动态规划的应用 PPT
合集下载
《动态规划》课件
![《动态规划》课件](https://img.taocdn.com/s3/m/b7a9c1a09a89680203d8ce2f0066f5335a816726.png)
《动态规划》ppt课 件
xx年xx月xx日
• 动态规划概述 • 动态规划的基本概念 • 动态规划的求解方法 • 动态规划的应用实例 • 动态规划的优化技巧 • 动态规划的总结与展望
目录
01
动态规划概述
定义与特点
定义
动态规划是一种通过将原问题分解为 相互重叠的子问题,并存储子问题的 解以避免重复计算的方法。
特点
动态规划适用于具有重叠子问题和最 优子结构的问题,通过将问题分解为 子问题,可以找到最优解。
动态规划的适用范围
最优化问题
01
动态规划适用于解决最优化问题,如最大/最小化问题、决策问
题等。
子问题重叠
02
动态规划适用于子问题重叠的情况,即子问题之间存在共享状
态或参数。
递归关系
03
动态规划适用于具有递归关系的问题,可以通过递归方式求解
机器调度问题
总结词
动态规划可以应用于机器调度问题,以确定最优的调度方案,满足生产需求并降低成本 。
详细描述
机器调度问题是一个经典的优化问题,涉及到如何分配任务到机器上,以最小化成本或 最大化效率。通过动态规划,可以将机器调度问题分解为一系列子问题,如确定每个任 务的调度顺序、分配机器等,并逐个求解子问题的最优解,最终得到整个调度方案的最
VS
详细描述
记忆化搜索法是一种优化技术,通过存储 已解决的子问题的解,避免重复计算,提 高求解效率。这种方法适用于子问题数量 较少且相互独立的情况。
04
动态规划的应用实例
最短路径问题
总结词
通过动态规划解决最短路径问题,可以找到 从起点到终点的最短路径。
详细描述
在图论中,最短路径问题是一个经典的优化 问题,旨在找到从起点到终点之间的一条路 径,使得路径上的所有边的权重之和最小。 动态规划是一种有效的解决方法,通过将问 题分解为子问题并存储子问题的解,避免了 重复计算,提高了求解效率。
xx年xx月xx日
• 动态规划概述 • 动态规划的基本概念 • 动态规划的求解方法 • 动态规划的应用实例 • 动态规划的优化技巧 • 动态规划的总结与展望
目录
01
动态规划概述
定义与特点
定义
动态规划是一种通过将原问题分解为 相互重叠的子问题,并存储子问题的 解以避免重复计算的方法。
特点
动态规划适用于具有重叠子问题和最 优子结构的问题,通过将问题分解为 子问题,可以找到最优解。
动态规划的适用范围
最优化问题
01
动态规划适用于解决最优化问题,如最大/最小化问题、决策问
题等。
子问题重叠
02
动态规划适用于子问题重叠的情况,即子问题之间存在共享状
态或参数。
递归关系
03
动态规划适用于具有递归关系的问题,可以通过递归方式求解
机器调度问题
总结词
动态规划可以应用于机器调度问题,以确定最优的调度方案,满足生产需求并降低成本 。
详细描述
机器调度问题是一个经典的优化问题,涉及到如何分配任务到机器上,以最小化成本或 最大化效率。通过动态规划,可以将机器调度问题分解为一系列子问题,如确定每个任 务的调度顺序、分配机器等,并逐个求解子问题的最优解,最终得到整个调度方案的最
VS
详细描述
记忆化搜索法是一种优化技术,通过存储 已解决的子问题的解,避免重复计算,提 高求解效率。这种方法适用于子问题数量 较少且相互独立的情况。
04
动态规划的应用实例
最短路径问题
总结词
通过动态规划解决最短路径问题,可以找到 从起点到终点的最短路径。
详细描述
在图论中,最短路径问题是一个经典的优化 问题,旨在找到从起点到终点之间的一条路 径,使得路径上的所有边的权重之和最小。 动态规划是一种有效的解决方法,通过将问 题分解为子问题并存储子问题的解,避免了 重复计算,提高了求解效率。
第8章 动态规划《管理运筹学》PPT课件
![第8章 动态规划《管理运筹学》PPT课件](https://img.taocdn.com/s3/m/59dc77c30875f46527d3240c844769eae009a328.png)
Vk,n (sk , uk , , sn1) fk [sk , uk ,Vk 1,n (sk 1, uk 1, , 1)] ③函数 fk (sk , uk ,Vk 1,n ) 对于变量 Vk1,n 要严格单调。
8.2 动态规划模型建立
下面以投资问题为例介绍动态规划的建模条件。
【例8-2】 某公司现有资金20万元,若投资于三个
8.1 动态规划基础知识
(5)状态转移方程:状态转移方程是确定过程由一
个状态转移到另一个状态的演变过程。动态规划中某一状
态以及该状态下的决策,与下一状态之间具有一定的函数
关系,称这种函数关系的表达式为状态转移方程。如果第
k段的状态为 sk ,该阶段的决策为
的状态就可以用下式来表示:
uk
sk
,则第k+1段
阶段的指标函数,是该阶段最优的指标函数。
8.2 动态规划模型建立
建立动态规划模型,就是在分析实际问题的基础上建 立该问题的动态规划基本方程。成功地应用动态规划方法 的关键,在于识别问题的多阶段特征,将问题分解成为可 用递推关系式联系起来的若干子问题,或者说正确地建立 具体问题的基本方程,这需要经验与技巧。而正确建立基 本递推关系方程的关键又在于正确选择状态变量,保证各 阶段的状态变量具有递推的状态转移关系。
第8章 动态规划
动态规划(DYnamic Programming,缩写为DP)方法 ,是本世纪50年代初期由美国数学家贝尔曼(Richard E ,Bellman)等人提出,后来逐渐发展起来的数学分支, 它是一种解决多阶段决策过程最优化问题的数学规划法 。动态规划的数学模型和求解方法比较灵活,对于连续 的或离散的,线性的或非线性的,确定性的或随机性的 模型,只要能构成多阶段决策过程,便可用动态规划方 法求其最优解。因而在自然科学、社会科学、工程技术 等许多领域具有广泛的用途,甚至一定程度上比线性规 划(LP)、非线性规划(NLP)有成效,特别是对于某 些离散型问题,解析数学无法适用,动态规划方法就成 为非常有用的求解工具。
8.2 动态规划模型建立
下面以投资问题为例介绍动态规划的建模条件。
【例8-2】 某公司现有资金20万元,若投资于三个
8.1 动态规划基础知识
(5)状态转移方程:状态转移方程是确定过程由一
个状态转移到另一个状态的演变过程。动态规划中某一状
态以及该状态下的决策,与下一状态之间具有一定的函数
关系,称这种函数关系的表达式为状态转移方程。如果第
k段的状态为 sk ,该阶段的决策为
的状态就可以用下式来表示:
uk
sk
,则第k+1段
阶段的指标函数,是该阶段最优的指标函数。
8.2 动态规划模型建立
建立动态规划模型,就是在分析实际问题的基础上建 立该问题的动态规划基本方程。成功地应用动态规划方法 的关键,在于识别问题的多阶段特征,将问题分解成为可 用递推关系式联系起来的若干子问题,或者说正确地建立 具体问题的基本方程,这需要经验与技巧。而正确建立基 本递推关系方程的关键又在于正确选择状态变量,保证各 阶段的状态变量具有递推的状态转移关系。
第8章 动态规划
动态规划(DYnamic Programming,缩写为DP)方法 ,是本世纪50年代初期由美国数学家贝尔曼(Richard E ,Bellman)等人提出,后来逐渐发展起来的数学分支, 它是一种解决多阶段决策过程最优化问题的数学规划法 。动态规划的数学模型和求解方法比较灵活,对于连续 的或离散的,线性的或非线性的,确定性的或随机性的 模型,只要能构成多阶段决策过程,便可用动态规划方 法求其最优解。因而在自然科学、社会科学、工程技术 等许多领域具有广泛的用途,甚至一定程度上比线性规 划(LP)、非线性规划(NLP)有成效,特别是对于某 些离散型问题,解析数学无法适用,动态规划方法就成 为非常有用的求解工具。
运筹学教材课件(第四章动态规划)
![运筹学教材课件(第四章动态规划)](https://img.taocdn.com/s3/m/d10c6b9627fff705cc1755270722192e45365824.png)
最优解的存在性
对于多阶段决策问题,如果每个 阶段的决策空间是有限的,则存 在最优解。
最优解的唯一性
对于某些多阶段决策问题,可能 存在多个最优解。在这种情况下, 我们需要进一步分析问题的性质 和约束条件,以确定最优解的个 数和性质。
最优解的稳定性
在某些情况下,最优解可能受到 参数变化的影响。我们需要分析 最优解的稳定性,以确保最优解 在参数变化时仍然保持最优。
VS
详细描述
排序问题可以分为多种类型,如冒泡排序 、快速排序、归并排序等。动态规划可以 通过将问题分解为子问题,逐一求解最优 解,最终得到全局最优解。在排序问题中 ,动态规划可以应用于求解最小化总成本 、最大化总效益等问题。
04
动态规划的求解方法
逆推法
逆推法
从问题的目标状态出发,逆向推算出达到目标状态的 最优决策,直到达到初始状态为止。
案例二:投资组合优化问题
要点一
总结词
要点二
详细描述
投资组合优化问题是动态规划在金融领域的重要应用,通 过合理配置资产,降低投资风险并提高投资收益。
投资组合优化问题需要考虑市场走势、资产特性、风险偏 好等多种因素,通过动态规划的方法,可以确定最优的投 资组合,使得投资者在风险可控的前提下,实现收益最大 化。
详细描述
在背包问题中,给定一组物品,每个物品都有一定的重量和价值,要求在不超过背包容量的限制下, 选择总价值最大的物品组合。通过动态规划的方法,可以将背包问题分解为一系列子问题,逐一求解 最优解。
排序问题
总结词
排序问题是动态规划应用的另一个重要 领域,主要涉及到将一组元素按照一定 的顺序排列,以达到最优的目标。
本最小化和效率最大化。
感谢您的观看
动态规划讲解+例子ppt课件
![动态规划讲解+例子ppt课件](https://img.taocdn.com/s3/m/99fdaf2d0740be1e640e9a29.png)
航天飞机飞行控制问题:由于航天飞机的运动的环境是不断变化的,因此就要 根据航天飞机飞行在不同环境中的情况,不断地决定航天飞机的飞行方向和速 度(状态),使之能最省燃料和完成飞行任务(如软着陆)。
5
多阶段决策过程的特点:
• 根据过程的特性可以将过程按空间、时间等标志分为若干个互相联系又
互相区别的阶段。
6 6
E3
F1 4
G 3 F2
4
5
63
背包问题 有一个徒步旅行者,其可携带物品重量的限度为a 公斤,设有n 种物品可供他选择装入包中。已知每种物品的重量及使用价值(作用),问此 人应如何选择携带的物品(各几件),使所起作用(使用价值)最大?
物品
12…j…n
重量(公斤/件) a1 a2 … aj … an 每件使用价值 c1 c2 … cj … cn
112
2
B1
10
14
A
5
B2 610
1
4
13
B3
12 11
C1 3
9 6
C2 5
8
C3 10
D1 5 E
2
D2
8
112
2
B1
10
14
A
5
B2 610
1
4
13
B3
12 11
C1 3
9 6
C2 5
8
C3 10
D1 5
2
D2
解:整个计算过程分四个阶段,从最后一个阶段开始。
第四阶段(D →E): D 有两条路线到终点E 。
学习动态规划,我们首先要了解多阶段决策问题。
2
最短路径问题:给定一个交通网络图如下,其中两点之间的数字表示距离 (或运费),试求从A点到G点的最短距离(总运输费用最小)。
5
多阶段决策过程的特点:
• 根据过程的特性可以将过程按空间、时间等标志分为若干个互相联系又
互相区别的阶段。
6 6
E3
F1 4
G 3 F2
4
5
63
背包问题 有一个徒步旅行者,其可携带物品重量的限度为a 公斤,设有n 种物品可供他选择装入包中。已知每种物品的重量及使用价值(作用),问此 人应如何选择携带的物品(各几件),使所起作用(使用价值)最大?
物品
12…j…n
重量(公斤/件) a1 a2 … aj … an 每件使用价值 c1 c2 … cj … cn
112
2
B1
10
14
A
5
B2 610
1
4
13
B3
12 11
C1 3
9 6
C2 5
8
C3 10
D1 5 E
2
D2
8
112
2
B1
10
14
A
5
B2 610
1
4
13
B3
12 11
C1 3
9 6
C2 5
8
C3 10
D1 5
2
D2
解:整个计算过程分四个阶段,从最后一个阶段开始。
第四阶段(D →E): D 有两条路线到终点E 。
学习动态规划,我们首先要了解多阶段决策问题。
2
最短路径问题:给定一个交通网络图如下,其中两点之间的数字表示距离 (或运费),试求从A点到G点的最短距离(总运输费用最小)。
动态规划(完整)ppt课件
![动态规划(完整)ppt课件](https://img.taocdn.com/s3/m/ece24cf4cfc789eb162dc8c4.png)
3
• Ⅲ --Ⅳ :
B1—C1—T
4
• Ⅱ--Ⅲ--Ⅳ :A2—B1—C1—T
7
• Ⅰ--Ⅱ--Ⅲ --Ⅳ:
•
Q—A2—B1—C1—T
11
•
Q--A3—B1—C1—T
11
•
Q--A3—B2—C2—T
11
最新版整理ppt
3
最短路径
11
4
7
A1
4
2
6
11
47
3 2
Q
A2
4
B1
1
4 76
3
C1
3
B2 3
最新版整理ppt
16
(4)策略和允许策略集合
策略(Policy)也叫决策序列.策略有全过程 策略和 k 部子策略之分,全过程策略是指具 有n 个阶段的全部过程,由依次进行的 n 个 阶段决策构成的决策序列,简称策略,表示
为 p1,n{x1,x2, ,xn}。从 k 阶段到第 n 阶段,
依次进行的阶段决策构成的决策序列称为 k
新分支的创立。
最新版整理ppt
6
• 动态规划将复杂的多阶段决策问题分解为 一系列简单的、离散的单阶段决策问题, 采用顺序求解方法, 通过解一系列小问题 达到求解整个问题目的;
• 动态规划的各个决策阶段不但要考虑本阶 段的决策目标, 还要兼顾整个决策过程的 整体目标, 从而实现整体最优决策.
最新版整理ppt
第七章 动态规划
主要内容:
§7.1多阶段决策问题 §7.2 动态规划的基本概念和基本原理 §7.3 动态规划应用举例
最新版整理ppt
1
例 求解最短路问题
2
Q
4
TSP问题之动态规划法PPT课件
![TSP问题之动态规划法PPT课件](https://img.taocdn.com/s3/m/69e6ad47974bcf84b9d528ea81c758f5f71f295b.png)
序号 0 1 2 3 4 5 6 7
集合表示 000 001 002 003 012 013 023 123
.
11
动态规划法(一)
动态规划法: 定义:将每个子问题只求解一次,并将其解保存在一个表格中,当需要再次
求解此子问题时,只是简单地通过查表获得该子问题的解,从而避免了大量 的重复计算。 特点:最优子结构、自底向递归、子问题相互重叠。
d(0, {1, 2, 3})=min{
C01+ d(1, { 2, 3}),
3 6 7
C02+ d(2, {1, 3}), C03+ d(3, {1, 2}) }
C
(
ci j
)
这是最后一个阶段的决策,它必须依据d(1, { 2, 3})、
5 6 3
4 7
2 5
3
2
d(2, {1, 3})和d(3, {1, 2})的计算结果,而:
d(1, {2, 3})=min{C12+d(2, {3}), C13+ d(3, {2})} d(2, {1, 3})=min{C21+d(1, {3}), C23+ d(3, {1})} d(3, {1, 2})=min{C31+d(1, {2}), C32+ d(2, {1})}
继续写下去: d(1, {2})= C12+d(2, {}) d(1, {3})= C13+d(3, {})
动态规划法使用的条件:问题符合最优性原理
.
12
动态规划法(二)
最优性原理:
对于一个具有n个输入的最优化问题,其求解过程往往可以划分 为若干个阶段,每一阶段的决策仅依赖于前一阶段的状态,由决策所 采取的动作使状态发生转移,成为下一阶段决策的依据。
《动态规划》课件
![《动态规划》课件](https://img.taocdn.com/s3/m/83aaef9381eb6294dd88d0d233d4b14e85243ea8.png)
《动态规划》PPT课件
动态规划(Dynamic Programming)是一种用来解决复杂问题的算法思想。
什么是动态规划
动态规划是一种将问题拆分成子问题并进行最优解比较的算法,常用于求解最优化问题。
问题模型
状态
将问题抽象成能够描述当前情况的状态。
目标
定义问题的目标,通常是最小化或最大化某 个指标。
经典面试题:爬楼梯问题
爬楼梯问题是指给定楼梯的阶数,求解爬到楼顶的不同方式的数量。
经典面试题:硬币找零问题
硬币找零问题是指给定一定面值的硬币和一个金额,找到凑出该金额的最少 硬币数。
经典面试题:最长回文子串问题
最长回文子串问题是指找到给定字符串中最长的回文子串。
实用案例:机器人找出路
机器人找出路是指给定一个迷宫,找到从起点到终点的路径。
决策
根据状态作出选择或决策。
转移方程
根据子问题的最优解推导出整体问题的最优 解。
最优子结构和重叠子问题
1 最优子结构
问题的最优解包含了子问题的最优解。
2 重叠子问题
子问题之间存在重复的计算,可以利用记 忆化存储中间结果来优化。
动态规划三部曲
1
定义状态
明确问题的状导转移方程
国王游戏问题
国王游戏问题是指在一个棋盘上放置国王,使得它们无法互相攻击。
编辑距离问题
编辑距离问题是指计算两个字符串之间转换的最小操作次数,包括插入、删 除和替换操作。
矩阵连乘问题
矩阵连乘问题是指给定一系列矩阵,找到最佳的乘法顺序,使得计算乘法的总次数最小。
最长递增子序列问题
最长递增子序列问题是指找到给定序列中最长的递增子序列的长度。
斐波那契数列问题
动态规划(Dynamic Programming)是一种用来解决复杂问题的算法思想。
什么是动态规划
动态规划是一种将问题拆分成子问题并进行最优解比较的算法,常用于求解最优化问题。
问题模型
状态
将问题抽象成能够描述当前情况的状态。
目标
定义问题的目标,通常是最小化或最大化某 个指标。
经典面试题:爬楼梯问题
爬楼梯问题是指给定楼梯的阶数,求解爬到楼顶的不同方式的数量。
经典面试题:硬币找零问题
硬币找零问题是指给定一定面值的硬币和一个金额,找到凑出该金额的最少 硬币数。
经典面试题:最长回文子串问题
最长回文子串问题是指找到给定字符串中最长的回文子串。
实用案例:机器人找出路
机器人找出路是指给定一个迷宫,找到从起点到终点的路径。
决策
根据状态作出选择或决策。
转移方程
根据子问题的最优解推导出整体问题的最优 解。
最优子结构和重叠子问题
1 最优子结构
问题的最优解包含了子问题的最优解。
2 重叠子问题
子问题之间存在重复的计算,可以利用记 忆化存储中间结果来优化。
动态规划三部曲
1
定义状态
明确问题的状导转移方程
国王游戏问题
国王游戏问题是指在一个棋盘上放置国王,使得它们无法互相攻击。
编辑距离问题
编辑距离问题是指计算两个字符串之间转换的最小操作次数,包括插入、删 除和替换操作。
矩阵连乘问题
矩阵连乘问题是指给定一系列矩阵,找到最佳的乘法顺序,使得计算乘法的总次数最小。
最长递增子序列问题
最长递增子序列问题是指找到给定序列中最长的递增子序列的长度。
斐波那契数列问题
《动态规划》课件
![《动态规划》课件](https://img.taocdn.com/s3/m/fd3c767886c24028915f804d2b160b4e767f81ad.png)
特点
动态规划具有最优子结构和重叠子问题的特点,能够通过保存已解决的子问题来避免重复计 算。
应用场景
动态规划广泛应用于路线规划、资源分配、序列匹配等问题,能够有效地解决复杂的优化和 决策问题。
动态规划的优缺点
1 优点
动态规划能够提供最优的解决方案,同时能够高效地解决问题,避免重复计算。
2 缺点
使用动态规划解决问题需要设计状态转移方程,对于复杂问题可能需要较高的思维和计 算复杂度。
《动态规划》PPT课件
欢迎来到《动态规划》PPT课件! 本课程将深入探讨动态规划的应用和技巧, 帮助你理解这一强大的问题求解方法。
什么是动态规划
动态规划是一种通过将问题拆分为更小的子问题,并根据子问题的解来求解 原问题的方法。它可以应用于许多领域,包括优化、组合数学和图论。动态规划的特点 Nhomakorabea应用场景
参考资料
• 经典教材 • 学术论文 • 网络资源
确定问题的初始状态和结束条件,作为动态规划的边界。
4
确定优化方向
选择最优的状态转移路径,以达到问题的最优解。
经典问题解析
斐波那契数列
通过动态规划求解斐波那契数列,可以有效 地避免重复计算,提高计算效率。
最长公共子序列
使用动态规划求解最长公共子序列,可以在 时间复杂度为O(n*m)的情况下找到最长公共 子序列。
最优子结构
定义
最优子结构表示一个问题的最优解可以通过子 问题的最优解来构建。
举例
在路径规划问题中,通过求解子问题的最短路 径,可以获得整个路径规划的最短路径。
重叠子问题
定义
重叠子问题表示一个问题的子问题会被重复计 算多次。
举例
在斐波那契数列中,计算每个数字需要依赖于 前两个数字,导致重复计算了相同的子问题。
动态规划具有最优子结构和重叠子问题的特点,能够通过保存已解决的子问题来避免重复计 算。
应用场景
动态规划广泛应用于路线规划、资源分配、序列匹配等问题,能够有效地解决复杂的优化和 决策问题。
动态规划的优缺点
1 优点
动态规划能够提供最优的解决方案,同时能够高效地解决问题,避免重复计算。
2 缺点
使用动态规划解决问题需要设计状态转移方程,对于复杂问题可能需要较高的思维和计 算复杂度。
《动态规划》PPT课件
欢迎来到《动态规划》PPT课件! 本课程将深入探讨动态规划的应用和技巧, 帮助你理解这一强大的问题求解方法。
什么是动态规划
动态规划是一种通过将问题拆分为更小的子问题,并根据子问题的解来求解 原问题的方法。它可以应用于许多领域,包括优化、组合数学和图论。动态规划的特点 Nhomakorabea应用场景
参考资料
• 经典教材 • 学术论文 • 网络资源
确定问题的初始状态和结束条件,作为动态规划的边界。
4
确定优化方向
选择最优的状态转移路径,以达到问题的最优解。
经典问题解析
斐波那契数列
通过动态规划求解斐波那契数列,可以有效 地避免重复计算,提高计算效率。
最长公共子序列
使用动态规划求解最长公共子序列,可以在 时间复杂度为O(n*m)的情况下找到最长公共 子序列。
最优子结构
定义
最优子结构表示一个问题的最优解可以通过子 问题的最优解来构建。
举例
在路径规划问题中,通过求解子问题的最短路 径,可以获得整个路径规划的最短路径。
重叠子问题
定义
重叠子问题表示一个问题的子问题会被重复计 算多次。
举例
在斐波那契数列中,计算每个数字需要依赖于 前两个数字,导致重复计算了相同的子问题。
《动态规划算法》课件
![《动态规划算法》课件](https://img.taocdn.com/s3/m/9e5f76ab534de518964bcf84b9d528ea81c72f9f.png)
总结词
多阶段决策优化
详细描述
背包问题是一个经典的动态规划问题,通过将问题分解 为多个阶段,并为每个阶段定义状态和状态转移方程, 我们可以找到最优解。在背包问题中,我们使用一个二 维数组来存储每个状态的最优解,并逐步更新状态以找 到最终的最优解。
最长公共子序列求解
总结词
字符串匹配优化
详细描述
最长公共子序列问题是一个经典的动态规划问题,用 于找到两个序列的最长公共子序列。通过动态规划, 我们可以避免在寻找公共子序列时进行冗余比较,从 而提高算法效率。在动态规划中,我们使用一个二维 数组来存储子问题的最优解,并逐步构建最终的最长 公共子序列。
动态规划的基本思想
01
将问题分解为子问 题
将原始问题分解为若干个子问题 ,子问题的解可以构成原问题的 解。
02
保存已解决的子问 题
将已解决的子问题的解保存起来 ,以便在求解其他子问题时重复 使用。
03
递推求解
从子问题的解逐步推导出原问题 的解,通常采用自底向上的方式 求解。
02
动态规划算法的步骤
可并行化
动态规划算法可以并行化执行,以提高计算效率,这对于 大规模问题的求解非常有利。
缺点
• 空间复杂度高:动态规划算法需要存储大量的中间状态,因此其空间复杂度通常较高,有时甚至会超过问题规 模的一个指数倍。
• 问题规模限制:由于动态规划算法的空间复杂度较高,因此对于大规模问题的求解可能会遇到困难。 • 可能产生大量重复计算:在动态规划算法中,对于每个子问题,可能会被多次计算和存储,这会导致大量的重复计算和存储空间浪费。 • 不易发现:动态规划算法的应用范围有限,对于一些非最优子结构问题或没有重叠子问题的优化问题,动态规划算法可能不适用。因此,在解决问题时需要仔细分析问题特性,判断是
多阶段决策优化
详细描述
背包问题是一个经典的动态规划问题,通过将问题分解 为多个阶段,并为每个阶段定义状态和状态转移方程, 我们可以找到最优解。在背包问题中,我们使用一个二 维数组来存储每个状态的最优解,并逐步更新状态以找 到最终的最优解。
最长公共子序列求解
总结词
字符串匹配优化
详细描述
最长公共子序列问题是一个经典的动态规划问题,用 于找到两个序列的最长公共子序列。通过动态规划, 我们可以避免在寻找公共子序列时进行冗余比较,从 而提高算法效率。在动态规划中,我们使用一个二维 数组来存储子问题的最优解,并逐步构建最终的最长 公共子序列。
动态规划的基本思想
01
将问题分解为子问 题
将原始问题分解为若干个子问题 ,子问题的解可以构成原问题的 解。
02
保存已解决的子问 题
将已解决的子问题的解保存起来 ,以便在求解其他子问题时重复 使用。
03
递推求解
从子问题的解逐步推导出原问题 的解,通常采用自底向上的方式 求解。
02
动态规划算法的步骤
可并行化
动态规划算法可以并行化执行,以提高计算效率,这对于 大规模问题的求解非常有利。
缺点
• 空间复杂度高:动态规划算法需要存储大量的中间状态,因此其空间复杂度通常较高,有时甚至会超过问题规 模的一个指数倍。
• 问题规模限制:由于动态规划算法的空间复杂度较高,因此对于大规模问题的求解可能会遇到困难。 • 可能产生大量重复计算:在动态规划算法中,对于每个子问题,可能会被多次计算和存储,这会导致大量的重复计算和存储空间浪费。 • 不易发现:动态规划算法的应用范围有限,对于一些非最优子结构问题或没有重叠子问题的优化问题,动态规划算法可能不适用。因此,在解决问题时需要仔细分析问题特性,判断是
动态规划ppt
![动态规划ppt](https://img.taocdn.com/s3/m/28946ae876a20029bd642d4a.png)
min{5 7, 8 5} 12.
这说明由 C1 到F 的最短距离为12,相应的决策为 u3* (C1) D1.
u3* (C1) D1.
2
f4 (D3 ) 5 4
A
5
f4 (D1) 7
B1 3
6
8 7
B2
7
C1
5
8
4
C2 5
3
C3 4
8
C4 4
u
* 4
(
D3
)
E1.
6
D2 2
1
E2
D3
3
u2* (B1) C2.
u5* (E2 ) F.
4
F
3
u4* (D1) E1.
u4* (D2 ) E2.
u
* 2
(
B2
)
C3.
(1)k=1 时,只有一个状态点A, 则
f1( A) min{ d1( A, B1) f2 (B1), d1( A, B2 ) f2 (B2 )}
min{1 4, 3 3} 5.
即 D3 到F 的最短距离为5,其路径为 D2 E2 F.
相应的决策为: u4* (D3 ) E1.
f4 (D1) 7
4
A
5
f4 (D2 ) 5
2
B1 3
6
8 7
B2
7
(3)k=3 时,状态
C1
5
8
4
C2 5
3
C3 4
8
C4 4
u
* 4
4
A
5
2
B1 3
6
8 7
这说明由 C1 到F 的最短距离为12,相应的决策为 u3* (C1) D1.
u3* (C1) D1.
2
f4 (D3 ) 5 4
A
5
f4 (D1) 7
B1 3
6
8 7
B2
7
C1
5
8
4
C2 5
3
C3 4
8
C4 4
u
* 4
(
D3
)
E1.
6
D2 2
1
E2
D3
3
u2* (B1) C2.
u5* (E2 ) F.
4
F
3
u4* (D1) E1.
u4* (D2 ) E2.
u
* 2
(
B2
)
C3.
(1)k=1 时,只有一个状态点A, 则
f1( A) min{ d1( A, B1) f2 (B1), d1( A, B2 ) f2 (B2 )}
min{1 4, 3 3} 5.
即 D3 到F 的最短距离为5,其路径为 D2 E2 F.
相应的决策为: u4* (D3 ) E1.
f4 (D1) 7
4
A
5
f4 (D2 ) 5
2
B1 3
6
8 7
B2
7
(3)k=3 时,状态
C1
5
8
4
C2 5
3
C3 4
8
C4 4
u
* 4
4
A
5
2
B1 3
6
8 7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态规划
(二)动态规划的典型应用
一、资源分配问题
军事案例(装备分配问题):
✓ 某部有4具先进装备分配给下属A、B、C三个作战单位,各作战单位得到此种
✓
装备后,所增加的战斗力见下表。 问怎样分配,才能使增加的战斗力最大。
一、资源分配问题
多阶段决策模型:
✓ 把这个分配问题看成三个阶段的过程,每分配一个单位作为一个阶段。
二、背包问题
背✓✓包背背问包包题问能:装题载是动物态品规的划重的量又限一度类为典W型公问斤题,。设有n类物品可供装入背包中,已知第i
种物品单重为wi公斤,价值为装载数量xi的函数ci(xi)。问应如何装载物品(各 几件),使总价值最大。
ห้องสมุดไป่ตู้
二、背包问题
建立数学模型:设第i种物品取xi件(i=1,2,…n,xi为非负整数),背包中物品的价 值为f,则 :
n
max f ci (xi )
i 1
n
wixi W
i1
xi≥0 且为整数,i=1,2 ,…n
二、背包问题
多阶段决策模型:
✓ 把背包装载问题按可装入物品的几种类型划分为n个阶段。
状态变量sk : 决策变量xk : 决策允许集合: 状态转移函数: 阶段指标: 基本迭代方程: 边界条件:
第k阶段初始时背包还可以装载的重量,s1=W 第k阶段装载第k种物品的件数 {xk|0 xksk/wk, xk为整数} sk+1= sk-wkxk rk(sk,xk)= ck(xk)
fn+1(sn+1)=0
二、背包问题
军 ✓事某案架例飞(机飞可机装装运载三问种题物)品:,各种物品一件重量分别为3、5、4吨,装运收益每件
✓
分别为4、5、6万元。 如果飞机总装运量不能超过12吨,问每种物品应各装几件使收益最大。
二、背包问题
状态变量sk : 决策变量xk : 决策允许集合: 状态转移函数: 阶段指标: 基本迭代方程: 边界条件:
max z=8x1+7x2+5x3 2x1+x2+8x3 ≤ 20 xi≥0, i=1,2,3
Bye Bye
第k阶段初始时飞机还可以装载的重量,s1=12 第k阶段装载第k种物品的件数 {xk|0 xksk/wk, xk为整数}, w1 =3, w2 =5, w3 =4 sk+1= sk-wkxk rk(sk,xk)= ck(xk), r1=4x1 ,r2 =5x2,r3 =6x3
f4(s4)=0
二、背包问题
二、背包问题
二、背包问题
最优方案:
x1=0
s1=12
x2=0 s2=12
x3=3
s3=12
s4=0
三、系统可靠性问题
有三个科研小组进行项目开发,失败的概率分别为0.4, 0.6, 0.8。为了降低三组都失 败的概率,决定给三个小组增派两名高级科学家,加入各小组后,项目失败概率 如下表所示。求一种分配方案,使得三组全部失败的概率最小。
f4(s4)=?
三、系统可靠性问题
三、系统可靠性问题
三、系统可靠性问题
最优方案:
x1=1
x2=0
x3=1
s1=2
s2=1
s3=1
s4=0
总结
✓ 动态规划的最优化原理和思想。 ✓ 哪些问题可以用动态规划方法解决。 ✓ 动态规划解决问题的一般流程。
思考和习题
习✓题1某:公司有资金400万元,向A,B,C三个项目追加投资,三个项目可以有不同
的投资额度,效益值如下表所示(投资额单位百万,效益值单位万),问如 何分配资金,才使总效益值最大?
思考和习题
习题2:
✓ 某工厂生产三种产品,各种产品的重量与利润关系如下表所示,现将三种产
品运往市场出售,运输能力总量不超过10t,问如何安排运输使得总利润为最 大?
思考和习题
习题3:用动态规划方法解题
三、系统可靠性问题
按项目小组划分阶段,k=1,2,3
状态变量sk : 决策变量xk : 决策允许集合: 状态转移函数: 阶段指标: 基本迭代方程: 边界条件:
第k阶段初始时未分配的高级科学家人数,s1=2 第k阶段为第k个项目组分配高级科学家人数 {xk|0 xksk, xk为整数} sk+1= sk-xk rk(sk,xk)可从表中读
状态变量sk : 决策变量xk : 状态转移函数: 阶段指标: 基本迭代方程: 边界条件:
第k阶段初始时未分配的装备数量 第k阶段分配给第k个单位的装备数量 sk+1=sk-xk rk(sk,xk)可从表中读出
f4(s4)=0
一、资源分配问题
一、资源分配问题
一、资源分配问题
最优分配方案: x1=1, x2=0, x3=3
(二)动态规划的典型应用
一、资源分配问题
军事案例(装备分配问题):
✓ 某部有4具先进装备分配给下属A、B、C三个作战单位,各作战单位得到此种
✓
装备后,所增加的战斗力见下表。 问怎样分配,才能使增加的战斗力最大。
一、资源分配问题
多阶段决策模型:
✓ 把这个分配问题看成三个阶段的过程,每分配一个单位作为一个阶段。
二、背包问题
背✓✓包背背问包包题问能:装题载是动物态品规的划重的量又限一度类为典W型公问斤题,。设有n类物品可供装入背包中,已知第i
种物品单重为wi公斤,价值为装载数量xi的函数ci(xi)。问应如何装载物品(各 几件),使总价值最大。
ห้องสมุดไป่ตู้
二、背包问题
建立数学模型:设第i种物品取xi件(i=1,2,…n,xi为非负整数),背包中物品的价 值为f,则 :
n
max f ci (xi )
i 1
n
wixi W
i1
xi≥0 且为整数,i=1,2 ,…n
二、背包问题
多阶段决策模型:
✓ 把背包装载问题按可装入物品的几种类型划分为n个阶段。
状态变量sk : 决策变量xk : 决策允许集合: 状态转移函数: 阶段指标: 基本迭代方程: 边界条件:
第k阶段初始时背包还可以装载的重量,s1=W 第k阶段装载第k种物品的件数 {xk|0 xksk/wk, xk为整数} sk+1= sk-wkxk rk(sk,xk)= ck(xk)
fn+1(sn+1)=0
二、背包问题
军 ✓事某案架例飞(机飞可机装装运载三问种题物)品:,各种物品一件重量分别为3、5、4吨,装运收益每件
✓
分别为4、5、6万元。 如果飞机总装运量不能超过12吨,问每种物品应各装几件使收益最大。
二、背包问题
状态变量sk : 决策变量xk : 决策允许集合: 状态转移函数: 阶段指标: 基本迭代方程: 边界条件:
max z=8x1+7x2+5x3 2x1+x2+8x3 ≤ 20 xi≥0, i=1,2,3
Bye Bye
第k阶段初始时飞机还可以装载的重量,s1=12 第k阶段装载第k种物品的件数 {xk|0 xksk/wk, xk为整数}, w1 =3, w2 =5, w3 =4 sk+1= sk-wkxk rk(sk,xk)= ck(xk), r1=4x1 ,r2 =5x2,r3 =6x3
f4(s4)=0
二、背包问题
二、背包问题
二、背包问题
最优方案:
x1=0
s1=12
x2=0 s2=12
x3=3
s3=12
s4=0
三、系统可靠性问题
有三个科研小组进行项目开发,失败的概率分别为0.4, 0.6, 0.8。为了降低三组都失 败的概率,决定给三个小组增派两名高级科学家,加入各小组后,项目失败概率 如下表所示。求一种分配方案,使得三组全部失败的概率最小。
f4(s4)=?
三、系统可靠性问题
三、系统可靠性问题
三、系统可靠性问题
最优方案:
x1=1
x2=0
x3=1
s1=2
s2=1
s3=1
s4=0
总结
✓ 动态规划的最优化原理和思想。 ✓ 哪些问题可以用动态规划方法解决。 ✓ 动态规划解决问题的一般流程。
思考和习题
习✓题1某:公司有资金400万元,向A,B,C三个项目追加投资,三个项目可以有不同
的投资额度,效益值如下表所示(投资额单位百万,效益值单位万),问如 何分配资金,才使总效益值最大?
思考和习题
习题2:
✓ 某工厂生产三种产品,各种产品的重量与利润关系如下表所示,现将三种产
品运往市场出售,运输能力总量不超过10t,问如何安排运输使得总利润为最 大?
思考和习题
习题3:用动态规划方法解题
三、系统可靠性问题
按项目小组划分阶段,k=1,2,3
状态变量sk : 决策变量xk : 决策允许集合: 状态转移函数: 阶段指标: 基本迭代方程: 边界条件:
第k阶段初始时未分配的高级科学家人数,s1=2 第k阶段为第k个项目组分配高级科学家人数 {xk|0 xksk, xk为整数} sk+1= sk-xk rk(sk,xk)可从表中读
状态变量sk : 决策变量xk : 状态转移函数: 阶段指标: 基本迭代方程: 边界条件:
第k阶段初始时未分配的装备数量 第k阶段分配给第k个单位的装备数量 sk+1=sk-xk rk(sk,xk)可从表中读出
f4(s4)=0
一、资源分配问题
一、资源分配问题
一、资源分配问题
最优分配方案: x1=1, x2=0, x3=3