双电源切换应用电路(行业一类)
mos双电源切换电路
mos双电源切换电路
MOS双电源切换电路是一种利用金属氧化物半导体场效应管(MOSFET)实现电源切换的电路。
它通常用于在主电源失效时自动切换到备用电源,保证系统的连续供电。
该电路的基本原理是通过控制MOSFET的导通和截止来实现电源的切换。
当主电源正常时,主MOSFET导通,备用MOSFET截止,电流从主电源供应给负载。
而当主电源失效时,主MOSFET截止,备用MOSFET导通,电流则从备用电源供应给负载。
通过及时监测主电源状态,可在主电源失效时快速切换到备用电源,保证系统的可靠性。
具体的电路设计还需要考虑到一些其他因素,例如电源的输入电压范围、过压和欠压保护、过流保护等。
此外,还需要根据系统的具体要求选择合适的MOSFET以及相应的驱动电路。
总之,MOS双电源切换电路是一种常用的电源备份方案,可以在主电源失效时实现自动切换,并确保系统的连续供电。
ats双电源开关工作原理(一)
ats双电源开关工作原理(一)ATS双电源开关工作原理解析1. 什么是ATS双电源开关ATS(Automatic Transfer Switch)双电源开关,又称为自动切换开关,是一种用于在主电源故障或异常情况下实现自动切换到备用电源的装置。
它主要用于确保关键供电设备在主电源故障时能够无缝切换到备用电源,保障电力供应的连续性和可靠性。
2. ATS双电源开关的工作原理ATS双电源开关主要由自动切换控制器、主电源供电线路、备用电源供电线路和负载设备组成。
其工作原理如下:2.1 主电源供电状态1.当主电源正常供电时,自动切换控制器监测到主电源电压稳定,并通过内置的电压监测电路来确保电压在设定范围内。
2.在主电源供电状态下,自动切换控制器将主电源的电源输出与负载设备相连接,主电源为负载设备供电。
2.2 主电源故障状态1.当主电源发生故障或电压异常(超过设定范围)时,自动切换控制器感知到电源状态的变化。
2.在主电源故障状态下,自动切换控制器会迅速断开主电源供电线路,并切换到备用电源供电线路。
3.同时,自动切换控制器会监测备用电源的电压稳定性,并确保备用电源电压在设定范围内。
4.一旦备用电源电压稳定,自动切换控制器会将备用电源的电源输出与负载设备相连接,实现无缝切换。
5.在主电源恢复正常后,自动切换控制器会再次迅速切换回主电源供电状态。
3. ATS双电源开关的应用ATS双电源开关广泛应用于保证关键设备和系统的持续供电,例如:•数据中心:保障服务器设备稳定运行,避免数据中断和丢失。
•医疗设备:确保医疗设备不会因为电力问题而停止工作,保障患者生命安全。
•电信基站:持续供电以保证通信网络的正常运行。
•工业自动化:保证生产线不会因为电力问题而停工,避免生产损失。
4. 总结ATS双电源开关是一种关键的设备,能够在主电源故障时实现无缝切换到备用电源,保证关键设备和系统的持续供电。
通过自动切换控制器的监测和切换功能,使得电力供应更加可靠,极大地减少了电力故障可能带来的影响和损失。
双电源自动切换开关的原理说明
双电源自动切换开关的原理说明双电源自动切换开关电器主要用在紧急供电系统,将负载电路从一个电源自动换接至另一个(备用)电源的开关电器,以确保重要负荷连续、可靠运行。
因此,常常应用在重要用电场所,其产品可靠性尤为重要。
转换一旦失败将可能造成以下二种危害之一,其电源间的短路或重要负荷断电(甚至短暂停电),其后果都是严重的,这不仅仅会带来经济损失(使生产停顿、金融瘫痪),也可能造成社会问题(使生命及安全处于危险之中)。
因此,工业发达国家都把自动转工作原理及结构双电源自动切换开关一般由两部分组成:开关本体(ats)+控制器。
而开关本体(ats)又有pc级(整体式)与cb级(断路器)之分,双电源自动转换开关电器(atse)质量的好坏关键取决于开关本体(ats)。
1.pc级ats:一体式结构(三点式)。
它是双电源切换的专用开关,具有结构简单、体积小、自身连锁、转换速度快(0.2s内)、安全、可靠等优点,但需要配备短路保护电器。
2.cb级ats:配备过电流脱扣器的ats,它的主触头能够接通并用于分断短路电流。
它是由两台断路器加机械连锁组成,具有短路保护功能控制器的工作状况控制器主要用来检测被监测电源(两路)工作状况,当被监测的电源发生故障(如任意一相断相、欠压、失压或频率出现偏差)时,控制器发出动作指令,开关本体则带着负载从一个电源自动转换至另一个电源,备用电源其容量一般仅是常用电源容量的20%~30%。
图1是典型ats应用电路。
控制器与开关本体进线端相连。
控制器的优点控制器一般应有非重要负荷选择功能。
控制器也有两种形式:一种由传统的电磁式继电器构成;另一种是数字电子型智能化产品。
它具有性能好,参数可调及精度高,可靠性高,使用方便等优点。
一、分类及定义双电源主要分为PC级双电源(整体式)和CB级双电源(双断路器式)PC级双电源:能够接通、承载、但不用于分断短路电流的双电源双电源若选择不具有过电流脱扣器的负荷开关作为执行器则属于PC级自动转换开关。
单电源变双电源大全
单电源变双电源电路(1)附图电路中,时基电路555接成无稳态电路,3脚输出频率为20KHz、占空比为1:1的方波。
3脚为高电平时,C4被充电;低电平时,C3被充电。
由于VD1、VD2的存在,C3、C4在电路中只充电不放电,充电最大值为EC,将B端接地,在A、C两端就得到+/-EC的双电源。
本电路输出电流超过50mA。
下面再介绍几种单电源变双电源电路图1是最简单转换电路。
其缺点是R1、R2选择的阻值小时,电路自身消耗功率大:阻值较大时带负载能力又太弱。
这种电路实用性不强。
将图1中两个电阻换为两个大电容就成了图2所示的电路。
这种电路功耗降为零,适用于正负电源的负载相等或近似相等的情况。
图3电路是在图l基础上增加两个三极管,加强了电路的带负载能力,其输出电流的大小取决于BG1和BG2的最大集电极电流ICM。
通过反馈回路可使两路负载不相同时也能保持正负电源基本对称。
例如由负载不等引起Ub下降时,由于Ua不变(R1,R2分压供给一恒定Ua),使BGl导通,BG2截止,使 RL2流过一部分BGl的电流,进而导致Ub上升。
当RL1、RL2相等时BG1、BG2均处于截止状态。
R1和R2可取得较大。
图4的电路又对图3电路进行了改进。
增加的两个偏置二极管使二个三极管偏离了死区,加强了反馈作用,使得双电源有较好的对称性和稳定性。
D1、D2也可用几十至几百欧的电阻代替。
图5的电路比图4的电路有更好的对称性与稳定性。
它用一个稳压管和一个三极管代换了图4中的R2,使反馈作用进一步加强。
图6电路中,将运放接成电压跟随器,输出电流取决于运放的负载能力。
如需较大的输出功率,可采用开环增益提高的功放集成块,例如TDA2030等。
这种电路简单,但性能较前面电路都好。
单电源转换正负电源电路(2)一般音响电器工作时,需要提供正负电源。
但在汽车、轮船、火车等运载工具上只能用蓄电池供电,这里介绍一款电源电路,希望对大家有所帮助。
该电源电路由震荡器、反相器、推动器和整流及滤波器等部分组成,电路工作原理如图所示震荡器这是一款典型的由CMOS门电路(CD4069)构成震荡器。
双电源自动切换电路,简单给你分析3种控制电路
双电源自动切换电路,简单给你分析3种控制电路
双电源切换应用也非常广,我们简单看一下怎么用继电器,接触器实现自动切换。
两个接触器实现切换
备用电源的线圈走主接触器的常闭点,主电源接触器吸合主电路导通。
主电源断电,备用电源通过主接触器的常闭点导通。
如果主电源恢复正常,备用电源断开。
当然你也可以用接触器互锁来实现,就是麻烦一点,而且主电源和备用电源同时有电时怎么办?所以还要接成顺序工作的那种,没必要那么麻烦,方法不唯一。
一个继电器两个接触器
主电源的接触器线圈走继电器的常开触点,备用电源的接触器线圈走继电器的常闭触点。
主线路有电的时候,继电器吸合,常开触点闭合,主线路导通。
常闭触点断开,备用电源不工作。
当主线路断电的时候,继电器也断电。
常开触点恢复初始断开状态,主线路断开。
备用电路的接触器通过继电器的常闭触点开始工作。
双转换触点继电器
这个和上面的类似,只不过这个继电器是双转换触点,通电时,两组触点闭合。
断电时两组触点闭合。
一个电器元件就可以完成。
如果A路是单相220伏电源,继电器的线圈电压也选用交流220伏的。
接触器和继电器在通断电的时候有时间差,对用电要求很高的设备或者电器会有短暂的反应。
比如灯泡明显闪烁了一下,电机停顿了一下。
如果是自锁线路,你会发现用电设备不工作了。
刚刚发生了什么?
双电源转换开关
这个成本有点高,需要手动。
如果动手能力强的朋友,完全可以自己动手组装一个控制电路。
电源转换肯定有短暂的时间差,不可能中间不断电达到无缝连接。
《双电源切换开关》课件
选择因素
根据实际需求选择适合的双电源切换开关类型,考虑负载特性、电源质量、切换 时间、使用环境等因素。
机械式双电源切换开关适用于对性能要求不高的场合;ATSE适用于需要快速反应 的场合;STS适用于对性能和稳定性要求高的场合,如数据中心、医院等。
03
双电源切换开关的安装与使用
安装步骤
选择合适的位置
认证要求
双电源切换开关应通过相关认证,如 CE认证、UL认证等,以确保产品符合 安全标准。
安全操作规程
操作前准备
操作后检查
确保双电源切换开关的安装位置正确 ,检查开关是否处于关闭状态,确认 电源连接良好。
完成电源切换后,检查负载是否正常 工作,确认双电源切换开关无异常声 音或发热现象。
操作步骤
按照规定的操作步骤进行双电源切换 ,先关闭负载,再进行电源切换,切 换过程中注意观察开关状态指示。
和稳定性。
未来市场预测
市场规模持续扩大
随着能源结构的转型和智能化的发展,双电源切换开关市场规模 将持续扩大。
技术创新推动市场增长
技术创新将不断推动双电源切换开关的性能提升和成本下降,进一 步拓展市场应用范围。
市场竞争格局变化
随着新技术的涌现和市场需求的多样化,双电源切换开关市场的竞 争格局将发生变化。
THANKS
感谢观看
详细描述
双电源切换开关内部通常包含电流和电压检测电路、控制电路以及机械传动机构 。当主电源正常工作时,控制电路使开关保持在主电源一侧;当主电源出现故障 (如电压不稳、断电等)时,控制电电源切换开关广泛应用于需要连续稳定供电的重要设施,如数据中心、医院、交通设 施等。
01
02
03
智能化控制
通过引入先进的控制算法 和传感器技术,实现双电 源切换开关的智能化控制 ,提高稳定性和可靠性。
双电源自动切换开关
双电源自动切换开关双电源自动切换开关就是因故停电自动切换到另外一个电源的开关,双电源自动切换开关可以咨询厦门日华机电成套有限公司购买,各种档次各种价位应有尽有。
一般双电源切换开关是广泛应用于高层建筑、小区、医院、机场、码头、消防、冶金、化工、纺织等不允许停电的重要场所。
双电源切换开关包含STS(静态转换开关),为电源二选一自动切换系统,第一路出现故障后STS自动切换到第二路给负载供电,第二路故障的话STS自动切换到第一路给负载供电。
ATS(自动转换开关),主要用在紧急供电系统,将负载电路从一个电源自动换接至另一个(备用)电源的开关电器,以确保重要负荷连续、可靠运行。
双电源切换开关采用双列复合式触头、横接式机构、微电机预储能及微电子控制技术,基本实现零飞弧,双电源切换开关还采用可靠的机械联锁和电气联锁技术,过零位技术。
双电源切换开关两台断路器之间具有可靠的机械联锁装置和电气联锁保护,彻底社绝了两台断路器同时合闸的可能性。
随着科学技术的进步,各行业对供电可靠性的要求越来越高。
很多场合必须采用两路电源来保证供电的可靠性。
过去的两路电源用户,在低压侧采用手动操作的双向隔离开关进行倒闸操作,因此常出现误操作而引起事故。
随着供电可靠性要求的提高,反事故措施的日趋完善,越来越多的先进设备投入应用到供电系统中。
双电源自动切换开关是一种能在两路电源之间进行可靠切换双电源的装置,不会出现误操作而引起事故的全系列智能化双电源自动切换开关,就是为了满足高可靠性要求。
目前投入使用的专用智能化设备,具有自投自复、自投不自复和电网发电机三种切换功能,对两路供电电源的三相电压有效值及相位进行实时检测,当任一相发生过压、欠压、缺相,能自动从异常电源切换到正常电源,这是一种性能完善、安全可靠、操作方便、智能化程度高、使用范围广泛的双电源控制系统的设备。
全系列智能型双电源自动切换开关的紧急供电系统,可实现当一路电源发生故障时,可以自动完成常用与备用电源间切换,而无需人工操作,以保证重要用户供电的可靠性。
电工知识:3种简易的双电源切换电路,实物接线图,一看就懂
电工知识:3种简易的双电源切换电路,实物接线图,一看就懂朋友们大家好我是大俵哥,今天我们来看3个双电源切换电路。
双电源切换电路应用非常广泛,用接触器或中间继电器就可以实现简易的双电源切换。
第一种方案:两个交流接触器接触器接触器的选型:接触器的额定电流值可参考负载的工作电流,如上图所示的CJX2-1801,接触器额定电流为18A,负载的工作电流最好不要超过12A。
两个交流接触器,至少有一个接触器的辅助触点为常闭点。
实物图工作原理:两个断路器处于合闸状态,主电源断电时,主接触器的常闭触点复位,备用接触器线圈得电,备用电源供电。
主电源来电时,主接触器吸合,常闭触点断开,备用接触器线圈失电。
第二种方案:两个接触器一个中间继电器中间继电器接线图普通的8脚中间继电器即可,线圈电压为AC220。
原理图原理分析:主电源供电时,中间继电器K1线圈得电,K1的常开点闭合,交流接触器KM2线圈得电,K1的常闭触点断开,KM1线圈无法工作。
当主电源断电时,K1的常开点复位接触器KM2线圈失电,K1常闭触点复位接触器KM1线圈得电,备用电源供电。
实物接线第三种方案:一个中间继电器(仅供参考--不推荐)原理图原理分析:如果负载功率很小,一个中间继电器也可以实现双电源切换,中间继电器工作时,两组常开触点闭合,A路电源供电。
中间继电器失电时,两组常闭触点复位,B路电源供电。
总结:这三种都是最简易的双电源切换,实际应用中有一丝安全隐患,而且切换时有明显的时间差。
如果控制的是照明电路,基本上问题不大,如果控制大功率电器或者是精密仪器,是达不到要求的。
100多个实物接线图,为初学者打开一扇门。
双电源切换原理
双电源切换原理在电力系统中,为了保证电力的连续供应和可靠性,常常需要设计双电源切换系统。
双电源切换系统可以在一个电源失效时自动切换到备用电源,从而确保电力系统的稳定运行。
本文将介绍双电源切换原理及其应用。
双电源切换系统由主电源、备用电源、切换设备和控制系统组成。
主电源通常是电网供电,备用电源可以是柴油发电机或UPS (不间断电源)系统。
切换设备包括切换开关、切换电路和切换控制器,用于在主电源故障时将负载切换到备用电源。
控制系统则负责监测电源状态、判断故障并发出切换命令。
双电源切换的原理是通过切换设备实现的。
当主电源正常供电时,切换开关连接主电源和负载,备用电源处于待机状态。
一旦主电源发生故障,控制系统会检测到故障信号并发出切换命令,切换开关会迅速将负载从主电源切换到备用电源,保证负载持续供电。
当主电源恢复正常后,切换开关会再次将负载切换回主电源,备用电源则处于待机状态,等待下一次故障发生。
双电源切换系统的应用非常广泛。
在医院、数据中心、通信基站等对电力供应要求非常高的场所,双电源切换系统可以确保电力系统的可靠性和稳定性,避免因电力故障而导致的损失。
另外,在一些对电力质量要求较高的场合,如实验室、工业生产线等,双电源切换系统也可以提供稳定的电力供应,保障设备正常运行。
为了确保双电源切换系统的可靠性,需要注意以下几点。
首先,选择合适的备用电源,根据负载的特点和要求选择柴油发电机或UPS系统。
其次,切换设备和控制系统的设计和制造要符合相关标准和规范,确保切换过程平稳可靠。
最后,定期对双电源切换系统进行检测和维护,确保设备的正常运行和性能。
总之,双电源切换系统通过切换设备和控制系统实现主电源和备用电源之间的自动切换,确保负载持续供电。
在需要高可靠性和稳定性的场合,双电源切换系统可以起到关键作用,保障电力系统的正常运行。
因此,在设计和应用电力系统时,应充分考虑双电源切换原理及其应用,以确保电力系统的可靠性和稳定性。
基于mos管的双电源自动切换电路设计
基于mos管的双电源自动切换电路设计一、概述在电力系统中,为了确保系统的可靠性和稳定性,通常会使用双电源自动切换电路。
这种电路能够在主电源故障时自动切换到备用电源,从而确保系统的持续供电。
本文将介绍基于mos管的双电源自动切换电路的设计原理和具体实现方案。
二、设计原理1. 双电源供电原理双电源自动切换电路通常由主电源、备用电源和自动切换装置组成。
当主电源正常供电时,自动切换装置使得备用电源处于断开状态;当主电源故障时,自动切换装置能够快速将系统切换到备用电源,实现系统的持续供电。
2. mos管工作原理mos管是一种常用的功率开关器件,其导通电阻小、耗能少、速度快、可靠性高。
在双电源自动切换电路中,mos管能够实现快速切换和保护电路的功能。
三、电路设计方案基于上述设计原理,我们可以设计出以下具体的双电源自动切换电路方案:1. 主电源和备用电源分别接入电路的输入端,通过电源选择开关和mos管控制电路实现双电源的切换。
2. 设计一套稳压控制电路,保证输出电压在合适的范围内。
3. 设置智能控制装置,监测主电源和备用电源的状态,当检测到主电源故障时,控制mos管切换至备用电源。
四、电路实现步骤1. 确定系统的输入电压范围和输出负载要求,选择合适的mos管和电源选择开关。
2. 搭建电路原理图,设计mos管控制电路和稳压控制电路。
3. 制作PCB板,焊接元件。
4. 系统调试,验证双电源自动切换功能和稳压控制效果。
五、电路性能验证1. 对电路进行长时间稳定运行测试,验证其在不同负载下的性能。
2. 模拟主电源突然断电情况,验证自动切换到备用电源的速度和稳定性。
3. 对mos管和其他关键元件进行热稳定性测试,检测其在长时间高负载下的工作情况。
六、结论本文介绍了基于mos管的双电源自动切换电路的设计原理、具体实现方案和性能验证方法。
该电路能够实现快速而稳定的双电源切换,保证系统的持续供电,具有一定的实用性和可靠性。
希望本文的内容能够对相关领域的工程师和科研人员有所帮助。
双电源自动切换及多电源自动切换系统的应用分析和研究
多电源切换系统的应用分析和研究摘要:在电力行业中,因为负载比较重要,低压配电柜母线一般采用单母分段,采用两进线一母联、三进线(一油机进线)一母联甚至是四进线(两油机进线)一母联等供电方式。
本文就低压配电柜常用切换方式进行介绍,然后分析了多电源转换系统装置的相关参数和性能,并结合应用实例对多电源转换系统设计做了相关总结,希望为有关从业人员提供帮助。
关键词:单母分段;多电源切换系统装置;分析及应用引言在很多重要的配电系统,如能源、轨道交通、数据中心、商业、医疗及半导体行业,在低压系统采用单母分段供电方式,市电之间互备备用,有些系统考虑到市电的断电问题,对系统供电增加了低压柴油发电机进行备用供电。
那么它们之间是通过什么样的方式进行切换配合的呢?以及当市电失电或出现不可靠,启动柴油发电机时,是如何对油机进行投切,如何对负载馈线侧进行分合控制呢?下文将列举几种供电模式。
1.低压供电系统电源切换模式介绍1.1备自投切换方式备自投是备用电源自动投入使用装置的简称。
应急照明系统就是一个备自投的电源系统。
通常采用继电接触器作为蓄电池备自投的控制。
当主电源故障,继电接触器控制系统的控制触头自动闭合,自动将蓄电池与应急照明电路接通。
备自投可分为进线备自投和母联备自投。
备自投方案限制条件多,预备及响应时间慢,无法对负荷进行加载/减载控制,仅适用于简单的非油机系统切换环境,无法对多电源进线(如两市电进线一油机进线一母联)进行切换。
对馈线的分合也无法进行控制[1]。
1.2PLC进行控制器PLC通过通讯或开关量收集原有系统中数据,然后逻辑分析处理后控制常用电源进线、应急电源进线、母联开关、馈线开关各负载出线的分合。
其执行机构依靠母线上的各进出线和母联开关柜完成。
这种方式一般可靠性较差,通常PLC 厂家负责硬件,系统集成商负责软件,同时,本身没有模拟量采集功能,需要通过第三方装置进行采集。
1.3多电源转换系统装置多电源转换系统专为多电源供电系统设计,可实现先进的转换控制及可靠的电力保护。
双电源自动切换开关(ATS)在站用电系统中的应用分析
双电源自动切换开关(ATS)在站用电系统中的应用分析发表时间:2020-07-20T13:14:41.317Z 来源:《基层建设》2020年第9期作者:黄建威[导读] 摘要:现今ATS因其先进性与稳定性,已逐渐成为低压配电系统中重要组成部分,在相关工程设计中的应用范围越来越广泛。
广东电网有限责任公司东莞供电局广东东莞 523000摘要:现今ATS因其先进性与稳定性,已逐渐成为低压配电系统中重要组成部分,在相关工程设计中的应用范围越来越广泛。
本文通过对双电源自动切换开关(ATS)的作用介绍,对双电源自动切换开关(ATS)在站用电系统中的应用进行了简单的分析。
关键词:双电源;自动切换开关;站用电系统;应用;分析依据IEC标准定义:双电源自动转换开关是由一或多个转换控制开关以及其他电器所组成,用来检验电路,并能够将一或多个负载电源电路自一个电源转换至其它电源的自动电器,这类电器简称为ATS。
双电源自动切换开关(ATS)主要适用于1000V交流电之内的紧急电力供应系统中,换接电源时主要负责中断负载供电。
1 双电源自动切换开关(ATS)作用总结双电源自动切换开关(ATS)是电力系统中常用的电器开关设备,主要被用来监测电源电路运行,会在两路供电电源间,选择更安全、可靠的电源进行负载供电,以确保负载用电连续性[1]。
双电源自动切换开关(ATS)的主要特点基本体现在主电源与备用电源间的快速切换,单个的双电源自动切换开关在电路中大致与两台断路器的作用相同,投入成本相对断路器要低许多。
且双电源自动切换开关主要具有两种方式:一是机械连锁,二是电气连锁,其稳定性也更高。
站用系统中双电源自动切换开关最重要的作用,就是完成主备电源的自动切换。
一般情况,双电源自动切换开关主要需能够荷载电气设备正常的过电流,但当设备产生故障问题时,例如:断路,那么此电气设备的控制系统将会阻隔其电路的主回路,进而保证设备的运行安全。
而在站用电系统中加设双电源自动切换开关后,则可以省去电气设备的保护装置,例如:减去断路器、熔断线路控住器等,能够大幅减小系统运行维护成本。
什么是双电源切换开关?双电源转换开关的分类应用以及原理
什么是双电源切换开关?双电源转换开关的分类应用以及原理什么是双电源切换开关?双电源转换开关的分类应用以及原理一、什么是双电源转换开关双电源自动转换开关(ATSE)分为CB级和PC级两个级别。
CB级:配备过电流脱扣器的ATSE,它的主触头能够接通并用于分断短路电流。
PC级:能够接通、承载,但不用于分断短路电流的ATSE。
使用类别:AC-33B,适用电动机混合负载,即包含电动机,电阻负载和30%以下白炽灯负载,接通与分断6le,cosφ=0.5。
使用类别:AC-31B,适用无感或微感负载,接通与分断电流为1.5le,cosφ=0.8。
二、双电源转换开关应用以及分类双电源自动转换开关主要用在紧急供电系统,将负载电路从一个电源自动换接至另一个(备用)电源的开关电器,以确保重要负荷连续、可靠运行。
因此,双电源自动转换开关常常应用在重要用电场所,其产品可靠性尤为重要。
双电源自动转换开关的控制器对两路电压/电流同时进行检测,对高于额定值(可调)的电源电压判为过电压,对低于额定值(可调)的判为欠电压。
微机控制电路对上述检测结果进行逻辑判断,处理结果通过延时(可调)电路驱动相应的指令向电动操动机构发出分闸或合闸指令。
双电源自动转换开关一般由两部分组成:开关本体+控制器而开关本体又有PC级(整体式)与CB级(断路器)之分。
PC级:能够接通、承载、但不用于分断短路电流的ATSE。
其主体是负荷(隔离)开关,为机电一体式开关电器,转换机构由电机或励磁驱动。
CB级:配备过电流脱扣器的ATSE,它的主触头能够接通并用于分断短路电流。
由断路器(微型断路器或塑壳断路器)另配机械联锁装置。
控制器主要用来检测被监测电源(两路)工作状况,当被监测的电源发生故障(如任意一相断相、欠压、失压或频率出现偏差)时,控制器发出动作指令,开关本体则带着负载从一个电源自动转换至另一个电源。
三、双电源自动转换开关结构以及四种形式双电源自动切换开关是由两台三极或四极BM1系列塑壳断路器及附件(辅助、报警触头)、电机传动机构、机械联锁机构、智能控制器等组成。
单电源转双电源电路方案
单电源转双电源电路方案随着科技的不断发展,电子设备在我们的生活中扮演着越来越重要的角色。
然而,有时候我们会面临一个问题,那就是如何将单电源转换为双电源。
在本文中,我们将探讨一种可行的解决方案。
让我们了解一下什么是单电源和双电源。
单电源是指设备只需要一个电源输入来正常运行,而双电源则需要两个电源输入。
在某些特定的应用场合中,我们需要将单电源设备改造为双电源设备,以满足特定需求。
为了解决这个问题,我们可以采用一种称为“双电源切换电路”的方案。
该方案的基本原理是通过切换电路将单电源切换到双电源,以实现设备的正常运行。
我们需要准备一些基本元件,例如电容、电阻和开关等。
这些元件将用于构建我们的双电源切换电路。
接下来,让我们详细介绍一下这个电路的工作原理。
双电源切换电路的核心是一个双刀双掷(DPDT)开关。
这种开关有两个输入和两个输出端口,可以实现两个电源之间的切换。
具体来说,当我们将开关切换到一个输入端口时,该输入端口的电源将被连接到设备,从而实现单电源的工作状态。
当我们将开关切换到另一个输入端口时,该输入端口的电源将被连接到设备,从而实现双电源的工作状态。
在实际应用中,我们可以将一个输入端口连接到正常的电源,另一个输入端口连接到备用电源。
当正常电源失效时,我们只需将开关切换到备用电源,以确保设备的正常运行。
这种双电源切换电路可以提供额外的备用电源,以使设备在电源故障的情况下继续运行。
除了基本的双电源切换电路之外,我们还可以添加一些附加的保护功能,以增强设备的稳定性和可靠性。
例如,我们可以添加电流保护电路来防止过载情况的发生。
我们还可以添加电压监测电路来实时监测电源的工作状态。
我们还可以考虑使用自适应电源切换电路。
这种电路可以根据输入电压的变化自动切换到合适的电源。
这种自适应功能可以提高设备的适应性和稳定性,使其在不同电源条件下都能正常运行。
单电源转双电源电路方案是一种实现设备备用电源的有效解决方案。
通过合理设计和构建双电源切换电路,我们可以确保设备在电源故障的情况下继续正常运行。
双电源转换开关的分类应用以及原理
双电源转换开关的分类应用以及原理
1.手动切换开关:手动切换开关是一种使用手动操作来切换电源的开关。
它通常具有两个手动操作的转动开关,分别用于切换电源和确认切换状态。
2.自动切换开关:自动切换开关是一种根据预设条件来自动切换电源的开关。
它通常具有一个控制单元,通过电压监测、频率监测以及故障检测等功能来实现自动切换。
3.静态切换开关:静态切换开关是一种使用电子元器件来切换电源的开关。
它通常具有快速切换速度、高可靠性和远程控制等特点,适用于对电源切换速度要求较高的应用场合。
1.输入信号检测:双电源转换开关会监测输入信号的电压和频率,以确定是否需要切换电源。
当一个电源的电压或频率超过设定的阈值时,开关会触发切换操作。
2.切换操作:当需要切换电源时,双电源转换开关会通过执行器(如电磁继电器或固态继电器)来切换输出路径。
它会将当前的负载从一个电源切换到另一个电源,并确保切换操作的平稳和可靠。
3.状态显示:双电源转换开关通常会配备状态显示功能,用于显示当前的电源切换状态。
这样,操作人员可以随时了解开关的工作状态,以及当前负载接收的是哪个电源的供电。
4.故障诊断:双电源转换开关会监测输入信号和输出路径的状态,以及执行器的工作情况。
当存在故障时,开关会发出警报或触发故障保护机制,以确保设备和负载的安全运行。
总结:
双电源转换开关是一种用于切换电源的设备,它可以根据输入信号的
变化来切换输出路径,实现对电源的切换。
根据应用场合的不同,双电源
转换开关可以进行手动切换、自动切换和静态切换等操作。
它在电力系统、通信设备和自动化控制系统等领域有着广泛的应用。
双电源切换装置的结构、工作原理和常见问题处理
三、双电源自动转换开关原理概况及性能
双电源自动转换开关原理概况: ◆采用双列复合式触头、横接式机构、微电机预储能及
微电子控制 技术,基本实现零飞弧(无灭弧罩) ◆采用可靠的机械联锁和电气联锁技术 ◆采用过零位技术 ◆具有明显通断位置指示、挂锁功能,可靠实现电源与负
载间的隔离 可靠性高,使用寿命8000次以上 ◆机电一体设计,开关转换准确、灵活、可靠 电磁兼容好,
二、双电源自动转换开关基本分类
双电源自动转换开关(以下简称双电源)是1、PC级,采 用一体式励磁切换开关,是诸多ATS中先进的一种。2、CB级, 采用塑壳断路器与负荷开关二大类型以下是产品介绍双电源作 为执行元件,配以单片机为核心的自动控制器和带机电联锁的 控制机构,是一种性能完善、安全可靠、自动化程度高、使用 范围广的双电源自动转换开关。 本产品适用于交流50/60Hz、 690V及以下,额定电流自6A至1250A及以下的两路电源(常用 电源N和备用电源或发电机电源R)的供电系统中,因一路电源 发生故障(停电、欠压、过压、断相、频率偏移)而进行电源 之间的自动切换,以保证供电的可靠性和安全性。广泛应用于 高层建筑、小区、医院、机场、码头、消防、冶金、化工、纺 织等不允许停电的重要场所 ,实现无人值守连续供电。
抗干扰能力强,对外无干扰,自动化程序高 ◆全自动型不需外接任何控制元器件 外形美观、体积小、重量轻 由逻辑控制板,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
功率P-FET控制器LTC4414
LTC4414是一种功率P-EFT控制器,主要用于控制电源的通、断及自动切换,也可用作高端功率开关。
该器件主要特点:工作电压范围宽,为3.5~36V;电路简单,外围元器件少;静态电流小,典型值为30μA;能驱动大电流P沟道功率MOSFET;有电池反极性保护及外接P-MOSFET的栅极箝位保护;可采用微制器进行控制或采用手动控制;节省空间的8引脚MSOP封装;工作温-40℃+125℃。
图1 LTC4414的引脚排列引脚排列及功能
LTC4414的引脚排列如图1所示,各引脚功能如表1所示。
图2 LTC4414结构及外围器件框图
基本工作原理
这里通过内部结构框图及外接元器件组成的电源自动切换电路来说明其工作原理。
内部结构框图及外围元器件组成的电路如图2所示。
其内部结构是由放大器A1、电压/电流转换电路、电源选择器(可由VIN端或SENSE端给内部电路供电)、模拟控制器、比较器C1、基准电压源(0.5V)、线性栅极驱动器和栅极电压箝位保护电路、开漏输出FET及在CTL 内部有3.5μA的下拉电流源等组成。
外围元器件有P沟道功率MOSFET、肖特基二极管D1、上拉电阻RPU、输入电容CIN及输出电容COUT。
图2中有两个可向负载供电的电源(主电源及辅电源),可以由主电源单独供电,也可以接上辅电源,根据主、辅电源的电压由LTC4414控制实现自动切换。
这两种供电情况分别如下。
1 主电源单独供电
主电源单独供电时,电流从LTC4414的VIN端输入到电源选择器,给内部供电。
放大器A1将VIN和VSENSE的差值电压放大,并经过电压/电流转换,输出与VIN-VSESNSE 之值成比例的电流输入到模拟控制器。
当VIN-VSESNE>20mV时,模拟控制器通过线性栅极驱动器及箝位保护电路将GA TE端的电压降到地电平或到栅极箝位电压(保证-VGS≤8.5V),使外接P-MOSFET导通。
与此同时,VSESNE被调节到VSESNE=VIN-20mV,即外接P-MOSFET的VDS=20mV。
P-MOSFET的损耗为ILOAD×20mV。
在P-MOSFET导通时,模拟控制器给内部FET的栅极送低电平,FET截止,STAT端呈高电平(表示P-MOSFET 导通)。
2 加上辅电源
当加上辅电源(如交流适配器)后,如果VSESNE> VIN+20mV,则内部电源选择器由SENSE端向内部电路供电。
模拟控制器使GA TE端电压升高到VSENSE,则P-MOSFET截止,辅电源通过肖特基二极管D1向负载供电。
这种电源切换是自动完成的。
在辅电源向负载供电时,模拟控制器给内部FET的栅极送高电平,FET导通,STAT端呈低电平(表示辅电源供电)。
上拉电阻RPU的阻值要足够大,使流过FET的电流小于5mA。
在上述两种供电方式时,CTL端是接地或悬空的。
CTL的控制功能将在下面的应用电路介绍。
典型应用电路
1主、辅电源自动切换电路
图3是一种减少功耗的主、辅电源自动切换电路,其功能与图2电路相同,不同之处是用一只辅P-MOSFET(Q2)替代了图2中的D1,可减少电压降及损耗。
其工作原理与图2完全相同。
图3 主、畏电源自动切换电路
图4 由微控制器控制的电源切换电路
2 由微控制器控制的电源切换电路
由微控制器(μC)控制的电源切换电路如图4所示。
此图中的主、辅P-MOSFET都采用了两个背对背的P-MOSFET组成,其目的是主电源或辅电源中的P-MOSFET截止时,均不会通过P-MOSFET内部的二极管向负载供电。
其缺点是电源要通过两个P-MOSFET才能向负载供电,损耗增加一倍,并增加成本。
图4虚线框中的稳压二极管(一般取8~10V)连接在辅P-MOSFET的极限-VGSS时,由于稳压二极管的击穿电压<-VGS,稳压二极管被击穿使P-MOSFET的-VGS箝位于8~10V,从而进行保护。
主、辅电源的电压若等于或小于μC的工作电压时,主、辅电源可直接连接μC的ADC
接口;若主、辅电源的电压大于μC的工作电压时,则电源电压要经过电阻分压器分压后才能输入μC的ADC(图4中,主辅电源直接与μC接口)。
μC的I/O口与LTC4414的CTL端连接。
当在CTL端施加逻辑低电平时(低于0.35V)时,主电源向负载供电(不管辅电源的电压高低);当μC向CTL端施加高电平(高于0.9V)时,则由辅电源向负载供电(也不管其电压比主电源高还是低)。
一旦辅电源供电,主电源可移去。
只有当主电源高于辅电源并且在CTL端置低电平时才能使主电源恢复供电。
为了在切换的瞬间使输出电压变化较小,输出电容COUT要有足够的电容量。
这电路切换的过程是:CTL=H时,GA TE端的电压与SENSE端的电压相等,使主P-MOSFET的-VGS=0而截止;与此同时STA T端为低电平,使辅P-MOSFET的-VGS≈Vout 而导通。
在实际使用时,主电源往往由电池供电,主电源低阈值电压(切换电压)先设定好并存入μC中,μC检测主要电源的电压,一旦主电源的电压低于设定的低阈值电压,μC向CTL端输出高电平,则主P-MOSFET截止;STA T端输出低电平,辅P-MOSFET导通,电源切换成辅电源供电。
此时可移去主电源的电池,更换充好电的电池再装入。
μC可检查主电源的电压,若VIN>VSENEN超过20mV,μC会自动切换到主电源供电。
μC还可以通过I/O口驱动不同颜色的LED,显示主、辅电源的供电状态。
图5 高端功率开关
3 高端功率开关
图 5 是由LTC4414组成的高端功率开关电路。
由CTL端施加逻辑电平来控制P-MOSFET的通、断。
该电路可由μC控制、电路控制或手动控制。
CTL=L时,开关导通;CTL=H时,开关关断。
外围元器件的选择
LTC4414的主要外围元器件是P-MOSFET、输入、输电容器CIN和COUT。
1 P-MOSFET的选择
为满足电路工作的可靠性,要选VDSS>VIN(max)及RDS(on)小的P-MOSFET。
在VIN 低、ILOAD大时,要保证ID>ILOAD(max)及RDS(on) ×I LOAD(max) ≤20mV。
2 C IN及C OUT的选择
为保证在电源切换及负载有较大变化时输出电压稳定,选择合适的CIN及COUT很重要。
C IN一般在0.1~10μF范围内选择,C OUT在1~47μF范围内选取。
C IN及C OUT 可选用多层陶瓷电容器(MLCC),其电容量大小是否合适最好通过实验来调整。
在使用MLCC电容器时,因其ESR低,自身谐振频率及Q值高,有可能在AC适配器供电插拔瞬单间生高压脉冲而损坏LTC4414。
因此,凌特公司建议在输入电容中串联几个Ω
的电阻以降值Q值以防止瞬态高压的产生。
在实验过程中可看V IN及S ENSE端的电压波形来调整电容量及增减串联在C IN电路中的各电阻值。
应用领域
该器件主要应用于大电流功率通路开关、工业控制及汽车、不间断电源(UPS)、逻辑电平控制的功率开关和带有备用电池的应急系统。