压杆稳定课件

合集下载

压杆稳定(工程力学课件)

压杆稳定(工程力学课件)
压杆稳定的概念
桁架结构
在轴向压力作用下,
短粗压杆 只要满足杆受压时的强度
条件,就能正常工作
细长压杆
破坏形式呈现出与强度问题 截然不同的现象
FN [ ]
A
压杆失稳
细长压杆:
临界压力或临界力ห้องสมุดไป่ตู้Fcr
F Fcr F Fcr
稳定的平衡 不稳定的平衡
压杆失稳
在轴向压力 F 由小逐渐增大 的过程中,压杆由稳定的平衡 转变为不稳定平衡,这种现象 称为压杆失稳。
首先判断压杆的失稳方向
(1)两端约束 1
(2)截面形状
Fcr (2 El)I2
Iz
hb3 12
140 803 12
597.3104
mm4
Iy
bh3 12
80 1403 12
1829.3104
mm4
Fcr1
2 EImin
(l)2
2 10 103 MPa 597.3104 (1 3103 mm)2
mm4
65 435 N 65.44 kN
(N、mm、MPa)
【例 1】 细长压杆,两端为球形铰支,
矩形横截面, E 10 GPa ,求其临界力。
Fcr (2 El)I2
长度影响
【例 2】细长压杆,上端约束为球形铰支,
下端约束在 xOz平面内可视为两端铰支,
Fcr (2 El)I2
在 xOy 平面内可视为一端铰支、一端固定
M
Wz
[ ]
81.67
πD4 i I 64 D 40mm
A πD2 4 4
l 1 3103 75
i
40
查表: 0.54
81.67

压杆稳定解析课件

压杆稳定解析课件
160.3
查表13-1,得 0.276, 与 0.289 相差不大
故可选28a工字钢,校核其稳定性
F 45.1MPa [ ] 46.92MPa
A
例6: 图示梁杆结构,材料均为Q235钢。AB梁为14号
工字钢,BC杆为 d=20mm的圆杆。已知: F=25kN,
l1=1.25m,l2=0.55m,E=206GPa,p=200MPa, s=235MPa,n=1.4,nst=1.8。求校核该结构是否安全。
二﹑欧拉公式应用中的几个问题
(1)Fcr与EI成正比,与l2 成反比,且与杆端约束有 关。 Fcr越大,压杆稳定性越好,越不容易失稳;
(2)杆端约束情况对Fcr的影响,是 通过长度系数μ来实现的。要根据实 际情况选择适当的μ 。
(3)当压杆在两个形心主惯性平面内 的杆端约束情况相同时,则失稳一定 发生在最小刚度平面,即I 最小的纵 向平面。
y z x
轴销
y z
x
轴销
解:xy面内,两端视作铰支,μ = 1,iz = 4.14 cm
z
l
iz
1 2 4.14 102
48.3
y z
x
轴销
xz面内,两端视作固定端,μ = 0.5,查表iy= 1.52cm
y
l
iy
0.5 2 1.52 102
65.8
显然 z y
压杆将在xz平面内失稳 而 p 100,u s 60
lw
x
O
y
M(x) Fcr=F
w
w = Asinkx +Bcoskx (d)
Fcr
k2=Fcr / EI 两个边界条件:
w = Asinkx +Bcoskx

压杆稳定教学课件PPT

压杆稳定教学课件PPT

P
cr
2E 2
细长压杆。
粗短杆 中柔度杆
o
s
大柔度杆
P
l
i
粗短杆 中长杆 细长杆
细长杆—发生弹性屈曲 (p) 中长杆—发生弹塑性屈曲 (s < p) 粗短杆—不发生屈曲,而发生屈服 (< s)
四、注意问题:
1、计算临界力、临界应力时,先计算柔度,判断所用公式。
2、对局部面积有削弱的压杆,计算临界力、临界应力时, 其截面面积和惯性距按未削弱的尺寸计算。但进行强度 计算时需按削弱后的尺寸计算。
小球平衡的三种状态
稳定平衡
随遇平衡 ( 临界状态 )
不稳定平衡
受压直杆平衡的三种形式
稳定平衡
随遇平衡 ( 临界状态 )
不稳定平衡
电子式万能试
验机上的压杆稳定 实验
工程项目的 压杆稳定试验
§9-2 细长压杆临界压力的欧拉公式 一、两端铰支细长压杆的临界载荷
当达到临界压力时,压杆处于微弯状态下的平衡
1.287
91(kN)
例:图示立柱,L=6m,由两根10号槽型A3钢组成,下端固定,上 端为球铰支座,p 100 ,试 a=?时,截面最为合理。并求立柱的 临界压力最大值为多少?
解:1、对于单个10号槽钢,形心在C1点。 A1 12.74cm2, z0 1.52cm, Iz1 198.3cm4, I y1 25.6cm4.
细长压杆的破坏形式:突然产生显著的弯
曲变形而使结构丧失工作能力,并非因强度不
够,而是由于压杆不能保持原有直线平衡状态
(a)
(b) 所致。这种现象称为失稳。
1907年加拿大圣劳伦斯河上的魁北克桥 (倒塌前正在进行悬臂法架设中跨施工)

压杆的稳定性PPT课件

压杆的稳定性PPT课件
l 2
l 表示把压杆折算成两端铰支的长度,称为相当长度。
称为长度系数,它反映了杆端不同支座情况对临界压力
的影响。
第28页/共68页
支座情况 两端铰支
一端固定 一端自由
一端固定 一端铰支
两端固定
压杆简图
临界压力 公式
2EI
l2
1.0
2EI
2l 2
2
2EI
0.7l 2
0.7
第29页/共68页
约小100倍!杆件先发生失稳现象!
F
第30页/共68页
8.3 压杆的临界应力、经验公式
1 临界应力
压杆处于临界状态时,近似认为压杆横截面上的轴向 正应力临界压力Fcr 与压杆的横截面面积A之比,该正应
力称为临界应力,以 cr 表示。

cr
Fcr A
2EI l2 A
式中,I i2 ,
A
i为截面的惯性半径,是一个与截面形状和尺寸
第13页/共68页
载 荷 更 大 的 状 态
第14页/共68页
压杆的平衡稳定性
F Fcr
临界力
F Fcr
F Fcr
微小横 向力Q
微小横 向力Q
上界
下界
稳定平衡
临界状态
不稳定平衡
稳定的直线平
微弯平衡状态
衡状态
第15页/共68页
压杆的平衡稳定性 F
F FFcr F F F Fcr
当 P Pcr 当 P Pcr
第19页/共68页
8.2 压杆的稳定性分析、欧拉公式
1 两端铰支细长杆的临界压力
如图所示细长等直杆
当压杆在压力F作用下处于临界状态时,杆件发生“微弯” 变形,x截面处的弯矩

材料力学之压杆稳定课件

材料力学之压杆稳定课件
变形量等,绘制 压力与变形关系曲线。
分析实验数据,得出压 杆的临界压力和失稳形式。
实验结果分析
分析压杆在不同压力 下的变形情况,判断 压杆的稳定性。
总结临界压力与失稳 形式的规律,为实际 工程应用提供依据。
对比不同长度、直径、 材料等因素对压杆稳 定性的影响。
总结词
机械装置中的压杆在承受载荷时,其稳 定性对于机械的正常运转和安全性至关 重要。
VS
详细描述
在机械装置中,如压力机、压缩机等,压 杆是重要的承载元件。通过材料力学的方 法,可以分析压杆的稳定性,确定其临界 载荷和失稳模式,从而优化机械装置的设 计,提高其稳定性和安全性。
05
压杆稳定的应用与发展
工程实例二:建筑压杆
总结词
建筑压杆在高层建筑、大跨度结构等建筑中广泛应用,其稳定性是保证建筑安全的重要 因素。
详细描述
高层建筑和大跨度结构的稳定性分析中,建筑压杆的稳定性分析占据重要地位。通过材 料力学的方法,可以对建筑压杆的承载能力和稳定性进行精确计算,从而为建筑设计提
供可靠的支持。
工程实例三:机械装置压杆
数值模拟
随着计算机技术的发展,数值模 拟方法在压杆稳定性分析中得到 广泛应用,能够更精确地预测结
构的稳定性。
材料性能研究
新型材料的不断涌现,对压杆稳定 性的影响也日益受到关注,相关研 究正在不断深入。
多因素耦合分析
在实际工程中,多种因素如载荷、 温度、腐蚀等会对压杆稳定性产生 影响,因此需要开展多因素耦合分析。
欧拉公式是由瑞士科学家欧拉提出的一个公式,用于计算等截面直杆的临界应力。 根据欧拉公式,临界应力只与压杆的材料性质和截面形状有关,而与压杆的长度 和外载大小无关。
稳定性校核

第十章压杆稳定ppt课件

第十章压杆稳定ppt课件

2E 0.56 S
②s < 时: cr s
临界应力的特点
•它的实质: 象强度中的比例极限、屈服极限类似,除以 安全因数就是稳定中的应力极限
•同作为常数的比例极限、屈服极限不同,变化 的临界应力依赖压杆自身因素而变
例102 截面为 120mm200mm 的矩形 木柱,长l=7m,材料的弹性模量E = 10GPa,
Fcr
2 EImin
l2
此公式的应用条件:
•理想压杆
•线弹性范围内
•两端为球铰支座
§10-3 不同杆端约束下细长压杆 临界力的欧拉公式
其它端约束情况,分析思路与两端铰支的相同, 并得出了临界力公式
Fcr
2 EImin (l)2
即压杆临界力欧拉公式的一般形式
—长度系数(或约束系数) l—相当长度
•求临界力有两种途径:实验测定及理论计算。
•实验以及理论计算表明:压杆的临界力,与压杆 两端的支承情况有关,与压杆材料性质有关,与 压杆横截面的几何尺寸形状有关,也与压杆的长 度有关。
压杆一般称为柱,压杆的稳定也称为柱的稳 定,压杆的失稳现象是在纵向力作用下,使 杆产生突然弯曲的,在纵向力作用下的弯曲, 称为纵弯曲。
AB杆 l
1
i
l
1.5 cos30
1.732m
i
I A
D4 d4 4 64 D2 d2
D2 d 2 16mm 4

1 1.7 3 2 1 03
16
108 P
AB为大柔度杆
Fcr
2EI
l 2
118kN
n
Fcr FN
118 26.6
4.42 nst
3
AB杆满足稳定性要求

材料力学课件 第十章压杆稳定

材料力学课件 第十章压杆稳定

sinkL0
kn P
L EI
临界力 Pcr 是微弯下的最小压力,故,只能取n=1 ;且 杆将绕惯性矩最小的轴弯曲。
Pcr
2
EImin L2
14
Pcr
2
EImin L2
二、此公式的应用条件:
两端铰支压杆临界力的欧拉公式
1.理想压杆; 2.线弹性范围内; 3.两端为球铰支座。
三、其它支承情况下,压杆临界力的欧拉公式
29
我国钢结构柱子曲线
二、 受压构件的稳定公式
利用最大强度准则确定出轴心受压构件的临界应力 cr ,引入抗力分项系数 R ,则轴心受压构件的稳定计算公式如下:
N cr cr f y f A R R fy
f :钢材的强度设计值
(10.24)
30
例6
如图所示,两端简支,长度l 5m 的压杆由两根槽钢组成,若限定两个槽钢腹板
Iy [73.3 (51.8)2 21.95]2 2176.5cm4
33
若失稳将仍会在 xoy平面内,有
imin iz
Iz A
1732.4 6.28cm 43.9
max
l imin
500 79.6 6.28
查表得2 0.733
此时3 与3 已经很接近,按两个 16a 槽钢计算压杆的许可压力,有
20
[例3] 求下列细长压杆的临界力。
y y
x
z
z
h
L1
L2
解:①绕
y 轴,两端铰支:
=1.0,
I
y
b3h 12
,
②绕 z 轴,左端固定,右端铰支:
b
Pcry
2EI L22
y
=0.7,

材料力学课件 压杆稳定

材料力学课件 压杆稳定
§9.1 压杆稳定的概念
一、工程中的压杆 二、压杆的失效形式 三、压杆失稳的实例 四、压杆稳定的概念
一、工程中的压杆: 网架结构中的杆
一、工程中的压杆: 网架结构中的杆
一、工程中的压杆: 网架结构中的杆
一、工程中的压杆: 钢结构桥梁中的杆
一、工程中的压杆: 铁塔中的杆
一、工程中的压杆: 小亭的立柱
w k2 w k2
EI
w A s k i B c n x k o x ( s 2 )
w A s k i B c n x k o x ( s 2 )
一阶导数为 w A c k o k B x s s k i k ( n x 3 )
根据边界条件x=0,w =0 得 A=0。
Fcr

π2EI l2
讨论:失稳挠曲线 ——半正弦波曲线
w Байду номын сангаасsinx
l
Awxl wmax
2
杆在任意微弯状态下保持平衡时为
不确定的值。 这是因为推导过程中是用的挠曲线
近似微分方程。
临界压力的精确解
w Mx
EI
2EI
Fcr l 2
(近似解) 欧拉解
精确失稳挠曲线微分方程?

l l 0.7 l l 0.5l
l 2l l 0.5 l
稳 时
B
B
B

D

线 形
C
C

A
A
A
C— 挠曲 C、D— 挠
线拐点 曲线拐点
C— 挠曲线拐点
临界力Fcr 欧拉公式
Fcr


2EI l2
Fcr

材料力学教学课件压杆稳定

材料力学教学课件压杆稳定

机械设备的压杆稳定性分析
总结词
机械设备的压杆稳定性分析对于保证设 备正常运转和操作人员的安全至关重要 。
VS
详细描述
在机械设备中,如压力机、压缩机等,压 杆常常作为传递力的部件。为了防止压杆 在工作中发生失稳,需要进行稳定性分析 。这需要考虑压杆的材料性质、截面形状 、工作载荷以及支撑条件等因素。对于长 细比较大的压杆,还需特别考虑其柔性对 稳定性的影响。
计算方法
基于弹性理论,采用挠曲 线方程和欧拉公式进行计 算。
长细比较大的压杆
定义
长细比较大的压杆是指杆件长度 与其横截面尺寸之比很大的杆件

特点
在压力作用下,这类杆件容易发生 失稳,即弯曲变形达到一定程度后 ,杆件会突然发生屈曲。
计算方法
基于稳定性理论,采用折减系数法 或能量法进行计算。
临界力的计算
03
压杆稳定性的校核
稳定性校核的方法
静力法
通过比较临界力和实际外力的关系,判断压杆是 否失稳。
动力法
通过分析压杆的振动特性,判断其是否具有不稳 定振动。
能量法
利用能量守恒原理,计算压杆的临界载荷。
稳定性校核的步骤
01
02
03
04
1. 确定压杆的长度、直径、 材料等参数。
2. 计算临界载荷。
3. 比较临界载荷与实际载荷 ,判断是否满足稳定性要求。
压缩失稳
当压杆受到的横向约束不 足时,会发生压缩失稳, 表现为整体弯曲或局部屈 曲。
扭转失稳
当压杆受到的扭矩超过其 临界值时,会发生扭转失 稳,导致结构变形和破坏 。
压杆稳定的基本理论
欧拉公式
欧拉公式是压杆稳定理论的基础,它 给出了理想直杆在轴向压力作用下的 临界压力值。

工程力学压杆稳定ppt课件

工程力学压杆稳定ppt课件
.
Fcr 0.7l
F 0.5l
l l
一端固定,一端铰支 EI 2
Fcr (0.7l) 2
.
两端固定 EI 2
Fcr (0.5l) 2
不同约束情况下,细长杆的临 界压力欧拉公式可统一写成:
EI 2 Fcr (l )2
:长度系数 l:相当长度
.
两端铰支 一端固定,一端自由 一端固定,一端铰支 两端固定
[FN]156k N [F]52[FN]62.4k N
.
二、压杆稳定计算 ––– 折减系数法
工程中为了简便起见,对压杆的稳定计 算还常采用折减系数法。即将材料的压缩许 用应力[ ]乘上一个小于1的折减系数 作为 压杆的许用临界应力,即:
[ cr] = [ ]
< 1,称为折减系数
[ cr ] [ ]
L
v F v 0
EI
记k 2 F EI
F
x vM F x
y
v + k2v = 0
––– 二阶常系数齐次线性微分方程
.
通解: v = c1sinkx + c2coskx 边界条件:
x = 0 v( 0 ) = 0 x = l v( l ) = 0 v(0) = c1sin(k* 0) + c2cos(k* 0) = c2 = 0 v = c1sinkx v(l) = c1sinkl = 0
F:工作压力
Fcr:临界压力
nst:额定安全系数
nst
Fcr F
n
nFcr:工作安(实 全际 系安 数全 ) 系数
F
.
稳定计算的一般步骤:
① 分别计算各个弯曲平面内的柔度 y 、 z ,从而得到 max;

《压杆稳定教学》课件

《压杆稳定教学》课件

增加约束
总结词
通过增加支撑、固定或增加附加约束,可以 提高压杆的稳定性。
详细描述
约束是影响压杆稳定性的重要因素。通过增 加支撑、固定或附加约束,可以限制压杆的 自由度,从而增强其稳定性。例如,在压杆 的适当位置增加支撑或固定点,可以减小压 杆的弯曲变形,提高其稳定性。此外,通过 增加附加约束,如套箍或加强筋等,也可以 提高压杆的稳定性。
实验结果与分析
实验结果
通过实验观察和数据记录,得到不同条件下 压杆的稳定性表现。
结果分析
根据实验数据,分析影响压杆稳定性的因素 ,如压杆的材料、截面形状、长度、直径等 。通过对比不同条件下的实验结果,总结出
压杆稳定性的一般规律和特点。
THANKS
感谢观看
REPORTING
稳定性安全系数
通过比较临界载荷与实际载荷的大小,来判断压杆的 稳定性。
稳定性试验
通过试验的方法,对压杆进行稳定性测试,以验证其 在实际使用中的稳定性。
PART 02
压杆的分类与计算
REPORTING
长细比较小的压杆
弹性失稳
当受到垂直于杆轴的压力时,杆件会 弯曲并丧失承载能力。
临界压力
当压杆达到临界压力时,杆件将发生 屈曲。
PART 05
压杆稳定性的实验研究
REPORTING
实验目的与原理
实验目的
通过实验研究,掌握压杆稳定性的基本概念和原理,了解影响压杆稳定性的因 素。
实验原理
压杆稳定性是指细长杆在受到轴向压力时,抵抗弯曲变形的能力。当轴向压力 超过某一临界值时,压杆会发生弯曲变形,丧失稳定性。本实验通过观察不同 条件下压杆的变形情况,分析影响压杆稳定性的因素。
根据欧拉公式计算临界应力:$sigma_{cr} = frac{EI}{A}$
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章压杆稳定
【学时】4
内容:压杆稳定的概念;稳定平衡与不稳定平衡;临界压力;计算细长压杆临界压力的欧拉公式;杆端约束不同对临界压力的影响;长度系数,临界压力,压杆柔度;欧拉公式的适用范围。

经验公式;临界应力总图。

压杆的稳定计算;安全系数和折减系数法。

【基本要求】
1.理解压杆稳定的概念[2]。

2.掌握临界力的欧拉公式[1]。

3.掌握临界应力的欧拉公式[1]
4.了解欧拉公式的适用范围[3]。

5.理解临界应力总图[2]。

6.了解压杆稳定的安全计算[3]。

【重点】压杆稳定的概念,临界压力和临界应力的计算,以及压杆稳定校核的方法——安全系数和折减系数法。

【难点】压杆稳定的概念,压杆稳定的安全计算。

§13–1 稳定的概念
一、三种平衡状态
稳定平衡 随寓平衡 不稳定平衡
二、弹性稳定
弹性稳定---受力后弹性体平衡状态的稳定性。

Pcr 临界力。

cr P P 〈,稳定平衡;
cr P P =,临界平衡;
cr P P 〉,不稳定平衡。

失稳---平衡丧失稳定性现象。

条件:失稳后,仍处于线弹性。

理想压杆与实际压杆的差异:
压杆多有缺陷:截面不完全一样;材料不均;轴不绝对直;荷载偏心等等。

这些偶然因素起干扰力Q 作用。

§13–2 弹性压杆的临界力
弹性压杆的分叉现象表明:压杆从直线状态的平衡,过渡到微弯状态的平衡,也即临界力作用下,可能在微弯下平衡。

条件:杆内应力不超出比例极限,用挠曲线近似微分方程。

当,,Py M P P cr ==但y EI EI M ''-==ρ
,所以Py y EI =''-, 微弯曲线微分方程:,0=+''Py y EI 令EI
P k =2,所以02=+''y k y , 有通解:kx c kx c y sin cos 21+=,边界条件:.0,;0,0====y l x y x 稳定方程式:sinkl=0. 两端铰支:22l EI
P cr π=。

若为球铰,I 当取最小可能的Imin.
§13–3 杆端约束的影响
不同杆端约束的临界力推导可仿照两端铰支的情况。

若将两端铰支的挠曲线拿来做基准,即其是一个正弦波的半波,则其它约束情况,可参照此来确定计算长度。

长度系数μ---原杆长相当于半个正弦波的长度与原杆长的商数。

计算长度0l =μl.
2
222222222)7.0(44l EI P l EI P l EI P l EI P l EI P cr cr
cr
cr
cr πππππ=====
统一表达式:202l EI P cr π=
,称为欧拉公式。

长度系数如下: 1.两端铰支:μ=1。

2.一端固定,一端自由:μ=2。

3.一端固定,一端定向支承:μ=1。

4.两端固定:μ=0.5。

5.一端固定,一端铰支:μ=0.7。

工程中支承情况简化为上述几种,还可有弹簧支座等的扩展。

§13–4 临界应力 柔度
一、临界应力
压杆直线平衡状态时临界力所对应的应力。

A
l EI A P cr cr 202πσ==,A---横截面积。

令A I i A I i ==
,2, i---回转半径。

2
022202)(i l E i l E
cr ππσ==∴,令i
l 0=λ,称为柔度(长细比)。

欧拉公式:22λ
πσE cr = 二、适用范围
失稳时,y EI M ''-≠,cr σ公式不成立。

p cr σσ≤∴ 又p
p cr E E σπλσπλ22=∴=,当p cr σσ≤,有p λλ≥。

适用范围:p
p E σπλλ2=≥。

§13–5 超过弹性极限后压杆的临界力 临界应力总图
超过比例极限,不能使用欧拉公式。

采用经验公式。

抛物线公式:
Q235钢压杆,有2382.610*240λσ-=cr (kPa )
16锰钢压杆,有2347.1410*350λσ-=cr (kPa )
临界应力总图(λσ--cr 曲线)
1λ为略大于p λ之值。

§13–6 压杆的实用计算 折减系数和稳定条件
一、压杆稳定的许用应力 折减系数
为了不致于失稳,确定许用应力,低于临界应力,由于影响因素相同,以强度许用应力为基础,并在其上考虑截面不等、轴线不直、材料不均、偏心力等因素,原安全系数乘特殊安全系数。

)(],[][λϕϕσϕσ==cr 。

二、稳定条件
][],[],[σϕσϕσ≤≤≤A
N A N A N cr 可进行三个方面的工作:
1.稳定校核。

2.确定许可荷载。

3.选择截面。

]
[σϕN A ≥,先选适当的折减系数,后定出截面,再依截面找柔度,查表找折减系数;再按新折减系数进行同样计算,直到折减系数相近。

此即称试算法。

相关文档
最新文档