g x f x g x ;(4)若存在1[,]∈x a b ,对任意的2[,]∈x m n ,使得121max 2max ()()()()≥⇔≥f x g x f x g x ;(5)对于任意的1[,]∈x a b , 2[,]∈x m n ,使得121max 2min ()()()()≤⇔≤f x g x f x g x ; (6)对于任意的1[,]∈x a b , 2[,]∈x m n ,使得121min 2max ()()()()≥⇔≥f x g x f x g x ; (7)若存在1[,]∈x a b ,总存在2[,]∈x m n ,使得121min 2max ()()()()≤⇔≤f x g x f x g x ; (8)若存在1[,]x a b ∈,总存在2[,]x m n ∈,使得121max 2min ()()()()f x g x f x g x ≥⇔≥; 一.单一函数单一“任意”型例1.已知函数()ln()f x x x a =-+的最小值为0,其中0a >。

(1)求a 的值;(2)若对任意的[0,)x ∈+∞,有2()f x kx ≤成立,求实数的最小值。

二.单一函数单一“存在”型例2. 已知函数2()ln f x a x x =+(a R ∈),若存在[1,]x e ∈,使得()(2)f x a x ≤+成立,求实数a 的取值范围。

导数恒成立问题3种基本方法

导数恒成立问题3种基本方法

导数恒成立问题3种基本方法
这种方法是根据导数定义和基本求导公式来求导数的,需要掌握一些基本公式,如:
1.导数的定义:f'(x) = lim(h→0) [f(x+h) - f(x)]/h
2.常数的导数:(c)' = 0
3.幂函数的导数:(x^n)' = nx^(n-1)
4.指数函数的导数:(a^x)' = a^xlna
5.对数函数的导数:(loga x)' = 1/(xlna)
6.三角函数的导数:(sinx)' = cosx,(cosx)' = -sinx,(tanx)' = sec^2x
二、运算法则法
这种方法是根据导数的运算法则来求导数的,需要掌握一些基本运算法则,如:
1.加减法则:(f+g)' = f' + g'
2.乘法法则:(fg)' = f'g + fg'
3.除法法则:(f/g)' = [f'g - fg']/g^2
4.复合函数法则:(f(g(x)))' = f'(g(x))g'(x)
三、对数微分法
这种方法是使用对数微分法来求导数的,需要掌握以下公式:
1.对数微分法:y = f(x),y' = [ln(y)]'
2.求导公式:[ln(f(x))]′ = f′(x)/f(x)
3.应用:可以将y = f(x)转化为lny = lnf(x),再求导。

以上就是求导的三种基本方法,掌握它们可以更好地理解导数的概念和作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数恒成立问题1、已知函数(a 为实数)(I )若在处有极值,求a 的值;(II )若在]23[--,上是增函数,求a 的取值范围。

1.解(I )由已知得的定义域为又由题意得(II )解法一:依题意得对恒成立,的最大值为的最小值为。

又因时符合题意为所求2、设函数2()ln f x x x ax =++. (Ⅰ)若12x =时,()f x 取得极值,求a 的值; (Ⅱ)若()f x 在其定义域内为增函数,求a 的取值范围;2.解: 2121()2x ax f x x a x x++'=++=,(Ⅰ)因为12x =时,()f x 取得极值,所以1()02f '=, 即210,a ++= 故3a =-. (Ⅱ)()f x 的定义域为()0+∞,.方程2210x ax ++=的判别式28a ∆=-,(1) 当0∆≤,即a -≤≤2210x ax ++≥,()0f x '≥在()0+∞,内恒成立, 此时()f x 为增函数.(2) 当0∆>,即a <-或a > 要使()f x 在定义域()0+∞,内为增函数, 只需在()0+∞,内有2210x ax ++≥即可,设2()21h x x ax =++,由(0)10,022h a=>⎧⎪⎨-<⎪⎩⨯ 得 0a >,所以a > 由(1) (2)可知,若()f x 在其定义域内为增函数,a的取值范围是[)-+∞. 3、设函数2()(1)2ln(1)f x x x =+-+.(Ⅰ)求f (x )的单调区间;(Ⅱ)若当1[1,1]x e e∈--时,不等式f (x )<m 恒成立,求实数m 的取值范围;(Ⅲ)若关于x 的方程2()f x x x a =++在区间[0, 2]上恰好有两个相异的实根,求实数a 的取值范围. 3.(本小题共14分) 解:(Ⅰ)函数的定义域为(-1, +∞).∵ /12(2)()2[(1)]11x x f x x x x +=+-=++,由/()0f x >,得x >0;由/()0f x <,得10x -<<. ∴ f (x )的递增区间是(0,)+∞,递减区间是(-1, 0). (Ⅱ)∵ 由/2(2)()01x x f x x +==+,得x =0,x =-2(舍去)由(Ⅰ)知f (x )在1[1, 0]e-上递减,在[0, 1]e -上递增.又 211(1)2f e e -=+, 2(1)2f e e -=-, 且22122e e ->+. ∴ 当1[1,1]x e e∈--时,f (x )的最大值为22e -.故当22m e >-时,不等式f (x )<m 恒成立. (Ⅲ)方程2()f x x x a =++, 12ln(1)0x a x -+-+=. 记()12ln(1)g x x a x =-+-+, ∵ /21()111x g x x x -=-=++,由/()0g x >,得x >1或x <-1(舍去). 由/()0g x <, 得11x -<<.∴ g (x )在[0,1]上递减, 在[1,2]上递增.为使方程2()f x x x a =++在区间[0, 2]上恰好有两个相异的实根,只须g(x)=0在[0,1]和(1, 2]上各有一个实数根,于是有(0)0,(1)0,(2)0.g g g ≥⎧⎪<⎨⎪≥⎩∵ 22ln 232ln3-<-,∴ 实数a 的取值范围是 22ln 232ln3a -<≤-. 4、已知函数()ln f x x x =.(Ⅰ)求()f x 的最小值;(Ⅱ)若对所有1x ≥都有()1f x ax ≥-,求实数a 的取值范围. 4.(Ⅰ)解:()f x 的定义域为0∞(,+), ()f x 的导数()1ln f x x '=+. 令()0f x '>,解得1ex >;令()0f x '<,解得10e x <<.从而()f x 在10e ⎛⎫ ⎪⎝⎭,单调递减,在1e ⎛⎫∞ ⎪⎝⎭,+单调递增. 所以,当1ex =时, ()f x 取得最小值1e-.解法二:依题意,得()1f x ax ≥-在[1)+∞,上恒成立, 即不等式1ln a x x ≤+对于[1)x ∈+∞,恒成立.令1()ln g x x x=+,则21111()1g x x x x x ⎛⎫'=-=- ⎪⎝⎭.当1x >时,因为11()10g x x x ⎛⎫'=-> ⎪⎝⎭, 故()g x 是(1)+∞,上的增函数, 所以 ()g x 的最小值是(1)1g =, 从而a 的取值范围是(1]-∞,.5、已知函数239()()(24f x x x =++)对任意m x f x f x x ≤--∈|)()(|],0,1[,2121不等式恒成立,试求m 的取值范围。

6、已知函数()2a f x x x=+,()ln g x x x =+,其中0a >.(1)若函数()x f y =在[]e ,1上的图像恒在()x g y =的上方,求实数a 的取值范围. (2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立,求实数a 的取值范围.7、设函数(1)当a=1时,求曲线在点处的切线方程;(2)若函数在其定义域内为增函数,求实数a 的取值范围;(3)设函数,若在[l ,e]上至少存在一组使成立,求实数a 的取值范围.8、设函数xe x xf 221)(=. (I )求函数)(x f 的单调区间; (II )若当]2,2[-∈x 时,不等式m x f <)(恒成立,求实数m 的取值范围.9、已知21()(1)2xf x e a x =-+ (1)求()f x 在0x =处的切线方程.(2)若()f x 在区间(0,2]x ∈为增函数,求a 的取值范围10、设函数()xxf x e e -=-.若对所有0x ≥都有()f x ax ≥,求a 的取值范围.解:令()()g x f x ax =-,则()()xxg x f x a e ea -''=-=+-,(1)若2a ≤,当0x >时,()20xxg x e e a a -'=+->-≥,故()g x 在(0,)+∞上为增函数,∴0x ≥时,()(0)g x g ≥,即()f x ax ≥.(2)若2a >,方程()0g x '=的正根为1ln 2a x =,此时,若1(0,)x x ∈,则()0g x '<,故()g x 在该区间为减函数.∴1(0,)x x ∈时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(,2]-∞.解:()12xf x e ax '=--,由1xe x ≥+,当且仅当0x =时等号成立.故()2(12)f x x ax a x '≥-=-,从而当120a -≥,即12a ≤时,()0 (0)f x x '≥≥,而(0)0f =, 于是当0x ≥时,()0f x ≥.由1 (0)xe x x >+≠可得1 (0)xe x x ->-≠.从而当12a >时,()12(1)(1)(2)x x x x x f x e a e e e e a --'<-+-=--,故当(0,ln 2)x a ∈时,()0f x '<,而(0)0f =,于是当(0,ln 2)x a ∈时,()0f x <.综合得a 的取值范围为1(,]2-∞.解:()12x f x e ax '=--,令()12x g x e ax =--,()2x g x e a '=-,∵0x ≥,∴1xe ≥,于是当21a ≤时,()0g x '≥,()g x 在[0,)+∞递增,()(0)0g x g ≥=,∴()0f x '≥, ()f x 在[0,)+∞递增,()(0)0f x f ≥=,∴()0f x ≥. 当21a >时,由()0g x '=得ln 2x a =,当(0,ln 2)x a ∈时,()0g x '<,()g x 在(0,ln 2)a 递减,而(0)0g =,∴()0g x <, 即()0f x '<,()g x 在(0,ln 2)a 递减,而(0)0f =,∴()0f x <,不满足条件,∴a 的取值范围为1(,]2-∞.11、已知()(1)ln 1f x x x x =+-+,若2()1xf x x ax '≤++,求a 的取值范围.解:11()ln 1ln x f x x x x x+'=+-=+,()ln 1xf x x x '=+. 题设2()1xf x x ax '≤++等价于ln x x a -≤.令()ln g x x x =-,则1()1g x x -'=-. 当01x <<,()0g x '>;当1x ≥时,()0g x '≤,∴1x =是()g x 的最大值点, ∴()(1)1g x g ≤=-,∴a 的取值范围是[1,)-+∞.12、若对所有的[,)x e ∈+∞都有ln x x ax a ≥-成立,求实数a 的取值范围.解:由题意有:ln 1x x a x ≤-在[,)x e ∈+∞上恒成立,令ln ()1x xf x x =-,于是只需要满足 min [()]([,))a f x x e ≤∈+∞,21ln ()(1)x xf x x --'=-此时既不好找()f x '的零点,也不好判断它的正负,令()1ln g x x x =--,1()1g x x '=-,∵[,)x e ∈+∞,∴110x->,()0g x '>, 于是()g x 在[,)x e ∈+∞上是增函数,()()2g x g e e ≥=-,∴()0f x '>,∴()f x 在[,)x e ∈+∞上是增函数,∴min [()]()1ef x f e e ==-,∴a 的取值范围是1ea e ≤-.。

相关文档
最新文档