简单几何体PPT教学课件
合集下载
几何图形(39张PPT)数学
第6章 图形的初步知识
6.1 几何图形
学习目标 1.在具体情况中认识立方体、长方体、圆柱体、圆锥体、球体,并能理解和描述它们的某些特征,进一步认识点、线、面、体,体验几何图形是怎样从实际情况中抽象出来的.2.了解几何图形、立体图形与平面图形的概念.掌握重点 认识常见几何体并能描述它们的某些特征.突破难点 体验几何图形与现实生活中图形的关系,区分立体图形与平面图形.
解
返回
解 立方体由6个面围成,它们都是平的;圆柱由3个面围成,其中有2个平的,1个曲的.解 圆柱的侧面和两个底面相交成2条线,它们都是曲的.解 立方体有8个顶点,经过每个顶点有3条线段(棱).
典例精析
例1 (教材补充例题)如图所示的图形.平面图形有_____________;立体图形有_____________.
答案
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
①,②,⑥
③,④
⑤
②,③,⑤
①,④,⑥
19
13.如图是一个三棱柱,观察这个三棱柱,请回答下列问题:(1)这个三棱柱共有多少个面?(2)这个三棱柱一共有多少条棱?(3)这个三棱柱共有多少顶点?
解 这个三棱柱共有5个面.解 这个三棱柱一共有9条棱.解 这个三棱柱共有6个顶点.
C
解析 观察图形可知,其中一面、两面、三面涂色的小正方体的个数分别为x1=6,x2=12,x3=8,则x1-x2+x3=2.故选C.
1
2
3
4
5
6
7
8
9
10
11
12
《简单几何体的表面积与体积》立体几何初步PPT课件(棱柱、棱锥、棱台的表面积与体积)
PPT教 程 : /powerpoint/
资 料 下 载 : /ziliao/
个 人 简 历 : /jianli/
试 卷 下 载 : /shiti/
教 案 下 载 : /jiaoan/
PPT下 载 : /xiazai/
PPT教 程 : /powerpoint/
资 料 下 载 : /ziliao/
个 人 简 历 : /jianli/
试 卷 下 载 : /shiti/
体的表面积与体积的求法.
2.会求与多面体相关的组合体的表面积与体积.
直观想象 逻辑推理 数学运算 数学建模
必修第二册·人教数学A版
课前 • 自主探究
返回导航 上页 下页
课堂 • 互动探究
课后 • 素养培优
课时 • 跟踪训练
必修第二册·人教数学A版
返回导航 上页 下页
PPT模 板 : /moban/
英 语 课 件 : /kejian/ying/
科 学 课 件 : /kejian/kexue/ 物 理 课 件 : /kejian/wuli/
化 学 课 件 : /kejian/huaxue/ 生 物 课 件 : /kejian/shengwu/
必修第二册·人教数学A版
返回导航 上页 下页
知识点二
PPT模 板 : /moban/
PPT素 材 : /sucai/
PPT背 景 : /beijing/
PPT图 表 : /tubiao/
PPT下 载 : /xiazai/
化 学 课 件 : /kejian/huaxue/ 生 物 课 件 : /kejian/shengwu/
地 理 课 件 : /kejian/dili/
高中数学必修《简单几何体》ppt课件
棱柱用表示两底面多边形的顶点的字母表
示2024棱/1/9 柱;如:棱柱ABCDEA1B1C1D1E1
33
二 观察下列几何体;有什么相同点
2024/1/9
34
1 棱锥的概念
有一个面是多边形;其余各面是有一个公共 顶点的三角形; 由这些面所围成的几何体叫做 棱锥
这个多边形面叫做棱锥的底面
有公共顶点的各个三角形叫做棱锥 的侧面
3 棱台的表示法:棱台用表示上 下底面各顶
点的字母来表示;如图棱台ABCDA1B1C1D1
A1 D1
C B1 1
2024/1/9
41
❖ 思考题:1 用平行于圆柱;圆锥;圆台的底面的平
面去截它们;那么所得的截面是什么图形 性质1:平行于圆柱;圆锥;圆台底面的截面都是 圆 2 过圆柱;圆锥;圆台的旋转轴的截面是什么图形 性质2:过轴的截面轴截面分别是全等的矩形;等
2024/1/9
22
2 圆台的表示: 用表示它的轴的字母表示;如圆台OO′
O'
2024/1/9
O
底面
轴 侧面
母线 23
底面
总结:由于球体 圆柱 圆锥 圆台分别由平面图 形半圆 矩形 直角三角形 直角梯形通过绕着一 条轴旋转而生成的;所以把它们都叫旋转体
2024/1/9
24
§1 2:简单的多面体
❖ 大家知道:平静的桌面 黑板面 湖面都给我们一种平面的 局部感觉
❖ 请大家想一想;在空间中;平面给大家的感觉会是怎样的呢
❖ 在空间中;平面和直线一样;都是无限延展的;因此;我们不 能把一个无限延展的平面在一张纸上或书本上表示出来; 我们通常用平面的一部分表示整个平面
❖ 例如:
2024/1/9
《立体几何初步——简单几何体的表面积与体积》数学教学PPT课件(4篇)
栏目 导引
第八章 立体几何初步
一个高为 16 的圆锥内接于一个体积为 972π 的 球,在圆锥里又有一个内切球.求: (1)圆锥的侧面积; (2)圆锥里内切球的体积.
栏目 导引
第八章 立体几何初步
解:(1)如图所示,作出轴截面,则等腰△SAB 内 接于⊙O,而⊙O1 内切于△SAB. 设⊙O 的半径为 R, 则有43πR3=972π, 所以 R3=729,R=9. 所以 SE=2R=18. 因为 SD=16,所以 ED=2. 连接 AE,又因为 SE 是直径,
栏目 导引
第八章 立体几何初步
角度二 球的内接长方体问题 一个长方体的各个顶点均在同一球的球面上,且一个顶
点上的三条棱的长分别为 1,2,3,则此球的表面积为________. 【解析】 长方体外接球直径长等于长方体体对角线长,即 2R = 12+22+32= 14, 所以球的表面积 S=4πR2=14π. 【答案】 14π
栏目 导引
第八章 立体几何初步
球的截面问题的解题技巧 (1)有关球的截面问题,常画出过球心的截面圆, 将问题转化为平面中圆的问题. (2)解题时要注意借助球半径 R,截面圆半径 r, 球心到截面的距离 d 构成的直角三角形,即 R2=d2+r2.
栏目 导引
第八章 立体几何初步
平面 α 截球 O 的球面所得圆的半径为 1,球心
A.17π C.20π
B.18π D.28π
栏目 导引
第八章 立体几何初步
【解析】 (1)设球的半径为 R,则由已知得 V=43πR3=323π,解得 R=2. 所以球的表面积 S=4πR2=16π. (2)由三视图可得此几何体为一个球切割掉18后剩下的几何体, 设球的半径为 r, 故78×43πr3=238π, 所以 r=2,表面积 S=78×4πr2+34πr2=17π,选 A. 【答案】 (1)B (2)A
第八章 立体几何初步
一个高为 16 的圆锥内接于一个体积为 972π 的 球,在圆锥里又有一个内切球.求: (1)圆锥的侧面积; (2)圆锥里内切球的体积.
栏目 导引
第八章 立体几何初步
解:(1)如图所示,作出轴截面,则等腰△SAB 内 接于⊙O,而⊙O1 内切于△SAB. 设⊙O 的半径为 R, 则有43πR3=972π, 所以 R3=729,R=9. 所以 SE=2R=18. 因为 SD=16,所以 ED=2. 连接 AE,又因为 SE 是直径,
栏目 导引
第八章 立体几何初步
角度二 球的内接长方体问题 一个长方体的各个顶点均在同一球的球面上,且一个顶
点上的三条棱的长分别为 1,2,3,则此球的表面积为________. 【解析】 长方体外接球直径长等于长方体体对角线长,即 2R = 12+22+32= 14, 所以球的表面积 S=4πR2=14π. 【答案】 14π
栏目 导引
第八章 立体几何初步
球的截面问题的解题技巧 (1)有关球的截面问题,常画出过球心的截面圆, 将问题转化为平面中圆的问题. (2)解题时要注意借助球半径 R,截面圆半径 r, 球心到截面的距离 d 构成的直角三角形,即 R2=d2+r2.
栏目 导引
第八章 立体几何初步
平面 α 截球 O 的球面所得圆的半径为 1,球心
A.17π C.20π
B.18π D.28π
栏目 导引
第八章 立体几何初步
【解析】 (1)设球的半径为 R,则由已知得 V=43πR3=323π,解得 R=2. 所以球的表面积 S=4πR2=16π. (2)由三视图可得此几何体为一个球切割掉18后剩下的几何体, 设球的半径为 r, 故78×43πr3=238π, 所以 r=2,表面积 S=78×4πr2+34πr2=17π,选 A. 【答案】 (1)B (2)A
2023高考数学基础知识综合复习第18讲简单几何体的表面积与体积 课件(共24张PPT)
分叫作棱台
(2)旋转体的形成
几何体
旋转图形
圆柱
矩形
旋转轴
矩形一边所在的直线
圆锥
直角三角形
一直角边所在的直线
圆台
直角梯形或等腰梯形
球
半圆或圆
直角腰所在的直线或等腰梯形
上下底中点连线所在的直线
直径所在的直线
2.空间几何体的直观图
空间几何体的直观图常用斜二测画法来画,其画法步骤为:
①画轴:在平面图形上取互相垂直的x轴和y轴,作出与之对应的x'轴
3
4
3 = .故选 D.
考点一
考点二
考点三
本题考查四面体的体积的最大值的求法,涉及空间中线线、线面、
面面间的位置关系等基础知识,考查运算求解能力,属于难题.处理
此类问题时,往往先去找到不变的量,再根据题中的所给条件的变
化规律找到最值,从而得到体积的最值.
和y'轴,使得它们正方向的夹角为45°(或135°);
②画线(取长度):平面图形中与x轴平行(或重合)的线段画出与x'轴
平行(或重合)的线段,且长度不变,平面图形中与y轴平行(或重合)的
线段画出与y'轴平行(或重合)的线段,且长度为原来长度的一半;
③连线(去辅助线):连接有关线段,擦去作图过程中的辅助线.
径,从而进一步求解.
考点一
考点二
考点三
◆角度3.体积最值问题
例5(1)(2019年1月浙江学考)如图,线段AB是圆的直径,圆内一条动
弦CD与AB交于点M,且MB=2AM=2,现将半圆沿直径AB翻折,则三
棱锥C-ABD体积的最大值是(
)
2
3
1
3
A.
(2)旋转体的形成
几何体
旋转图形
圆柱
矩形
旋转轴
矩形一边所在的直线
圆锥
直角三角形
一直角边所在的直线
圆台
直角梯形或等腰梯形
球
半圆或圆
直角腰所在的直线或等腰梯形
上下底中点连线所在的直线
直径所在的直线
2.空间几何体的直观图
空间几何体的直观图常用斜二测画法来画,其画法步骤为:
①画轴:在平面图形上取互相垂直的x轴和y轴,作出与之对应的x'轴
3
4
3 = .故选 D.
考点一
考点二
考点三
本题考查四面体的体积的最大值的求法,涉及空间中线线、线面、
面面间的位置关系等基础知识,考查运算求解能力,属于难题.处理
此类问题时,往往先去找到不变的量,再根据题中的所给条件的变
化规律找到最值,从而得到体积的最值.
和y'轴,使得它们正方向的夹角为45°(或135°);
②画线(取长度):平面图形中与x轴平行(或重合)的线段画出与x'轴
平行(或重合)的线段,且长度不变,平面图形中与y轴平行(或重合)的
线段画出与y'轴平行(或重合)的线段,且长度为原来长度的一半;
③连线(去辅助线):连接有关线段,擦去作图过程中的辅助线.
径,从而进一步求解.
考点一
考点二
考点三
◆角度3.体积最值问题
例5(1)(2019年1月浙江学考)如图,线段AB是圆的直径,圆内一条动
弦CD与AB交于点M,且MB=2AM=2,现将半圆沿直径AB翻折,则三
棱锥C-ABD体积的最大值是(
)
2
3
1
3
A.
沪教版(上海)数学高三上册-15.1 简单几何体—多面体 课件
正棱锥.
①底面是正多边形; ②顶点与底面中心的连线垂直于底面
(顶点在底面上 的射影是底面的中心)
正三棱锥
正四棱锥
正五棱锥
正棱锥的性质
1 . 各侧面是全等的等腰三角形 2 . 各侧棱相等 ,各斜高相等
3 . 高、斜高及其在底面上的射影 构成直角三角形
斜高及其在底面上的射影的夹角 为正棱锥侧面与底面所成角
B
D 3a
C
5a
2a
B1
A1
C1
小结 1、棱柱的定义
A B
E D
C
(1)有两个面是互相平行的多边形 E
(2)不在这两个面上的棱都互相平行A B
D C
2、棱柱的有关概念、表示方法、分类
3、棱柱的性质
(1)侧棱都相等,侧面是平行四边形; (2)两个底面与平行于底面的截面是全等的多形; (3)过不相邻的两条侧棱的截面是平行四边形;
两块,这两块叫做堑堵,再把一块堑堵沿斜线分成两块,
大的叫阳马,小的叫鳖臑,两者体积比为2:1,这个比率
是不变的,如图是一个阳马三视图,则其表面积为( )
A. 2
B.
C.
D.
斜高SM = 2 3 侧棱长SA = 21 A
B
S
3
23
C
O A
M B
23
O
3
C
M
例2. 已知正四棱锥S—ABCD的底面 S
边长为2,高为2 (1)求棱锥的侧棱长与斜高
6 斜高SM = 5 侧棱长SA =
C
B
1M
O2
D
A
D
2
C
O
2
B
M
A
中职数学语文版(2021)基础模块下册《简单几何体的表面积和体积(二)》课件
S2
1
3 R
Si R
1 3
S3
R
...
1 3
Sn
R
1 3
R(Si
S2
S3
...
Sn
)
1 3
RS
①
球的体积: V 4 R3 ②
由①② 得:
3
S=4πR2
例题分析
如下图所示,圆柱的底面直径与高都等于球的直径,那么球的体积 是圆柱体积的几分之几?
解:设球的半径为R,则圆柱的底面半径为
R,高为2R因为V球=4/3πR3,V圆柱 =πR2·2R=2πR3所以,
练习
1、已知圆柱的底面半径为2,高为3,求该圆柱的表面积 2、一个圆柱的底面直径和母线均为4,求其体积. 3、若一个圆锥的侧面展开图是面积为2的半圆面,求该圆锥的体积.
球的体积
排液法测小球的体积
h
球的体积
h
球的体积
h
球的体积
h
球的体积
h
球的体积
h
球的体积
h
球的体积
H h
小
球
它
的
排 开 液
7.3 简单几何体的表面积和体积 (二)
复习回顾
棱柱、棱锥的表面积是如何求解的?
几何体表面积
展开图
平面图形面积
棱柱、棱锥是由多边形围成的几何体,它们的侧面展开图还是平面图 形,计算它们的表面积就是计算它的各个侧面面积和底面面积之和
问题引入 简单旋转体的表面积可以利用上述办法求解吗?
旋转体的表面积
课后拓展
认识圆台后,尝试求解圆台的侧面积和体积。 尝试分析圆台表面积、体积与圆柱、圆锥表面 积、体积间的关系。
旋转体的体积
常见几何体 ppt课件
正棱柱有以下重要性质: (1) 棱都相等,侧棱垂直于底面,侧棱长等于高. (2) 底面中心的连线是棱柱的高.
6
2.概念的强化
例 1 画底面边长是 1cm,高是 2 cm 的正六棱柱的斜视 直观图.
分析 画正棱柱的斜视直观图采用“斜二侧”画法,按照 6.1 节所述的步骤进行.
(1)画轴.任取点O,过O画 x
A B
高 侧面
E D
底面
C
14
底面是正三角形、正四边形、正五边形、……的正棱锥分别 叫做正三棱锥、正四棱锥、正五棱锥……. 正棱锥有以下重要性质: (1) 各侧棱相等; (2) 各侧面等腰三角形底边上的高相等,叫做正棱锥的斜高. (3) 顶点到底面中心的连线垂直于底面,是正棱锥的高.
(4) 正棱锥的高、斜高与斜高在底面内的射影组成一个直角 三角形;正棱锥的高、侧棱与侧棱在底面内的射影也组成一 个直角三角形. (5) 侧棱与底面所成的角都相等,侧面与底面所成的二面角
18
4.概念的强化
例 4 一个金属屋分为上、下两部分,如图所示,下部分是 一个柱体,高为 2 m,底面为正方形,边长为 5 m,上部分 是一个锥体,它的底面与柱体的底面相同,高为 3 m,金属 屋的体积、屋顶的侧面积各为多少(精确到 0.01m2) ?
解 金属顶的体积为
V V正四棱柱 V正四棱锥 52 2 1 52 3
10 为 108cm3.
5.巩固性练习
练习 6.6.1 (1)、(2)
11
6.6.2 正棱锥
12
1.新概念(1)
正棱锥的概念与性质
观察下面多面体
P
P
P
C
O
D
O
CE
D
6
2.概念的强化
例 1 画底面边长是 1cm,高是 2 cm 的正六棱柱的斜视 直观图.
分析 画正棱柱的斜视直观图采用“斜二侧”画法,按照 6.1 节所述的步骤进行.
(1)画轴.任取点O,过O画 x
A B
高 侧面
E D
底面
C
14
底面是正三角形、正四边形、正五边形、……的正棱锥分别 叫做正三棱锥、正四棱锥、正五棱锥……. 正棱锥有以下重要性质: (1) 各侧棱相等; (2) 各侧面等腰三角形底边上的高相等,叫做正棱锥的斜高. (3) 顶点到底面中心的连线垂直于底面,是正棱锥的高.
(4) 正棱锥的高、斜高与斜高在底面内的射影组成一个直角 三角形;正棱锥的高、侧棱与侧棱在底面内的射影也组成一 个直角三角形. (5) 侧棱与底面所成的角都相等,侧面与底面所成的二面角
18
4.概念的强化
例 4 一个金属屋分为上、下两部分,如图所示,下部分是 一个柱体,高为 2 m,底面为正方形,边长为 5 m,上部分 是一个锥体,它的底面与柱体的底面相同,高为 3 m,金属 屋的体积、屋顶的侧面积各为多少(精确到 0.01m2) ?
解 金属顶的体积为
V V正四棱柱 V正四棱锥 52 2 1 52 3
10 为 108cm3.
5.巩固性练习
练习 6.6.1 (1)、(2)
11
6.6.2 正棱锥
12
1.新概念(1)
正棱锥的概念与性质
观察下面多面体
P
P
P
C
O
D
O
CE
D
6.1 几何图形 课件 (共30张PPT) 2024—2025学年人教版(2024)数学七年级上册
6.1 几何图形
对于一些立体图形的问题,常把它们转化为平面图形来研究. 从不同方向看立体图形,往往会得到不同形状的平面图形. 在建筑、 工程等设计中,也常常用从不同方向看到的平面图形来表示立体 图形. 图6.1-5是一个工件的立体图,设计师们常常画出从不同方向 看它得到的平面图形来表示它(图6.1-6).
6.1 几何图形
3.如图,上面的平面图形绕轴旋转一周,可以得出下面的 立体图形。把有对应关系的平面图形与立体图形用线连起来.
6.1 几何图形
6.1 几何图形
6.1 几何图形
几何图形都是由点、线、面、体组成的,点是构成图形的基本 元素. 一些庆祝活动的背景图案(图6.1-15)也可以看作由点组成.
点、线、面、体经过运动变化,就能组合成各种各样的几何图 形,形成多姿多彩的图形世界.
6.1 几何图形
1.围成下面这些立体图形的各个面中,哪些面是平的? 哪些面是曲的?
6.1 几何图形
6.1 几何图形
有些几何图形(如线段、角、三角形、长方形、圆等)的各部 分都在同一平面内,它们是平面图形。
6.1 几何图形
虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的. 很多立体图形中的某些部分是平面图形,例如,长方体的侧面是长方形.
6.1 几何图形
1.一个铁球有下列性质:铁质,坚硬,灰黑色,球形, 直径为5cm,质量约为517g,摸上去较凉,等等,几何研究 其中的哪些性质?
6.1 几何图形
各种各样的物体除了具有颜色、质量、材质等性质,还具 有形状(如方的、圆的等)、大小(如长度、面积、体积等)和位 置关系(如相交、垂直、平行等),物体的形状、大小和位置关 系是几何中研究的内容.
我们在小学学习过的点、线段、三角形、四边形、圆、长 方体、圆柱、圆锥、球等,都是从形形色色的物体外形中得出 的,它们都是几何图形(geometric figure). 几何图形是数学研究 的主要对象之一.
基本几何体ppt课件
圆锥体表面上的点
例:已知圆锥体表面上一点K的正面投影k',求另两个投影。
s'
k' 1'
s"
k" 1" 解1、辅助素线法: 过锥顶S和已知点K作 直线S1,连s'k'与底 边交于1',然后求出 该素线的H面和W面投 影s1和s" 1 ",最后 由k'求出k和k"。
s
1 k
圆锥体表面上的点
例:已知圆锥体表面上一点K的正面投影k',求另两个投影。
4' (5')
5" 6'(7')
7ቤተ መጻሕፍቲ ባይዱ
6
例 : 求八棱柱被平面P截切后的俯视图。
P
4 ≡ 5 7 5 6 3 4 2 1 Ⅷ Ⅰ 5 6 Ⅶ Ⅵ Ⅲ 8 Ⅱ Ⅴ Ⅳ
2 ≡ 3 ≡ 6 ≡ 7 1 ≡ 8 8
7
3 1 2
4
截交线的投影 检查截交 分析棱线的 截交线的形状? 求截交线 特性? 投影 线的投影
球体的投影分析
球体的三面投影都是直径等于球径的圆。正面投影的圆是球体正 面投影的转向轮廓线,也是前后两半球可见与不可见的分界线。
球面上点的投影
在球面上取点,可通过作辅助圆法来作图。但请注意,在 球面上是不可能作出直线的。 作图:过a作直线∥OX得水平 投影12,正面投影为直径为 12的圆,a'必在此圆周上。 因a可见,位于上半球,求得 a',由a、a' 求出a",因a 在右半球,所以a"不可见。 因为b'处于正面投影外形轮 廓线上,可由b'直接求得b、 b"。
《点、线、面、体》几何图形初步PPT优质课件
探究新知
1. 几何体是由面围成的. 2. 面分为平的面和曲的面.
探究新知
实际生活中的平面与曲面
平平面面
曲面
曲面
探究新知
说一说
如下图,围成这些立体图形的各个面中哪 些面是平的?哪些面是曲的?
探究新知
观察长方体、圆柱、棱锥等熟悉的几何体模型,结合下 列问题小组合作探究:
(1) 面和面相交的地方形成了什么?它们有什么不同吗? (2) 线和线相交处又形成了什么?它们有什么不同吗?
A.1
B.2
C.3
D.4
当堂训练
3. 请把下图中的平面图形与其绕轴旋转一周后得到的立体图 形连接起来.
当堂训练
4.小明用如图所示的胶滚沿从左到右的方向将图案 滚涂到墙上,下列给出的4个图案中,符合图示滚涂 出的图案是( A )
A.
B.
C.
D.
当堂训练
5.长为4cm,宽为2cm的长方形,绕其一边进行旋转得到 一个几何体.
第六章 几何图形初步
6.1 几何图形 6.1.2 点、线、面、体
学习目标
1.了解几何体、平面和曲面的意义,能正确判定 围成几何体的面是平面还是曲面. 2.了解几何图形构成的基本元素是点、线、面、 体及其关系,能正确判定由点、线、面、体经过 运动变化形成的简单的几何图形.
导入新课
猜谜语
千条线,万条线, 落入水中看不见.
这可以说成:点动成线.
探究新知 你能举出其他“点动成线”的实例吗?
探究新知 实际生活中的“线动成面”
探究新知
想一想 长方形纸片绕它的一边旋转一周,会形成什 么图形?
探究新知 面动成体
巩固练习
如下图,上面的平面图形绕轴旋转一周,可以得到下 面的立体图形,把有对应关系的平面图形与立体图形 连接起来.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖棱柱,棱锥,棱台都是简 单多面体。
5、棱柱
❖ 棱柱 有两面平行,其余面都是四边形,相邻四边形都平行。
❖ 底面:平行的两面。其余面叫侧面。面都是平行四边形。两
面的公共边叫棱。两侧面的公共边叫侧棱。侧面、底面的
公共顶点叫顶点。夹在两底间的垂直于底的直线段长叫高。
❖ 斜棱柱 侧棱不垂直于底的棱柱。直棱柱 侧棱垂直于底 的棱柱。正棱柱 侧棱垂直于底且底面是正多边形的棱柱。
❖ 以直角梯形的垂直于底边的腰所在直线为旋转轴, 其余边旋转形成的曲面围成的几何体叫圆台。在轴 上的这边长度叫高,垂直于轴的边形成底面,不垂 直于轴的边形成侧面且无论转到何处,这边都叫侧 面的母线。
❖ 探究思考:圆柱 圆锥 圆台有何关系?
4、简单多面体
❖若干个平面多边形围成的 几何体叫简单多面体。
剥掉皮,就是鲜嫩的、 金黄色的瓤,掰一瓣放 入嘴里轻轻一咬,满嘴 都是甜甜的汁,使人感 到舒畅极了。
十一月左右,果实成熟了,绿叶 丛中露出了一盏盏红色的小灯笼。 它们有的两个一排,有的三个一束, 有的四五个抱成团……沉甸甸的,把 枝条儿越压越弯。走近细看,红橘的 皮上还有一个个的小窝窝呢。剥掉皮, 就是鲜嫩的、金黄色的瓤,掰一瓣放 入嘴里轻轻一咬,满嘴都是甜甜的汁, 使人感到舒畅极了。
❖ 按底面边数又可称为三棱柱,四棱柱,五棱柱…。
6、棱锥、棱台
❖ 棱锥 一面是多形,其余面都是有一公共顶点的三 角形。多边形底面。其余面叫侧面。侧面的公共边 侧棱。侧面的公共顶点叫棱锥顶点。顶点到底面的 垂线段长叫高。底面是正多形,侧面都是全等的等 腰三角形的棱锥叫正棱锥。侧面等腰三角形的底边 上的高叫斜高。
但当你走近,那阵 阵香气扑面而来, 会使你醉倒。
到了四五月,各种花竞相开放, 争奇斗艳,而橘子树却不声不响 地长出米粒大小的花骨朵。花骨 朵绽放开来,形状像茉莉,一瓣 一瓣的,有指甲那么大,小巧、 洁白、清新、朴素,一簇簇藏在 枝叶间,星星点点的,不大起眼。 但当你走近,那阵阵香气扑面而 来,会使你醉倒。
我的家乡在 长江边上,那里 有成片的橘园。
家乡的红橘, 真让人喜爱呀!
2、旋转面与旋转体
❖一条平面曲线绕其所在平 面上的一定直线旋转形成 的曲面叫旋转面。
❖封闭的旋转面围成的几何 体叫旋转体。
3、圆柱 圆锥 圆台
❖ 以矩形的一边所在直线为旋转轴,其余边旋转形成 的曲面围成的几何体叫圆柱。
❖ 以直角三角形的一直角边所在直线为旋转轴,其余 边旋转形成的曲面围成的几何体叫圆锥。
❖ 棱台 用一个平行于底的平面截棱锥,得到面与截 面间的部分。棱锥的底叫棱台下底,截面叫棱台上底。 正棱台 用正棱锥截得到的棱台。正棱台的侧面都 是全等的等腰梯形,其高叫正棱台的斜高。
9·家乡的 红橘
Байду номын сангаас
风霜考验 明媚 花骨朵竞 相开放 绽放 茉莉 一 瓣一瓣 一簇簇 朴素 又酸 又涩 成熟 沉甸甸 鲜嫩 舒畅
简单几何体
1、球的认识
❖ 球面:半圆绕其直径旋转一周形成的曲面。半圆的 圆心叫球心,球心与球面上任一点的连线段叫球的 半径,连接球面上两点且过球心的线段叫球的直径。
❖ 球体:球面围成的几何体叫球。 ❖ 探究思考:a.球与球面有什么区别?
b.用一个平面去截球面得到什么图形? 其大小有无变化?
c.地球仪上的经线纬线是什么图形? d.球面上两点间的最短连线是线段吗?
春天来了,经受了风 霜考验的橘子树更加茂 盛。
那四季常青的叶片在明 媚的阳光下闪着绿油油 的光。
春天来了,经受了风 霜考验的橘子树更加茂 盛,那四季常青的叶片 在明媚的阳光下闪着绿 油油的光。
到了四五月,各种花 竞相开放,争奇斗艳, 而橘子树却不声不响地 长出米粒大小的花骨朵。
花骨朵绽放开来,形状像 茉莉,一瓣一瓣的,有指 甲那么大,小巧、洁白、 清新、朴素,一簇簇藏在 枝叶间,星星点点的,不 大起眼。
秋天,橘子树结出 了肥实的青色果子, 一串串压弯了树枝, 谁见了谁爱,但这时 吃起来还又酸又涩。
十一月左右,果 实成熟了,绿叶丛 中露出了一盏盏红 色的小灯笼。
它们有的两个一排,有 的三个一束,有的四五 个抱成团……沉甸甸的, 把枝条儿越压越弯。
走近细看,红橘的 皮上还有一个个的 小窝窝呢。
5、棱柱
❖ 棱柱 有两面平行,其余面都是四边形,相邻四边形都平行。
❖ 底面:平行的两面。其余面叫侧面。面都是平行四边形。两
面的公共边叫棱。两侧面的公共边叫侧棱。侧面、底面的
公共顶点叫顶点。夹在两底间的垂直于底的直线段长叫高。
❖ 斜棱柱 侧棱不垂直于底的棱柱。直棱柱 侧棱垂直于底 的棱柱。正棱柱 侧棱垂直于底且底面是正多边形的棱柱。
❖ 以直角梯形的垂直于底边的腰所在直线为旋转轴, 其余边旋转形成的曲面围成的几何体叫圆台。在轴 上的这边长度叫高,垂直于轴的边形成底面,不垂 直于轴的边形成侧面且无论转到何处,这边都叫侧 面的母线。
❖ 探究思考:圆柱 圆锥 圆台有何关系?
4、简单多面体
❖若干个平面多边形围成的 几何体叫简单多面体。
剥掉皮,就是鲜嫩的、 金黄色的瓤,掰一瓣放 入嘴里轻轻一咬,满嘴 都是甜甜的汁,使人感 到舒畅极了。
十一月左右,果实成熟了,绿叶 丛中露出了一盏盏红色的小灯笼。 它们有的两个一排,有的三个一束, 有的四五个抱成团……沉甸甸的,把 枝条儿越压越弯。走近细看,红橘的 皮上还有一个个的小窝窝呢。剥掉皮, 就是鲜嫩的、金黄色的瓤,掰一瓣放 入嘴里轻轻一咬,满嘴都是甜甜的汁, 使人感到舒畅极了。
❖ 按底面边数又可称为三棱柱,四棱柱,五棱柱…。
6、棱锥、棱台
❖ 棱锥 一面是多形,其余面都是有一公共顶点的三 角形。多边形底面。其余面叫侧面。侧面的公共边 侧棱。侧面的公共顶点叫棱锥顶点。顶点到底面的 垂线段长叫高。底面是正多形,侧面都是全等的等 腰三角形的棱锥叫正棱锥。侧面等腰三角形的底边 上的高叫斜高。
但当你走近,那阵 阵香气扑面而来, 会使你醉倒。
到了四五月,各种花竞相开放, 争奇斗艳,而橘子树却不声不响 地长出米粒大小的花骨朵。花骨 朵绽放开来,形状像茉莉,一瓣 一瓣的,有指甲那么大,小巧、 洁白、清新、朴素,一簇簇藏在 枝叶间,星星点点的,不大起眼。 但当你走近,那阵阵香气扑面而 来,会使你醉倒。
我的家乡在 长江边上,那里 有成片的橘园。
家乡的红橘, 真让人喜爱呀!
2、旋转面与旋转体
❖一条平面曲线绕其所在平 面上的一定直线旋转形成 的曲面叫旋转面。
❖封闭的旋转面围成的几何 体叫旋转体。
3、圆柱 圆锥 圆台
❖ 以矩形的一边所在直线为旋转轴,其余边旋转形成 的曲面围成的几何体叫圆柱。
❖ 以直角三角形的一直角边所在直线为旋转轴,其余 边旋转形成的曲面围成的几何体叫圆锥。
❖ 棱台 用一个平行于底的平面截棱锥,得到面与截 面间的部分。棱锥的底叫棱台下底,截面叫棱台上底。 正棱台 用正棱锥截得到的棱台。正棱台的侧面都 是全等的等腰梯形,其高叫正棱台的斜高。
9·家乡的 红橘
Байду номын сангаас
风霜考验 明媚 花骨朵竞 相开放 绽放 茉莉 一 瓣一瓣 一簇簇 朴素 又酸 又涩 成熟 沉甸甸 鲜嫩 舒畅
简单几何体
1、球的认识
❖ 球面:半圆绕其直径旋转一周形成的曲面。半圆的 圆心叫球心,球心与球面上任一点的连线段叫球的 半径,连接球面上两点且过球心的线段叫球的直径。
❖ 球体:球面围成的几何体叫球。 ❖ 探究思考:a.球与球面有什么区别?
b.用一个平面去截球面得到什么图形? 其大小有无变化?
c.地球仪上的经线纬线是什么图形? d.球面上两点间的最短连线是线段吗?
春天来了,经受了风 霜考验的橘子树更加茂 盛。
那四季常青的叶片在明 媚的阳光下闪着绿油油 的光。
春天来了,经受了风 霜考验的橘子树更加茂 盛,那四季常青的叶片 在明媚的阳光下闪着绿 油油的光。
到了四五月,各种花 竞相开放,争奇斗艳, 而橘子树却不声不响地 长出米粒大小的花骨朵。
花骨朵绽放开来,形状像 茉莉,一瓣一瓣的,有指 甲那么大,小巧、洁白、 清新、朴素,一簇簇藏在 枝叶间,星星点点的,不 大起眼。
秋天,橘子树结出 了肥实的青色果子, 一串串压弯了树枝, 谁见了谁爱,但这时 吃起来还又酸又涩。
十一月左右,果 实成熟了,绿叶丛 中露出了一盏盏红 色的小灯笼。
它们有的两个一排,有 的三个一束,有的四五 个抱成团……沉甸甸的, 把枝条儿越压越弯。
走近细看,红橘的 皮上还有一个个的 小窝窝呢。