北师大版七下知识点总结

合集下载

北师大版七年级(下册)数学知识点总结

北师大版七年级(下册)数学知识点总结

北师大版数学七年级下册知识点总结第一章 整式的乘除1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

4、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

注意:底数可以是多项式或单项式。

如:532)()()(b a b a b a +=+•+5、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(==如:23326)4()4(4==6、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。

如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-7、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。

如:3334)()()(b a ab ab ab ==÷8、零指数和负指数;10=a ,(ɑ≠0)即任何不等于零的数的零次方等于1。

p p aa 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。

9、科学记数法:如:0.00000721=6-1021.7⨯(第一个非零数字前零的个数)10、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

北师大版《数学》(七年级下册)知识点总结

北师大版《数学》(七年级下册)知识点总结

北师大版《数学》(七年级下册)知识点总结第一章整式的运算 组长检查签名 _________ 家长检查签名_________一. 整式※1. 单项式①由数与字母的积组成的代数式叫做单项式。

单独一个数或字母也是单项式。

②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※2.多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数. ②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.⎪⎩⎪⎨⎧⎩⎨⎧其他代数式多项式单项式整式代数式二. 整式的加减1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法※同底数幂的乘法法则: n m n m a a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n m a a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m n m a a a ⋅=+(m 、n 均为正整数)四.幂的乘方与积的乘方※1. 幂的乘方法则:mn n m a a =)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.),()()(都为正数n m a a a mn m n n m ==.在应用时需要注意以下几点:(1) 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成-a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n(2)底数有时形式不同,但可以化成相同。

七年级下册数学北师大版知识点总结

七年级下册数学北师大版知识点总结

七年级下册数学北师大版知识点总结
一、数与式
1、按数轴给出区间,在区间内求有限个数的等差数列和等比数列和中项;
2、利用已知条件解动态系统;
3、两倍求和公式——全部求和公式,并应用;
4、等比数列求和公式的应用;
5、能够把多项式的标准根式换成指数表达式,指数表达式换成标准根式;
6、求多项式根;
二、几何
1、三角形的等份,三角形两边和夹角关系;
2、求J类锐角三角形的角平分线,斜边中点到另两边的距离;
3、极点、极角、极径的概念,求给出三角形的极点和极角;
4、旋转:比喻法、直线点式、方程式;
5、点是否在椭圆内,求椭圆外一点到椭圆上的切线;
6、判断两圆的关系;
7、求给定的圆的切线方程,由两点式求第三点的坐标;
三、弧与面
1、求三角形的外接圆;
2、求圆弧上一点的切线与覆盖圆内一点的切线;
3、球面、圆台面、球磨比较;
4、求圆锥、圆柱的体积;
四、统计
1、求分类数据的众数、比例;
2、求统计量:最大值、最小值、中位数、平均数;
3、应用统计量求特定分类数据及误差;
4、直方图及其应用;
5、图表中图例的意义;
五、概率
1、区间的概念;
2、十架统一概念;
3、概率的概念,求统一概念的概率;
4、随机变量的概念;
5、概率分布的概念及特点;
6、正态分布的概念和应用;。

北师大版七年级数学下册知识点梳理

北师大版七年级数学下册知识点梳理

北师大版七年级数学下册知识点梳理七年级数学(下)重要知识点总结第一章:整式的运算一、概念1.代数式是由数字、字母及其乘积、和、差、积、商等符号组成的式子。

2.单项式是由数字与字母的乘积组成的代数式,不含加减运算,分母中不含字母。

3.多项式是由几个单项式相加(减)组成的代数式,含加减运算。

4.整式是单项式和多项式的统称。

二、公式、法则:1.同底数幂的乘法法则:a的m次方乘以a的n次方等于a的m+n次方。

逆用:a的m+n次方等于a的m次方乘以a的n次方。

2.同底数幂的除法法则:a的m次方除以a的n次方等于a的m-n次方(a≠0)。

逆用:a的m-n次方等于a的m次方除以a的n次方(a≠0)。

3.幂的乘方法则:a的m次方的n次方等于a的mn次方。

逆用:a的mn次方等于a的m次方的n次方。

4.积的乘方法则:ab的n次方等于a的n次方乘以b的n次方。

逆用:a的n次方乘以b的n次方等于ab的n次方(当ab=1或-1时常逆用)。

5.零指数幂:任何数的0次方等于1(注意考虑底数范围,底数a≠0)。

6.负指数幂:任何数的负整数次幂等于该数的倒数的正整数次幂(底数a≠0)。

7.单项式与多项式相乘:单项式m乘以多项式(a+b+c)等于ma+mb+mc。

8.多项式与多项式相乘:多项式(m+n)乘以多项式(a+b)等于ma+mb+na+nb。

9.平方差公式:(a+b)乘以(a-b)等于a的平方减去b的平方。

推广:有一项完全相同,另一项只有符号不同,结果等于相同。

连用变化。

10.完全平方公式:a+b)的平方等于a的平方加上2ab加上b的平方。

a-b)的平方等于a的平方减去2ab加上b的平方。

逆用:a的平方加上2ab加上b的平方等于(a+b)的平方。

a的平方减去2ab加上b的平方等于(a-b)的平方。

完全平方公式变形:a的平方加上b的平方等于(a-b)的平方加上2ab。

2a的平方加上b的平方等于(a+b)的平方减去2ab等于(a-b)的平方加上2ab等于1.完全平方和公式中间项等于完全平方差公式中间项的相反数,等于完全平方公式中间项的一半。

北师大版七年级下册数学各章知识点总结复习整理

北师大版七年级下册数学各章知识点总结复习整理

北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式整式多项式同底数幂的乘法幂的乘方积的乘方幂运算 同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法 多项式与多项式相乘 整式运算 平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式只含有数字与字母的积的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

二、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式:单项式和多项式统称为整式。

四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。

五、幂的运算性质:1、同底数幂的乘法:a m ﹒a n =a m+n (m,n 都是正整数);2、幂的乘方:(a m )n =a mn (m,n 都是正整数);3、积的乘方:(ab )n =a n b n (n 都是正整数);4、同底数幂的除法:a m ÷a n =a m-n (m,n 都是正整数,a ≠0) ;六、零指数幂和负整数指数幂:1、零指数幂:a 0=1(a ≠0);2、负整数指数幂:p 是正整数。

七、整式的乘除法:1(0)p p a a a -=≠法则:单项式与单项式相乘,把它们的系数、p是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

3、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

北师大版生物七下知识点归纳

北师大版生物七下知识点归纳

北师大版生物七下知识点归纳北师大版生物七年级下册知识点归纳。

一、人体的营养。

1. 食物中的营养物质。

- 糖类:是人体主要的供能物质,如葡萄糖、蔗糖、淀粉等。

- 脂肪:是重要的备用能源物质,还具有保温、缓冲等作用。

- 蛋白质:是建造和修复身体的重要原料,人体的生长发育以及受损细胞的修复和更新都离不开蛋白质。

- 水:是人体细胞的主要成分之一,约占体重的60% - 70%,参与人体的各项生命活动。

- 无机盐。

- 钙:是构成骨骼和牙齿的重要成分,儿童缺钙易患佝偻病,中老年人缺钙易患骨质疏松症。

- 铁:是构成血红蛋白的一种成分,缺铁会导致缺铁性贫血。

- 碘:是合成甲状腺激素的原料,缺碘会引起地方性甲状腺肿(大脖子病)。

- 维生素。

- 维生素A:缺乏时会患夜盲症,动物肝脏、胡萝卜等食物中含量丰富。

- 维生素B1:缺乏时易患神经炎、脚气病等,粗粮中含量较多。

- 维生素C:缺乏时易患坏血病,新鲜的蔬菜和水果中含量丰富。

- 维生素D:能促进钙的吸收,缺乏时儿童易患佝偻病,成人易患骨质疏松症,在鱼肝油、蛋黄等食物中含量较多,同时皮肤中的胆固醇在紫外线照射下能转化为维生素D。

2. 消化和吸收。

- 消化系统的组成。

- 消化道:口腔、咽、食道、胃、小肠、大肠、肛门。

- 消化腺。

- 唾液腺:分泌唾液,唾液中含有唾液淀粉酶,能初步消化淀粉。

- 胃腺:分泌胃液,胃液中含有盐酸和胃蛋白酶,能初步消化蛋白质。

- 肝脏:是人体最大的消化腺,分泌胆汁,胆汁不含消化酶,但能将脂肪乳化成脂肪微粒,增大脂肪与消化酶的接触面积。

- 胰腺:分泌胰液,胰液中含有多种消化酶,能消化糖类、蛋白质和脂肪。

- 肠腺:分泌肠液,肠液中也含有多种消化酶,能消化糖类、蛋白质和脂肪。

- 食物的消化。

- 淀粉的消化:淀粉{唾液淀粉酶}{→}麦芽糖{胰、肠淀粉酶}{→}葡萄糖。

- 蛋白质的消化:蛋白质{胃蛋白酶}{→}多肽{胰、肠蛋白酶}{→}氨基酸。

- 脂肪的消化:脂肪{胆汁}{→}脂肪微粒{胰、肠脂肪酶}{→}甘油 + 脂肪酸。

北师大版七年级下册第二单元相交线与平行线单元——探索直线平行的条件(知识梳理与考点分类讲解)

北师大版七年级下册第二单元相交线与平行线单元——探索直线平行的条件(知识梳理与考点分类讲解)

北师大版七年级下册第二单元相交线与平行线单元——探索直线平行的条件(全章知识梳理与考点分类讲解)【知识点一】平行线的定义及画法1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.特别提醒:(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.2.平行线的画法:用直尺和三角板作平行线的步骤:①落:用三角板的一条直角边与已知直线重合.②靠:用直尺紧靠三角板另一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的直角边通过已知点.④画:沿着这条直角边画一条直线,所画直线与已知直线平行.【知识点二】平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.特别提醒:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.【知识点三】两直线平行的判定方法1判定方法1:同位角相等,两直线平行.如图1,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)图1【知识点二】两直线平行的判定方法2判定方法2:内错角相等,两直线平行.如图2,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)图2【知识点三】两直线平行的判定方法3判定方法3:同旁内角互补,两直线平行.如图3,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)图3特别提醒:平行线的判定是由角相等或互补,得出平行,即由数推形.【考点目录】【考点1】平行线的画法;【考点2】平行公理及推论的应用;【考点3】同位角相等,两直线平行;【考点4】内错角相等,两直线平行;【考点5】同旁内角互补,两直线平行;【考点6】垂直于同一直线的两直线平行;【考点7】判定两直线平行综合应用.【考点目录】【考点1】平行线的画法;【答案】(1)见分析;(2)见分析;(3)见分析【分析】本题考查了射线、线段的作法,画平行线,掌握平行线画法是解题关键.(1)根据射线及线段的定义作图即可;(2)过点B作AC的垂线BD,垂足为D即可;(3)将C点向右移3个单位得到点E,作直线BE即可;(1)解:射线AC,线段AB即为所求;(2)解:垂线段BD即为所求;(3)解:直线BE即为所求.【变式1】(2022下·辽宁辽阳·七年级统考期末)下列说法正确的是()A.相等的角是对顶角B.在同一平面内,两直线的位置关系有三种:平行,垂直,相交C.过一点有且只有一条直线与已知直线平行D.平面内,过一点有且只有一条直线与已知直线垂直【答案】D【分析】由对顶角的概念可判断A,由平面内直线与直线的位置关系可判断B,由过直线外一点画已知直线的平行线可判断C,由过一点画已知直线的垂线可判断D,从而可得答案.解:相等的角不一定是对顶角,故A不符合题意;在同一平面内,两直线的位置关系有二种:平行,相交,故B不符合题意;过直线外一点有且只有一条直线与已知直线平行,故C不符合题意;平面内,过一点有且只有一条直线与已知直线垂直,描述正确,故D符合题意;故选D【点拨】本题考查的是对顶角的性质,平面内,直线与直线的位置关系,平行线的含义,垂直的性质,掌握以上基础的概念是解本题的关键.【变式2】(2020·四川达州·校考一模)如图,利用三角尺和直尺可以准确的画出直线AB∥CD,下面是某位同学弄乱了顺序的操作步骤:①沿三角尺的边作出直线CD;②用直尺紧靠三角尺的另一条边;③作直线AB,并用三角尺的一条边贴住直线AB;④沿直尺下移三角尺;正确的操作顺序应是:.【答案】③②④①【分析】根据同位角相等两直线平行判断即可.解:根据同位角相等两直线平行则正确的操作步骤是③②④①,故答案我③②④①.【点拨】此题主要考查了复杂作图,关键是掌握同位角相等,两直线平行.【考点2】平行公理及推论的应用;【例2】(2022上·河南南阳·七年级校考期末)【操作】在如图的方格纸中(网格线的交点叫格点),按要求画图、填空.(1)过点A 作BC 的垂线,垂足为点D ,该垂线经过的一个格点记为点E .(2)过点E 作AC 的平行线EF ,该平行线经过的一个格点记为F ;过点B 作AC 的平行线BG ,该平行线经过的一个格点记为G .【发现】EF 与BG 的位置关系为______.【概括】根据你的发现,概括一条事实或结论:______.【答案】(1)画图见分析;(2)画图见分析;发现:平行;概括:平行于同一条直线的两条直线平行.【分析】(1)根据网格结构作出BC 的垂线AD 即可;(2)根据网格结构的特征构造相等的同位角再画图,然后标注即可.再根据平行线的判定可得EF 与BG 的位置关系以及结论.解:(1)如图,AD BC ,D 为垂足;(2)如图,EF AC ∥,BG AC ∥,EF 与BG 的位置关系为平行;结论:平行于同一条直线的两条直线平行.【点拨】本题考查了这题-应用与设计作图,利用网格结构作垂线,作平行线,熟练掌握网格结构的特征,准确找出对应点的位置是解题的关键.【变式1】(2022下·湖南长沙·七年级校考阶段练习)下列说法错误的是()A .在同一平面内,没有公共点的两条直线是平行线B .如果两条直线都与第三条直线平行,那么这两条直线也互相平行C .经过直线外一点有且只有一条直线与该直线平行D .在同一平面内,不相交的两条线段是平行线【答案】D【分析】根据平行公理等即可逐一进行判断.解:A 、在同一平面内,没有公共点的两条直线是平行线.正确,本选项不符合题意;B 、如果两条直线都与第三条直线平行,那么这两条直线也互相平行.平行线具有“传递性”,正确,本选项不符合题意;C 、经过直线外一点有且只有一条直线与该直线平行.正确,本选项不符合题意;D 、在同一平面内,不相交的两条直线是平行线.原说法错误,本选项符合题意.故选:D .【点拨】本题考查了平行公理等知识点.掌握相关结论是解题的关键.【变式2】(2022上·上海·九年级开学考试)如图,点E 、F 分别是梯形ABCD 两腰的中点,联结EF 、DE ,如果图中DEF △的面积为1.5,那么梯形ABCD 的面积等于.【答案】6【分析】过点A 作AH BC ⊥于H ,交EF 于G ,根据梯形中位线定理得到AD BC ∥EF ∥,根据三角形的面积公式、梯形的面积公式计算,得到答案.解:过点A 作AH BC ⊥于H ,交EF 于G ,如图,∵点E 、F 分别是梯形ABCD 两腰的中点,∴EF 是梯形ABCD 的中位线,∴AD BC ∥EF ∥,∴AG EF ⊥,AG GH =,∵ 1.5DEF S = ,∴1 1.52EF AG ⋅=,∴• 1.546EF AH =⨯=,∴•6ABCD S EFAH 梯形==,故答案为:6.【点拨】本题考查的是梯形的中位线、三角形的面积计算,掌握梯形中位线定理是解题的关键.【考点3】同位角相等,两直线平行;【例3】(2022上·黑龙江绥化·七年级统考期末)AB BC ⊥,12=90∠+∠︒,23∠∠=.BE 与DF 平行吗?为什么?解:BE DF ∥.AB BC ⊥ ,ABC \Ð=︒,即34∠+∠=︒.又1290∠+∠=︒ ,且23∠∠=,∴=.理由是:.BE DF ∴∥.理由是:.【答案】90;90;1∠,4∠;等角的余角相等;同位角相等,两直线平行【分析】由AB 垂直于BC ,利用垂直的定义得到ABC ∠为直角,进而得到3∠与4∠互余,再由1∠与2∠互余,根据23∠∠=,利用等角的余角相等得到14∠=∠,利用同位角相等两直线平行即可得证.解:BE DF ∥.AB BC ⊥ ,90ABC ∴∠=︒,即3490∠+∠=°.又1290∠+∠=︒ ,且23∠∠=,14∴∠=∠.理由是:等角的余角相等.BE DF ∴∥.理由是:同位角相等,两直线平行.故答案为:90;90;1∠,4∠;等角的余角相等;同位角相等,两直线平行.【点拨】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键【变式1】(2022下·福建宁德·七年级校联考期中)如图,若12∠=∠,则下列选项中,能直接利用“同位角相等,两直线平行”判定a b )A .B .C .D .【答案】B【分析】先判断出1∠与2∠是同位角,然后根据平行线的判定即可得出答案.解:A 、1∠与2∠是内错角,故该选项错误;B 、1∠与2∠是同位角,∵12∠=∠,∴a b ,故该选项正确;C 、1∠与2∠不是内错角、同位角,同旁内角,故该选项错误;D 、1∠与2∠是对顶角,故该选项错误;故选:B .【点拨】本题考查了平行线的判定,内错角相等、同位角相等,同旁内角互补两直线平行,是需要同学们熟练记忆的内容.【变式2】(2023上·七年级课时练习)如图,若12∠=∠,则 ;若23∠∠=,则 .【答案】AB DE BC EF【分析】根据12∠=∠,利用同位角相等两直线平行推出AB DE ∥;由23∠∠=,利用同位角相等两直线平行推出BC EF ∥.解:∵12∠=∠,∴AB DE ∥,∵23∠∠=,∴BC EF ∥,故答案为:AB ,DE ,BC ,EF .【点拨】此题考查平行线的判定定理,熟练掌握同位角相等两直线平行是解题的关键.【考点4【例4】(2023上·七年级课时练习)如图,已知CD AD ⊥于点,D DA AB ⊥于点,12A ∠=∠.试说明:DF AE ∥.解:CD AD ⊥ (已知),90CDA ∴∠=︒(__________).同理,90DAB ∠=︒.90CDA DAB ∴∠=∠=︒(__________),即132490∠+∠=∠+∠=︒.12∠=∠ (已知)3∴∠=_______(___________).∴_____∥_____(____________).【答案】垂直的定义,等量代换,4∠,等量代换,DF ,AE ,内错角相等,两直线平行【分析】根据垂直的定义得到90CDA DAB ∠=∠=︒,推出132490∠+∠=∠+∠=︒,得到3=4∠∠,由此证得DF AE ∥.解:CD AD ⊥ (已知),90CDA ∴∠=︒(垂直的定义).同理,90DAB ∠=︒.90CDA DAB ∴∠=∠=︒(等量代换),即132490∠+∠=∠+∠=︒.12∠=∠ (已知)3∴∠=4∠(等量代换).∴DF AE ∥(内错角相等,两直线平行).【点拨】此题考查了垂直的定义,平行线的判定,熟练掌握平行线的判定定理是解题的关键.【变式1】(2022·广东深圳·蛇口育才二中校考三模)如图,能判定EB AC ∥的条件是()A .C ABE∠∠=B .A EBD ∠∠=C .C ABC ∠∠=D .A ABE∠∠=【答案】D 【分析】通过角相等判定两直线平行,则判断两角是否能推出同位角或内错角相等即可.解:∵只有同位角相等,内错角相等,同旁内角互补才能判断两直线平行,选项D 中A ABE ∠∠=是内错角相等,故能判定两直线平行,其他选项不符合判定定理,无法判断.故选:D .【点拨】本题考查了平行线的判定,掌握平行线的判定是解题的关键.【变式2】(2023下·陕西宝鸡·七年级统考期中)三个完全相同的含30︒角的三角板如图摆放,可以判断AB 与EC 平行的理由是.【答案】BAC ACE =∠∠,内错角相等,两直线平行(答案不唯一)【分析】根据平行线的判定定理求解.解:由题意知90BAC ACE ∠=∠=︒,由内错角相等,两直线平行,可判断AB 与EC 平行.故答案为:BAC ACE =∠∠,内错角相等,两直线平行.【点拨】本题考查平行线的判定,解题的关键是掌握平行线的判定定理,即内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.【考点5】同旁内角互补,两直线平行;【例5】(2023下·山东青岛·七年级统考期中)如图,EF BC ∥,CE 平分BCF ∠,111DAC ∠=︒,23ACF FEC ∠=∠=︒,则AD 与BC 平行吗?请说明理由.【答案】AD 与BC 平行.理由见分析【分析】根据角平分线的定义可得246BCF FEC ∠=∠=︒,进而得出69ACB ∠=︒,结合题意可得69111180ACB DAC ∠+∠=︒+︒=︒,即可得证.解:AD 与BC 平行.理由如下:∵CE 平分BCF ∠,23ACF FEC ∠=∠=︒,∴246BCF FEC ∠=∠=︒,∴462369ACB BCF ACF ∠=∠+∠=︒+︒=︒,又∵111DAC ∠=︒,∴69111180ACB DAC ∠+∠=︒+︒=︒,∴AD BC ∥.【点拨】本题考查了平行线的判定,角平分线的定义,熟练掌握平行线的判定定是解题的关键.【变式1】(2023下·山东济南·七年级统考期末)如图,将一纸条ABCD 沿折痕MG 折叠,MA 时对应线段MA '与CD 相交于点N 则下列条件中,不足以证明AB CD ∥的是()A .180BMN CNM ∠+∠=︒B .2AMN MGN ∠=∠C .MN NG=D .MN MG=【答案】D 【分析】根据翻折的性质和平行线的判定逐一进行判断即可.解:A.180BMN CNM ∠+∠=︒ ,∴AB CD ∥;B .由翻折可知:2AMN AMG ∠=∠,2AMN MGN ∠=∠ ,AMG MGN ∴∠=∠,∴AB CD ∥,故B 选项不符合题意;C .由翻折可知:AMG NMG ∠=∠,MN NG = ,NMG MGN ∴∠=∠,AMG MGN ∴∠=∠,∴AB CD ∥,故C 选项不符合题意;MN MG = ,MGN MNG ∴∠=∠,AMG MGN ∴∠≠∠,AB ∴不平行CD ,故D 选项符合题意;故选:D .【点拨】本题考查了折叠的性质,平行线的判定,熟练掌握平行线的判定定理是解题的关键.【变式2】(2019下·七年级课时练习)如图,某工件要求AB ∥ED ,质检员小李量得∠ABC =146°,∠BCD =60°,∠EDC =154°,则此工件.(填“合格”或“不合格”)【答案】合格【分析】作CF ∥AB ,由平行线的性质得出∠ABC+∠1=180°,求出∠1,得出∠2,由∠2+∠EDC=180°,得出CF ∥ED ,证出AB ∥ED ,即可得出结论.解:作CF ∥AB ,如图所示:则∠ABC+∠1=180°,∴∠1=180°-146°=34°,∴∠2=∠BCD-∠1=60°-34°=26°,∵∠2+∠EDC=26°+154°=180°,∴CF ∥ED ,∴AB ∥ED ;故答案为合格.【点拨】本题考查了平行线的性质与判定;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键【考点6】垂直于同一直线的两直线平行.【例6】(2023下·七年级课时练习)探索与发现(在同一平面内):(1)若直线12a a ⊥,23a a ∥,判断直线1a 与3a 的位置关系,请说明理由;(2)若直线12a a ⊥,23a a ∥,34a a ⊥,则直线1a 与4a 的位置关系是______;(直接填结论,不需要证明)(3)现在有2023条直线1a ,2a ,3a ,…,2023a ,且有12a a ⊥,23a a ∥,34a a ⊥,45a a ∥,…,请你探索直线1a 与2023a 的位置关系.【答案】(1)13⊥a a .理由见分析;(2)14a a ∥;(3)直线1a 与2023a 的位置关系是12023a a ⊥【分析】(1)根据垂直定义和平行线的性质求解即可;(2)根据垂直定义和平行线的性质求解即可;(3)根据垂直定义和平行线的性质,找到变化规律即可求解.(1)解:13⊥a a .理由如下:如图,∵12a a ⊥,∴190∠=︒,∵23a a ∥,∴2190∠=∠=︒,∴13⊥a a .(2)解:由(1)知13⊥a a ,又34a a ⊥,根据垂直于同一条直线的两条直线平行可得14a a ∥,故答案为:14a a ∥;(3)解:直线1a 与2a ,3a 的位置关系分别是12a a ⊥,13⊥a a ,直线1a 与4a ,5a 的位置关系分别是14a a ∥,15a a ∥,从2a 开始,直线2a ,3a ,…,2023a 与直线1a 的位置关系以⊥,⊥,∥,∥为一次循环,∴12022a a ⊥,12023a a ⊥,∴直线1a 与2023a 的位置关系是12023a a ⊥.【点拨】本题考查垂直定义和平行线的性质,熟练掌握平行线的性质,得到变化规律是解答的关键.【变式1】(2018下·七年级单元测试)在同一平面内,a 、b 、c 是直线,下列说法正确的是()A .若a b ∥,b c ∥则a c∥B .若a b ⊥r r ,b c ⊥,则a c ⊥C .若a b ∥,b c ⊥,则a c∥D .若a b ∥,b c ∥,则a c ⊥【答案】A【分析】根据平行公理、平行线的性质对各选项分析判断即可解答.解:A.在同一平面内,若a b ∥,b c ∥则a c ∥正确,故本选项正确;B.在同一平面内,若a b ⊥r r ,b c ⊥则a c ∥,故本选项错误;C.在同一平面内,若a b ∥,b c ⊥则a c ⊥,故本选项错误;D.在同一平面内,若a b ∥,b c ∥则a c ∥,故本选项错误.故选:A .【点拨】本题主要考查了平行公理、平行线的性质等知识点,灵活运用相关性质是解答本题的关键.【变式2】(2018下·七年级课时练习)在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线.(1)它的理由如下:(如图1)∵b ⊥a ,c ⊥a ,∴∠1=∠2=90°,∴b ∥c(2)如图2是木工师傅使用角尺画平行线,有什么道理?.【答案】平行同位角相等,两条直线平行垂直于同一条直线的两条直线平行解:∵在同一平面内,两条直线都垂直于同一条直线,∴这两条直线互相平行.故答案为平行;(1)∵b ⊥a ,c ⊥a ,∴∠1=∠2=90°,∴b ∥c (同位角相等,两条直线平行).故答案为同位角相等,两条直线平行;(2)垂直于同一条直线的两条直线平行,故答案为垂直于同一条直线的两条直线平行.【考点7】判定两直线平行的综合应用.【例7】(2024下·七年级课时练习)如图,AK 与BC 相交于点B ,BC 与CD 相交于点C ,如果160∠=︒,2120∠=︒,60D ∠=︒,那么AB 与CD 平行吗?BC 与DE 呢?并说明理由.【答案】AB CD ∥,BC DE ∥.理由见分析【分析】根据对顶角相等得出60ABC ∠=︒,进而可得2180ABC ∠+∠=︒,则AB CD ∥,进而得出BCD D ∠=∠,即可得证.解:AB CD ∥,BC DE ∥.理由如下:∵160∠=︒,1ABC ∠=∠∴60ABC ∠=︒.又∵2120∠=︒,∴2180ABC ∠+∠=︒.∴AB CD ∥.又∵2180BCD ∠+∠=︒,∴60BCD ∠=︒.∵60D ∠=︒,∴BCD D ∠=∠.∴BC DE ∥.【点拨】本题考查了对顶角相等,平行线的判定,熟练掌握平行线的判定定理是解题的关键.【变式1】(2024下·全国·七年级假期作业)如图,将一副三角尺如图放置,DE 、BC 交于点F ,(45C ∠=︒,30D ∠=︒)则下列结论不正确...的是()A .13∠=∠B .2180CAD ∠+∠=︒C .若230∠=︒,则BC AD∥D .若230∠=︒,则AC DF∥【答案】C 【分析】由余角的性质,得到13∠=∠,由 3 21802CAD CAB CAB EAD ∠=∠+∠=∠+∠-∠=︒-∠,得到2180CAD ∠+∠=︒,因为3B ∠≠∠,故BC 和DA 不平行,由160E ∠=∠=︒,得到AC DF ∥.解:1∠ +23∠=∠+290∠=︒,13∴∠=∠,故A 正确;3 21802CAD CAB CAB EAD ∠=∠+∠=∠+∠-∠=︒-∠ ,2180CAD ∴∠+∠=︒,故B 正确;230∠=︒ ,390260∴∠=︒-∠=︒,45B ∠=︒ ,3B ∴∠≠∠,BC ∴和DA 不平行,故C 错误;230∠=︒ ,190260∴∠=︒-∠=︒,60E ∠=︒ ,1E ∴∠=∠,∴AC DF ∥,故D 正确.故选:C .【点拨】本题考查平行线的判定,关键是掌握平行线的判定方法.【变式2】(2024下·全国·七年级假期作业)如图,有下列说法:①若12∠=∠,则AB CD ∥;②若3=4∠∠,则AD BC ∥;③若180ABC BCD ∠+∠=︒,则AD BC ∥;④若13180ABC ∠+∠+∠=︒,则AD BC ∥.其中说法正确的有个.【答案】1【解析】略。

北师版初一地理下册知识点总结

北师版初一地理下册知识点总结

北师版初一地理下册知识点总结北师版初一地理下册主要内容涵盖了地球的运动和地貌、水资源与水文化、气象与气候、自然灾害预防和人口与城市等多个方面的知识点。

下面是对这些知识点进行的总结。

1. 地球的运动和地貌- 地球的自转和公转:介绍地球的自转和公转运动,包括自转轴、地球公转轨道、地球自转周期等知识点。

- 春分、夏至、秋分、冬至:解释这些日子的含义,春分和秋分是白昼与黑夜长度相等的两天,夏至是北半球白天最长的一天,冬至是北半球黑夜最长的一天。

- 四季变化:介绍地球自转公转运动引起的气候季节变化,包括温度、降水、风向和日照时间等方面的变化。

- 地球的地貌:介绍地壳的结构和地球表面的地貌特征,包括山地、高原、平原、丘陵和盆地等。

2. 水资源与水文化- 水的重要性:解释水对人类和地球的重要性,提到水是地球上一种特殊的物质,人类的生存离不开水。

- 水资源的分布:介绍水资源丰富和贫乏的地区分布情况,以及全球水资源的平均分配情况。

- 我国的水资源:包括我国水资源总量、地域分布、水量分布和水利工程等知识点。

- 水文化:介绍水对人类文化的影响,包括饮水文化、农业灌溉、水上交通和水上运动等。

3. 气象与气候- 大气的组成和结构:介绍大气的组成成分和分层结构,包括对流层、平流层和温度层的认识。

- 气象要素:介绍气温、湿度、气压、风和降水等气象要素的意义和测量方法。

- 大气环流:解释地球的全球性大气环流现象,包括赤道低压带、副高压带和极地高压带等。

- 气候类型:介绍气候带和气候类型的划分,包括寒冷气候、温带气候和热带气候等。

- 气候与植被:解释气候对植被分布的影响,包括草原、森林和沙漠等不同植被类型的分布与气候关系。

4. 自然灾害预防- 地震:介绍地震的发生原因和预防措施,包括建设抗震房屋和灾害应急预案等。

- 台风:解释台风的形成和发展过程,以及台风的预防措施。

- 水旱灾害:包括洪水和干旱等水灾灾害的防治措施。

- 火灾:介绍火灾的原因和预防措施,包括安全用火、灭火器的使用和火灾应急逃生知识等。

北师大版七年级数学下全部知识点归纳

北师大版七年级数学下全部知识点归纳

北师大版七年级数学下册全部知识点归纳第一章:整式的运算 单项式: 。

整 式 多项式: 。

同底数幂的乘法:幂的乘方:积的乘方:幂的运算 同底数幂的除法: 零指数幂: 负指数幂: 整式的加减单项式与单项式相乘整式运算单项式与多项式相乘: 整式的乘法 多项式与多项式相乘:平方差公式: 完全平方公式:单项式除以单项式整式的除法 多项式除以单项式:完全平方公式的变形公式:(1)22222212()2()2[()()]a b a b ab a b ab a b a b +=+-=-+=++-(2)22()()4a b a b ab +=-+ (3)2214[()()]ab a b a b =+-- 第二章 平行线与相交线平行线: 。

对顶角的性质:垂线的性质:性质1:过一点有 。

性质2:连接直线外一点 。

平行线的性质:1、平行公里:过 性质2:平行于 平行。

整 式 的 运算余角:余角和补角 补角:邻补角:两线相交 对顶角:同位角三线八角 内错角同旁内角平行线的判定:平行线平行线的性质:尺规作图:第三章 变量之间的关系自变量变量的概念 因变量变量之间的关系 表格法关系式法变量的表达方法 图象法第四章 三角形三角形概念: 称为三角形。

三角形按内角的大小可分为三类:直角三角形的性质: ;直角三角形的两直角边为a 、b ,斜边为c ,斜边上的高为h,则h= 。

任意三角形都有三条角平分线,并且它们相交于三角形内一点。

这个点叫三角形的 任意三角形都有三条中线,它们相交于三角形内一点。

这个点叫三角形的 任意三角形都有三条高线,它们所在的直线相交于一点。

这个点叫三角形的平行线与相交线三角形都有三条高线:区 别相 同中 线 平分对边 三条中线交于三角形内部 (1)都是线段 (2)都从顶点画出 (3)所在直线相交于一点 角平分线 平分内角三条角平分线交于三角形内部高 线 垂直于对边(或其延长线)锐角三角形:三条高线交于直角三角形:三条高线交于钝角三角形:三条高线交于三角形三边关系:三角形 三角形内角和定理:角平分线三条重要线段 中线高线三角形 全等图形的概念: 全等三角形的性质:SSSSAS全等三角形 全等三角形的判定 ASAAASHL (适用于Rt Δ)全等三角形的应用 利用全等三角形测距离作三角形第五章 生活中的轴对称: 轴对称图形于轴对称: 轴对称图形轴对称区别是一个图形自身的对称特性 是两个图形之间的对称关系 对称轴可能不止一条对称轴只有一条共同点沿某条直线对折后都能够互相重合如果轴对称的两个图形看作一个整体,那么它就是一个轴对称图形;如果把轴对称图形分成两部分(两个图形),那么这两部分关于这条对称轴成轴对称。

北师大版七年级数学下册全部知识点归纳

北师大版七年级数学下册全部知识点归纳


(a

b)2
2ab

(a
b)2

2ab

1 2
[(a
b)2

(a
b)2 ]
(2) (a b)2 (a b)2 4ab
(3)
ab

1 4
[(a

b)2

(a

b)2
]
4、完全平方式:我们把形如: a2 2ab b2 , a2 2ab b2 , 的二次三项式称作完全平方式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是 1 或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是 0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式
1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
1
4、整式不一定是多项式。 5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。 四、整式的加减 1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。 2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。 3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。 (2)按去括号法则去括号。 (3)合并同类项。 4、代数式求值的一般步骤: (1)代数式化简。 (2)代入计算 (3)对于某些特殊的代数式,可采用“整体代入”进行计算。 五、同底数幂的乘法 1、n 个相同因式(或因数)a 相乘,记作 an,读作 a 的 n 次方(幂),其中 a 为底数,n 为指数,an 的结 果叫做幂。 2、底数相同的幂叫做同底数幂。 3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。 4、此法则也可以逆用,即:am+n = am﹒an。 5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。 六、幂的乘方 1、幂的乘方是指几个相同的幂相乘。(am)n 表示 n 个 am 相乘。 2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。 3、此法则也可以逆用,即:amn =(am)n=(an)m。 七、积的乘方 1、积的乘方是指底数是乘积形式的乘方。 2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab) n=anbn。 3、此法则也可以逆用,即:anbn =(ab)n。 八、三种“幂的运算法则”异同点 1、共同点: (1)法则中的底数不变,只对指数做运算。 (2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。 (3)对于含有 3 个或 3 个以上的运算,法则仍然成立。 2、不同点: (1)同底数幂相乘是指数相加。 (2)幂的乘方是指数相乘。 (3)积的乘方是每个因式分别乘方,再将结果相乘。 九、同底数幂的除法 1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。 2、此法则也可以逆用,即:am-n = am÷an(a≠0)。 十、零指数幂 1、零指数幂的意义:任何不等于 0 的数的 0 次幂都等于 1,即:a0=1(a≠0)。 十一、负指数幂

北师大版七年级数学下册知识点总结

北师大版七年级数学下册知识点总结

北师大版七年级数学下册知识点总结一、整式的乘除。

1. 同底数幂的乘法。

- 法则:同底数幂相乘,底数不变,指数相加。

即a^m· a^n = a^m + n(m、n 为正整数)。

- 例如:2^3×2^4=2^3 + 4=2^7。

2. 幂的乘方。

- 法则:幂的乘方,底数不变,指数相乘。

即(a^m)^n=a^mn(m、n为正整数)。

- 例如:(3^2)^3 = 3^2×3=3^6。

3. 积的乘方。

- 法则:积的乘方等于乘方的积。

即(ab)^n=a^n b^n(n为正整数)。

- 例如:(2×3)^2=2^2×3^2 = 4×9 = 36。

4. 同底数幂的除法。

- 法则:同底数幂相除,底数不变,指数相减。

即a^m÷ a^n=a^m - n(a≠0,m、n为正整数且m>n)。

- 例如:5^5÷5^3 = 5^5 - 3=5^2。

5. 零指数幂。

- 规定:a^0 = 1(a≠0)。

6. 负整数指数幂。

- 规定:a^-p=(1)/(a^p)(a≠0,p为正整数)。

- 例如:2^-3=(1)/(2^3)=(1)/(8)。

7. 整式的乘法。

- 单项式乘以单项式:系数相乘,同底数幂相乘。

例如:3x^2·2x^3=(3×2)(x^2+3) = 6x^5。

- 单项式乘以多项式:用单项式去乘多项式的每一项,再把所得的积相加。

例如:2x(x + 3)=2x^2+6x。

- 多项式乘以多项式:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

例如:(x + 2)(x+3)=x^2+3x+2x + 6=x^2+5x+6。

8. 整式的除法。

- 单项式除以单项式:系数相除,同底数幂相除。

例如:6x^5÷2x^3=(6÷2)(x^5 - 3)=3x^2。

- 多项式除以单项式:先把多项式的每一项除以这个单项式,再把所得的商相加。

完整版北师大版七年级数学下册变量之间的关系知识点汇总

完整版北师大版七年级数学下册变量之间的关系知识点汇总

完整版北师大版七年级数学下册变量之间的关系知识点汇总在数学学习中,变量是一个非常重要的概念。

变量之间的关系更是数学中的基础知识之一。

本文将对北师大版七年级数学下册关于变量之间的关系的知识点进行汇总和总结。

一、平方和平方根的关系在数学中,平方和平方根是常见的两个概念。

平方是指一个数与自己相乘的运算,可以用 x²表示。

而平方根则是指一个数的平方的逆运算,用√x 表示。

对于两个正数 a 和 b,它们满足以下关系:a² + b² = (a + b)² - 2ab√(a + b) = √a + √b二、正比例和反比例的关系正比例和反比例是描述两个变量之间关系的常用术语。

正比例是指当一个变量增大时,另一个变量也相应增大的关系。

而反比例则是指当一个变量增大时,另一个变量相应减小的关系。

在数学中,可用如下公式表示:正比例关系:y = kx (k为常数,y和x为变量)反比例关系:y = k/x (k为常数,y和x为变量)三、函数的关系函数是描述两个变量之间关系的数学工具,它描述了每个自变量(输入)对应唯一的因变量(输出)的关系。

函数可以用一个公式表示,形如 y = f(x)。

其中 x 是自变量,y 是因变量,f(x) 是函数关系。

函数也可以用函数图像表示,这样更直观地反映了变量之间的关系。

四、等式的关系等式是指两个表达式通过等号连接的关系。

等式表示两个值相等,可用 x = y 表示。

在等式中,可以进行加减乘除等运算,从而实现变量之间的关系。

五、不等式的关系不等式是指两个表达式通过不等号连接的关系。

不等式描述了大小关系,可用 x < y、x > y、x ≤ y、x ≥ y 等形式表示。

不等式表示一组值的范围,更适用于解决实际问题中变量之间的关系。

六、递推关系递推关系是指通过已知的一些值,推导出其他值的关系。

递推关系中通常会涉及到一个初始值和一个递推公式。

通过递推公式,可以计算出后续的值,从而揭示变量之间的关系。

七下数学北师大版知识点总结

七下数学北师大版知识点总结

七下数学北师大版知识点总结第一章整式的乘除。

1. 同底数幂的乘法:底数不变,指数相加,即a^m×a^n = a^m+n(m、n 都是正整数)2. 幂的乘方:底数不变,指数相乘,即(a^m)^n = a^mn(m、n 都是正整数)3. 积的乘方:先把积中的每一个因数分别乘方,再把所得的幂相乘,即(ab)^n = a^n b^n(n 是正整数)4. 同底数幂的除法:底数不变,指数相减,即a^m÷a^n = a^m-n(a≠0,m、n 都是正整数,且 m>n)5. 零指数幂:任何非零数的 0 次幂都等于 1,即a^0 = 1(a≠0)6. 负整数指数幂:a^-p = (1)/(a^p)(a≠0,p 为正整数)7. 整式的乘法:- 单项式乘以单项式:系数、同底数幂分别相乘,作为积的因式,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

- 单项式乘以多项式:用单项式去乘多项式的每一项,再把所得的积相加。

- 多项式乘以多项式:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

8. 平方差公式:(a + b)(a - b) = a^2 - b^29. 完全平方公式:(a ± b)^2 = a^2 ± 2ab + b^2第二章相交线与平行线。

1. 对顶角相等。

2. 垂线的性质:- 过一点有且只有一条直线与已知直线垂直。

- 垂线段最短。

3. 同位角、内错角、同旁内角的识别。

4. 平行线的判定:- 同位角相等,两直线平行。

- 内错角相等,两直线平行。

- 同旁内角互补,两直线平行。

5. 平行线的性质:- 两直线平行,同位角相等。

- 两直线平行,内错角相等。

- 两直线平行,同旁内角互补。

第三章三角形。

1. 三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。

2. 三角形内角和定理:三角形三个内角的和等于 180°。

3. 三角形的外角性质:- 三角形的一个外角等于与它不相邻的两个内角的和。

北师大版七年级数学下册全部知识点归纳

北师大版七年级数学下册全部知识点归纳

北师大版七年级数学下册全部知识点归纳如下:一、比例与比例关系1.比例的概念及表示方法2.比例的性质:比例恒定、比例的交叉相等、比例中项的乘积等于其他项的乘积3.比例的应用:物体的相似性、航空地图的比例尺等二、利用比例解决问题1.比例数值法:已知两个比例相等,求其中一个比例的值2.比例线段法:利用线段的比例关系解决问题3.比例面积法:利用面积的比例关系解决问题三、数的四则运算1.加法与减法2.乘法与除法3.括号的运算顺序4.分数的加法与减法四、图形的认识与变换1.平面图形的基本要素:点、线、线段、射线、角、平行线、垂直线、四边形等2.平面图形的分类及特点:三角形、四边形、正方形、矩形、平行四边形、菱形、梯形等3.图形的移动:平移、旋转、翻转4.图形的轴对称与中心对称五、数与式1.代数表达式的定义与基本运算:合并同类项、提取公因式、乘法公式、分配律等2.正数、负数与零的概念与表示方法3.数轴的概念与使用方法4.方程的概念与解的方法六、面积与体积1.平面图形的面积:矩形、三角形、平行四边形、正方形等2.立体图形的体积:长方体、正方体、棱柱、棱锥等3.圆的面积与周长七、统计与概率1.数据的整理与分析:频数表、直方图、折线图等2.概率的基本概念与计算方法:可能性、事件、概率的计算公式等3.点阵图与统计问题的探究八、函数与方程1.函数的概念与表示方法:自变量、因变量、函数值等2.函数的图象与性质3.一次函数与一元一次方程九、三角形与三角函数1.三角形的面积与三角形的性质:直角三角形、等腰三角形、等边三角形等2.三角函数的引入与基本概念:正弦、余弦、正切等3.利用三角函数解决实际问题以上是北师大版七年级数学下册的全部知识点。

不同章节的知识点内容可能会有所不同,如有遗漏请谅解。

希望以上内容对您有所帮助!。

北师大七下生物知识点归纳

北师大七下生物知识点归纳

北师大七下生物知识点归纳
1.植物的器官结构和功能:植物的器官包括根、茎、叶和花等。

根主
要用于吸收水分和养分,茎起着支撑植物体和输送养分的作用,叶通过光
合作用合成有机物质,花则是植物的生殖器官。

2.植物的繁殖方式:植物的繁殖方式有两种,即有性繁殖和无性繁殖。

有性繁殖包括花的授粉和受精过程,无性繁殖则是植物通过不同的方式产
生后代,如分株、扦插、种子和块茎等。

4.动物的结构和功能:动物的结构和功能多样,根据其环境和生活方
式的不同,发展出了各种各样的器官。

动物的基本器官包括消化系统、呼
吸系统、循环系统、运动系统和感觉器官等。

5.动物的繁殖方式:动物的繁殖方式有两种,即有性繁殖和无性繁殖。

有性繁殖包括交配和受精过程,无性繁殖则是动物通过不同的方式产生后代,如二分法、孢子和出芽等。

6.生物多样性和生态系统:生物多样性指的是地球上各种生物的丰富
性和多样性。

生态系统是生物与其环境相互作用而形成的可持续发展的功
能区域。

保护生物多样性和生态系统对于维持地球生态平衡和人类的生存
具有重要意义。

总之,北师大七下生物教材中的知识点涵盖了植物和动物的结构、功能、繁殖方式以及生物多样性和生态系统等方面的知识。

这些知识对于我
们了解生物世界的运作机制、保护生物多样性和生态环境有着重要的意义。

希望这份归纳总结可以对学习生物知识有所帮助。

2024年北师大版七年级数学下册知识点总结(二篇)

2024年北师大版七年级数学下册知识点总结(二篇)

2024年北师大版七年级数学下册知识点总结第一章:方程与不等式1.方程的概念:包含未知数的等式称为方程。

方程的解是使得方程成立的数。

2.解方程:通过变量的运算和移项,求出方程的解。

3.解一元一次方程:如ax+b=0,解得x=-b/a。

4.方程的证明:通过逆向思维,将给定的解代入方程,验证等式是否成立。

5.不等式的概念:含有不等于号的等式称为不等式,如ax>b。

6.解不等式:通过移项,求出不等式的解的范围。

7.不等式的证明:将给定的解代入不等式,验证不等式是否成立。

第二章:数据的收集和整理1.数据的表示:通过表格、图表和线段、折线图等图示进行数据的表示,便于观察和分析。

2.数据的整理:对收集到的数据进行整理,包括分类、排序、求最大值、最小值、众数、中位数等。

3.统计的总体与样本:通过抽取一部分数据作为样本,对总体数据进行概括和判断。

第三章:图形的认识1.点、线、面的概念:几何图形由点、线、面组成。

2.平行线与垂直线:平行线的特点是永不相交,垂直线的特点是相交成直角。

3.多边形:具有多个边的几何图形称为多边形,如三角形、四边形、五边形等。

4.正多边形:具有相等边长和相等内角的多边形。

5.对称图形:具有对称性的图形,可以通过某一条线进行折叠重合。

6.图形的相似性:具有相等比例关系的图形称为相似图形。

7.平移、旋转和翻折:运用平移、旋转和翻折等操作,使得图形位置和形态发生变化。

第四章:四边形1.四边形的概念:具有四个边的图形称为四边形,包括梯形、平行四边形、矩形、菱形、正方形等。

2.梯形:有两个底边,两个腰。

3.平行四边形:具有相对边平行的四边形。

4.矩形:具有四个直角的四边形,对角线相等。

5.菱形:具有四个相等边的四边形,对角线互相垂直。

6.正方形:具有四个相等边且具有对称性的四边形。

第五章:比例与相似1.比例的概念:比例是指两个或多个量之间的比值关系。

比值相等时称为成比例。

2.比例的性质:比例的性质包括交换律、放大和缩小、分配律等。

七下数学知识点归纳总结北师大版

七下数学知识点归纳总结北师大版

七下数学知识点归纳总结北师大版一、同底数幂的乘法(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:(1)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;(2)指数是1时,不要误以为没有指数;(3)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;二、幂的乘方与积的乘方三、同底数幂的除法(1)运用法则的前提是底数相同,只有底数相同,才能用此法则。

(2)底数可以是具体的数,也可以是单项式或多项式。

(3)指数相减指的是被除式的指数减去除式的指数,要求差不为负。

四、整式的乘法(1)单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。

(2)多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。

五、平方差公式表达式:(a+b)(a-b)=a2-b2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式。

六、完全平方公式完全平方公式中常见错误有:(1)漏下了一次项(2)混淆公式(3)运算结果中符号错误(4)变式应用难于掌握。

七、整式的除法单项式的除法法则。

单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式。

七年级数学学习方法、技巧:一、预习对于理科学习,预习是必不可少的。

我们在预习中,应该把书上的内容看一遍,尽力去理解,对解决不了的问题适当作出标记,请教老师或课上听讲解决,并试着做一做书后的习题检验预习效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、轴对称
1、轴对称图形:
如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

2、轴对称:
对于两个图形,如果沿一条直线对折后,它们能够完全重合,那么称这两个图形成轴对称,这条直线就是对称轴。

3、性质:
(1)对应点所连的线段被对称轴垂直平分。

(2)对应线段相等,对应角相等。

二轴对称的性质
1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角
称为对应角。

2、关于某条直线对称的两个图形是全等图形。

三等腰三角形
1、等腰三角形:有两条边相等的三角形叫做等腰三角形。

2、等腰三角形的性质:
(1)等腰三角形的两个底角相等,简写成“等边对等角”
(2)等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),
(3)等腰三角形是轴对称图形,等腰三角形顶角的平分线、底边上的中线、底边上的高它们所在的直线都是等腰三角形的对称轴。

3、等腰三角形的判定:
(1)有两条边相等的三角形是等腰三角形。

(2)如果一个三角形有两个角相等,那么它们所对的边也相等
四、等边三角形:
1、等边三角形:三边都相等的三角形叫做等边三角形。

2、等边三角形的性质:
(1)具有等腰三角形的所有性质。

(2)等边三角形的各个角都相等,并且每个角都等于60°。

3、等边三角形的判定
(1)三边都相等的三角形是等边三角形。

(2):三个角都相等的三角形是等边三角形
(3):有一个角是60°的等腰三角形是等边三角形。

五线段的垂直平分线(简称中垂线):
定义:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。

性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

六、角平分线的性质:1、角平分线所在的直线是该角的对称轴。

2、性质:角平分线上的点到这个角的两边的距离相等。

尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

最基本,最常用的尺规作图,通常称基本作图。

一些
复杂的尺规作图都是由基本作图组成的。

五种基本作图:
1、作一条线段等于已知线段;
2、作一个角等于已知角;
3、作已知线段的垂直平分线;
4、作已知角的角平分线;
5、过一点作已知直线的垂线;
题目一:作一条线段等于已知线段。

已知:如图,线段a .
求作:线段AB,使AB = a .
作法:
(1)作射线AP;
(2)在射线AP上截取AB=a .
则线段AB就是所求作的图形。

题目二:作已知线段的中点。

已知:如图,线段MN.
求作:点O,使MO=NO(即O是MN的中点).
作法:
(1)分别以M、N为圆心,大于
的相同线段为半径画弧,
两弧相交于P,Q;
(2)连接PQ交MN于O.
则点O就是所求作的MN的中点。

(试问:PQ与MN有何关系)
题目三:作已知角的角平分线。

已知:如图,∠AOB,
求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。

作法:
(1)以O为圆心,任意长度为半径画弧,分别交OA,OB于M,N;
(2)分别以M、N为圆心,大于的相同线段为半径画弧,两
弧交∠AOB内于P;
(3)作射线OP。

则射线OP就是∠AOB的角平分线。

题目四:作一个角等于已知角。

(请自己写出“已知”“求作”并作出图形,不写作法)
题目五:已知三边作三角形。

已知:如图,线段a,b,c.
求作:△ABC,使AB = c,AC = b,BC = a.
作法:
(1)作线段AB = c;
(2)以A为圆心b为半径作弧,
以B为圆心a为半径作弧与
前弧相交于C;
(3)连接AC,BC。

则△ABC就是所求作的三角形。

题目六:已知两边及夹角作三角形。

已知:如图,线段m,n, ∠α.
求作:△ABC,使∠A=∠α,AB=m,AC=n.
作法:
(1)作∠A=∠α;
(2)在AB上截取AB=m ,AC=n;
(3)连接BC。

则△ABC就是所求作的三角形。

题目七:已知两角及夹边作三角形。

已知:如图,∠α,∠β,线段m .
求作:△ABC,使∠A=∠α,∠B=∠β,AB=m.作法:
(1)作线段AB=m;
(2)在AB的同旁作∠A=∠α,作∠B=∠β,∠A与∠B的另一边相交于C。

则△ABC就是所求作的图形(三角形)。

相关文档
最新文档