PWM_逆变器的设计及仿真

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《现代电力电子技术》课程报告

PWM 逆变器的设计与仿真

******

学号:9

学科专业:控制科学与工程

年级:2013

学期:2013/2014学年第二学期

完成时间:2014年6月30日

PWM 逆变器的设计与仿真

王多睿

摘要:随着电力电子技术,计算机技术,自动控制技术的迅速发展,PWM技术得到了迅速发展,SPWM正弦脉宽调制这项技术的特点是原理简单,通用性强,具有开关频率固定,控制和调节性好,能消除谐波使输出电压只含有固定频率的高次谐波分量,设计简单等一系列有点,是一种比较好的波形改善法。它的出现对中小型逆变器的发展起了重要的推动作用。SPWM技术成为目前应用最为广泛的逆变用PWM技术。因此,研究SPWM逆变器的基本工作原理和作用特性意义十分重大.

本篇论文以IGBT构成的逆变电路为基础,讨论PWM波的产生原理及不同的控制方法,并借助著名的科学计算软件MATLAB/Simulink,对PWM逆变电路进行仿真设计,并进行结果分析。

关键词:PWM SPWM 逆变MATLAB/Simulink

1.引言

20世纪60年代发展起来的电力电子技术,使电能可以交换和控制,生产了现在各种高效节能的新型电源和交直流调速装置,为工业生产,交通运输等提供了现代化的高新技术,提高了生产效率和人们的生活质量,使人类社会生活发生了巨大的变化。但是在电力电子技术中有关电能的变换与控制过程,容大多涉及电力电子技术各种装置的分析与大量计算,电能变换的波形分析,测量与绘图等,随着晶闸管所处状态的不同,系统的参数形式也不同,因而传统的计算机语言编程仿真程序冗长,可读性差,调试费时,大量的时间花在矩阵处理和图形的生成分析等繁琐易错的细节上,而这些工作特别适合MATLAB的使用。MATLAB 运算功能强大,计算准确又快捷;同时MATLAB提供的动态仿真工具SIMULINK可直接建立电路仿真参数,并且可以立即得到参数修改后的仿真结果,直观性强,省去了编程步骤,实体图形化模型的仿真简单,方便,能节省设计时间与降低成本。MATLAB绘制的图形尤其准确,清晰,精美。电力电子技术领域通常利用MATLAB中的SIMULINK其中的电气系统模块库(Power System Blockser)建立电力电子装置的简化模型并进行控制器的设计和仿真。

现如今,逆变器的应用非常广泛,在已有的各种电源中,蓄电池,、干电池、天阳能电池都是直流电源,当需要这些电源向交流负载供电时,就需要逆变。另外,交流电机调速变频,感应加热电源等使用广泛的电力电子设备,都是以逆变电路为核心。本次设计利用MATLAB仿真软件PWM逆变电路进行仿真分析,并得出正确的仿真结果,而且改变了参数从而进行比较,更能清晰的了解PWM逆变器的工作原理及影响其工作特性的因素,从而达到学习的目的。

2.PWM的工作原理介绍

2.1理论基础

冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。

2-1-1 形状不同而冲量相同的各种窄脉冲

2.1.1面积等效原理

分别将如图2-1-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图2-1-2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图2-1-2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异也越小。如果周期性地施加上述脉冲,则响应i(t)也是周期性的。用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。

上述原理可以称为面积等效原理,它是PWM控制技术的重要理论基础。

下面分析用一系列等幅不等宽的脉冲来代替一个正弦半波。图2-1-3可以看到把半波分成N 等份,就可以把正弦半波看成N个彼此相连的脉冲序列组成的波形,然后把脉冲序列利用相同数量的等幅而不等宽的矩形脉冲代替,使它们面积相等,就可以得到脉冲序列。根据面积等效原理,PWM波形和正弦半波是等效的。

2-1-2冲量相同的各种窄脉冲的响应波形

2-1-3 用PWM 波代替正弦半波

要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可。

2.2 PWM 逆变电路及其控制方法

目前中小功率的逆变电路几乎都采用PWM 技术。逆变电路是PWM 控制技术最为重要

的应用场合。PWM 逆变电路也可分为电压型和电流型两种,目前实用的几乎都是电压型。

2.2.1计算法

根据正弦波频率、幅值和半周期脉冲数,准确计算PWM 波各脉冲宽度和间隔,据此控

制逆变电路开关器件的通断,就可得到所需PWM 波形。

缺点:繁琐,当输出正弦波的频率、幅值或相位变化时,结果都要变化

3.2.2调制法

输出波形作调制信号,进行调制得到期望的PWM 波;通常采用等腰三角波或锯齿波作

为载波;等腰三角波应用最多,其任一点水平宽度和高度成线性关系且左右对称;与任一平

缓变化的调制信号波相交,在交点控制器件通断,就得宽度正比于信号波幅值的脉冲,符合

PWM 的要求。

调制信号波为正弦波时,得到的就是SPWM 波;调制信号不是正弦波,而是其他所需

波形时,也能得到等效的PWM 波。

结合IGBT 单相桥式电压型逆变电路对调制法进行说明:设负载为阻感负载,工作时V 1

和V 2通断互补,V 3和V 4通断也互补。控制规律:

0u 正半周,1V 通,2V 断,3V 和4V 交替通断,负载电流比电压滞后,在电压

u 正半周,电流有一段为正,一段为负,负载电流为正区间,1V 和4V 导通时,0u 等于d U ,4V 关断时,负载电流通过1V 和3D V 续流,0u =0,负载

电流为负区间,0i 为负,实际上从1D V 和4D V 流过,仍有0u =d U ,4V 断,3V 通后,0i 从3V 和

1D V 续流,0u =0,0u 总可得到d U 和零两种电平。0u 负半周,让2V 保持通,1V 保持断,3V 和

4V 交替通断,0u 可得-d U 和零两种电平。

相关文档
最新文档