考研数学三大公式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等数学公式

导数公式:

基本积分表:

a

x x a a a x x x x x x x x x x a x x ln 1)(log ln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan 22=

'='⋅-='⋅='-='='2

2

22

11

)cot (11

)(arctan 11

)(arccos 11

)(arcsin x x arc x x x x x x +-

='+=

'--

='-=

'⎰

⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C

a x x a x dx C shx chxdx C chx shxdx C

a a dx a C

x xdx x C

x dx x x C

x xdx x dx C x xdx x dx x

x

)ln(ln csc cot csc sec tan sec cot csc sin tan sec cos 222

22

22

2C a

x

x a dx C x a x

a a x a dx C a x a

x a a x dx C a x

a x a dx C

x x xdx C x x xdx C

x xdx C x xdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 21arctan 1cot csc ln csc tan sec ln sec sin ln cot cos ln tan 2

2222222⎰

⎰⎰⎰⎰++-=-+-+--=-+++++=+-=

==-C

a

x a x a x dx x a C

a x x a

a x x dx a x C

a x x a a x x dx a x I n

n xdx xdx I n n n

n arcsin 22ln 22)ln(2

21

cos sin 22

222222

22222222

22

2

22

2

ππ

三角函数的有理式积分:

和差角公式: ·和差化积公式:

倍角公式: ·半角公式: ·正弦定理:

R C

c

B b A a 2sin sin sin === ·余弦定理:

C ab b a c cos 2222-+= ·反三角函数性质:x arcc x x x

tan 2

arctan arccos 2

arcsin -=

-=

π

π

高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 多元函数微分法及应用 多元函数的极值及其求法: 常数项级数: 级数审敛法:

绝对收敛与条件收敛: 幂级数:

函数展开成幂级数: 一些函数展开成幂级数: 欧拉公式:

微分方程的相关概念: 一阶线性微分方程: 全微分方程: 二阶微分方程:

2

sin

2sin 2cos cos 2cos

2cos 2cos cos 2sin

2cos 2sin sin 2cos

2sin

2sin sin β

αβαβαβ

αβαβαβ

αβαβαβ

αβ

αβα-+=--+=+-+=--+=+α

ββαβαβαβ

αβαβ

αβαβαβαβαβαcot cot 1

cot cot )cot(tan tan 1tan tan )tan(sin sin cos cos )cos(sin cos cos sin )sin(±⋅=

±⋅±=

±=±±=±μμμ

二阶常系数齐次线性微分方程及其解法:

二阶常系数非齐次线性微分方程

线性代数公式大全——最新修订

1、行列式

1. n 行列式共有2

n 个元素,展开后有!n 项,可分解为2n

行列式;

2. 代数余子式的性质:

①、ij A 和ij a 的大小无关;

②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ;

3. 代数余子式和余子式的关系:(1)(1)i j i j ij

ij ij ij

M A A M ++=-=-

4. 设n 行列式D :

将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2

1(1)

n n D D -=-; 将D 顺时针或逆时针旋转90o

,所得行列式为2D ,则(1)2

2(1)n n D D -=-;

将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;

将D 主副角线翻转后,所得行列式为4D ,则4D D =;

5. 行列式的重要公式:

①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2

(1)

n n -⨯ -;

③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2

(1)n n -⨯ -;

⑤、拉普拉斯展开式:

A O A C A

B C

B O B

==、

(1)m n C

A O

A A

B B O

B C

==-g

⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;

6. 对于n 阶行列式A ,恒有:1

(1)

n

n

k

n k

k k E A S λλλ-=-=+-∑,其中k

S 为k 阶主子式;

相关文档
最新文档