图像压缩综述
图像压缩方法综述
* 2006-06-09收到,2006-10-10改回**安晓东,女,1967年生,北京理工大学博士研究生,研究方向:计算机应用。
文章编号:1003-5850(2006)12-0024-03图 像 压 缩 方 法 综 述A Summarization of Image Compression Methodology安晓东1,2 陈 静3(1北京理工大学 北京 100081) (2山西省人事考试中心 太原 030006) (3中北大学 太原 030051)【摘 要】图像压缩是图像处理的重要组成部分,随着科学技术的不断进步,压缩方法也在不断涌现。
论述了各个常用图像压缩方法的算法及应用情况,着重研究了预测编码和分形压缩方法。
有机结合所介绍的压缩算法能解决很多图像处理问题,介绍的图像压缩方法也可供研究人员参考。
【关键词】图像压缩,预测编码,分形压缩中图分类号:T P 391.41文献标识码:AABSTRACT Image co mpr ession is t he impor tant part of im age pr ocessing.Wit h the dev elo pm ent of science and technolog y,mor e and mo re compr essing m et hods have come for th .T his paper discusses many com mon imag e compr ession alg or ithms and it's a pplica-tio n,fo cuses o n the pr edictive enco ding and fr act al co mpressio n methods.It can so lv e lots of image pr o cessing pro blems by these methods,w hich may g iv e a hand to other resear cher s.KEYWORDS imag e co mpression ,pr edictiv e co ding ,fr actal compressio n 众所周知,在开发多媒体应用系统时,遇到的最大障碍是对多媒体信息巨大数据量所进行的采集、存储、处理和传输。
图像压缩原理
图像压缩原理
图像压缩原理是通过减少图像数据的存储量来实现的。
具体来说,图像压缩原理涉及到以下几个方面。
1. 去除冗余信息:图像中通常存在大量冗余信息,例如连续相同颜色的像素或者相似颜色的像素。
通过将这些冗余信息进行去除或者压缩,可以达到减少图像存储量的目的。
2. 空间域压缩:在空间域压缩中,通过减少像素的数量或者减少像素的位数来减少图像文件的大小。
一种常见的空间域压缩算法是基于四色彩色的量化压缩方法,通过降低每个像素颜色的位数来减少存储空间。
3. 频域压缩:频域压缩是将图像从空间域转换为频域,利用图像在频域中的特性来进行压缩。
其中一种常见的频域压缩方法是基于离散余弦变换(DCT)的压缩方法,它将图像转换为频域信号,并利用频域信号中较小的系数来表示图像。
4. 熵编码:熵编码是一种无损压缩方法,通过对图像数据进行统计分析,利用出现频率较高的数据用较短的码字表示,从而减少图像文件的存储大小。
综上所述,图像压缩通过去除冗余信息、空间域压缩、频域压缩和熵编码等方法来减少图像数据的存储量。
这些方法可以单独应用,也可以结合使用,以达到更好的压缩效果。
图像压缩文献综述
《数字图像处理和模式识别》期末大作业题目:图像压缩文献综述班级:数字媒体学院计算机技术姓名:徐德荣学号:6141603020图像压缩文献综述1 图像压缩编码概述图像信息的压缩编码,是根据图像信号固有的统计特性和人类的视觉特性进行的。
图像信号固有的统计特性表明,其相邻像素之间、相邻行之间或者相邻帧之间,都存在较强的相关特性。
利用某种编码方法在一定程度上消除这些相关特性,便可实现图像信息的数据压缩。
这个过程也就是尽量去除与图像质量无关的冗余信息,属于信息保持(保持有效信息)的压缩编码。
另一种考虑是,图像最终是由人眼或经过观测仪器来观看或判决的。
根据视觉的生理学、心理学特性,可以允许图像经过压缩编码后所得的复原图像有一定的图像失真,只要这种失真是一般观众难以察觉的。
这种压缩编码属于信息非保持编码,因为它使图像信息有一定程度的丢失。
由此可见,图像压缩编码的研究重点是:怎样利用图像固有的统计特性,以及视觉的生理学、心理学特性,或者记录设备和显示设备等的特性,经过压缩编码从原始图像信息中提取有效信息,尽量去除那些无关的冗余信息,并且在保证质量(能从这些数据中恢复出与原图像差不多的图像)的前提下,用最低的数码率或最少的存储容量,实现各类图像的数字存储、数字记录或数字传输。
2 图像编码研究现状图像压缩编码技术可以追溯到1948年提出的电视信号数字化,到今天己经有五十多年的历史。
五十年代和六十年代的图像压缩技术由于受到电路技术等的制约,仅仅停留在预测编码、亚采样以及内插复原等技术的研究,还很不成熟。
1969年在美国召开的第一届“图像编码会议”标志着图像编码作为一门独立的学科诞生了。
到了70年代和80年代,图像压缩技术的主要成果体现在变换编码技术上;矢量量化编码技术也有较大发展,有关于图像编码技术的科技成果和科技论文与日俱增,图像编码技术开始走向繁荣。
自80年代后期以后,由于小波变换理论,分形理论,人工神经网络理论,视觉仿真理论的建立,人们开始突破传统的信源编码理论,例如不再假设图像是平稳的随机场。
图像处理技术综述
图像处理技术综述图像处理技术是应用于计算机视觉、计算机图形学、人工智能等领域的一种技术,用于改善或增强图像的质量、可视性、信息含量或拟合特定需求。
在当今信息技术快速发展的时代,图像处理技术已被越来越广泛地应用于医学、军事、安全监控、遥感、交通、广告等领域。
一、图像处理的基本流程1、获取图像首先需要获得图像,其方式很多。
例如,用专业摄像机或手机或扫描仪捕获图像。
另外,从互联网或其他共享资源中获取的图像也可以作为处理对象。
2、预处理图像在采集到图像数据后,需要对图像进行预处理。
这主要是为了去除噪声和畸变,以便更好地处理图像数据。
一些常见的操作包括滤波、均衡化、归一化和旋转等。
3、分割图像将图像分成若干个区域,通过分析这些区域来获取有用的信息。
分割可以基于颜色、亮度、纹理、图像特征、形状等进行。
4、提取特征提取图像中的特征是使用智能算法和其他技术来描述图像中重要的信息。
这些特征可以是纹理、边缘、角点或其他模式,并且可以用来判断图片是否满足特定要求。
5、抽取结构信息对于一些需要对图像进行量化和分析的应用,可以从图像中提取出具有代表性的结构信息。
应用某些算法,通过获取的特征和结构信息来分析图像。
根据分析的结果,可以识别物体、建立模型、人机交互等等。
图像滤波是一种常用的基本方法,它主要用于去除图像中的噪声。
常见的滤波方法有平均滤波、高斯滤波、中值滤波等。
图像增强技术是指通过算法将低质量的图像improved以获得更高质量的图像,例如提高对比度、清晰度、亮度等。
图像压缩是将数字图像压缩到尽可能小的空间,使其更容易存储和传输。
最常用的压缩方式是JPEG和PNG。
图像分割是将图像分割成不同的部分,每个部分对应相应的特征,这些部分组成面向目标识别和跟踪的区域。
常用而有效的算法包括K均值聚类、分水岭算法等。
特征提取是将图像中的信息抽象化作为特定可识别模式。
从图像中提取特征通常需要使用泛函分析和模式识别技术。
6、目标识别目标识别即在图像中找到和辨识特定目标,它应用于许多领域,例如医疗图像识别、移动机器人、军事目标等重要领域。
图像压缩算法范文
图像压缩算法范文
1.概述
图像压缩是一种数字处理技术,用于减少图像文件的大小,同时保留
其本身的内容和质量。
它通常用于将高分辨率的彩色图像转换成较小文件
以使其在网络上传输或存储更加方便和高效,同时可以减少存储空间开销。
2.图像压缩算法
2.1无损压缩算法
无损压缩算法是一种无损地压缩图像的算法,它可以在压缩前后保持
原始图像的质量。
无损压缩算法主要有 JPEG2000,JPEG-LS 和 Lossless JPEG等,它们都是基于数据变换(如DCT,DWT)和熵编码(如Huffman
编码,Arithmetic编码)的算法。
JPEG2000是最流行的无损压缩算法之一,它采用像素块编码,并通
过DCT和WVT数据变换,实现较好的无损压缩效果,使得图像文件大小可
以大大减小,但是压缩所需要的时间较长,耗费资源。
JPEG-LS是一种非常有效的无损压缩算法,它采用了图像划分,非线
性差分滤波和补偿等技术,使得图像文件大小得到显著的减小,同时可以
保持其原有质量,并且压缩所耗费的时间较短,是一种性价比比较高的图
像压缩算法。
Lossless JPEG 则采取了更多的适应性编码技术,将原图像的熵编码
进行改进。
图像处理中的图像压缩技术研究
图像处理中的图像压缩技术研究图像压缩是图像处理领域的一个重要分支,它是在不引起图像质量下降的情况下,通过改变图像的编码方式,使图像数据被压缩为更小的体积。
图像压缩技术的研究,不仅可以帮助人们轻松地存储和传输大量的图像数据,还可以帮助人们更快地获取所需要的图像信息,因此成为了图像处理研究的重要方向。
一、图像压缩的基本原理在图像处理领域,图像数据是由像素构成的,每个像素都包含了图像的一部分信息,同时也会占用一定的储存空间。
因此,图像压缩技术主要就是通过改变图像数据的编码方式,压缩图像数据的同时保证图像质量不下降。
图像压缩主要分为两个阶段:编码和解码。
编码过程会将原始图像数据转换为一系列的编码序列,这些编码序列为解码过程提供了必要的信息,以便还原原始图像。
解码过程则是利用编码序列进行解码,恢复出原始图像。
通俗来讲,图像压缩的过程就像是把一张图案按某个规律缩小后保存,需要时再按照规律扩大回来。
二、图像压缩的分类1.无损压缩无损压缩技术是指在压缩过程中不会丢失原始图像的任何信息,压缩后可以完全还原原始图像。
无损压缩技术的优点在于压缩后的图像质量不会改变,但缺点是压缩比较低,通常只能压缩5%~50%左右的图像数据。
无损压缩应用广泛,如在数字图像信号传输、医学图像存储、压缩文件等领域中广泛使用。
2.有损压缩有损压缩技术是指在压缩过程中会有部分原始信息被丢失,压缩后不同程度地降低了原始图像的质量。
有损压缩减少了文件的大小,但缺点是会发生一定程度的失真,特别是在高压缩率下很容易丢失大量的信息。
其中最常用的有损压缩方式有JPEG压缩、MPEG压缩等。
三、图像压缩技术的应用在现实生活中,图像压缩技术被广泛应用于各种领域中,如网络传输、媒体存储、数字化摄像、计算机图像处理等。
这些应用为图像压缩技术的研究提供了较为广泛的应用场景和实验平台,同时也促进了图像压缩技术的不断发展。
四、图像压缩技术的未来发展趋势近些年来,随着互联网技术的快速发展和应用,数字图像的传输、存储和处理方面的需求也在快速增长,对图像压缩技术的研究提出了更高的要求。
图像压缩毕业论文
图像压缩毕业论文图像压缩毕业论文图像压缩作为计算机图形学中的重要研究方向,在现代社会中具有广泛的应用。
本篇毕业论文旨在探讨图像压缩的原理、方法和应用,并对其在实际应用中的优缺点进行分析和比较。
一、图像压缩的原理图像压缩是通过减少图像数据的冗余性来减小图像文件的大小,从而实现存储和传输的效率提升。
其原理主要包括两个方面:无损压缩和有损压缩。
1. 无损压缩:无损压缩是指在压缩过程中不丢失任何图像信息,即压缩后的图像与原始图像完全一致。
常见的无损压缩算法有Run Length Encoding (RLE)、Lempel-Ziv-Welch (LZW) 等。
无损压缩适用于对图像质量要求较高的场景,如医学图像、卫星图像等。
2. 有损压缩:有损压缩是指在压缩过程中会有一定的信息丢失,但在人眼感知上不明显。
有损压缩可以通过去除图像中的冗余信息、降低色彩精度等方式来实现。
常见的有损压缩算法有JPEG、GIF等。
有损压缩适用于对图像质量要求相对较低的场景,如网页图片、社交媒体图片等。
二、图像压缩的方法图像压缩的方法主要包括基于变换的压缩方法和基于预测的压缩方法。
1. 基于变换的压缩方法:基于变换的压缩方法是将图像转换到另一个表示域,通过对表示域的系数进行编码来实现压缩。
其中最常用的方法是离散余弦变换(Discrete Cosine Transform,DCT)。
DCT将图像从空间域转换到频率域,通过保留重要的低频系数,去除高频噪声,从而实现图像压缩。
2. 基于预测的压缩方法:基于预测的压缩方法是通过对图像的像素进行预测来减小冗余信息。
其中最常用的方法是差分编码(Differential Coding)和运动补偿(Motion Compensation)。
差分编码通过计算像素与其邻域像素之间的差异来进行编码,而运动补偿则是利用图像序列中的运动信息来进行编码,从而实现图像压缩。
三、图像压缩的应用图像压缩在现代社会中有着广泛的应用,涉及到许多领域。
图像压缩方法综述
图像压缩方法综述陈清早(电信科学技术研究院PT1400158)摘要:图像压缩编码技术就是对要处理的图像数据按一定的规则进行变换和组合,从而达到以尽可能少的数据流(代码)来表示尽可能多的数据信息。
由于图像数据量的庞大,在存储、传输、处理时非常困难,因此图像数据的压缩就显得非常重要。
图像压缩分为无损图像压缩和有损图像压缩或者分为变换编码、统计编码。
在这里,我们简单的介绍几种几种图像压缩编码的方法,如:DCT编码、DWT编码、哈夫曼(Huffman)编码和算术编码。
关键字:图像压缩;DCT压缩编码;DWT压缩编码;哈夫曼编码;算术编码1引言在随着计算机与数字通信技术的迅速发展,特别是网络和多媒体技术的兴起,大数据量的图像信息会给存储器的存储容量、通信信道的带宽以及计算机的处理速度增加极大的压力。
为了解决这个问题,必须进行压缩处理。
图像数据之所以能被压缩,就是因为数据中存在着冗余。
图像数据的冗余主要表现为:图像中相邻像素间的相关性引起的空间冗余;图像序列中不同帧之间存在相关性引起的时间冗余;不同彩色平面或频谱带的相关性引起的频谱冗余。
数据压缩的目的就是通过去除这些数据冗余来减少表示数据所需的比特数。
信息时代带来了“信息爆炸”,使数据量大增,无论传输或存储都需要对数据进行有效的压缩。
因此图像数据的压缩就显得非常重要。
在此,我们主要介绍变换编码的DCT编码和DWT编码和统计编码的哈夫曼(Huffman)编码和算术编码。
2变换编码变换编码是将空域中描述的图像数据经过某种正交变换转换到另一个变换域(频率域)中进行描述,变换后的结果是一批变换系数,然后对这些变换系数进行编码处理,从而达到压缩图像数据的目的。
主要的变换编码有DCT编码和DWT编码1.1DCT编码DCT编码属于正交变换编码方式,用于去除图像数据的空间冗余。
变换编码就是将图像光强矩阵(时域信号)变换到系数空间(频域信号)上进行处理的方法。
在空间上具有强相关的信号,反映在频域上是在某些特定的区域内能量常常被集中在一起,或者是系数矩阵的分布具有某些规律。
图像压缩的基本概念
4.2.1 无损压缩:基于字典的压缩 RLE 编码——Run Length Encoding 2) PCX_RLE编码原则: 6) 重复像素长度iC最大值为26-1 = 63,如果遇到iC大于63的情况,则分为小于63的几段,分别处理。 7) 如果遇到不重复的单个像素P: 如果P < 0xC0(192) 直接存入该像素值, 否则先存入长度1,再存入像素值 (192-255之间的单像素图像不减反增) 第四章 图像压缩 第二节 无损压缩
4.1.3 图像压缩基本概念:图像压缩模型
源数据编码:完成原数据的压缩。 通 道 编 码:为了抗干扰,增加一些容错、校验 位,实际上是增加冗余。 通 道:如Internet、广播、通讯、可移 动介质
源数据 编码
通道 编码
通道
通道 解码
源数据 解码
第四章 图像压缩 第二节 无损压缩
4.2.1 无损压缩:基于字典的压缩 RLE 编码——Run Length Encoding 分析: 对于有大面积色块的图像,压缩效果很好 对于纷杂的图像,压缩效果不好,最坏情况下,会加倍图像 第四章 图像压缩 第二节 无损压缩
1
2
3
6
5
4
4.2.1 无损压缩:基于字典的压缩
第四章 图像压缩 第二节 无损压缩
4.2.1 无损压缩:基于字典的压缩
LZW编码 背景:是Lemple、Ziv提出,Welch充实 基本思想:去除像素冗余。 (1) 在压缩过程中动态地形成一个字符序列表(字典) (2) (a) 每当压缩扫描图像发现一个字典中没有的字符 序列,就把该字符序列存到字典中 (b) 并用字典的地址(编码)作为这个字符序列的 代码,替换原图像中的字符序列 (c) 下次再碰到相同的字符序列,就用字典的地址 代替字符序列
图像压缩的算法及其国际标准
静态图像压缩-DWT变换
二维DWT变换:
原始图像
列变换
行变换
三层DWT分解后的结果:
静态图像压缩-DWT变换
三层DWT分解的结果:
静态图像压缩-分形方法
自相似性:无论几何尺度怎样变化,物体 任何组成部分的形状都以某种方式与整体 相似。 关键在于引入了局部与全部相关去冗余的 思想。 压缩效率与物体本身性质有关。
有 损 压 缩
分形编码(Fractal) 矢量量化(Vector Quantization) 人工神经网络方法(ANN)
静态图像压缩-变换编码
K-L变换
变 换 编 码
离散余弦变换(DCT)
Gabor变换 小波变换(DWT)
静态图像压缩-K-L变换
K-L变换是最佳变换,将原始信号中相关 性很强的空域变换到相关性彻底去除 的变换域; 无快速算法而难以实现。
动态图像编码(Video Coding)
静态图像压缩
静 态 图 像 压 缩 无损压缩(Lossless Compression)
有损压缩(Lossy Compression)
静态图像压缩-无损压缩
差分脉冲调制方法(DPCM)
去除相关 无 损 压 缩 统计编码
分层内插法(HINT) 差分金字塔方法(DP) 多重自回归方法(MAR)
H.261: 第一个高效视频编码标准算法。图像编码的其他 几个国际标准(如JPEG、MPEG、CCIR723等)都是由它 演变而来的。 1984年12月,CCITT第15研究组成立了“可视电话编码专 家组”,并在1988年提出了视频编码器的H.261建议。它 的目标是P×64K(P=1~30)码率的视频编码标准,以 满足ISDN日益发展的需要。主要应用对象是视频会议的 图像传输。它的视频压缩算法必须能够实时操作,解码 延迟要短,当P=1或2时,只支持帧速率较小的可视电话, 当P>=6时,则可支持电视会议。 H.261建议的原理结构的要点是:采用运动补偿进行帧间 预测,以利用图像在时域的相关性;对帧间预测误差以 8×8或者16×16为宏块,进行DCT变换,以利用图像在 空域上的相关性;接着对DCT变换系数设置自适应量化 器,以利用人们的视觉特性;再采用Huffman熵编码,获 得压缩码流。
评价一种图像的压缩方法
评价一种图像的压缩方法
图像压缩是一种将图像文件大小降低的处理方法,以下对图像压缩方法进行评价:
1. 有损压缩:有损压缩通过牺牲图像的一定质量来达到较高的压缩比。
虽然会导致图像细节损失和图像质量下降,但在某些情况下,这种压缩方法能够以较小的文件大小保留足够的信息。
2. 无损压缩:无损压缩是指在压缩图像的同时不损失任何信息。
压缩比较低,但是可以完整还原原始图像,因此适用于需要保持图像质量的场景,如专业摄影、医学影像等。
3. JPEG压缩:JPEG是最常用的有损压缩方法之一,广泛应用于摄影、网页、社交媒体等领域。
通过量化和离散余弦变换,能够达到高压缩比。
但压缩过程中会引入一些失真,特别是在高压缩比下。
4. PNG压缩:PNG是一种无损压缩方法,适用于需要保留图像质量的场景。
相对于JPEG,PNG在压缩结果中不会引入失真,但压缩比较低。
5. HEIC压缩:HEIC是一种新的图像压缩格式,利用高效率图像编码(HEVC)算法进行压缩。
相比JPEG,HEIC能够在相同压缩比下保留更多的细节和图像质量,但兼容性仍存在一定问题。
综上所述,选择适合场景的压缩方法非常重要。
如果需要高压缩比,可以选择JPEG压缩;如果需要保持图像质量,可以选择无损压缩如PNG;对于大型图像、专业摄影等需要高保真的领域,可以尝试HEIC压缩方法。
图像无损压缩算法研究
图像无损压缩算法研究第一章:引言图像压缩技术的发展使得图像在存储和传输方面更加高效。
无损压缩算法通过减少图像文件的大小,同时保持图像质量不受影响,从而实现对图像的高效压缩。
无损压缩算法广泛应用于数字图像处理、电视广播、远程监控、医学图像存储和互联网传输等领域。
本文旨在探讨图像无损压缩算法的研究现状和发展趋势。
第二章:图像无损压缩算法综述本章首先介绍图像压缩的基本原理和目标,然后综述了当前常用的图像无损压缩算法。
其中包括哈夫曼编码、算术编码、预测编码、差分编码和自适应编码等。
对每种算法的原理、优点和缺点进行了详细的分析和比较。
第三章:小波变换与图像无损压缩算法小波变换是一种重要的数学工具,在图像无损压缩算法中得到了广泛的应用。
本章介绍了小波变换的基本概念和原理,并详细介绍了小波变换在图像压缩中的应用。
重点讨论了小波系数的编码方法和解码方法,以及小波变换在图像无损压缩中的优化算法。
第四章:自适应编码在图像无损压缩中的应用自适应编码是一种基于概率统计的编码方法,具有较好的压缩效果和灵活性。
本章介绍了自适应编码的基本原理和常见的算法,如算术编码、自适应霍夫曼编码和自适应等长编码等。
特别说明了自适应编码在图像无损压缩中的应用,包括颜色映射编码、熵编码和像素值编码等。
第五章:基于预测的图像无损压缩算法预测编码是一种基于差值的编码方法,通过对图像中的像素进行预测,将预测误差进行编码,从而实现图像的高效压缩。
本章介绍了常见的预测编码算法,如差分编码和预测误差编码等。
详细讨论了这些算法的原理、优点和局限性,并提出了一些改进方法和思路。
第六章:图像无损压缩算法的性能评估和比较本章分析了图像无损压缩算法的性能评估指标和方法,并对常见的图像无损压缩算法进行了性能比较。
主要包括压缩比、失真度和计算复杂度等方面的评估标准。
通过对比实验和分析,得出了各种算法在不同场景下的适用性和优劣势。
第七章:图像无损压缩算法的发展趋势本章展望了图像无损压缩算法的发展趋势,并提出了一些可能的研究方向。
图像压缩技术的综述
题目:图像压缩技术的综述学生:徐欢学号:070110117系别:电脑与信息学院专业:电脑科学与技术入学年份:2010年9月导师:陈蕴谷职称/学位:讲师/硕士研究生导师所在单位:中国科学院合肥物质研究院完成时间:2014年4月1.引言随着多媒体技术和通讯技术的不断发展,多媒体娱乐、信息高速公路等不断对信息数据的存储和传输提出了更高的要求,也给现有的有限带宽以严峻的考验,特别是具有庞大数据量的数字图像通信,更难以传输和存储,极大地制约了图像通信的发展,因此图像压缩技术受到了越来越多的关注。
图像压缩的目的就是把原来较大的图像用尽量少的字节表示和传输,并且要求复原图像有较好的质量。
利用图像压缩,可以减轻图像存储和传输的负担,使图像在网络上实现快速传输和实时处理。
图像数据是用来表示图像信息的,如果不同的方法为表示相同的信息使用了不同的数据量,那么使用较多数据量的方法中,有些数据必然代表了无用的信息,或者是重复的表示了其他数据表示的信息,前者成为数据冗余,后者成为不相干信息。
图像压缩编码的主要目的,就是通过删除冗余的或者是不相干的信息,以尽可能地的数码率来存储和传输数字图像数据。
图像压缩编码技术可以追溯到1948年提出的电视信号数字化,到今天已经有50多年的历史了。
在此期间出现了很多种图像压缩编码方法,特别是到了80年代后期以后,由于小波变换理论,分形理论,人工神经网络理论,视觉仿真理论的建立,图像压缩技术得到了前所未有的发展,其中分形图像压缩和小波图像压缩是当前研究的热点。
本文对当前最为广泛使用的图像压缩算法进行综述,讨论了它们的优缺点以及发展前景。
图像编码基础图像编码压缩是指在满足一定图像质量的条件下,用尽可能少的数据量来表示图像。
编码技术比较系统的研究始于Shannon信息论,从此理论出发可以得到数据压缩的两种基本途径。
一种是联合信源的冗余度也寓于信源间的相关性之中,去除他们之间的相关性,使之成为或基本成为不相干信源,如预测编码,变换域编码,混合编码等,但也都受信息熵的约束。
图像数据压缩综述
图像无损数据压缩研究综述摘要:数据压缩能够通过重组数据以满足空间要求,并可以使得恢复出来的数据能够和原数据一致。
图像的无损数据压缩通过对图像数据的重新编码,以获得没有信息丢失的一定压缩比的图像;无损压缩技术根据实现原理通常又分为基于统计的压缩技术及基于字典的压缩技术两种;本文讨论了图像无损压缩的发展和现状,并指出整数小波变换(IWT)的图像压缩编码算法已成为图像无损压缩研究领域的一个主要方向,随着图像压缩编码技术在高清晰度电视(HDTV)、商业电子化等方面的广泛应用,图像无损压缩已成为一个非常重要的研究问题。
Abstract: Data compression reorganizes the data to meet the space requirements, and make the recovered data consistent with raw data. Image lossless compression recodes the image data to produce a compression ratio of image, whose information is lossless; According to the principle ,lossless compression technology usually classifies based on statistical compression technology and compression technology based on dictionary1.介绍数据压缩是指在一定的数据存储空间要求下,将相对庞大的原始数据,重组为满足前述空间要求的数据集合,使得从该数据集合中恢复出来的信息能够与原始数据相一致,或者能够获得与原始数据一样的使用品质[1]。
数据压缩减少了数据存储所需要的空间,从而间接了减少了处理数据所需要的时间及资源耗费。
图像压缩 毕业论文
图像压缩毕业论文图像压缩毕业论文引言:图像压缩是一项重要的技术,它在数字图像处理中起着至关重要的作用。
随着互联网的普及和数字图像的广泛应用,图像压缩成为了必不可少的环节。
本篇论文将探讨图像压缩的原理、方法以及应用,并对图像压缩技术的未来发展进行展望。
一、图像压缩的原理图像压缩的原理是通过减少图像数据的冗余性来实现的。
图像数据中存在着很多冗余信息,如空间冗余、频域冗余和视觉冗余等。
通过对这些冗余信息的处理,可以实现对图像的压缩。
1. 空间冗余在图像中,相邻像素之间往往存在着很强的相关性。
通过利用这种相关性,可以采用像素间差值编码、预测编码等方法来减少冗余信息,从而实现对图像的压缩。
2. 频域冗余图像在频域上存在着一定的冗余性。
通过对图像进行傅里叶变换,可以将其转换到频域中,然后利用频域的特性对图像进行压缩。
常用的方法有离散余弦变换(DCT)和小波变换等。
3. 视觉冗余人眼对图像的感知是有限的,对于一些细节信息的损失往往并不敏感。
通过利用人眼对图像的感知特性,可以对图像进行适当的压缩,从而减少冗余信息。
二、图像压缩的方法图像压缩的方法主要分为有损压缩和无损压缩两种。
1. 有损压缩有损压缩是指在压缩过程中对图像进行一定程度的信息丢失。
这种方法可以在一定程度上减小图像的数据量,从而实现对图像的高效压缩。
常用的有损压缩方法有JPEG、MPEG等。
2. 无损压缩无损压缩是指在压缩过程中不对图像的信息进行任何丢失。
这种方法可以保持图像的完整性,但相应地,压缩率较低。
常用的无损压缩方法有GIF、PNG等。
三、图像压缩的应用图像压缩技术广泛应用于各个领域,如图像传输、存储和显示等。
1. 图像传输在网络传输中,图像压缩可以减小图像的数据量,从而提高传输效率。
特别是在移动通信领域,图像压缩技术可以减少数据流量,提高用户体验。
2. 图像存储随着数码相机的普及,人们对图像存储的需求也越来越大。
图像压缩技术可以将大容量的图像数据压缩成较小的文件,从而节省存储空间。
图像压缩综述
图像压缩综述摘要:随着信息时代的不断发展,数字图像处理技术得到了广泛的应用,而作为数字图像处理技术的重要组成部分——数字图像压缩,也得到了迅猛的发展。
本文从数字图像压缩的概念、发展历史、图像压缩的必要性和可能性、图像压缩标准、图像压缩基本方法和图像压缩效果评价等方面进行了综述。
引言在当前这个信息化社会中,新信息技术革命使人类被日益增多的多媒体信息所包围。
多媒体信息主要是由图像、文本和声音三大元素组成。
图像作为其主要元素之一,发挥着越来越重要的作用。
而传输和存储图像需要占用大量的数据空间,这严重影响了传输速率和实时处理量,极大地制约了图像通信的发展。
其中,数据量最大的是数字视频数据。
未经处理的数字视频信息需要消耗巨大的存储资源,以主流高清视频为例,在分辨率为1280×720,帧率为30帧每秒的视频应用中,存储一分钟的视频信息,需要约18.5G(以常4:2:0视频,每像素12比特)比特存储空间,一部120分钟高清电影约需要2225G比特的存储空间。
可见未经处理的视频信息量非常大,为了满足存储和传输需求,视频信息的压缩是十分必要的。
在同等的通信容量下,如果图像数据可以压缩之后再传输,就可以使传输的数据量变得很小,也就能够增加通信能力。
因此图像压缩编码技术受到了越来越多的关注及广泛的应用。
如数码相机、USB摄像头、可视电话、视频点播、视频会议系统、数字监控系统等等,都使用到了图像或视频的压缩技术。
数字图像压缩是以尽可能少的比特数代表图像或图像中所包含的信息量的技术,图像通过压缩处理去掉其中的数据冗余、符号冗余、视觉冗余等各种冗余信息,提高传输速率,节省存储空间。
1图像压缩的发展历史自1948年提出的电视信号数字化设想后, 即开始了图像压缩的研究,到现在已有60多年的历史。
20世纪五六十年代的图像压缩编码主要集中在预测编码、哈夫曼编码等技术的研究,还不成熟。
1969年在美国召开的第一届“图像编码会议”,标志着图像编码作为一门独立学科的诞生。
基于小波变换的遥感图像压缩算法综述
2小波变换的介绍
小 波 变换 最早 是 由法 国地 球 物 理 学 家 Mo lt 8 年 代 提 出 , r 于 0 e 用于 分 析 地 球物 理 信 号 分 析 的 一 种 分 析 工 具 。 经过 科 学 家 、 工 程 师 、数 学 家 们 的 共 同努 力 , 多 门 学 在 科 和 多种 领 域 得 到 成 功 应 用 。 尤 其 在信 号 处理 、 图像 压缩 、语 音分 析 、模式 识 别、量 子 物理 、数 字 通 信 以 及 众 多 的非 线 性 学 科 领 域广 泛 应 用 。小 波 变 换 主 要 是 要 整 理 出 高 频 分 量 和 低 频 分 量 , 频 分 量 含 有 的 能 低 量 高 , 含 图像 的 整 体轮 廓 , 高频 分 量 还 包 而 有 的能 量 较 低 , 要 显示 图 像 细节 的地 方 , 主 因 此 小 波变 换 的 主 要 思 想 就 是 尽 可 能 保 留 低 频分 量 而 去 除 高 频 分 量 以 达 到 压 缩 的 效 果 。 原 则 上 小 波 变 换 可 以 无 限 的 进 行 下 去 , 是 图像 效 果 会 越 来越 模 糊 。 小 波 变 但 换具 有 图像 恢 复 质量 好 、压 缩 率 较 高 、速
供 最 大 容 错 能 力 , 制错 误 扩 散 。 根 据 上 限 述 要 求 , C DS已经 提 出 了 三 个 基 于高 速 C S 损 压 缩 建 议 算 法 , 中 有 两 个 是 基 于 小 波 其 变 换 的 , 欧 洲航 天 局 提 出 的 Fe Wa e 即 lx v 算 法 与 法 国提 出的 C S算 法 。 它 们 都是 基 NE 于 高 速推 帚 式 的 压缩 算 法 。 “ 帚式 ”就 是 推 对 图像 进 行 编码 时按 照 固 定行 数 而 不是 整 帧 图 像 来 进 行 处 理 , 样 能 有 效 地 提 高 编 这 码 器 的利用 效率 , 进行 实时 编码 处理 。 以 此 外 , S C DS对 基 于 小 波 变 换 的 压 缩算 法 C 给 予 了 很大 的 关 注 , 例如 J E 2 0 压 缩 算 P G 00 法 。本 文 主 要 介 绍 以上 三 种 基 于 小 波 变 Байду номын сангаас 的遥感 图像压缩算 法。 3 1 l Wa e E A) . e F x v ( S 算法 . Fe Wa e S ) 基于小波 变换 , 中 l x v ( A 算法 E 其 小 波变 换基 为采 用提 升方 案的双 正 交 9 7 / 小 波 基和 5 3 / 小波 基 , 解 层数 建议 为 3 边界 分 , 延 拓方 式为 周期 对称 延拓 。利 用提 升方 案进 行 小 波变 换 具 有 同址 运 算 的优 点 , 省 去 大 可 量 的 存储 器 开 销 , 高 小波 变 换 的速 度 。提 提 升 方 案运 算 速 度 趋 于 常规 小 波 变 换的 2倍 , 即 在 同等硬 件条 件下 , 一维 小波 而言 , 对 运算 时 间 减少 一 半 , 二 维小 波 变 换则 减 为原 来 对 的 四分之 一 。这 个优 点在 空 间飞行 器的 实时 性 图像 数 据 处理 中有 很 大 的使 用价 值 。 3 2 JE 2 0 . PG 00算法 JE 00 于离散小波变换 , P G2 0 基 同时 支 持 有 损 和 无 损 压 缩 、大 幅 图像 的压 缩 、 渐 进 传输 、感兴 趣 区编码 、 良好 的鲁 棒性 、码 流 随机 访 问等 功 能 。J E 2 0 的 所有 这 些 P G 00 特 点 , 得 它的 应 用 领域 非 常 广泛 。 使 J E 0 0 准 的核 心是 图 像 的 编 解 码 系 P G2 0 标 统 , 原理 见 图 3 P G 0 0 其 。J E 2 0 图像 编码 系统 基 于 D vd a b n提 出 的 E C T算 法 , a iT u ma B O 使 用 小 波 变 换 , 用两 层编 码 策 略 , 压 缩 采 对 位 流 分 层 组 织 , 仅获 得 较 好 的 压 缩 效 率 , 不 而 且 压 缩 码 流具 有 较 大 的 灵 活 性 。
图像处理技术综述
图像处理技术综述图像处理技术是指通过对图像进行采集、处理和分析,来提取有价值的信息或改变图像的质量或特征的一系列技术。
随着计算机视觉的发展和应用的广泛,图像处理技术变得日益重要。
本文将对图像处理技术进行综述。
图像处理技术主要包括图像采集、图像增强、图像复原、图像压缩、图像分析和图像识别等多个方面。
图像采集是图像处理的第一步,是指通过摄像机或其他设备获取图像数据。
图像采集技术包括光学成像、电子成像、红外成像、超声成像等。
光学成像是最常用和最常见的图像采集方式,它通过摄像机的镜头将光信号转换为电信号。
电子成像技术则是通过电子感光元件来转换光信号为电信号。
图像增强是指通过增加图像的对比度、清晰度或改善图像的质量来提高图像的可视化效果。
图像增强技术包括灰度变换、直方图均衡化、滤波等。
灰度变换是一种对图像的亮度或对比度进行变换的方法,常用的方法有线性变换和非线性变换。
直方图均衡化是将输入图像的直方图变换为均匀直方图的过程,以提高图像的对比度。
滤波则是通过对图像进行空间域或频域滤波来增强或去除噪声。
图像复原是指通过恢复图像的原始信息或去除图像中的噪声或模糊,来提高图像的质量和可视化效果。
图像复原技术包括退化模型、滤波器设计、最小二乘估计等。
退化模型是描述图像退化过程的数学模型,常用的模型有模糊模型、噪声模型等。
滤波器设计是通过设计合适的滤波器来恢复图像的原始信息。
最小二乘估计是一种优化方法,通过最小化残差平方和来估计图像的原始信息。
第四,图像压缩是将图像数据进行编码和压缩,以减少存储和传输的数据量。
图像压缩技术包括有损压缩和无损压缩。
有损压缩是指通过去除图像中的冗余信息或者降低图像的质量,以达到压缩数据量的目的。
无损压缩则是通过编码和解码来压缩和解压缩图像数据,以保留原始图像的质量。
图像分析和图像识别是通过对图像进行特征提取和分类来实现图像的自动分析和理解。
图像分析技术包括边缘检测、特征提取、目标检测等。
边缘检测是通过检测图像中的边缘来提取图像的轮廓和形状信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像压缩综述摘要:随着信息时代的不断发展,数字图像处理技术得到了广泛的应用,而作为数字图像处理技术的重要组成部分——数字图像压缩,也得到了迅猛的发展。
本文从数字图像压缩的概念、发展历史、图像压缩的必要性和可能性、图像压缩标准、图像压缩基本方法和图像压缩效果评价等方面进行了综述。
引言在当前这个信息化社会中,新信息技术革命使人类被日益增多的多媒体信息所包围。
多媒体信息主要是由图像、文本和声音三大元素组成。
图像作为其主要元素之一,发挥着越来越重要的作用。
而传输和存储图像需要占用大量的数据空间,这严重影响了传输速率和实时处理量,极大地制约了图像通信的发展。
其中,数据量最大的是数字视频数据。
未经处理的数字视频信息需要消耗巨大的存储资源,以主流高清视频为例,在分辨率为1280×720,帧率为30帧每秒的视频应用中,存储一分钟的视频信息,需要约18.5G(以常4:2:0视频,每像素12比特)比特存储空间,一部120分钟高清电影约需要2225G比特的存储空间。
可见未经处理的视频信息量非常大,为了满足存储和传输需求,视频信息的压缩是十分必要的。
在同等的通信容量下,如果图像数据可以压缩之后再传输,就可以使传输的数据量变得很小,也就能够增加通信能力。
因此图像压缩编码技术受到了越来越多的关注及广泛的应用。
如数码相机、USB摄像头、可视电话、视频点播、视频会议系统、数字监控系统等等,都使用到了图像或视频的压缩技术。
数字图像压缩是以尽可能少的比特数代表图像或图像中所包含的信息量的技术,图像通过压缩处理去掉其中的数据冗余、符号冗余、视觉冗余等各种冗余信息,提高传输速率,节省存储空间。
1图像压缩的发展历史自1948年提出的电视信号数字化设想后, 即开始了图像压缩的研究,到现在已有60多年的历史。
20世纪五六十年代的图像压缩编码主要集中在预测编码、哈夫曼编码等技术的研究,还不成熟。
1969年在美国召开的第一届“图像编码会议”,标志着图像编码作为一门独立学科的诞生。
到了七八十年代,图像压缩技术的主要成果体现在变换编码技术上, 矢量量化编码技术也有较大的发展。
80年代末,小波变换理论、分形理论、人工神经网络理论、视觉仿真理论建立,人们开始突破传统的信源编码理论, 图像压缩编码向着更高的压缩率和更好的压缩质量的方向发展,进入了一个崭新的发展时期。
2图像压缩的可能性图像之所以能够进行压缩有以下几个方面的原因:一是原始图像数据是高度相关的,存在很大的数据冗余。
如图像内相邻像素之间的空间冗余度、系列图像前后帧之间的时间冗余度、多光谱遥感图像各频谱间的频率域冗余度等,它们造成了大量的比特数浪费,消除这些冗余就可以节约码字,大大减少数据量,达到数据压缩的目的。
二是信源符号出现的概率不同,若用相同码长表示不同出现概率的符号,就会造成符号冗余度。
如果采用可变长编码技术,对出现概率高的符号用短码字,对出现概率低的符号用长码字表示,就可以消除符号冗余度,从而节约码字。
三是人眼具有视觉冗余,允许图像编码有一定的失真。
人类视觉系统(HVS)是有缺陷的,人眼对于某些失真不敏感难以察觉。
在许多场合中,并不要求经压缩及复原以后的图像和原始图像完全相同,可以允许有少量的失真,只要这些失真并不被人眼所察觉即可。
这就为压缩比的提高提供了十分有利的条件,这种有失真的编码称为限失真编码。
在多数应用中,人眼往往是图像信息的最终接受者,图像编码方法如果能充分利用人眼的视觉特性,就可以在保证复原图像主观质量较好的前提下取得较高的压缩比。
四是还可以利用先验知识来实现图像编码,降低知识冗余度。
例如,在可视电话中,编码对象可为人的头和肩等,这时可利用对编码对象的先验知识为编码对象建立模型,通过提取模型参数,对参数进行编码而不对图像直接进行编码,可以达到非常高的压缩比。
3图像压缩编码标准国际标准化协会(ISO)、国际电子学委员会(IEC)、国际电信协会(ITU)等国际组织,于90年代领导制定了许多重要的多媒体数据压缩标准如JPEG、H.261、H.263、H.264、HEVC、MPEG 一1、MPEG一2、MPEG一4等等。
这些标准已在数字电视、多媒体领域得到广泛应用。
[1]目前国际主流的视频编码国际标准主要有两大系列,分别为H.26X系列和MPEG系列。
H.26X系列包括H.261[2]、H.262[3]、H.263[4]、H.263+[5]、H.263++[6]和H.264[7]、 H.265。
其制定者为国际电信联盟电信标准化部门(ITU-T: International TelecommunicationUnion-Telecommunication Standardization Sector)。
MPEG系列包括MPEG-1[8]、MPEG-2[9]、MPEG-4[10]以及正在制定中的MPEG-H[11]。
其制定者为国际标准化组织(ISO: International Organization forStandardization)和国际电工委(IEC:International Electronics Committee)下属的运动图像专家组(MPEG: Moving Picture Experts Group)。
为了推动视频编码技术的发展,两大标准组织共同制定了H.262和H.264/AVC标准。
目前,为适应视频技术发展的趋势,两大组织再一次合作,共同开发新一代高性能视频编码标准HEVC(High Efficiency Video Coding)。
下图为两大系列标准的发展历史图。
图3-1 H.26X系列发展图图3-2 MPEG系列发展图不同的视频标准有不同的社会需求背景,同时所面向的应用也有所不同。
下表所示为各编码标准面向应用情况[12]。
表3-3编码标准面向应用除了两大国际标准以外,还有我国自主知识产权的AVS编码标准。
AVS标准的制定是为了适应我国信息产业快速崛起崛起而提出的,随着我国在视频编码技术研发方面的不断积累,相信其影响力将会不断的增强。
4图像压缩方法如下图为图像压缩系统的一般模型图4-1 图像压缩系统的一般模型4.1压缩方法的分类研究图像压缩方法实际是研究图像压缩的算法(或者称为“编码’),随着研究的不断深入,出现了多种压缩(“编码’)方法。
显然,各种编码方法的并存是十分必要的。
图像压缩编码可以有多种分类方法:①以恢复的图像与原图像关系分:无失真编码和限失真编码。
②以使用方法的原理分:基于图像统计特性、基于人眼视觉特性和基于图像特性提取编码。
③以图像的光学特性分:静止图像、慢速图像和实时图像编码。
④以采用的基本理论不同分:变换法和分形法编码。
4.2压缩方法算法4.2.1 空间法空间域图像压缩可以有六种形式,其中包括脉冲编码调制、预测编码、差分脉冲码调制、Delta 调制、内插编码及比特平面编码这六种方法。
空间域图像压缩的主要特点有:(1)脉冲编码调制这种压缩方法可接受的图片质量是由每像3比特量化值,压缩比C=2.6至C=1.0,颤动法可以用来改进图像的质量,全然没有利用人的视觉特性。
(2)预测编码预测编码的理论基础是现代统计学和控制论。
预测编码是根据某一模型利用以往的样本值,对于新样本值进行预测,然后将样本的实际值与其预测值相减得到一个误差值,对这一误差值进行编码,如果模型足够好且样本序列在时间上的相关性较强,那么误差信号的幅度将远小于原始信号,从而可以用较少的数据类对其差值量化得到较大的数据压缩结果。
利用预测编码的方法压缩图像数据的空间和时间冗余性,这种方法直观、简捷、易于实现,它的不足在于压缩能力有限。
现在常用的一种线性预测编码方法是差分脉冲编码调制DPCM (differential pulse codemodulation)[13]线性预测形式如下:S’(n1,n2)=c1s(n1—1,n2—1)+ c2s(n1—1,n2)+c3s(n1一1,n2+ 1)+c4s(n1,n2—1)。
最佳线性预测选择系数使均方误差最小:min E((s一s’)T(s一S’))预测法通常不利用人的视觉系统的特性,对于8比特的规范形式运用两维预测所获得的压缩比约为4:1。
若预测参量以适当方式与数据自适应,则预测法便为自适应的。
例如,一局部性测量可以定义,则预测参量在每一显著的变化时可以被修正。
用自适应修正,压缩比可以增加百分之一到二十左右。
预测的特例是差分脉冲编码调制。
(3)差分脉冲编码调制脉冲编码调制可获得压缩比为2.5:1,自主适应脉冲编码调制可使压缩比达3.5:1。
(4)Delta调制用这种方法所获得的压缩比虽然不高,但方法相当简单。
(5)内插编码最通用的内插方法是零阶和一阶内插器,它能获得大约4:1的压缩比。
高阶多项式或样条函数也能使用,但是其计算复杂性不能证明其结果的有效性,再则是未利用人的视觉系统的性质。
(6)比特平面编码用比特平面编码法在未涉及人的视觉系统特性时可以获得平均压缩比约为4:1。
4.2.2变换编码变换编码先对图像进行某种函数变换,从一种表示空间变换到另一种表示空间,然后在变换后的域上,对变换后信号进行编码。
目前在图像压缩中经常使用的变换有:(1)Karhunen-Loeve变换(KLT)。
它是一种最优变换。
KLT可以有效地去除原始数据的相关性,从而实现高效压缩。
但是由于KLT变换的核不是固定的,是随原始数据而变的,并且不存在快速算法,限制了它在实际上的应用,一般常作为其他方法的参照。
(2)离散余弦变换(DCT)。
对于像素间呈现高度相关的典型图像,DCT的性能与KLT的性能没有实质的区别。
DCT的快速实现算法也已经实现。
与Walsh-Hadamard变换相比,DCT具有更强的信息集中能力,并且易于软硬件的实现,正是由于这些优点,DCT已经成为当前图像压缩中应用最广泛的技术。
(3)Walsh-Hadamard变换(WHT)。
与DCT相比,WHT的压缩方面的性能要逊色许多,但由于实现起来算法简单,且具有简洁的去相关能力,以及特别有利于硬件实现,使得WHT 也成为一种比较流行的算法。
(4)小波变换。
小波变换把图像分解成逼近图像和细节图像之和,它们分别代表图像的不同结构,然后采用快速算法(Mallat) 进行压缩,可以获得很高的压缩比。
基于小波变换的图像压缩算法首先使用某种小波基函数将图像作小波变换,再根据4个通道的不同情况,分别量化编码,比如对低频频段(LL)采用较多的量化级别,而对中间频段(LH,RH)采用较少量化级别,对高频频段(HH)采用很少几个量化级别,这样根据重构时对复原信号的重要程度分别对待的方式可以有效地提高压缩比而又不产生明显的失真。
小波变换在静态图像压缩中的作用已经得到公认,为JPEG2000标准所采纳。