专家系统概述
专家系统
6). 规划专家系统 7). 控制专家系统 8). 教学专家系统 9). 监视专家系统 10) 修理专家系统
7.2.1 专家控制系统的结构 专家系统的结构是指专家系统各组成部 分的构造方法和组织形式。 系统结构选择恰当与否,是与专家系统 的适用性和有效性密切相关的。 选择什么结构最为恰当,要根据系统的 应用环境和所执行任务的特点而定。
• 7.1.2 专家系统的基本组成 • 专家系统由知识库、推理机、综合数据库、 解释接口和知识获取等五部分组成。
• 知识库(Knowlege Base)储存专家用以解决 问题的知识。 • 推理机(Inference Mechanism)用以控制推 理过程。 • 综合数据库(Global Database)存放推理的 初始证据、中间结果以及最终结果等的工 作存储器(Working Memory)。
• 专家系统特点: 1. 启发性 启发性:专家系统能运用专家的知识 与经验进行推理、判断和决策。 2. 透明性 透明性:专家系统能够解释本身的推 理过程和回答用户提出的问题,以便让用 户能够了解推理过程,提高对专家系统的 信赖感。 3. 灵活性 灵活性:专家系统能不断地增长知识, 修改原有知识,不断更新。
• 解释接口(Explanation Interface)提供使用 者友善的解释说明及咨询功能。 • 知识获取(Knowlege Acquisition)通过人工 方法或机器学习的方法,将某个领域内的 事实性知识和领域专家所特有的经验性知 识转化为计算机程序的过程。
7.1.3 专家控制的特征和分类
1. 专家系统的基本特征 专家系统是基于知识工程的系统,其基本特征: 1) 具有专家水平的专门知识; 2) 能进行有效的推理; 3) 专家系统的透明性和灵活性; 4) 具有一定的复杂性和难度。
专家系统
特征识别与信息处理(FR&IP)部分的作用是实现 对信息的提取与加工,为控制决策和学习适应提供依 据。它主要包括抽取动态过程的特征信息,识别系统 的特征状态,并对特征信息作必要的加工。
设U为专家控制器的输出集, E为专家控制器的输入集, I为推理机构的输出集,K为经验知识集:
E = (R, e, Y, U),e = R – Y
式中,R为参考控制输入,e为误差信号,Y为受控输出, U为控制器的输出集。专家控制器的模型表示为
U = f (E,K,I)
智能算子f为几个算子的复合运算:f=g·h·p,其中: g:E→S;h:S×K→I;p:I→U
专家系统所要解决的问题一般没有算法解,并 且经常要在不完全、不精确或不确定的信息基础 上做出结论。
第一代专家系统只能利用人类专家的启发式知 识,即只能利用浅层表达方式和推理方法。
但遇到新问题时,还必须利用掌握的深入表示 事物的结构、行为和功能等方面的基本模型等深 层知识,得出新的启发式浅层知识。
智能程序:旨在模拟人类专家的智能程序应当 兼备浅层和深层两类知识。即不但采用基于规则 的方法,还必须采用基于模型的原理构成新一代 专家系统。
知识工程是指由知识工程师从人类专家那里抽 取他们求解问题的过程、策略和经验规则,然后 把这些知识建造在专家系统之中。
目前,专家系统在各个领域中已经得到广 泛应用,如医疗诊断、语音识别、图像处理、 金融决策、地质勘探、是有化工、军事、计 算机设计等。
专家系统具有启发性,能够运用人类专 家的经验和知识进行启发式搜索、试探性 推理、不精确推理或不完全推理
专家系统
它是一种具有智能的程序系统。能运用专家知 识和经验进行推理的启发式程序系统。 它必须包含有大量专家水平的领域知识,并能 在运行过程中不断地对这些知识进行更新。 它能应用人工智能技术模拟人类专家求解问题 的推理过程,解决那些本来应该由领域专家才 能解决的复杂问题。
专家系统的一般特点
• 专家系统的特点:
根 据 任 务 要 求 , 计 算 出满 足 设 计 问 题 约 束 的 目 标配 置。 按 给 定 目 标 拟 定 总 体 规划 、 行 动 计 划 、 运 筹 优 化等 。 根 据 具 体 情 况 , 控 制 整个 系 统 的 行 为 , 适 用 于 对各 种 大 型 设 备 及 系 统 进 行控 制。 根 据 监 测 到 的 现 象 与 正常 情 况 相 比 , 及 时 作 出 相应 的分析和处理。 的分析和处理 。 对 发 生 故 障 的 系 统 、 对象 或 设 备 进 行 处 理 , 制 定纠 错 方 案 , 并 实 施 方 案 ,使 其恢复正常。 其恢复正常 。 根 据 相 应 的 标 准 检 测 被测 试 对 象 存 在 的 错 误 , 并能 从 多 种 纠 错 方 案 中 选 出适 用 于 当 前 情 况 的 最 佳方 排除错误。 案 , 排除错误 。
专家系统的结构
• 专家系统的结构是指专家系统各组成部分 的构造方法和组织形式。 用户 接口 事实规则
解释器 计划 知识库 执行器
议程 中间解 黑板
调度器 协调器
理 想 专 家 系 统 结 构 图
专家系统的主要组成部分
1. 知识库(Knowledge Base) 知识库用于存储某领域专家系统的专门知识,包括事实、 可行操作与规则。 2. 综合数据库(global database) 综合数据库又称全局数据库或总数据库,它用于储存领域 或问题的初始数据和推理过程中得到的中间数据(信息), 即被处理对象的一些当前事实。 3. 推理机(reasoning machine) 用于记忆所采用的规则和控制策略的程序,使整个专家系 统能够以逻辑方式协调的工作。推理机能够根据知识进行 推理和导出结论,而不是简单搜索现成的答案。
第五部分 专家控制(1)
三、知识的获取
1、知识获取的方式
(1)非自动知识获取
非自动知识获取方式分两步进行:①由知识 工程师从领域专家或有关的技术文献那里获取知识; ②由知识工程师用某种知识编辑软件输入到知识库 中,其工作方式如图所示。
非自动方式是专家系统建造中用得较为普遍的一 种知识获取方式。在非自动知识获取方式中,知识工 程师起着关键作用,知识工程师的主要任务是: ① 组织调查。以反复提问的方式启发领域专家 按知识处理的要求回答问题,并详细记录专家的答案。 ② 理解和整理材料。在充分理解的基础上对从 领域专家处或书本上得到的答案进行选择整理、分类、 汇集并形成用自然语言表达的知识条款。 ③ 修改和完善知识。把整理分类好的知识条款反 馈给领域专家,进行修改、完善和精化,最终的结果 要得到领域专家的认可。 ④ 知识的编码。把最终由专家认可的知识条款按 一定的表达方式或知识表示语言进行编码,得到知识 编辑器所能接受的知识条款。
专家系统是基于知识的系统,则建造专家系统 就涉及到知识获取、知识表示、知识的组织与管 理和知识的利用等一系列关于知识处理的技术和 方法,特别是一般知识库系统的建立,更加促进 了这些技术的发展。 关于知识处理的技术和方法已形成了一个称 为“知识工程”的学科领域。专家系统一方面促 使了知识工程的诞生和发展,另一方面知识工程 又是为专家系统服务的。由于二者的密切关系, “专家系统”与“知识工程”现在几乎已成为同 义语。
(1)按用途分类 可分为:诊断型、解释型、预测型、决策型、 设计型、规划型、控制型和调度型等几种。 (2)按输出结果分类 可分为:分析型、设计型、综合型专家系统。 (3)按知识表示分类 可分为:基于产生式规则的专家系统、基于一 阶谓词的专家系统、基于框架的专家系统以及 基于语义网络的专家系统。也存在相应的综合 型专家系统。
专家控制系统
第三章 专家控制系统3.1 专家系统概述1.专家及专家系统的定义专家指的是那些对解决专门问题非常熟悉的人们,他们的这种专门技术通常源于丰富的经验以及他们处理问题的详细专业知识。
定义 3.1专家系统主要指的是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的经验方法来处理该领域的高水平难题。
也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家才能处理好的复杂问题。
简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。
专家系统的基本功能取决于它所含有的知识,因此,有时也把专家系统称为基于知识的系统(knowledge-based system)。
3.1.1 专家系统的特点及优点1.专家系统的特点与常规的计算机程序系统比较,专家系统具有下列特点:(1)启发性 专家系统要解决的问题,其结构往往是不合理的,其问题求解(problem-solving)知识不仅包括理论知识和常识,而且包括专家本人的启发知识。
(2)透明性 专家系统能够解释本身的推理过程和回答用户提出的问题,以便让用户了解推理过程,增大对专家系统的信任感。
(3) 灵活性 专家系统的灵活性是指它的扩展和丰富知识库的能力,以及改善非编程状态下的系统性能,即自学习能力。
(4)符号操作。
与常规程序进行数据处理和数字计算不同,专家系统强调符号处理和符号操作(运算),使用符号表示知识,用符号集合表示问题的概念。
一个符号是一串程序设计,并可用于表示现实世界中的概念。
(5)不确定性推理。
领域专家求解问题的方法大多数是经验性的;经验知识一般用于表示不精确性并存在一定概率的问题。
此外,所提供的有关问题的信息往往是不确定的。
专家系统能够综合应用模糊和不确定的信息与知识,进行推理。
第二章 专家系统概述
启发性 透明性 灵活性
第五节 专家系统分类
可按不同的标准进行分类.例如: 可按不同的标准进行分类.例如: 应用领域分类 可分为医疗,勘探,数学, 分类. 按应用领域分类.可分为医疗,勘探,数学,物 理,化学,气象,生物等; 化学,气象,生物等; 知识表示技术分类 基于规则的,逻辑的, 分类. 按知识表示技术分类.基于规则的,逻辑的,语 义网络,框架的专家系统等; 义网络,框架的专家系统等; 推理策略分 正向,反向,双向等; 按推理策略分.正向,反向,双向等; 采用不精确推理技术分 确定理论, 按采用不精确推理技术分.确定理论,主观 Bayes,模糊理论,D/S理论推理技术ES; 理论推理技术ES Bayes,模糊理论,D/S理论推理技术ES; 结构分 单和群ES ES; 按结构分.单和群ES;
第三节 专家系统的功能与结构
3.1: 3.1:功能
专家系统应当具备以下几个功能: 专家系统应当具备以下几个功能: 存储专业领域知识; 存储专业领域知识; 存储具体问题求解过程中的初始数据和推理过程中的各信息 与数据; 与数据; 利用已有知识解决专业问题; 利用已有知识解决专业问题; 对推理过程和结论作出必要的解释; 对推理过程和结论作出必要的解释; 提供用户接口; 提供用户接口; 提供知识获取,知识库修改完善等维护手段; 提供知识获取,知识库修改完善等维护手段;
事实:客观事物的状态,属性,特征及事物间关系. 事实:客观事物的状态,属性,特征及事物间关系. 信念:主要指事实的含义规则,语义说明. 信念:主要指事实的含义规则,语义说明. 启发式: 启发式:指能表达前提和结论间因果关系的一种形 式.
二:算法和启发式程序
算法是为求解一类问题而规定的一个可被机 械执行的确定步骤的有穷序列,具有如下性质: 械执行的确定步骤的有穷序列,具有如下性质: 通用性:能求解问题范围内的全部问题; 通用性:能求解问题范围内的全部问题; 确定性:算法中的问题求解状态, 确定性:算法中的问题求解状态,求解步骤应该 是精确唯一的. 是精确唯一的. 有效性:问题范围内的任何具体问题带入算法后, 有效性:问题范围内的任何具体问题带入算法后, 都可经有限步骤,达到期望结果. 都可经有限步骤,达到期望结果.
故障诊断专家系统介绍
故障诊断专家系统
人工神经网络
一、概述
1.定义及特点 2.目前的应用情况
x1 w1
i
二、基本原理
故障诊断专家系统
(3) 诊断型(Diagnosis)专家系统 这类系统根据输入 信息推断出处理对象中可能存在 的故障,如计算机 硬件故障诊断系统DART、核反应堆故障诊断系统 REACTOR、感染病诊 断与治疗系统MYCIN、旋 转机械故障诊断系统EXPLORE-EX、透平机械故障 诊断专家系统TUBMAC等。
(9) 控制型(Control)专家系统 这类系统能自动控 制系统的全部行为,通常用手生产过程的实时控 制,如维持钻机最佳钻探流特征的MUD系统、 MVS操作系统的监督控制系统YES/MVS等。
(10) 教育型(1nstruction)专家系统 这类系统能诊 断并纠正学生的行为,主要用于教学和培训,多 为诊断型和调试型的结合体,如GUIDON和 STEAMER等。
故障诊断专家系统
人工智能研究者们已提出了许多种知识表示方法, 如产生式表示、框架式表示、语义网络表示、逻辑 性表示、对象—属性—值三元组表示、过程表示和 面向对象的表示等,这些不同的表示方法各有其优 缺点和最适用的领域。
2) 产生式系统的基本组成 一个典型的产生式专家系统通常由规则库(RuleBase)、
x1
y1
x1
y1
x2
x2
y2
xn
yn
xn
yn
单层前 向网络
多层前 向网络
第8章 专家系统
2.专家系统的知识表示和推理
2.1 知识表示
知识表示是一种用来在专家系统的知识库中对知识编码的 方法。
2.1.1 知识的类型
◆过程性知识。描述如何解决问题,提供如何做事的建议。
◆陈述性知识。描述问题的相关已知信息,包括断定为真或 假的简单语句和一组更完整地描述一些对象或概念的语句。 ◆启发式 知识。描述引导推理过程的规则。它是经验性的, 并且表示专家通过求解过去问题的经验编译知识。专家将获 取有关问题的基本知识,如基本法则、函数关系等,并且把 它编译成简单的启发信息,以辅助问题求解。 ◆结构知识。描述知识的结构。这类知识描述专家对此问题 的整体智力模型。
(2)从处理问题的方法看,专家系统则是靠知识和 推理来解决问题(不像传统软件系统使用固定的算法 来解决问题),所以,专家系统是基于知识的智能问 题求解系统。
(3)从系统的结构来看,专家系统则强调知识与推 理的分离,因而系统具有很好的灵活性和可扩充性。
(4)专家系统一般还具有解释功能,即在运行过程 中一方面能回答用户提出的问题,另一方面还能对最后 的输出(结论)或处理问题的过程作出解释。
◆例子 :VAX计算机结构设计专家系统、花布立体感图 案设计和花布印染专家系统、大规模集成电路设计专 家系统以及齿轮加工工艺设计专家系统等。
规划专家系统
◆任务 :寻找出某个能够达到给定目标的动作序列或步 骤。
◆特点 :所要规划的目标可能是动态的或静态的,需要 对未来动作做出预测,所涉及的问题可能很复杂,要 求系统能抓住重点,处理好各子目标间的关系和不确 定的数据信息,并通过实验性动作得出可行规划 。
站进行被修设备的调整、测量与试验。在这方面的实 例还比较少见。
教学专家系统
◆任务:根据学生的特点、弱点和基础知识,以最适当的 教案和教学方法对学生进行教学和辅导。
人工智能的专家系统技术
人工智能的专家系统技术导言:人工智能(Artificial Intelligence,AI)是一门研究如何使计算机可以像人一样智能地执行任务的学科。
专家系统是其中一种应用广泛的人工智能技术,它模仿人类专家的知识和推理能力,通过计算机实现对复杂问题的解决和决策。
一、专家系统的概述专家系统是一种基于知识的计算机系统,能够模拟人类专家的决策过程,对特定领域的问题进行分析和解决。
它主要由知识库、推理机和用户界面组成。
专家系统的知识库是存储各种领域专家知识的地方,包括事实、规则、经验、案例等。
知识库使用特定的语言表示和存储知识,使得专家系统能够在特定领域中模拟专家的决策过程。
推理机是专家系统的核心,它通过使用专家系统的知识库和推理规则对问题进行推理和决策。
推理机根据用户输入的问题和已有的知识,进行搜索和匹配,产生一系列推理结果。
推理机还可以根据问题的特点,使用不同的推理方式,如正向推理、反向推理、混合推理等。
用户界面是专家系统与用户之间的桥梁,用户通过界面与专家系统交互,输入问题和获取答案。
用户界面可以是命令行界面、图形界面或自然语言界面等,使得用户能够方便地使用专家系统。
二、专家系统的组成1. 知识获取知识获取是专家系统开发的第一步,它通过采访领域专家、查阅文献、观察现场等方式,收集专家知识并转化为计算机可识别的形式。
知识获取的关键是提取和表示知识,需要选择适当的表示方法和知识表示语言。
2. 知识表示知识表示是将采集到的知识以适当的形式表示和存储,使得计算机可以理解和使用这些知识。
常用的知识表示方法有规则表示、语义网络表示、框架表示等。
规则表示是最常用的方法,将知识表示为一系列条件-动作规则,通过匹配规则,实现对问题的推理和决策。
3. 知识推理知识推理是专家系统的核心功能,它利用知识库和推理规则对问题进行推理和决策。
专家系统的推理机通常采用基于规则的推理方法,通过匹配规则和问题,产生推理结果。
推理过程可以是正向推理、反向推理或混合推理,根据问题的特点,选择合适的推理方式。
专家系统概述
– 系统自身具有学习能力,能从系统运行中总结 出新知识,使知识库越来越丰富,完善。
➢ 具有灵活性
– 知识库—推理机分离。
2.专家系统的基本特征
➢ 具有透明性
– 透明性:是指系统自身及其行为能被用户所理 解。
– 解释机构:向用户解释它的行为动机及得出某 些答案的推理过程。
➢ 常规程序是精确的;专家系统不精确、模糊的。 ➢ 专家系统具有解释机构; 常规程序没有。 ➢ 常规程序与专家系统具有不同的体系结构。
4. 专家系统的分类
• 按专家系统的特性及处理问题的类型分类。
(1)解释型:从所得到的有关数据,经过分析、推理, 从而给出相应解释的一类专家系统。
• 特点:必须能处理不完全,甚至受到干扰的信息, 并能对所得到的数据给出一致且正确的解释。
1. 什么是专家系统
• 它是一个智能程序系统; • 它具有相关领域内大量的专家知识; • 它能应用人工智能技术模拟人类专家求解问题的
思维水平。 • 专家系统是一种具有大量专门知识与经验的智能 程序系统,它能运用领域专家多年积累的经验和 专门知识,模拟领域专家的思维过程,解决该领 域中需要专家才能解决的复杂问题。
– 详细设计要求完成的工作
• 进行模块化设计 • 模块间的界面要清晰,便于通信 • 便于实现
8. 专家系统的开发过程
• 知识获取
– 与领域专家交谈,抽取所需知识,掌握专家处 理问题的方法、思路
– 查阅有关文献、获得有关概念的描述、参数 – 对获得的知识进行分析、比较、归纳、整理、
找出知识的内在联系、规律 – 对所得知识进行检查 – 对确定下来的知识用总体设计时确定的知识表
专家系统理论概述
专家系统理论概述专家系统的基本概念专家系统是人工智能应用研究的一个重要领域。
它实现了人工智能从理论研究走向实际应用,从一般思维方法探讨转入专门知识运用的重大突破。
自20世纪70年代专家系统的开发获得成功以来,目前已被成功的运用到科学技术、工业、农业、军事、医疗、教育等众多领域,并已产生了巨大的社会效益和经济效益。
目前,对什么是专家系统还没有一个严格公认的形式化定义。
作为一种一般的解释,可以认为专家系统是一种具有大量专门知识与经验的智能程序系统,它能运用领域专家多年积累的经验和专门知识,模拟领域专家的思维过程,解决该领域中需要专家才能解决的复杂问题。
从上述解释可以看出,专家系统包括以下三个方面的含义:(1) 专家系统是一种程序系统,但又具有智能,因此它不同于一般的程序系统,而是一种能运用专家知识和经验进行推理的启发式程序系统。
(2) 专家系统的智能来源于领域专家的知识、经验及解决问题的诀窍。
为此,专家系统内部必须包含有大量专家水平的领域知识与经验,并且能够在运行过程中不断的增长新知识和修改原有知识。
(3) 专家系统所要解决的问题一般是那些本来应该由领域专家才能解决的问题。
专家系统的分类通常,专家系统都是针对某一应用领域而建立的。
不同应用领域的专家系统,其功能、设计方法及实现技术也各不同。
为了明确各类专家系统的特点及其所需要的技术和系统组织方法,本小节讨论专家系统的分类问题。
对专家系统的类型,可以有多种不同的划分方法。
例如,可以按求解问题的性质分类,也可以按求解问题的要求分类,还可以按系统的体系结构分类等。
按求解问题的性质分类如下:海叶斯-罗斯(F.Heyes-roth)等人按照求解问题的性质,将专家系统分为以下10种类型。
(1) 解释型专家系统解释型专家系统的任务是通过对已知信息和数据的分析与解释,确定它们的含义。
其主要特点有:第一,系统处理的数据量很大,而且往往是不准确的、错误的或不完全的;第二,系统能够从不完全的信息中得出解释,并能对数据做出某些假设;第三,系统的推理过程可能很复杂和很长,因而要求系统具有对自身推理过程做出解释的能力。
专 家 系 统名词解释
专家系统名词解释
专家系统是一种人工智能系统,旨在模拟人类专家在特定领域
的知识和推理能力。
这种系统利用专家的知识来解决复杂的问题,
通常通过规则、推理和逻辑推断来进行决策和问题求解。
专家系统
通常包括知识库、推理引擎和用户接口三个主要部分。
知识库存储
了领域专家的知识和经验,推理引擎利用这些知识进行推理和决策,用户接口则使用户能够与系统进行交互并得到解决方案。
专家系统
被广泛应用于医疗诊断、工程设计、金融分析、客户服务等领域,
以辅助人类专家进行决策和问题解决。
专家系统的发展使得人们能
够利用计算机技术来处理复杂的知识和问题,为各种领域的专业人
士提供了强大的工具和支持。
随着人工智能技术的不断发展,专家
系统也在不断演进和完善,成为了现代智能化应用中的重要组成部分。
专家系统
图6 反向推理原理图
3.正反向混合推理 基本思想: 先根据原始数据通过正向推理帮助推理提出假 设,再用反向推理进一步寻找支持假设的证据,反 复这个过程。根据问题已有数据进行推理,但不期 望这种推理能达到总目标;而同时从目标出发进行 反向推理,也不期望该推理一直进行到每个子目标 能被上下文匹配或否定,而是期望两种推理在某些 子目标处接合起来。 集中了正向和反向推理的优点,但其控制策略 较前两者复杂。适用于数据充分、解空间不大的精 确推理。
图5 正向推理原理图
2.反向推理 先提出假设,然后由此出发,进一步寻找支持假设的证据,即所谓目 标驱动方式,当证据与用户提出 的原始信息匹配时,推理成功。 推理过程: 由用户或系统首先提出一批假设,然后系统逐一验证这些假设的真假 性。 适用于结论单一或直接提出结论要求证实的系统,并且初始数据 (事实)量很大的场合。
决策型
控制型 调试型
通常完成实时控制任务 制定并实施纠正某类故障的规划,亦称为排错型或维 修型
YES/MVS TIMM/TUNER
3. 专家系统的工作原理
用户 领域专家(DE) 知识工程师(KE) 人 机 接 口
推理机
解释机
解释机制
知识获取机制
性能系统
综合数据 库
知识库
图2 专家系统的一般结构
一个完整的专家系统通常由6个部分组成: 1.知识库 存放系统求解问题所需要的知识 2.推理机 负责使用知识库中的知识去解决实际问题 3.综合数据库 用于存放系统运行中所需要和产生的所有信息,包括问题的描述、 中间结果,解题过程的记录等信息。在专家系统中,数据的表示与组 织应做到与知识的表示组织相容。 4.知识 获取机制 负责管理知识库中的知识,包括根据需要修改、删除或添加知识及由此 引起怕一切必要的改动,维持知识库的一致性、完整等方面,是系统灵活 性的主要部件。 5.解析机制 负责回答用户提出的各种问题,包括系统与系统运行有关的问题和 与系统运行无关的关于系统自身的一些问题,是实现透明性的主要部件。 6.人机接口 把用户输入的信息转换成系统的内部表示形式,然后把这些内部表示 交给相应的部件去处理。系统输出的内部信息也由人机接口转换成用户 易于理解的外部表示显示给用户。
第六章专家系统
3、基于框架的专家系统的继承、 槽和方法
1、基于框架的专家系统的继承
后辈框架通过继承其父辈框架的所有特
征,包括父辈的所有描述性和过程性知 识。 (1)、异常处理 (2)、多重继承
37
2、基于框架专家系统的槽 槽是提供对属性值和系统操作的附加控制。槽
扩展有关给定系统属性的信息: 类型:定义和属性相关值的类型 默认:定义默认值 文档:提供属性文档 约束:定义允许值 最小界限:建立属性下限 最大界限:建立属性上限 如果需要:指定如果需要属性值时采取的行为 如果改变:指定如果属性值改变时采取的行为
2
6.1 专家系统概述
专家系统应用于某一专门领域,拥有该
领域相当数量的专家级知识,能够模拟 专家的思维,能够达到专家级水平,能 像专家一样解决困难和复杂的实际问题 的计算机软件系统。
3
专家系统的先行者费根鲍姆曾把专家系
统定义为一个应用知识和推理过程来求 解那些需要大量的人类专家解决难题经 验的智能计算机程序。 专家系统主要指的是一个智能计算机程 序系统,其内部含有大量的某个领域专 家水平的知识与经验,能够利用人类专 家的知识和解决问题的经验方法来处理 该领域的高水平难题,
任务 对系统、对象或过程的行为进行不断观
察,并把观察到的行为与其应当具有的行为 进行比较,以发现异常情况,发出警报 特点 系统应具有快速反应能力 系统发出的警报要有很高的准确性 系统能够动态地处理其输入信息 例子 粘虫测报专家系统
17
6.1 专家系统概述
7. 控制专家系统 (expert system for control)
任务 根据设计要求,求出满足设计问题
约束的目标配置。 特点
专家系统第2章专家系统概述
Chapter 2 Expert Systems
2.2.2 专家系统的结构 1)基本结构 专家系统的基本结构包括知识库和推理机两个主要部分。 特点:系统结构简单;知识工程师与领域专家直接交互,知识 工程师收集和整理领域专家的知识,将其转化为系统的内 部表示形式,并存储到知识库中;推理机根据用户的问题 求解要求和提供的初始数据,运用知识库中的知识对问题 进行求解,并将产生的结果(结论)输出给用户。
知识工程师 数据
知识库
领域专家
2017/11/24
推理机
结果
Expert Systems and Application
用户
图2-1 专家系统的基本结构
6
Chapter 2 Expert Systems
2)一般结构 专家系统的下述结构是目前比较流行的结构形式。 用户 人机接口 推理机 解释程序
知识获 取程序
2017/11/24
Expert Systems and Application
4
Chapter 2 Expert Systems
2.2 ES的功能与结构 2.2.1 ES的功能 (1) ES能存储用于问题求解所需要的知识; (2)能存储具体问题求解的初始数据和推理过程中涉及到的 各种信息,如中间结果、目标、子目标、假设等; (3)能根据当前输入或采集的数据,利用已有的知识,按照 一定的推理策略解决当前的问题,并控制和协调整个系统; (4)能对推理过程、结论或系统自身行为做出必要的解释, 如解题步骤、处理策略、选择此处理方法的理由、系统求 解某种问题的能力、系统组织和管理自身知识的方法等。 目的是便于用户理解和接受专家系统,也便于对系统进行 维护。
第3章专家系统控制概述、原理
7
(4)解释接口
解释接口又称人一机界面,它把用户输入的信 息转换成系统内规范化的表示形式,然后交给 相应模块去处理,把系统输出的信息转换成用 户易于理解的外部表示形式显示给用户,回答 用户提出的“为什么?”“结论是如何得出 的?”等问题。
另外,能对自己的行为做出解释,可以帮助系 统建造者发现知识库及推理机中的错误,有助 于对系统的调试。这是专家系统区别于一般程 序的重要特征之一。
第3章专家系统控制概述、原理
12
(3)专家系统的透明性和灵活性
透明性是指它能够在求解问题时,不仅能得到 正确的解答,还能知道给出该解答的依据;
灵活性表现在绝大多数专家系统中都采用了知 识库与推理机相分离的构造原则,彼此相互独 立,使得知识的更新和扩充比较灵活方便。
系统运行时,推理机可根据具体问题的不同特 点选取不同的知识来构成求解序列,具有较强 的适应性。
浅层知识一般表示成产生式规则的形式,即如 果(前提>,那么<结论>。
这种形式的浅层知识之所以具有启发性,是因 为它从观测到的数据(前提)联想到中间事实 或最终结论,
这种逻辑推理过程短、效率高。
第3章专家系统控制概述、原理
3
新一代的专家系统
但事实证明,只靠经验知识是不够的,当人类 遇到新问题时,只能利用掌握的深入表示事物 的结构、行为和功能等方面的基本模型等深层 知识得出新的启发式浅层知识。
第3章专家系统控制概述、原理
9
3.1.3 专家系统的特征及类型
1. 专家系统的基本特征
(1)具有专家水平的专门知识 (2)能进行有效的推理 (3)专家系统的透明性和灵活性 (4)具有一定的复杂性与难度
第3章专家系统控制概述、原理
第七章专家系统
2 ES系统的组成 • 知识库——ES系统最重要的部分,存储求解问题所需的以一定
符号结构表示的专门知识。 • 推理机——具有进行推理的能力
• 根据输入的问题以及描述问题求解初始状态的数据,取 用知识库中的知识作推理,并输出最终解答;
• 可请求用户输入推理必需的数据并应用户要求解释推理 结果和推理过程。
8
专家系统与传统程序的区别
4)传统程序一般不具有解释功能,而专家系统
一般具有解释机构,可对自己的行为作出解释。
5)传统程序因为是根据算法来求解问题的,所 以每次都能产生正确的答案,而专家系统则像人 类专家那样工作,通常产生正确的答案。但是有 时也会产生错误的答案,这也是专家系统存在的 问题之一。 6)从系统的体系结构来看,传统持续与专家系 统具有不同的结构。
* 提供现成的实现ES系统的骨架, * 提供知识获取的辅助设施和知识编辑器, * 易于使用——只要按骨架规定的表示方式编写专门知识,就 可形成应用领域的ES系统, * 仅有较窄的应用范围——对任务的特征有严格的要求.
20
• 表示语言: OPS5 * 提供面向知识处理的高级编程语言, * 知识工程师可以通过编程语言来实现特别的控制结构(建立在通
•这些知*识人决工定知了识ES获系取统是的一体个系十结分构困,难并而可又指耗导时以的系过统程化—和—结缺构乏化有的效的手段去 方式获取系详统细化的和推结理构知化识地。描述问题求解的组织和推理控制。
16
•自动方式——实现知识获取自动化的一个努力方向
* 以智能编辑器取代知识工程师,通过可视化交互式知识获取界面,按预 先制定的问题求解模型,指导领域专家自行抽取和输入知识进专家系统。
(5) 专家系统能汇集多领域专家的知识和经 验以及他们协作解决重大问题的能力,它 拥有更渊博的知识、更丰富的经验和更强 的工作能力。
人工智能第6章 专家系统
专家系统实例
每个上下文有一组属性(Attribute),也称为临床参数(clinical Parameters)。每个临床参数表示上下文的一个特征,如病人的 姓名、培养物的地点、机体的形态、药物的剂量等等。 临床参数用二元组<属性,上下文,值>来表示。例如,三元 组(形态、机体—1、杆状)表示机体1的形态为杆状。 临床参数按其所属的上下文类型可分为六类:
专家系统实例
PIP
应用领域:医学 主要研制人员: S.G.Pauker,P.Szolovits (麻省理 工学院) 功能:模拟肾脏病专家采集肾病患者现病史的活动 病症用框架表示,这些知识都附有似然系数。
专家系统实例
INTERNIST - 1
应用领域:医学 主要研制人员: J.D.Mvers,H.E . Pople (匹兹堡 大学,1982年) 功能:内科学诊断 病症用框架表示,这些知识都附有似然系数。
PROSPECTOR
应用领域:地质学 主要研制人员: Gaschnig,1982年; Duda等, 1979 Reboh,1981年,(斯坦福大学国际研究所) 功能:帮助地质学家评价储矿地点以寻找潜在的矿物资源。 概述 PROSPECTOR是用来帮助地质学家评价某个勘探地点或地区在寻 找特定类型矿床方面是否有利的专家系统。该系统通过对话接受 用户的野外勘探资料,在诊断过程结束时提供一份清单,列出可 能储有的矿床类型以及它们的似然性大小。如果储有矿床的似然 性足够大,那么该系统就继续确定最有利的钻探地点。 同某一类矿床有关的一般知识用一组产生式规则表示,这些规则 都附有不确定性系数。
专家系统实例
MYClN系统
MYClN系统是由斯坦福大学开发的,从1972年开始, 于1974年基本完成。它是一个用于诊断和治疗血液感 染性疾病的专家咨询系统。该系统功能比较全面,是 一个典型的基于规则的专家系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般专家系统构造所需考虑的关键技术的讨论张永红哈尔滨工程大学信息与通信工程学院,黑龙江省哈尔滨市 150001摘要:本文在叙述了人工智能科学技术的发展概况之后,同时粗略的分析力专家系统的发展情况。
总结梳理了完成一项专家系统设计所需的关键技术的分析,给出了一般专家系统构造是在各个环节可以考虑和运用的技术。
并对各个可用的技术进行了比较分析。
总结目前在专家系统设计上飞瓶颈问题和突破口。
关键词 :专家系统,人工智能,知识表示,推理Abstract:This paper describes the overview of the development of artificial intelligence, science and technology, while rough analytical expert system development. Summary combing analysis of the key technologies required to complete an expert system design, gives the general expert systems can be considered and the use of technology in all aspects. And a comparative analysis of the available technology. Summarizes the current bottlenecks and a breakthrough fly in expert system design.key: Expert System ,Artificial Intelligence Knowledge Representation , Reasoning1 引言自1965年提出专家系统的概念,至今已经过去整整半个世纪了,回顾它的发展历史,专家系统在各个领域的应用已经非常广泛了,这一点不仅可以从网络学术文献搜索的数量和文献研究的领域上,还是实际产品的开发用运上都可以印证。
但是由于专家系统是人工智能科学的直接产物,而人工智能的发展始终徘回而前进缓慢。
人工智能的主要研究领域有:(1)符号智能:符号智能以物理符号系统为基础,研究知识表示、获取、推理过程。
(2)计算智能:计算智能包括神经计算、模糊系统、遗传算法、进化程序设计等。
神经计算是从神经生理学和认知科学的研究成果出发,应用数学方法描述非程序的和适应性的、大脑风格的人工神经网络信息处理的本质和能力。
而符号智能的研究进展缓慢,这主要是人工智能的在解决知识表示与表示的基本理论和方法这一关键理论问题上还未有完满的结果。
这导致以其为基础的人工神经网络、专家系统等的发展各自在不同的小领域内进行突破前行。
1958 年麦卡锡发明了表处理语言LISP。
由于 LISP 语言可以方便地处理符号,很快成为人工智能程序设计的主要语言。
人工智能经历了自然语言的机器翻译、鲁滨逊(J.A.Robinson)于 1965 年提出的消解法、神经网络研究等一次次高潮,但是由于人们忽视了现实世界的复杂性和问题的多样性,人工智能的早期研究只能停留在实验室里进行。
人工智能研究遇到了比想象的要严重得多的压力和困难。
60 年代中期以后,人工智能由追求万能、通用的一般研究转入特定的具体研究,通用的解题策略同特定领域的专业知识与实际经验结合,产生了以专家系统为代表的基于知识的各类人工智能系统,使人工智能真正走向社会,走向实际应用研究。
斯坦福大学的费根鲍姆(E.A.Feigenbaum)于1965 年开创了基于知识的专家系统( Expert System)这一人工智能研究的新领域。
80 年代末,神经网络得到飞速发展。
1987 年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。
此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。
目前人工智能研究的几个方向是:智能接口、数据挖掘、主体及多主体系统、模糊处理、并行化、神经网络和机器情感[1]。
可见作为专家系统基础的人工智能的各个方面都具备坚实的基础,本文将要重点讨论设计一般专家系统时需采取的关键人工智能技术。
2 专家系统的整体的概念2.1专家系统的定义专家系统(Expert System)亦称专家咨询系统,它是一种智能计算机(软件)系统。
顾名思义,专家系统就是能像人类专家一样解决困难、复杂的实际问题的计算机(软件)系统。
专家系统应该具备以下四个要素:(1)应用于某一个专门领域。
(2)拥有专家级知识。
(3)能模拟专家的思维。
(4)能达到专家的水平。
准确的讲,专家系统就应该是,应用于某一专门领域,拥有该领域相当数量的专家级知识,能模拟专家的思维,能达到专家级水平,能像专家一样解决困难和复杂的实际问题的计算机(软件)系统。
这里需要指出的是,所谓的专家级知识、专家的思维是因为专家拥有自己独特的实践经验,具有独特的分析问题和解决问题的方法和策略,并且这些经验、方法和策略经过长期的实践证明是行之有效的。
2.2专家系统的特点同一般的计算机应用系统(如数值运算、数据处理系统等)相比,专家系统具有以下一些特点:(1)从处理的问题的性质看,专家系统善于解决那些不确定的、非结构化的、没有算法解或虽有算法解但在现有的机器上无法实现的困难问题。
例如:医疗诊断、地质勘探、天气预报、市场预测、管理决策、军事指挥等领域的问题。
(2)从处理的问题的方法看,专家系统则是靠知识和推理来解决问题(不像传统的软件系统使用固定的算法来解决问题),所以专家系统是基于知识的问题求解系统。
(3)从系统的结构看,专家系统则强调知识和推理的分离,因而系统具有很好的灵活性和可扩充性。
(4)专家系统一般还具有解释功能,即在运行过程中一方面能回答用户提出的问题,另一方面还能对最后的输出(结论)或处理问题的过程做出解释。
2.3专家系统的结构(1)概念结构从概念上讲,一个专家系统应具有图1 所示的一般结构模式。
其中知识库和推理机是两个最基本的模块.图1 专家系统结构①知识库所谓知识库,就是以某种表示形式存储在计算机中的知识的集合。
知识库通常是以一个个文件的形式存放在外部介质上,专家系统运行时将被调入内存。
知识库中的知识一般包括专家知识、领域知识和元知识。
元知识是关于调度和管理知识的知识。
知识库中的知识通常就是按照知识的表示形式、性质、层次、内容来组织的,构成了知识结构。
②推理机所谓推理机,就是实现(机器)推理的程序。
这里的推理,是一个广义的概念,它既包括了通常的逻辑推理,也包括了基于产生式的操作。
推理机是使用知识库中的知识进行推理而解决问题的,所以推理机也就是专家的思维机制,即专家分析问题、解决问题的方法的一种算法表示和机器实现。
③动态数据库动态数据库也称全局数据库、综合数据库、工作存储器、黑板等,它是存放初始证据事实、推理结果和控制信息的场所,或者说它是上述数据构成的集合。
动态数据库只在系统运行期间产生、变化和撤销,所以称为“动态”数据库,且在图中用虚线包围。
需要说明的是,动态数据库虽然也叫数据库,但它并不是通常所说的数据库,两者有本质的区别。
④人机界面人机界面指的是最终用户与专家系统的交互界面。
一方面,用户通过这个界面向系统提出或者回答问题,或向系统提供原始数据和事实等;另一方面,系统通过这个界面向用户提出或者回答问题,并输出结果以及对系统的行为和最终结果做出适当的解释。
⑤解释模块解释模块专门向用户解释专家系统的行为和结果。
推理过程中它可向用户解释系统的行为,回答用户“why”的问题,推理结束后它可向用户解释推理的结果是怎样得来的,回答“how”之类的问题。
⑥知识库管理系统知识库管理系统是知识库的支撑软件。
知识库管理系统对知识库的作用类似于数据库管理系统对数据库的作用,其功能包括知识库的建立、删除、重组;知识的获取(主要指录入和编辑)、维护、查询、更新;以及对知识的检查,包括一致性、冗余性和完整性检查等等。
知识库管理系统主要在专家系统的开发阶段使用,但在专家系统的运行阶段也要经常用来对知识库进行增、删、改、查等各种管理工作。
所以,它的生命周期事实和相应的专家系统是一样的。
知识库管理系统的用户一般是系统的开发者,包括领域专家和计算机人员(一般称为知识工程师),而成品的专家系统的用户则一般是领域专业人员。
如果在原来的专家系统的结构上添加自学习模块,就成为更为理想的一种专家系统结构。
这里的自学习功能主要是指在系统的运行过程当中,能不断的自动化的完善丰富知识库中的知识。
3 专家系统构建的几个关键技术3.1知识获取和知识库的建立的技术知识表示一直是人工智能的重要核心问题,它是知识获取的基础,又是推理的前提。
目前在人工智能中信息和知识的表示方法种类繁多,虽然每种方法都有各自的特点,但是他们存在的共同问题就是缺乏严格的理论体系。
与其他应用领域相比,知识表示在智能设计中遇到了更大的困难,原因在于现有的知识表示方法都缺少对设计过程创造性思维的支持。
知识表示是概括智能行为的模型,其特点是: (1)智能行为所特有的灵活性问题(“常识问题”)不能概括为一类简洁的理论,它是大量小理论的集合; (2)Al的任务受到计算装置的约束.这就导致所采用的“表示”必须同时满足“刻画智能现象”与“计算装置可接受”这两个有时是矛盾的条件.正是对这两个条件的不同侧重导致了对“表示”的不同认识,并由此产生Al 研究的不同方法论.在Al中常见的知识获取知识表示的方法几乎都是来源于研究者对智能行为在微观与宏观不同科学层次的观察与分析而抽象出的模型.根据这些表示方法的原理可以将它们分成三类: (1)局部表示类:逻辑,产生式系统,语义网络,框架,脚本,过程等. (2)分布表示类:基因,联接机制.(3)直接表示类:各种图形,图象,声音及人造环境等. 由此,一种知识表示方法的体系树[2]可以被总结为图2的形式.图2常见知识表示的方法的树结构图而这些方法各自各有各自的局限性,且新的方法不断出现如文献提出的利用可拓学发展的知识表示方法在知识获取和知识库建立的过程中应根据自己特殊目的的专家系统选用适合的方法把专有领域的知识表示为计算机可识别可计算处理的表示形式,同时应构建这种表示形式完整的语义系统支撑推理机的“常识推理”等等的智能模拟活动。
另有大量文献提出将人工神经网络和融合到专家系统里到设计,这种系统利用人工神经网络结合特定的知识表示方法体系可完成专家系统的知识的获取与更新、知识库的建立。
3.2推理机的构造技术推理是从已知的知识推出蕴含着的知识,或归纳和发现新知识的重要方法。
所有推理方法都要涉及前提与结论之间的关系。