电磁场与电磁波-第2章静电场

合集下载

电磁场与电磁波理论基础 课后答案

电磁场与电磁波理论基础 课后答案

r a=2r jq 题2-11E 2E 3E 题2-2图()004,,()400P ,,oYZ1r 2r r 1R 2R 18q C=q 题2-3图第二章 静电场 2-1.已知半径为r a =的导体球面上分布着面电荷密度为0cos S S ρρϑ=的电荷,式中的0S ρ为常数,试计算球面上的总电荷量。

解 取球坐标系,球心位于原点中心,如图所示。

由球面积分,得到()220cos sin S S S Q dS r d d p p=r =rq q q j òòòò220022000200cos sin cos sin sin20S S S r d d rd d a d p pp pp =rq q q j=r q q q j =r p q q =òòòòò2-2.两个无限大平面相距为d ,分别均匀分布着等面电荷密度的异性电荷,求两平面外及两平面间的电场强度。

解 假设上板带正电荷,面密度为S r ;下板带负电,面密度为S -r 。

对于单一均匀带电无限大平面,根据书上例 2.2得到的推论,无限大带电平面的电场表达式为2SE r =e 对于两个相距为的d 无限大均匀带电平面,根据叠加原理 123000SE ,E ,E r ===e2-3.两点电荷18C q =和24C q =−,分别位于4z =和4y =处,求点(4,0,0)P 处的电场强度。

解 根据点电荷电场强度叠加原理,P 点的电场强度矢量为点S 1和S 1处点电荷在P 处产生的电场强度的矢量和,即()112233010244q q R R =+pe pe R R E r 式中11144x z ,R =-=-==R r r e e 22244x y ,R =-=-==R r r e e代入得到()()()()()330444844142x y x z x y z éù-êú-êú=-êúpe êúëûù=+-úûe e e e E r e e e 2-7.一个点电荷+q 位于(-a , 0, 0)处,另一点电荷-2q 位于(a , 0, 0)处,求电位等于零的面;空间有电场强度等于零的点吗?解 根据点电荷电位叠加原理,有120121()4q q u R R r πε⎡⎤=+⎢⎥⎣⎦式中()11y z x a y R =-=+++=R r r e e e()22y z x a y R =-=-++=R r r e e e代入得到()4q u r πε⎡⎤=电位为零,即令0()04q u r πε⎡⎤== 简化可得零电位面方程为()()2233330x a x a y z ++++=根据电位与电场强度的关系,有()()()()()()()()3322222222222222203322332222222()()2422x y z x yx a y z x a y z x a y z x a y z x a y u u u u xy z x a y z z q x a x a y y z z E r r e e e e e πε−−−−−−⎡⎤∂∂∂=−∇=−++⎢⎥∂∂∂⎣⎦⎧⎛⎫⎪⎡⎤⎡⎤=−−++− ⎪⎨⎣⎦⎣⎦ ⎪⎪⎝⎭⎩⎛⎫⎡⎤⎡⎤+−+ ⎪⎣⎦⎣⎦ ⎪⎝⎭⎛⎫⎡⎤⎡⎤+−+ ⎣⎦⎣+++−+++++−+++++++⎦ ⎝−⎭z e ⎫⎪⎪⎬⎪⎪⎭要是电场强度为零,必有 000x y z E ,E ,E ===即()()()()()()()()332233222222222222222233222222202020x a x a y y z z x a y z x a y z x a y z x a y z x a y z x a y z −−−−−−+++−+++++−⎧⎡⎤⎡⎤+++++−+−++−=⎪⎣⎦⎣⎦⎪⎪⎡⎤⎡⎤−+=⎨⎣⎦⎣⎦⎪⎪⎡⎤⎡⎤−+=⎪⎣⎣⎩+⎦⎦此方程组无解,因此,空间没有电场强度为零的点。

静电场的散度与旋度 恒定磁场及其散度与旋度

静电场的散度与旋度 恒定磁场及其散度与旋度


S
S
1 E ( r ) dS
0
(r ) E (r ) 0
F ( x, y, z ) dl
C



0
0

V
( r )dV
S

n
S
F
M
0
高斯定理表明:
C
电磁场与电磁波
第2章 电磁场的基本规律
电磁场与电磁波
第2章 电磁场的基本规律
第一课
2013/3/25
电磁场与电磁波
第2章 电磁场的基本规律
电磁场与电磁波
第2章 电磁场的基本规律
2.2.2 静电场的散度与旋度 1. 静电场散度与高斯定理 回顾1.1 矢量场通量的概念
F ( x, y, z )
1.2 通量的物理意义
en
dS
面积元矢量
dS en dS ——
en ——
d F en dS ——
R (r ) 3 dV R

(r ) R
R3
1 E (r )
0

V
(r ) R dV

V
V
1 dV 4 π 0

V
1 1 2.2.10) p43 (r ) dV 4 π 0 V R 1 1 E (r ) (r ) 2 dV 4π 0 V R 2 1 4 π R R 1 E (r ) (r ) R dV 2.2.11) p43
( R r r )
电磁场与电磁波
第2章 电磁场的基本规律
电磁场与电磁波

电磁场与电磁波第5版王家礼答案

电磁场与电磁波第5版王家礼答案

电磁场与电磁波第5版王家礼答案电磁场与电磁波第5版王家礼答案第一章电磁场和电磁波的基本概念1.1 什么是电磁场?电磁场是描述电荷运动影响的物理场。

它可以被看作是一种对空间的划分,并且在各个空间区域内具有不同的物理状态。

1.2 电磁场的基本方程式是哪些?电磁场的基本方程式包括:麦克斯韦方程组、库仑定律、法拉第电磁感应定律、安培环路定律等。

1.3 什么是电磁波?电磁波是由振动的电荷和振动的磁场所产生的波动现象。

它具有电场和磁场的相互作用,且在真空和各种介质中都能传播。

第二章静电场和静磁场2.1 什么是静电场?静电场是指当电荷分布不随时间变化、不产生磁场时,所产生的电场。

2.2 静电场的基本定律有哪些?静电场的基本定律包括库仑定律、电场线、电势能和电势。

2.3 什么是静磁场?静磁场是指当电荷分布不随时间变化,但产生了磁场时,所产生的磁场。

2.4 静磁场的基本定律有哪些?静磁场的基本定律包括安培环路定律、比奥萨伐尔定律和洛伦兹力定律。

第三章时变电磁场和电磁波的基本概念3.1 什么是时变电磁场?时变电磁场是指电荷分布随时间变化,且产生了磁场时,所产生的电磁场。

3.2 时变电磁场的基本方程式是哪些?时变电磁场的基本方程式是麦克斯韦方程组,包括麦克斯韦-安培定律、麦克斯韦-法拉第定律、法拉第感应定律和电场定律等。

3.3 什么是电磁波?电磁波是由振动的电荷和振动的磁场所产生的波动现象,它具有电场和磁场的相互作用,可以在真空和各种介质中传播。

3.4 电磁波的基本特征有哪些?电磁波的基本特征包括电场和磁场垂直于传播方向、具有可见光、红外线、紫外线、X射线和γ射线等不同频率和能量等。

第四章电磁波在真空和介质中的传播4.1 电磁波如何在真空中传播?电磁波在真空中传播速度等于光速,即299792458m/s。

4.2 介质是如何影响电磁波传播的?介质对电磁波的传播速度、方向和振动方向都有影响,介质内的电磁波速度取决于介质的介电常数和磁导率。

电磁场与电磁波静电场

电磁场与电磁波静电场

q
R0 dl
q
RP dR
A 4 0 R2
4 0 R R2
q
4
0
1 R
1 RP
q
4 0
R
C
若选取无穷远点为参考点,则 C 0 ,于是 (R) q 4 0 R
体电荷、面电荷和线电荷分布的电位函数表达式为:
(r)
1
4 0
r
(r
'
)
r
'
d
'
C
(r )
1
4 0
s
r
s
(r
'
r
) dS
流密度的值为
Js
lim I l0 l
dI dl
图2.1.5 面电流密度与面电流
穿过线段l 的电流为
I J s (r )dl l
3、线电流:
电荷在一根很细的导线中流过,或电荷通过的横截面 积很小时,可将电流视为在一根无限细的线上流动, 这样的电流称为线电流。用电流强度来描述:
线电流I与线电荷密度 l、电荷流动速度 v的关系为:
I lv
2.2 静电场的基本方程
2.2.1库仑定律、电场强度
电荷间的相互作用规律由库仑定
律描述。真空中 静止的电荷 q1 对 q2 的相互作用力F12 为
图2.2.1电荷与电荷的相互作用
F12
1
4 0
q1q2 R2
R0
1
4 0
q1q2 R3
R
若电在荷电q ,场则强度q受为到E的的静空电间力某为点qE 放置点
1
4 0 V
r
r
'
r
r
'

电磁场与电磁波_章二习题答案

电磁场与电磁波_章二习题答案

静电场 恒定电场习题解答主要问题: 1) 矢量标量书写不加区分(忘记在矢量顶部加箭头) 2) 机械抄袭标准答案,不理解其含义3)不理解极化电荷面密度和极化电荷体密度含义:极化电荷面密度仅仅存在于介质表面,静电场情形下导体表面没有极化电荷面密度(题2-15) 4)所谓验证边界条件对静电场而言有两种方法(题2-13),一是从电位着手判断电位是否连续(12?Φ=Φ)法向电位条件如何?(1212s n nεερ∂Φ∂Φ-+=∂∂,这里格外需要注意说明边界上有没有电荷?s ρ=)二是判断切向电场是不是连续,法向电通密度是不是相等,要是不等,面电荷密度是多少 这两种方法等价。

5)2-2题很多人和标准答案中的坐标图不一致,答案却一样,明显错误2-1、半径为a 的球内充满介电常数为1ε的均匀介质,球外是介电常数为2ε的均匀介质。

若已知球内和球外的电位分别为:122(,) ()(,) ()r Ar r a Aa r r a rθθθθΦ=≤⎧⎪⎨Φ=≥⎪⎩ 式中A 为常数。

求1) 两种介质中的E 和D ;2) 两种介质中的自由电荷密度。

解:1) 在r < a 区域内:111111111A Ar r A A θθεεθε∂Φ∂Φ=-∇Φ=--=--∂∂==--rθr θ1r θE e e e e D E e e , 在r > a 区域内:()()2222222121Aa r r rAarθθεεθ∂Φ∂Φ=-∇Φ=--=-∂∂==-2r θr θ22r θE e e e e D E e e 2) 在r < a 区域内:。

()()()21112111sin sin 2cot r r D D r r r Arθρθθθεθθ∂∂=∇⋅=+∂∂=-+1D在r > a 区域内:()()2222222311sin sin cot r r D D r r r Aa rθρθθθεθ∂∂=∇⋅=+∂∂=-2D 在球面r = a 上,电荷面密度()()()12s r a r a A ρεεθ===⋅-=⋅-=+21r 21n D D e D D2-2一个半径为a 的半圆环上均匀分布线电荷ρl ,求垂直于半圆环平面的轴线z =a 处的电场强度。

电磁场与电磁波(第5版)第2章

电磁场与电磁波(第5版)第2章

电磁场与电磁波(第5版)第2章本节介绍了电磁学的基本概念和原理,包括电荷、电场、电势、电场强度和电势差等。

本节讨论了静电场和静磁场的性质和特点,包括库伦定律、电场强度的计算、电场线和磁感线的性质等。

本节介绍了电场和磁场的性质,包括电场的叠加原理、高斯定律、环路定理和安培定律等。

本节讨论了电场和磁场相互作用的现象和规律,包括洛伦兹力、洛伦兹力的计算和洛伦兹力的方向等。

本节介绍了电磁波的基本概念和特征,包括电磁波的产生、传播和检测等。

本节讨论了电磁波的性质,包括电磁波的速度、频率、波长和能量等。

本节介绍了电磁波谱的分类和特点,包括射线、微波、红外线、可见光、紫外线、X射线和γ射线等。

本节讨论了电磁波在生活和科学研究中的广泛应用,包括通信、雷达、医学诊断和天文观测等。

本章节将介绍电荷的性质以及电场的基本概念。

首先,我们将讨论电荷的性质,包括电荷的类型和带电体的基本特征。

之后,我们将深入研究电场,包括电场的定义、电场的强度和方向,以及电场的计算公式。

电荷是物质的一种基本特性,它可以分为正电荷和负电荷两种类型。

正电荷表示物体缺少电子,而负电荷表示物体具有多余的电子。

电荷是一种离散的量子化现象,它以元电荷为单位进行计量。

带电体是指带有正电荷或负电荷的物体,而不带电的物体则是不具有净电荷的。

电场是指电荷周围所具有的一种物理现象,它可以影响周围空间中其他电荷的运动和状态。

电场的强度和方向决定了电场对其他电荷的力的大小和方向。

电场的强度用符号E表示,单位是牛顿/库仑。

电场的方向由正电荷朝向负电荷的方向确定。

库仑定律是描述电荷间作用力的基本定律。

根据库仑定律,两个电荷之间的作用力正比于它们的电荷量的乘积,反比于它们之间距离的平方。

电场强度是描述某处电场强度大小和方向的物理量。

电场强度的计算公式正是库仑定律的一种推导结果,它可以通过已知电荷量和距离来计算。

以上是《电磁场与电磁波(第5版)第2章》中2.1节的内容概述。

2电磁场与电磁波-第二章

2电磁场与电磁波-第二章
复习
1.通量: 矢量 A 沿某一有向曲面 S 的面积分称为矢量 A 通过该有向曲面 S 的通量,即:
2.散度
当闭合面 S 向某点无限收缩时,矢量 A 通过该 闭合面S 的通量与该闭合面包围的体积之比的极限 称为矢量场 A 在该点的散度,以 div A 表示,即
3.散度定理(高斯定理)
某一矢量散度的体积分等于该矢量穿过该体积的 封闭表面的总通量.
μo称为真空中的磁导率:
理论上可以认为是孤立电流元I1dl1对另一个孤立电流 元I2dl2的安培力。对换1、2则:
可见并不满足牛顿第三定律孤立直流电源不存在。 记任何电流元产生的磁场为:
上式为任意电流元产生磁场的定义式,B(或dB)称为磁感 应强度或磁通密度,单位为T(特斯拉)或Wb/m2,三者间满足右 手螺旋定则.
p r r` dr`
在r=a处E(a)=ρ0a/3ε0,且从球内到球外两个区域的场 表示式计算到的E(a)是相同的.
2.7 磁感应强度的矢量积分公式
对于体电流J(r`)和面电流Js(r`),相应的矢量源分别 为J(r`)dσ`和JsdS`,相应的比奥-沙伐公式改为:
例2.7.1 计算长度为l直线电流I的磁场
若将微电流放在柱坐标原点,取+Z方向 则:
任何直流回路周围空间的磁场分布:
积分号可放到里面
例题2.5.1 求半径为a的微小电流元的磁场.
解:采用球面坐标,圆环面积为ds=πa2,法向单位矢量为ez, 因为磁场圆对称,显然将场点P(r,θ,π/2)置于yoz平 面不失普遍性: 投影关系: 余弦定理:
微电流源长度为:
将这些结果代入2.5.5就可得到磁场的计算公式2.5.6。
远场区r>>a,可用泰勒级数展开:

电磁场与电磁波第三版 郭辉萍 第2章习题答案

电磁场与电磁波第三版 郭辉萍 第2章习题答案

(2-1-5)
第2章 静电场分析
2. 分布电荷的电场强度
上述的分析, 我们假设电荷是集中在一个点上, 从宏观的角度讲, 电荷是连续的分布在一段线上、 一 个面上或一个体积内的, 因此, 我们先定义电荷分布。 线电荷密度(Charge Line Density): 当电荷分布 在一细线(其横向尺寸与长度的比值很小)上时, 定 义线电荷密度为单位长度上的电荷
第2章 静电场分析
第2章 静电场和恒定电场
2.1 电场强度与电位函数
2.2 真空中静电场的基本方程 2.3 电介质的极化与介质中的场方程 2.4 导体间的电容与电耦合 2.5 静电场的边界条件
2.6 恒定电场
习 题
第2章 静电场分析
2.1 电场强度与电位函数
2.1.1 库仑定律 库仑定律(Coulom's Law)是静电现象的基本实验定 律, 它表明固定在真空中相距为R的两点电荷q1与q2之间 的作用力:正比于它们的电荷量的乘积; 反比于它们之 两点电 间距离的平方;作用力的方向沿两者间的连线;
(2-1-7)
第2章 静电场分析
P(r) R
dV
V
r
r
O
图2 - 3 体电荷产生的场
第2章 静电场分析
体电荷密度(Charge Volume Density): 如果电 荷分布在一个体积空间内, 定义体电荷密度为单位体 积内的电荷
q V lim V 0 V
式中, Δq是体积元ΔV内所包含的电荷。
荷同性为斥力, 异性为吸力(如图2-1所示), 表达式为
第2章 静电场分析
q1q2 q1q2 F12 a R R 2 3 4 0 R 4 0 R
F12 q2 R

电磁场与电磁波-第四版-第二章-ppt教学文稿

电磁场与电磁波-第四版-第二章-ppt教学文稿
• 电荷是物质基本属性之一。 • 1897年英国科学家汤姆逊(J.J.Thomson)在实验中发现了电子。 • 1907-1913年间,美国科学家密立根(iken)通过油滴实验,精确测定电子电荷的量值为 e =1.602 177 33×10-19 (单位:C) 确认了电荷量的量子化概念。换句话说,e 是最小的电荷量,而任何带电粒子所带电荷都是e 的整数倍。
流过任意曲面S 的电流为
体电流密度矢量
正电荷运动的方向
2. 面电流
电荷在一个厚度可以忽略的薄层内定向运动所形成的电流称为面电流,用面电流密度矢量 来描述其分布
面电流密度矢量
0
单位:A/m。
通过薄导体层上任意有向曲线 的电流为
正电荷运动的方向
2.1.3. 电荷守恒定律(电流连续性方程)
磁通连续性原理(积分形式)
安培环路定理表明:恒定磁场是有旋场,是非保守场、电流是磁 场的旋涡源。
恒定磁场的旋度(微分形式)
2. 恒定磁场的旋度与安培环路定理
安培环路定理(积分形式)
解:分析场的分布,取安培环路如图
两边求旋度可得
可得
利用斯托克斯定理
得到环路定理
2.2.2 静电场的散度与旋度
高斯定理表明:静电场是有源场,电场线起始于正电荷,终止 于负电荷。
静电场的散度(微分形式)
1. 静电场散度与高斯定理
静电场的高斯定理(积分形式)
环路定理表明:静电场是无旋场,是保守场,电场力做功与路径 无关。
在圆环的中心点上,z = 0,磁感应强度最大,即
体电流磁场感应强度:
利用
得到
利用矢量恒等式
2.3.2 恒定磁场的散度和旋度
1. 恒定磁场的散度与磁通连续性原理

电磁场理论 答案 习题2

电磁场理论 答案 习题2

ρ SP
=
v P

evz
=
P0
在底面,外法向为 nv = −evz ,故
ρ SP
=
v P

(−evz
)
=
− P0
2-10 假设 x < 0 的区域为空气,x > 0 的区域为电介质,电介质的介电常数为 3ε 0 ,
m 如果空气中的电场强度
v E1
=
3evx
+
4evy
+
5evz
(V / m) ,求电介质中的电场强
∫∫ aw Ev(rv)
=
ρS0 4πε 0
zevz − r′ cosφ evx − r′sin φ evy r′ dφ d r′
( ) z 2 + r′2
3 2
∫ h∫ d (( ) ) Ex
=
ρS0 4πε 0
a − r′2 d r′
0
z2 + r′2
3 2

cosφ dφ = 0
0
∫ k ∫ ( ) Ey
. 电位为ϕ1 ,介质中电位为ϕ2 ,利用球坐标系的泊松方程。
w 当r
>
b 时, ∇2ϕ1
=
1 r2
d dr
⎜⎛ r 2 ⎝
d ϕ1 dr
⎟⎞ ⎠
=
0
ww当a
<
r
< b 时, ∇2ϕ2
=
1 r2
d dr
⎜⎛ r 2 ⎝
dϕ2 dr
⎟⎞ ⎠
=0
解以上方程,得 ϕ1
=
C1 r
+ C2
,ϕ2
=

电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)全套完整版

电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)全套完整版

电磁场与电磁波课后习题答案(杨儒贵)(第二版) 全套第一章 题 解1-1已知三个矢量分别为z y e e e A x 32-+=;z y e e e B x 23++=;z e e C x -=2。

试求①|| |,| |,|C B A ;②单位矢量c b a e e e , ,;③B A ⋅;④B A ⨯;⑤C B A ⨯⨯)(及B C A ⨯⨯)(;⑥B C A ⋅⨯)(及C B A ⋅⨯)(。

解 ① ()14321222222=-++=++=z y x A A A A14213222222=++=++=z y x B B B B ()5102222222=-++=++=z y x C C C C② ()z y e e e A A A e x a 3214114-+===()z y e e e B B B e x b 2314114++===()z e e C C C e x c -===2515 ③ 1623-=-+=++=⋅z z y y x x B A B A B A B A④ z y zy zyxz y xz y B B B A A A e e e e e e e e e B A x x x5117213321--=-==⨯ ⑤ ()z y z y e e e e e e C B A x x 22311125117+-=---=⨯⨯因z y zy zyxz y xC C C A A A e e e e e e e e e C A x x x x x45212321---=--==⨯ 则()z y z y e e e e e e B C A x x 1386213452+--=---=⨯⨯⑥ ()()()152131532=⨯+⨯-+⨯-=⋅⨯B C A()()()1915027=-⨯-++⨯=⋅⨯C B A 。

1-2 已知0=z 平面内的位置矢量A 与X 轴的夹角为α,位置矢量B 与X 轴的夹角为β,试证βαβαβαsin sin cos cos )cos(+=-证明 由于两矢量位于0=z 平面内,因此均为二维矢量,它们可以分别表示为ααsin cos A A y e e A x += ββsin cos B B y e e B x +=已知()βα-=⋅cos B A B A ,求得()BA B A B A βαβαβαsin sin cos cos cos +=-即βαβαβαsin sin cos cos )cos(+=-1-3 已知空间三角形的顶点坐标为)2 ,1 ,0(1-P ,)3 ,1 ,4(2-P 及)5 ,2 ,6(3P 。

谢处方《电磁场与电磁波》(第4版)课后习题-第2章 电磁场的基本规律【圣才出品】

谢处方《电磁场与电磁波》(第4版)课后习题-第2章 电磁场的基本规律【圣才出品】

2.4 简述
和▽×E=0 所表征的静电场特性。
答:
表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是
静电场的通量源。
1 / 37
圣才电子书
十万种考研考证电子书、题库视频学习平


▽×E=0 表明静电场是无旋场。
2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强 度。
答:传导电流和位移电流都可以在空间激发磁场但两者本质不同。 (1)传导电流是电荷的定向运动,而位移电流的本质是变化着的电场。 (2)传导电流只能存在于导体中,而位移电流可以存在于真空、导体、电介质中。 (3)传导电流通过导体时会产生焦耳热,而位移电流不会产生焦耳热。
2.17 写出微分形式、积分形式的麦克斯韦方程组,并简要阐述其物理意义。 答:麦克斯韦方程组: 微分形式
合线。
表明恒定磁场是有旋场,恒定电流是产生恒定磁场的旋涡源。
2.7 表述安培环路定理,并说明在什么条件下可用该定律求解给定电流分布的磁感应 强度。
答:安培环路定理:磁感应强度沿任何闭合回路的线积分,等于穿过这个环路所有电 流的代数和 μ0 倍,即
如果电流分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。
2.2 研究宏观电磁场时,常用到哪几种电荷分布模型?有哪几种电流分布模型?它们是 如何定义的?
答:常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷。 常用的电流分布模型有体电流模型,面电流模型和线电流模型。 它们是根据电荷和荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢? 答:点电荷的电场强度与距离 r 的二次方成反比。电偶极子的电场强度与距离 r 的三 次方成反比。
3 / 37

电磁场与电磁波 第二章-5 恒定电场

电磁场与电磁波  第二章-5 恒定电场

填充两种ε1、σ1,ε2、σ2的电介质材料, 介质分界面半径为 c ,内
外导体的电压为U0。试计算
(1)介质中的电场强度;
2,2
(2)分界面上的自由电荷
(3)单位长度的电容和电导。
解: (1)考察单位长度
E1r
Jr
1
I
2 r1
, E2r
Jr
2
I
2 r 2
1,1
c
U0
c
a E1rdr
b c
1 ( m)
• 欧姆定理的推导:I J d S S
JS ES
U
El
I
S
l
I
l
S
IR
SJ
l
E
U IR
J E
5
电流密度与电荷平均速度的关系:
dt时间内流过S面的电量及电流分别为:
dq Svdt I Sv J v
S vJ
vdt
6
二、 恒定电流场方程
1 电流连续性方程 2 基尔霍夫电流定律
数值为
Js
dI dl
A/m,方向为电流的方向。
通过任意曲线l 的电流
的电流为
I S JS dl
dl
JS
bupt 2012
4
3 欧姆定律
欧姆定理微分式:
导体任一点上电流密度与电场强度成正比。 J E
描述媒质的导电特性,理想导体σ为趋于无穷大。
是媒质的电导率,单位 1/欧.米 (1/ m)
xb
U
xb x
I
2 r 2
dr
I
2
( 1 ) bI
r x 2x(x b)
半球形接地器的危险区

电磁场与电磁波第二章讲义

电磁场与电磁波第二章讲义

(r )
第二章 静 电 场
当r<a时,
Er 4r2

0 0
4
3
r3
所以
Er

0r 30
(r )
第二章 静 电 场
例 2 - 3 已知半径为a的球内、 外的电场强度为
E

er E0
a2 r2
(r a)
E

er E0 5

r 2a

3
r3 2a3

(r a)
们的连线, 同号电荷之间是斥力, 异号电荷之间是引力。点电
荷q′受到q的作用力为F′,且F′=-F,可见两点电荷之间的作用力 符合牛顿第三定律。
第二章 静 电 场
库仑定律只能直接用于点电荷。所谓点电荷,是指当带电体 的尺度远小于它们之间的距离时,将其电荷集中于一点的理想化 模型。 对于实际的带电体, 一般应该看成是分布在一定的区域 内,称其为分布电荷。用电荷密度来定量描述电荷的空间分布情 况。电荷体密度的含义是,在电荷分布区域内,取体积元ΔV, 若其中的电量为Δq,则电荷体密度为
(r)

P(r' )V '
4 0

r r' r r' 3
整个极化介质产生的电位是上式的积分:
(r) 1
4 0
V
P(r' ) (r r r' 3
4 0R2
R

q' q
4 0
R R3
式中:R=r-r′表示从r′到r的矢量;R是r′到r的距离;R°是R的单
位矢量;ε0是表征真空电性质的物理量,称为真空的介电常数,
其值为

电磁场与电磁波 第2章静电场

电磁场与电磁波 第2章静电场
如果电场由点电荷q单独产生
如果是一个闭合路径,则W=0 电场强度的环路线积分恒为零,即
应用斯托克斯定理
因此,静电场的电场强度 可以用一个标量函数 的梯度来表示,即定义
单位正实验电荷在电场中移动电场力做功
两点间的电位差定义为两点间的电压U,即
单位:V
电位函数不唯一确定,取
故可选空间某点Q作为电位参考点,空间任一点P的电位为 通常选取无限远作为电位参考点,则任一P点的电位为
在交界面上不存在 时,E、D满足折射定律。
D 1 n D 2 n 1 E 1 c1 o 2 E s 2 c2 os
E 1 t E 2 t E 1 si1 n E 2 si2n
图2.3.3 分界面上E线的折射
t电位函数 表示分界面上的衔接条件
Ax Ay Az
对应静电场的基本方程 E 0 ,矢量 A 可以表示一个静电场。
能否根据矢量场的散度来判断该矢量场是否是静电场?
2.3.2 分界面上的边界条件
1、 电位移矢量D的衔接条件 以分界面上点P作为观察点,作一
小扁圆柱高斯面( L 0)。
图2.3.1 在电介质分界面上应用高斯定律
根据 DdSq
V ' P d ' V S 'P e n d ' S 0
• 在均匀极化的电介质内,极化电荷体密度 p 0。
• 有电介质存在的场域中,任一点的电位及电场强度表示为
(r) 4 1 0 V '( r f r 'p )d' V S '( r f r 'p )d' S E (r ) 4 1 0 V '( f r p r )'3 r( r ')d' V S '( f r p r ) '3 r( r ')d' S

电磁场与电磁波第二章课后答案

电磁场与电磁波第二章课后答案

第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。

利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。

通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。

至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。

讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。

介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。

关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。

介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。

至于电容和部分电容一节可以从简。

重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。

对于两种各向同性的线性介质,则2211εεttD D =2,s n n D D ρ=-12。

在两种介质形成的边界上,则n n D D 21=对于两种各向同性的线性介质,则n n E E 2211εε=3,介质与导体的边界条件:0=⨯E e n ; S n D e ρ=⋅若导体周围是各向同性的线性介质,则ερS n E =;ερϕS n -=∂∂静电场的能量:孤立带电体的能量:Q C Q W e 21212Φ== 离散带电体的能量:∑==ni i i e Q W 121Φ分布电荷的能量:l S V W l l S S Ve d 21d 21d 21ρϕρϕρϕ⎰⎰⎰===静电场的能量密度:E D ⋅=21e w 对于各向同性的线性介质,则2 21E w e ε=电场力:库仑定律:rrq q e F 2 4πε'=常电荷系统:常数=-=q e lW F d d常电位系统:常数==ϕlW F e d d题 解2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,系统处于平衡状态,试求q '的大小及位置。

电磁场与电磁波第二章课后答案解析

电磁场与电磁波第二章课后答案解析

第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。

利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。

通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。

至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。

讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。

介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。

关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。

介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。

至于电容和部分电容一节可以从简。

重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式: 0ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=;⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式: ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。

对于两种各向同性的线性介质,则2211εεttD D =2,s n n D D ρ=-12。

在两种介质形成的边界上,则n n D D 21=对于两种各向同性的线性介质,则n n E E 2211εε=3,介质与导体的边界条件:0=⨯E e n ; S n D e ρ=⋅若导体周围是各向同性的线性介质,则ερS n E =;ερϕS n -=∂∂静电场的能量:孤立带电体的能量:Q C Q W e 21212Φ== 离散带电体的能量:∑==ni i i e Q W 121Φ分布电荷的能量:l S V W l l S S Ve d 21d 21d 21ρϕρϕρϕ⎰⎰⎰===静电场的能量密度:E D ⋅=21e w 对于各向同性的线性介质,则2 21E w e ε=电场力:库仑定律:rrq q e F 2 4πε'=常电荷系统:常数=-=q e lW F d d常电位系统:常数==ϕlW F e d d题 解2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷位于q 1及q 2的连线上时,系统处于平衡状态,试求的大小及位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dr rd
Er
E
p q4dc0 o r 2s4p0 e rr2
p表示电偶极矩,方向由负电荷指向正电荷。
将 E 和 E r代入上式, 解得E线方程为
r D sin
E p 4 q 0r 3(2co ers sie n )
图1.2.3 电偶极子的等位线和电力线
电力线与等位线(面)的性质: • E线不能相交; • E线起始于正电荷,终止于负电荷; • E线愈密处,场强愈大; • E线与等位线(面)正交;
静电场基本物理量——电场强度
定义:
lim E (x,y,z)
F(x,y,z)
qt 0
qt
V/m
(N/C)
电场强度(Electric Field Intensity ) E 表示单位正电荷在电场中所受到 的力(F ), 它是空间坐标的矢量函数, 定义式给出了E 的大小、方向与单位。 a) 点电荷产生的电场强度
c) 连续分布电荷产生的电场强度
dE (r)410rrrr''3d(qr' )
体电荷分布 dq(r' )dV '
图2.1.2 体电荷的电场
面电荷分布
dq(r')d's
1 (r' )d's
E(r)40 s' R2 eR
E(r)410 V' rrrr''3dq 410 v' (rR'2)d'veR
2.2.2 静电场中的电介质
无极性分子
电介质的极化
有极性分子பைடு நூலகம்
• 电介质在外电场E作用下发生极化,形成有向排列的电偶极矩; • 电介质内部和表面产生极化电荷; • 极化电荷与自由电荷都是产生电场的源。
用极化强度P表示电介质的极化程度,即
P
lim
第二章 静电场
本章主要讲解电磁场理论基本理论和基本规律。 主要内容包括:
电场强度与电位 高斯定理 静电场基本方程与分界面上的边界条件 电磁场的边值问题与唯一性定理
分离变量法 有限差分法 镜像法和电轴法
电容和部分电容 静电能量与静电力
2.1 电场强度与电位
2.1.1 电场强度
库仑定律是静电现象的基本实验定律。大量试验表明: 真空中两个静止
r 1 (r2 d 4 2 rc do )2 1 , s r 2 (r2 d 4 2 rc do )2 1s
图1.2.2 电偶极子
用二项式展开,又有 rd,得
等位线方程(球坐标系):
p cos 40r 2
C, r C'
cos
r1
r
d 2
co
s
代入上式,得
r2
r
d 2
co
s
电力线微分方程(球坐标系):
图1.2.4 点电荷与接地导体的电场 图1.2.5 点电荷与不接地导体的电场
图1.2.6 均匀场中放进了介质球的电场
图1.2.7 均匀场中放进了导体球的电场
图1.2.8 点电荷位于一块介质上方的电场
图1.2.9 点电荷位于一块导平面上方的电场
2.2.1 静电场中的导体
2.2 高斯定理
(1)导体内部任何一点处的电场强度为零; (2)导体表面处电场强度的方向,都与导体表面垂直; (3)导体为等位体,导体表面为等位面; (4)电荷只能分布在导体表面上。
如果是一个闭合路径,则W=0 电场强度的环路线积分恒为零,即
应用斯托克斯定理
因此,静电场的电场强度 可以用一个标量函数 的梯度来表示,即定义
单位正实验电荷在电场中移动电场力做功
两点间的电位差定义为两点间的电压U,即
单位:V
电位函数不唯一确定,取
故可选空间某点Q作为电位参考点,空间任一点P的电位为 通常选取无限远作为电位参考点,则任一P点的电位为
2.1.4 叠加积分法计算电位
为点电荷,
为体积电荷分布,
为面电荷分布,
注意:选取电位参考点时不能使积分发散。
为线电荷分布
2.1.5 电力线和等位面(线)
• E 线:曲线上每一点切线方向应与该点电场强度E的方向一致,若 E 矢量将与 方向一致,
是电力线的长度元,
故电力线微分方程
E dl 0
在直角坐标系中:
Ex Ey dx dy
Ez dz
微分方程的解即为电力线
E 的方程。
• 在静电场中电位相等的点的曲面称为等位面,即 等位线(面)方程:
(x,y,z)C
当取不同的 C 值时,可得到不同的等位线(面)。
例2.1.6 画出电偶极子的等位线和电力线(r d) 。
在球坐标系中:
r1 r2
p4q0(r 1 1r1 2)4q0r2 r1 r2 r1
线电荷分布 dq(r')d'l
E(r)410 l'
(r' )d'l
R2 eR
例:求真空中半径为a,带电量为Q的导体球在球外空间中产生E。
由球体的对称性分析可知:
z
❖电场方向沿半径方向:
P (r,0,0)
❖电场大小只与场点距离球心的距离相关。
r R
解:在球面上取面元ds,该面元在P点处
产生的电场径向分量为:
Ep(r)qFt 4q0r2er
V/m
Ep(r)q Ft 40q rr'2rr rr''
q(
4
r
0
r' ) r r' 3
源点与场点坐标的矢量表示
q
4 0R2
eR
V/m
2.1.2 叠加积分法计算电场强度
b) n个点电荷产生的电场强度 (注意:矢量叠加)
E (r) 4 1 0k N 1r q r k k '2r r r r k k '' 4 1 0k N 1R q k k 2 e k

s a2 2 0
0
r a cos R3
sin d
……
Q 4 0r 2
结果分析
导体球上电荷均匀分布在导体表面,其在球外空间中产生的 电场分布与位于球心的相同电量点电荷产生的电场等效。
2.1.3 电位
将一个单位正实验室点电荷在静电场中沿某一路径L从A点移动到B点,电场力做的功
如果电场由点电荷q单独产生
dEr
s ds 40
1 R2
cos
式中:dsadasind s
Q
4 a 2
ds y
x
cosracos
R
Ra2sin2(racos)2
dE r4 s0ra R c 3 osa2sindd
E r s d E r
s a 2
2
d
r a cos sin d
4 0 0
0
R3
的点电荷 q 1 与 q 2 之间的相互作用力:
F21
q1q2
4 0
e12 R2
F12
q1q2
4 0
e21 R2
N( 牛顿) N( 牛顿)
F21F12
适用条件
• 两个可视为点电荷的带电体之间相互作用力;
• 无限大真空情况 (式中 0 1306 9 8.851012 F/m)
可推广到无限大各向同性均匀介质中
相关文档
最新文档