第四章 熔体中的晶体生长技术(提拉法)

合集下载

晶体生长方法

晶体生长方法

晶体生长方法一、提拉法晶体提拉法的创始人是J. Czochralski,他的论文发表于1918年。

提拉法是熔体生长中最常用的一种方法,许多重要的实用晶体就是用这种方法制备的。

近年来,这种方法又得到了几项重大改进,如采用液封的方式(液封提拉法,LEC),能够顺利地生长某些易挥发的化合物(GaP等);采用导模的方式(导模提拉法)生长特定形状的晶体(如管状宝石和带状硅单晶等)。

所谓提拉法,是指在合理的温场下,将装在籽晶杆上的籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩肩、转肩、等径、收尾、拉脱等几个工艺阶段,生长出几何形状及内在质量都合格单晶的过程。

这种方法的主要优点是:(a)在生长过程中,可以方便地观察晶体的生长情况;(b)晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c)可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。

提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。

提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。

二、热交换法热交换法是由D. Viechnicki和F. Schmid于1974年发明的一种长晶方法。

其原理是:定向凝固结晶法,晶体生长驱动力来自固液界面上的温度梯度。

特点:(1) 热交换法晶体生长中,采用钼坩埚,石墨加热体,氩气为保护气体,熔体中的温度梯度和晶体中的温度梯度分别由发热体和热交换器(靠He作为热交换介质)来控制,因此可独立地控制固体和熔体中的温度梯度;(2) 固液界面浸没于熔体表面,整个晶体生长过程中,坩埚、晶体、热交换器都处于静止状态,处于稳定温度场中,而且熔体中的温度梯度与重力场方向相反,熔体既不产生自然对流也没有强迫对流;(3) HEM法最大优点是在晶体生长结束后,通过调节氦气流量与炉子加热功率,实现原位退火,避免了因冷却速度而产生的热应力;(4) HEM可用于生长具有特定形状要求的晶体。

晶体生长方法

晶体生长方法

晶体生长方法单晶体原则上可以由固态、液态(熔体或溶液)或气态生长而得。

实际上人工晶体多半由熔体达到一定的过冷或溶液达到一定的过饱和而得。

晶体生长是用一定的方法和技术,使单晶体由液态或气态结晶成长。

由液态结晶又可以分成熔体生长或溶液生长两大类。

熔体生长法这类方法是最常用的,主要有提拉法(又称丘克拉斯基法)、坩埚下降法、区熔法、焰熔法(又称维尔纳叶法)等。

提拉法此法是由熔体生长单晶的一项最主要的方法,被加热的坩埚中盛着熔融的料,籽晶杆带着籽晶由上而下插入熔体,由于固液界面附近的熔体维持一定的过冷度、熔体沿籽晶结晶,并随籽晶的逐渐上升而生长成棒状单晶。

坩埚可以由高频感应或电阻加热。

半导体锗、硅、氧化物单晶如钇铝石榴石、钆镓石榴石、铌酸锂等均用此方法生长而得。

应用此方法时控制晶体品质的主要因素是固液界面的温度梯度、生长速率、晶转速率以及熔体的流体效应等。

坩埚下降法将盛满材料的坩埚置放在竖直的炉内,炉分上下两部分,中间以挡板隔开,上部温度较高,能使坩埚内的材料维持熔融状态,下部则温度较低,当坩埚在炉内由上缓缓下降到炉内下部位置时,材料熔体就开始结晶。

坩埚的底部形状多半是尖锥形,或带有细颈,便于优选籽晶,也有半球形状的以便于籽晶生长。

晶体的形状与坩埚的形状是一致的,大的碱卤化合物及氟化物等光学晶体是用这种方法生长的。

区熔法将一个多晶材料棒,通过一个狭窄的高温区,使材料形成一个狭窄的熔区,移动材料棒或加热体,使熔区移动而结晶,最后材料棒就形成了单晶棒。

这方法可以使单晶材料在结晶过程中纯度提得很高,并且也能使掺质掺得很均匀。

图3为区熔法的原理图。

区熔技术有水平法和依靠表面张力的浮区熔炼两种。

焰熔法这个方法的原理是利用氢和氧燃烧的火焰产生高温,使材料粉末通过火焰撒下熔融,并落在一个结晶杆或籽晶的头部。

由于火焰在炉内形成一定的温度梯度,粉料熔体落在一个结晶杆上就能结晶。

小锤敲击料筒震动粉料,经筛网及料斗而落下,氧氢各自经入口在喷口处,混合燃烧,结晶杆上端插有籽晶,通过结晶杆下降,使落下的粉料熔体能保持同一高温水平而结晶。

提拉法

提拉法
(2)坩埚和籽晶夹
作坩埚的材料要求化学性质稳定、纯度高,高温下机械强度高,熔点要高于原料的熔点200℃左右。常用的坩埚材料为铂、铱、钼、石墨、二氧化硅或其它高熔点氧化物。其中铂、铱和钼主要用于生长氧化物类晶体。
籽晶用籽晶夹来装夹。籽晶要求选用无位错或位错密度低的相应宝石单晶。
(3)传动系统
生长பைடு நூலகம்点
(1)温度控制在晶体提拉法生长过程中,熔体的温度控制是关键。要求熔体中温度的分布在固液界面处保持熔点温度,保证籽晶周围的熔体有一定的过冷度,熔体的其余部分保持过热。这样,才可保证熔体中不产生其它晶核,在界面上原子或分子按籽晶的结构排列成单晶。为了保持一定的过冷度,生长界面必须不断地向远离凝固点等温面的低温方向移动,晶体才能不断长大。另外,熔体的温度通常远远高于室温,为使熔体保持其适当的温度,还必须由加热器不断供应热量。
为了获得稳定的旋转和升降,传动系统由籽晶杆、坩埚轴和升降系统组成。
(4)气氛控制系统
不同晶体常需要在各种不同的气氛里进行生长。如钇铝榴石和刚玉晶体需要在氩气气氛中进行生长。该系统由真空装置和充气装置组成。
(5)后加热器
后热器可用高熔点氧化物如氧化铝、 陶瓷或多层金属反射器如钼片、铂片等制成。通常放在坩埚的上部,生长的晶体逐渐进入后热器,生长完毕后就在后热器中冷却至室温。后热器的主要作用是调节晶体和熔体之间的温度梯度,控制晶体的直径,避免组分过冷现象引起晶体破裂。
(2)提拉速率提拉的速率决定晶体生长速度和质量。适当的转速,可对熔体产生良好的搅拌,达到减少径向温度梯度,阻止组分过冷的目的。一般提拉速率为每小时6-15mm。在晶体提拉法生长过程中,常采用“缩颈”技术以减少晶体的位错,即在保证籽晶和熔体充分沾润后,旋转并提拉籽晶,这时界面上原子或分子开始按籽晶的结构排列,然后暂停提拉,当籽晶直径扩大至一定宽度(扩肩)后,再旋转提拉出等径生长的棒状晶体。这种扩肩前的旋转提拉使籽晶直径缩小,故称为“缩颈”技术。

晶体生长

晶体生长

晶体生长----提拉法人工合成晶体的主要途径是从溶液中培养和在高温高压下通过同质多像的转变来制备(如用石墨制备金刚石)等。

具体方法很多,例如水热法,提拉法,焰熔法。

水热法这是一种在高温高压下从过饱和热水溶液中培养晶体的方法。

用这种方法可以合成水晶、刚玉(红宝石、蓝宝石)、绿柱石(祖母绿、海蓝宝石)、石榴子石及其它多种硅酸盐和钨酸盐等上百种晶体。

焰熔法这是一种用氢氧火焰熔化粉料并使之结晶的方法。

下面主要介绍下提拉法。

一.提拉法的基本原理:提拉法是将构成晶体的原料压缩成圆棒,置于四个加热灯的焦点处加热熔化,在原料下面接籽晶,在受控条件下,使籽晶和熔体在交界面上不断进行原子或分子的重新排列,随着改变加热灯的焦点位置使其降温逐渐凝固而生长出单晶体。

二.生长要点(1)温度控制在晶体提拉法生长过程中是关键。

可以通过调节加热灯的功率来改变温度,保持在适合晶体生长的温度。

(2)提拉的速率决定晶体生长速度和质量。

适当的转速,可对熔体产生良好的搅拌,达到减少径向温度梯度,阻止组分过冷的目的。

一般提拉速率为每小时6-15mm。

在晶体提拉法生长过程中,常采用“缩颈”技术以减少晶体的位错,即在保证籽晶和熔体充分沾润后,旋转并提拉籽晶,这时界面上原子或分子开始按籽晶的结构排列,然后暂停提拉,当籽晶直径扩大至一定宽度(扩肩)后,再旋转提拉出等径生长的棒状晶体。

这种扩肩前的旋转提拉使籽晶直径缩小,故称为“缩颈”技术。

三.提拉法与其它晶体生长方法相比有以下优点:(1)在晶体生长过程中可以直接进行测试与观察,有利于控制生长条件;(2)使用优质定向籽晶和“缩颈”技术,可减少晶体缺陷,获得所需取向的晶体;(3)晶体生长速度较快;(4)晶体位错密度低,光学均一性高。

通过参观晶体生长实验室,让我学到了很多东西,获益良多。

从原料配比,压缩成原料棒,到加热融化与籽晶连接到一起开始生长,让我看到了晶体生长实验的严谨,与艰辛。

而且整个晶体生长的过程需要很多小时甚至几天的时间,觉得科研工作者在其工作中默默地付出劳动与汗水,值得我们敬佩与学习。

熔体中的晶体生长技术(提拉法)

熔体中的晶体生长技术(提拉法)

2020/4/5
低维半导体材料及量子器件
22
2020/4/5
天然石榴石低维半导体材料及量子器件
23
YIG
2020/4/5
低维半导体材料及量子器件
24
YIG
2020/4/5
低维半导体材料及量子器件
25
人工合成GGG
2020/4/5
低维半导体材料及量子器件
26
天然形成的石榴石主要是金属的硅酸盐
48
边界层 厚度的 起伏
温场对称 晶体旋转
温场不对称
生长层的形成
生长 速率 起伏
机械振动
43
6 提拉法生长晶体缺陷的形成与控制
晶体在生长(或降温)过程中所以会产生缺陷, 大体上是由以下几个方面的因素造成的: a 物质条件; b 热力学因素; c 分凝和组分过冷; d 温度分布和温度波动.
2020/4/5
低维半导体材料及量子器件
44
• a物质条件:
包括生长设备的稳定性,有害杂质的影响, 籽晶。
2020/4/5
低维半导体材料及量子器件
28
石榴石生长的主要方法在于原料的区别和 是否考虑掺杂问题,一般生长过程包括以 下几个方面:
a 原料准备 b 保护气氛 c 生长条件 d 掺杂生长 e 晶体的透过率与颜色
2020/4/5
低维半导体材料及量子器件
29
• a 原料准备:Ga2O3(氧化镓)Gd2O3(氧化 钆)经过焙烧,脱水,按照比例配料,混合 后经压机压紧后在1250℃进行固相反应,充 分反应后的原料可供晶体生长使用。
• e 晶体的透过率与颜色:
2020/4/5
低维半导体材料及量子器件
31
纯GGG和掺杂Cr3+

晶体提拉法

晶体提拉法
圈加热两大类。
• 采用电阻加热,方法简单,容易控制。保 温装置通常采用金属材料以及耐高温材料 等做成的热屏蔽罩和保温隔热层,如用电 阻炉生长钇铝榴石、刚玉时就采用该保温 装置。
• 控温装置主要由传感器、控制器等精密仪 器进行操作和控制。
2.后热器 3.坩锅
传动系统
气氛控制 系统
传动系统
为了获得稳定的旋转和升降,传动系 统由籽晶杆、坩埚轴和升降系统组成。
2. 提拉法含有气体包体,且气泡分布不均 匀。提拉法常可见拉长的或哑铃状气泡。
• 3. 提拉法合成的宝石是在耐高温的铱、 钨或钼金属坩埚中熔化原料的,可能含 有金属包体。
• 4. 提拉法生长的宝石晶体原料在高温下 加热熔化,偶尔可见未熔化的原料粉末。
• 5. 提拉法生长的宝石晶体时,由于采用 籽晶生长,生长成的晶体会带有籽晶的 痕迹。并且可能产生明显的界面位错。
极限生长速率fmax :
对于纯材料:
fmax

Ks
l
( T z
)s
(Ks为晶体的导热率)
对于掺质的材料
f max

D[ke
(1 ke ) exp( mcl (B) ((1 ke
f
D )

c)]
(
T z
)l
4 晶体提拉法生长宝石实例
-蓝宝石提拉晶体的放肩控制 蓝宝石单晶的应用非常广泛。以蓝宝石 单晶片作绝缘村底的集成芯片,航天工业作 红外透光材料用得最多;工业中作宝石轴承、 仪表等;人们生活中作宝石表面、装饰等。 提拉法生长的蓝宝石单晶适用于红外、半导 体发光及集成电路的大量需要。
3 晶体提拉法生长工艺
A 生长过程。 B 直径自动控制。(ADC技术) C 材料挥发的控制。 D 温场的选择与控制。 E 生长速率的控制。

晶体生长方法(新)

晶体生长方法(新)

晶体生长方法1) 提拉法(Czochralski,Cz )晶体提拉法的创始人是J. Czochralski ,他的论文发表于1918年。

提拉法是熔体生长中最常用的一种方法,许多重要的实用晶体就是用这种方法制备的。

近年来,这种方法又得到了几项重大改进,如采用液封的方式(液封提拉法,LEC ),如图1,能够顺利地生长某些易挥发的化合物(GaP 等);采用导模的方式(导模提拉法)生长特定形状的晶体(如管状宝石和带状硅单晶等)。

所谓提拉法,是指在合理的温场下,将装在籽晶杆上的籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩肩、转肩、等径、收尾、拉脱等几个工艺阶段,生长出几何形状及内在质量都合格单晶的过程。

这种方法的主要优点是:(a) 在生长过程中,可以方便地观察晶体的生长情况;(b) 晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c) 可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。

提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。

提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。

图1 提拉法晶体生长装置结构示意图2)热交换法(Heat Exchange Method, HEM)热交换法是由D. Viechnicki和F.Schmid于1974年发明的一种长晶方法。

其原理是:定向凝固结晶法,晶体生长驱动力来自固液界面上的温度梯度。

特点:(1) 热交换法晶体生长中,采用钼坩埚,石墨加热体,氩气为保护气体,熔体中的温度梯度和晶体中的温度梯度分别由发热体和热交换器(靠He作为热交换介质)来控制,因此可独立地控制固体和熔体中的温度梯度;(2) 固液界面浸没于熔体表面,整个晶体生长过程中,坩埚、晶体、热交换器都处于静止状态,处于稳定温度场中,而且熔体中的温度梯度与重力场方向相反,熔体既不产生自然对流也没有强迫对流;(3) HEM法最大优点是在晶体生长结束后,通过调节氦气流量与炉子加热功率,实现原位退火,避免了因冷却速度而产生的热应力;(4) HEM可用于生长具有图2HEM晶体生长装置结构示意图特定形状要求的晶体。

第四章 熔体中的晶体生长技术(提拉法).

第四章 熔体中的晶体生长技术(提拉法).

最后:缩颈工艺,将熔 体充分加热,使籽晶适 当回熔一部分,然后通 过加大提拉速度,使得 籽晶的直径尽可能缩小, 当晶体生长出一段明显 变细的长度后,可让晶 体的直径增大。我们把 这样一过程称为缩颈。
反复的缩颈工艺

由于位错往往与生长轴成一个 夹角,如果以(100)和(111)晶 向生长时,其滑移面与其生长方向 成36.16度和19.28度。故需长出足够 长的晶体或通过反复进行的缩颈工 艺,能使位错沿着滑移面延伸至晶 体表面而消失,从而可生长出无位 错单晶体。缩颈工艺通常是采用快 拉,将晶体直径缩小到大约为3mm左 右.
极限生长速率f max :
对于纯材料: K T f max s ( ) s ( K s为晶体的导热率) l z
对于掺质的材料 f max f D[ke (1 ke ) exp( c)] T D ( )l mcl ( B ) ((1 ke ) z
back
• 3 提拉法生长晶体实例-稀土镓石榴石(GGG)
& 4.3提拉法生长工艺
1 提拉法生长设备介绍 2 提拉法生长工艺介绍 3 提拉法生长晶体实例-稀土镓石榴石 4 提拉法生长晶体实例 -蓝宝石提拉晶体界面翻转的控制 5 提拉法生长晶体实例 -单晶硅的缩颈工艺 6 提拉法生长晶体缺陷的形成与控制 7 提拉法生长宝石晶体的鉴别 8 几种宝石鉴别
提拉法生长仿祖母 绿合成品
旋转引起条纹
生长纹往往深浅不一
生长条纹显微 结构
天然蓝宝石六边形生长纹
人造蓝宝石是在高温熔炉中生成的, 结晶时间很短,没有时间沿六边形的晶 形方向规则地排列,而是一层一层地增 添在弧形(圆柱体的表面)宝石的表面 上,并逐步形成了弯曲的“圆弧形生长 线”。凡是有这种圆弧形生长线或圆环 形色带的蓝宝石,就一定是人造品。

提拉法晶体生长资料收集

提拉法晶体生长资料收集

1、温场设计温场设计对晶体生长产生直接的影响,在晶体生长过程中,径向和纵向温度分布是温场设计的重点。

直接调整相对于感应线圈的柑竭位臵的高低(锅位),就可以调整纵向温度分布。

底盘的厚度、下保温系统的厚度、保温砂的粒度主要影响熔体表面对流和径向温度分布。

上保温系统的高度、观察窗口的大小、高低将影响作为热传输介质的保护气体的对流状态。

温场设计时既要考虑热量的导出,又要保证热场的均匀性和稳定性。

纵向温度分布、径向温度分布和保护气体的传热对流这三者是密切联系的。

根据柑祸的纵横比、感应线圈的尺寸、线圈中增锅的位臵来改进和优化温场。

2、保护气氛根据热传递原理,在高温生长室腔体中,因为较高气压的氮气氛必然加速气体对流,并易于把热是从腔体内传递到腔体外,从而有利于建立大温度梯度的沮场分布,保证了晶体正常生长,如果对生长室进行抽气,使之变成真空状态,此时在腔体内对流传热消失,而由于;胜体内壁的辐射,促使了腔体内温度更快趋于平衡。

这些都有利于在腔体内建立小梯度的温场分布,从而满足了晶体生长后冷却退火时对温场的要求。

3、晶体生长提拉法生长热量是由增祸传到熔体中的,因此在增祸壁附近的熔体温度较高、熔体密度较小,而远离祸壁的熔体中心则温度相对较低、熔体密度较大,在这种密度差造成的浮力差的作用下,熔体就会从祸壁处向中心处流动,形成自然对流。

另一方面,在实际的晶体生长过程中,生长的晶体不停的旋转(有时增祸也同时旋转),从而对熔体产生搅拌作用。

在这种搅拌力的作用下,熔体内会形成一股与自然对流近乎相反的液流,这就是强迫对流。

因此在晶体生长过程中,增锅内的熔体液流便有了三种状态,即自然对流占主导的状态(凸界面),自然对流与强迫对流平衡的状态(平界面)和强迫对流占主导的状态(凹界面),如下图所示。

坩锅内熔体的对流状态,直接决定着晶体生长过程中固液界面的形状:对于凹界面状态,由于固液界面处于凹界面时,晶体生长处于一种极不稳定的状态,生长出的晶体散射严重,缺陷密度大,因此是晶体生长过程中必须尽量避免的。

晶体提拉生长法流程

晶体提拉生长法流程

晶体提拉生长法流程晶体提拉生长法呀,这可是个很有趣的东西呢。

一、准备工作。

要开始晶体提拉生长,那得先把各种东西都准备好。

就像我们做饭得先买菜一样。

我们得有合适的原料,这个原料得是那种高纯度的,杂质太多可不行,就像我们做蛋糕不能用坏鸡蛋一样。

然后就是坩埚啦,这就像是晶体生长的小窝,要选择耐高温又合适的坩埚,这样晶体在里面才会舒舒服服地长大。

还有加热设备,得能给原料加热到足够高的温度,让它变成熔融状态。

这加热设备就像一个暖炉,给原料提供热量,让它能有变化的能量。

另外,籽晶也不能少,籽晶就像是一个小种子,晶体就从这个小种子开始慢慢长大的呢。

二、开始加热。

东西都准备好了,就可以开始加热原料了。

加热的时候,温度要控制好哦。

如果温度太高了,原料可能会变得太疯狂,到处乱溅或者出现一些不好的反应。

如果温度太低了,原料又不能完全融化,就像我们烧水,要是火太小,水半天都烧不开。

当原料慢慢融化的时候,就像看着一块冰慢慢变成水一样,不过这个过程可比冰化成水要热得多啦。

在这个过程中,我们得时刻盯着温度,就像盯着锅里煮的粥,不能让它糊了。

三、引入籽晶。

原料都融化得差不多了,就到了引入籽晶的时候了。

这时候要小心翼翼地把籽晶放到熔融的原料里面。

这就像把小种子种到土里一样,要轻手轻脚的。

籽晶一放进去,就会和熔融的原料有个接触,然后神奇的事情就开始发生了。

晶体就开始在籽晶的基础上慢慢生长起来了。

这个过程就像是魔法一样,看着一点点东西在籽晶上出现,然后慢慢变大,真的很让人兴奋呢。

四、提拉过程。

接下来就是提拉了。

要慢慢地把籽晶往上提起来,同时呢,要保证晶体在生长过程中各个部分都很均匀。

这就像我们拉面条一样,要拉得均匀,不能有的地方粗有的地方细。

在提拉的时候,速度也要合适,如果提得太快了,晶体可能还没长好就被拉断了,就像我们拔萝卜,要是太用力太快,萝卜可能就断在地里了。

如果提得太慢,晶体可能会长得歪歪扭扭的,不好看也不符合要求。

而且在提拉过程中,周围的环境也很重要,温度、气氛这些都要保持稳定,就像我们睡觉的时候,周围环境安静稳定我们才能睡得好,晶体在稳定的环境下才能健康成长。

提拉法生长晶体

提拉法生长晶体

LiNbO晶体提拉法生长3材料物理 0910278 吴纯治一、实验目的(1) 了解提拉法生长单晶的生长机制;(2) 学习LiNbO晶体的生长特性及生产工艺,熟悉设备结构与功能。

3二、实验原理当一个结晶固体的温度高于熔点时,固体就熔化为熔体,当熔体的温度低于凝固点时,熔体就凝固为固体。

单晶的生长涉及到固液相变,这个过程中,原子(或分子)的随机堆积的阵列转变为有序阵列,即结晶。

提拉法生长单晶:,将制备好的原料放进坩埚,然后把坩埚放入盛有绝热材料Al O泡沫颗粒)的加热炉中,加热炉采用中频感应线圈加热法或是电阻加热(23法。

原材料在高温下转变为熔体,提拉杆上放置一个单晶核,然后将晶核下端部分浸入熔体中。

在晶核和熔体的交界面上不断地进行分子与原子的有序排列,这样提拉杆旋转着往上提拉,单晶体就缓慢的生长出来了。

温度场:因为熔体温度高于材料熔点,而要生长单晶,籽晶浸入部分又不能融化(只能软化),所以要求温度满足低于材料熔点。

这势必要在熔体与晶核之间界面处形成一定的温度梯度,从熔体到晶体,温度以一定趋势降低。

引颈:缓慢向熔体下降,避免热冲击,降至离熔体0.5~1mm处,等待1小时,待籽晶与熔体温度相近时,开始引颈。

引颈的过程必须要进行“缩颈”,以减少籽晶的位错向晶体的扩展。

放肩:经“缩颈”一定长度后,开始缓慢放肩,要获得高品质的单晶,放肩的角度一定要小,肩型要缓,放肩角小于60度为好。

实验步骤:原料处理,装料,抽真空(对于LiNbO晶体不需要),升温,熔料,3引颈,放肩,等径,提拉。

三、实验内容(1)认知学习:学习了解晶体生长的各个设备及流程。

四、思考题1.什么叫晶体的同成分配比生长,有那些因素会影响晶体的组分?同成分配比:满足生长出的单晶成分与熔体中成分比例一致的配比。

影响因素有温度,过冷度等。

2.为防止晶体开裂,应当注意什么事项?应保证同成分,即熔体与生长出的晶体成分比例是相同的,而且要保证温度梯度要合适。

第四章 熔体中的晶体生长技术(熔体导模法)

第四章 熔体中的晶体生长技术(熔体导模法)

不同形状的导模
五、导模法生长宝石晶体实例(合成金 导模法生长宝石晶体实例( 绿宝石) 绿宝石)
1 原料配制: 原料配制:
Al2 ( SO4 )3 ( NH 4 ) SO4 i24 H 2O + BeSO4 i4 H 2O → BeAl2O4
→ 脱硫脱水,多晶体合成。
→ 1300 C下保温10小时,可得到金绿宝石的块体
将籽晶浸入熔体将籽晶浸入熔体籽晶表面回熔籽晶表面回熔缩颈放肩提拉缩颈放肩提拉到模具顶部表到模具顶部表面面特定形状的特定形状的晶体的生长阶晶体的生长阶将原料放入坩埚中加将原料放入坩埚中加热熔化熔体沿一模具在热熔化熔体沿一模具在毛细作用下上升至模具顶毛细作用下上升至模具顶端在模具顶部液面上接端在模具顶部液面上接籽晶提拉熔体使籽晶在籽晶提拉熔体使籽晶在熔体的交界面上不断进行熔体的交界面上不断进行原子或分子的重新排列原子或分子的重新排列随降温逐渐凝固而生长出随降温逐渐凝固而生长出与模具边缘形状相同的单与模具边缘形状相同的单晶体
模具的选择原则: 模具的选择原则: 1 熔点高于晶体的熔点; 熔点高于晶体的熔点; 能被熔体润湿; 能被熔体润湿;与熔体相 互之间不发生化学反应。 互之间不发生化学反应。 2 模具的形状、尺寸精确, 模具的形状、尺寸精确, 边缘平滑、 边缘平滑、顶部表面的光 洁度好( 洁度好(达到镜面的水 平)。 3加工好的模具使用前应 在高温下进行退火处理, 在高温下进行退火处理, 这样不易产生气孔。 这样不易产生气孔。
四、导模法生长宝石晶体装置
与提拉法的差异: 与提拉法的差异: 生长装置与提拉法 相似。不同的是将具 相似。 有毛细管的模具安装 在坩埚底部, 在坩埚底部,籽晶通 过毛细管口与熔体相 接触, 接触,然后按照模具 顶端截面的形状提拉 初各种形状的晶体。 初各种形状的晶体。 而晶体提拉法只能得 到圆柱状的晶体。 到圆柱状的晶体。

5.4-晶体生长技术

5.4-晶体生长技术
一、 提拉法简介 提拉法是一种利用
提拉法
籽晶从熔体中提拉出晶
体的生长方法,亦称恰
克拉斯法或提拉法。
提拉法晶体生长设备
提拉法的主要优点是:
(1)直观:利于及时掌握生长情况,控制生长条件。 (2)晶体不与坩埚接触,没有壁寄生成核和胁迫应力。 (3)使用优质定向籽晶和缩颈技术,减少晶体缺陷。 (4)能以较快速度获得高质量优质单晶。
晶体生长设备
坩埚下降法的优点:
1. 晶体密封生长,熔体挥发少,成分容易控制;
2. 适宜生长大直径单晶,可以一次生长多根晶体;
3. 工艺条件容易掌握,易于实现自动化。
坩埚下降法的缺点:
1.不宜生长结晶时体积增大的晶体;
2.生长过程难以确定,所长晶体内应力较大。
坩埚下降法中成核问题直接关系到晶体质量和单晶化 程度。 坩埚下部温度逐渐降低后,坩埚壁局部过冷区域形成 晶核并释放结晶潜热,须将结晶潜热迅速移去晶核才能继
熔体法晶体生长的局限性:
若存在以下情形,则难以采用熔体法进行晶体生长。
(1) 材料在熔化前就分解;
(2) 非同成分熔化的材料;
(3) 材料在熔化前升华或在熔点处蒸气压太高;
(4) 存在故态相变(脱溶沉淀和共析反应),破坏性相变;
(5) 熔点太高;
(6) 生长条件和必须进入晶体的某种掺杂不相容。
5.4.1.1
空间材料科学与制备技术提供有价值的实验数据。
原料制备
配制原料 籽晶加工 坩埚制作
晶体生长
降温

安装籽晶、填装原料

出炉
( 原料再处理)
焊封坩埚 晶体切割
晶体定向
晶体研磨 晶体抛光

上炉、升温、接种

提拉法生产单晶的工艺过程

提拉法生产单晶的工艺过程

提拉法生产单晶的工艺过程
提拉法是一种常用的单晶生长工艺,主要用于生产硅单晶。

以下是提拉法生产单晶的工艺过程:
1. 原料准备:将高纯度的硅原料加入石英坩埚中并加热熔化,得到硅熔体。

2. 晶体种植:在石英坩埚内放入种子晶体,使其与硅熔体接触,形成晶体的初步生长。

3. 晶体提拉:将种子晶体与坩埚底部相连的拉杆慢慢向上拉升,使硅熔体慢慢提拉,晶体就会逐渐延伸。

4. 形成单晶棒:通过适当的控制拉杆的上升速度和熔体的温度,使得晶体在提拉的过程中逐渐形成单晶。

5. 控制温度和速度:在整个提拉过程中,需要严格控制熔体的温度和晶体提拉速度,以保证单晶的质量和尺寸。

6. 切割和修整:当单晶棒的长度达到一定要求后,将其切割成单个硅片,并进行修整和打磨,以得到最终的单晶硅片。

需要注意的是,提拉法生产单晶的过程需要在高真空环境下进行,以避免杂质的
污染。

此外,提拉法虽是一种常用的单晶生长工艺,但其过程控制较为复杂,需要经验丰富的技术人员进行操作。

熔体中的晶体生长技术(提拉法)

熔体中的晶体生长技术(提拉法)
化合物半导体材料在光电子、电子器 件和集成电路等领域具有广泛应用。
提拉法也被用于制备化合物半导体材料 ,如GaAs、InP等,通过控制熔体中的 成分和晶体生长条件,可以制备出高质 量、性能优异的化合物半导体材料。
在功能陶瓷材料制备中的应用
功能陶瓷材料在电子、能源、环保等领域具有广泛应用,如压电陶瓷、热敏陶瓷 等。
提拉法也被用于制备功能陶瓷材料,通过控制熔体中的成分和晶体生长条件,可 以制备出具有优异性能的功能陶瓷材料,提高其应用性能。
在其他领域的应用实例
提拉法还被应用于制备其他材料,如金属单晶、宝石等。
通过提拉法可以制备出高质量、性能优异的晶体材料,满足不同领域的需求。
05 提拉法的挑战与未来发展
面临的挑战
晶体质量与纯度控制
提拉法在生长过程中难以完全消除杂质和缺陷,影响晶体质量。
生长速度与尺寸限制
提拉法生长速度较慢,且难以生长大尺寸晶体。
成本与效率
提拉法需要高纯度原料和精密设备,导致成本较高,效率较低。
未来发展方向与趋势
新型晶体生长技术
研究和发展新型晶体生长技术,以提高晶体质量和纯度,降低成 本和能耗。
优点 可生长大尺寸单晶体 晶体质量高,缺陷少
提拉法的优缺点
• 可通过优化生长条件获得高纯度晶体
提拉法的优缺点
缺点
对温度控制要求严格,操 作难度较大
对设备要求高,成本较高
对于某些材料,提拉法可 能不是最佳的晶体生长技 术
02 提拉法的基本流程
熔体制备
原料选择
根据所需生长的晶体种 类,选择合适的原料, 确保纯度高、杂质少。
配料与混合
将原料按照一定的比例混 合,并进行充分的搅拌, 以保证原料的均匀性。

最全的材料晶体生长工艺汇总

最全的材料晶体生长工艺汇总
引入磁场可以在一定程度上减弱对流,但同时磁场的引入也加大了仿真模拟的难度,使 得生长质量预测变的更难,因此需要专业的晶体生长软件才能提供可靠的仿真数据。 晶体提拉法有以下优点: (1)在晶体生长过程中可以直接进行测试与观察,有利于控制生长条件; (2)使用优质定向籽晶和“缩颈”技术,可减少晶体缺陷,获得优质取向的单晶; (3)晶体生长速度较快; (4)晶体光学均一性高。 晶体提拉法的不足之处在于: (1)坩埚材料对晶体可能产生污染;
提拉法的原理:首先将待生长的晶体的原料放在耐高温的坩埚中加热熔化,调整炉内温 度场,使熔体上部处于过冷状态;然后在籽晶杆上安放一粒籽晶,让籽晶下降至接触熔体表 面,待籽晶表面稍熔后,提拉并转动籽晶杆,使熔体处于过冷状态而结晶于籽晶上,并在不 断提拉和旋转过程中,最终生长出圆柱状的大块单晶体。
泡生法技术优势:
1)在整个晶体生长过程中,晶体不被提出坩埚,仍处于热区。可以控制冷却速度,减 小热应力;
2)晶体生长时,固液界面处于熔体包围中,生长稳定,热应力小,缺陷少; 3)可以选用软水作为热交换器内的工作流体,装置成本低,效果好; 缺点: 1)生长难点是温度场的控制比提拉法要求更高。容易受到机械振动影响。 2)生长速度比提拉法低,效率不够高。
在晶体生长领域,定向凝固法是通过建立特定方向的温度梯度,使熔融原料沿着与热流 相反的方向结晶凝固的一种晶体生长工艺。定向凝固实际上是所有定向温度梯度方法的基本 特征或总称。通常所说的定向凝固法,特指目前普遍采用的 GT Solar 公司所提供的定向凝固 系统法(Directional solidification system,DSS),其生长炉系统如图所示。
1)凝固方向和重力方向相反,减少自然对流; 2)无坩埚移动,无晶体转动,生长界面稳定 刚生长的界面被熔体包围,减少热应力; 3)可以直接生长具有坩埚形状的晶;体 4)设备原理简单,操作方便。 缺点: 1)由于与坩埚接触紧密,对坩埚热膨胀系数要求高,热膨胀系数要与物料匹配避免出 现应力; 2)坩埚接触容易污染,坩埚表面要求高; 3)温度场的控制较困难。

4.5_晶体生长

4.5_晶体生长

※ 蒸发法
基本原理:将溶剂不断 蒸发,使溶液保持在过 饱和状态,从而使晶体 不断生长。 特点:比较适合于溶解 度较大而溶解温度系数 很小或者是具有负温度 系数的物质。与流动法 一样也是在恒温条件下 进行的。
实例:如α-碘酸锂单晶体的生长。
※ 凝胶法
基本原理:以凝胶作为扩散和支持介质,使一些在 溶液中进行的化学反应通过凝胶扩散,缓慢进行。 优点:适于生长溶解度十分小的难溶物质的晶体; 制备方法简单;生长的晶体完整性较好,应力较 小。 缺点:在溶液凝胶界面附近浓度梯度较大,容易形 成较多的晶核,堵塞扩散路径;生长速度慢,晶 体尺寸小。 实例:钙和铜的酒石酸盐类、氯化亚铜等晶体,得 到的晶体尺寸通常为1~5: (1)火焰温度梯度大,结晶层纵向、横向 温度梯度大,生长出的晶体质量欠佳。 (2)发热源的温控不可能稳定控制。 (3)晶体促错密度较高,内应力也较大 (4)对易氧化易挥发的材料不宜采用。 (5)生长过程中的原料损失问题。
溶液中生长晶体
最关键因素:过饱和度 晶体生长过程中维持过饱和度的途径:
※ 循环流动法
图示
将溶液配置,过热处理,单晶生长等操作过程分别 在整个装置的不同部位进行,而构成了一个连续的 流程。
优点:调节方便、可选择较低的培养温度;生长
大批量的晶体和培养大单晶并不受晶体溶解度和溶 液体积的限制。 缺点:设备较复杂 ,连接管道内易发生结晶而使 管道堵塞。
循环流动育晶装置 1.原料 2.过滤器 3.泵 4.晶体 5.加热电阻丝
(1)温度控制;(2)提拉速率
提拉法
优点: (1)在晶体生长过程中可以直接进行测试与观察,有利于控 制生长条件; (2)使用优质定向籽晶和“缩颈”技术,可减少晶体缺陷,获得 所需取向的晶体; (3)晶体生长速度较快; (4)晶体位错密度低,光学均一性高。 缺点: (1)坩埚材料对晶体可能产生污染; (2)熔体的液流作用、传动装置的振动和温度的波动都会对 晶体的质量产生影响。

第四章 熔体中的晶体生长技术-区熔法.

第四章 熔体中的晶体生长技术-区熔法.

1 焰熔生长原理与设备
此方法概略地说是利用氢及氧气在燃烧过程中产 生高温,使一种疏松的原料粉末通过氢氧焰撒下熔融, 生高温,使一种疏松的原料粉末通过氢氧焰撒下熔融, 并落在一个冷却的结晶杆上结成单晶体的过程。 并落在一个冷却的结晶杆上结成单晶体的过程。 又称“维尔纳叶法” 焰熔法(又称“维尔纳叶法”)1902年法国 年法国 的化学家维尔纳叶( 的化学家维尔纳叶(Verneuil)改进并发展这一技术 ) 使之能进行商业化生产。因此, 使之能进行商业化生产。因此,这种方法又被称为 维 尔纳叶法。 尔纳叶法。
schematic graph for local melted
要求: 要求:由于熔区的稳定是靠表面张力和 重力的平衡来维持的, 重力的平衡来维持的,因此要求材料有 较大的表面张力和较小的熔态密度。 较大的表面张力和较小的熔态密度。对 加热技术和机械传动装置的要求比较严 格。
(3)基座法 该方法与浮区法基 本相同,熔区仍然由晶 体和多晶原料来支撑。 不同的是此法中多晶原 料棒的直径远远大于晶 体的直径。也是一种无 坩埚生长技术。
二 区域熔炼法分类
水平区熔法 浮区区熔法 基座法 焰熔法
区域熔炼法
(1)水平区熔法(1952)
特点: 特点:该方法的熔区被 限制在一段狭窄的范围 内,绝大部分材料处于 固态,熔区沿着料锭由 一端向另一端缓慢移动, 晶体生长过程逐渐完成。 优点: 优点:减小了坩埚对熔 体 的污染(减小了接触 面积)降低了加热功率; 区熔过程可反复进行, 从而提高了晶体的纯度 schematic graph for local melted 和掺质的均匀化。
4焰熔法生长宝石晶体优点缺点 焰熔法生长宝石晶体优点缺点
优点: 优点: 1不必使用高熔点的坩埚; 不必使用高熔点的坩埚; 不必使用高熔点的坩埚 2氢氧焰温度高达 氢氧焰温度高达2900摄氏度,能生长 摄氏度, 氢氧焰温度高达 摄氏度 高熔点的宝石; 高熔点的宝石; 3生长速率快,例如每小时可生长约 生长速率快, 生长速率快 10g的宝石,直径可达 ~20mm; 的宝石, 的宝石 直径可达15~ ; 4生长设备简单,适用于工业化生产 生长设备简单, 生长设备简单 适用于工业化生产。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极限生长速率f max :
对于纯材料: K T f max s ( ) s ( K s为晶体的导热率) l z
对于掺质的材料 f max f D[ke (1 ke ) exp( c)] T D ( )l mcl ( B ) ((1 ke ) z
back
• 3 提拉法生长晶体实例-稀土镓石榴石(GGG)
& 4.3提拉法生长工艺
1 提拉法生长设备介绍 2 提拉法生长工艺介绍 3 提拉法生长晶体实例-稀土镓石榴石 4 提拉法生长晶体实例 -蓝宝石提拉晶体界面翻转的控制 5 提拉法生长晶体实例 -单晶硅的缩颈工艺 6 提拉法生长晶体缺陷的形成与控制 7 提拉法生长宝石晶体的鉴别 8 几种宝石鉴别
提拉法生长仿祖母 绿合成品
天然石榴石
YIG
YIG
人工合成GGG
天然形成的石榴石主要是金属的硅酸盐 例如:Ca3Fe2[SiO4] ,Mn3Al2[SiO4]3. 人工研制的石榴石,如钇铁石榴石(YIG)、 钇铝石榴石(YAG)和钆镓石榴石(GGG)等. 以上三大类人工石榴石,即由稀士(Yt,Nd) 和铁、铝、镓(Ga)分别完全取代天然石榴石 中的金属元素和硅,所形成的稀土铁石榴石、 稀土铝石榴石和稀土镓石榴石.
纯GGG和掺杂Nd3+
4提拉法生长晶体实例 -蓝宝石提拉晶体的放肩控制 蓝宝石单晶的应用非常广泛。以蓝宝石 单晶片作绝缘村底的集成芯片,航天工业作 红外透光材料用得最多;工业中作宝石轴承、 仪表等;人们生活中作宝石表面、装饰等。 提拉法生长的蓝宝石单晶适用于红外、半导 体发光及集成电路的大量需要。
back
• e 生长速率的控制 • 提拉速度不能超过临界值,该临界值决定于材 料的性质和生长参数。例如:晶体热导率Ks较 高的材料比Ks较低的材料(氧化物或者是有机 物)可有较大的生长率 。 • 生长参数:界面翻转、晶体内所允许的最大热 应力 • fp宏观生长率fo大于晶体的提拉速率fo≈(R2/R2r2)fp R和r分别为甘埚和晶体的半径。
提拉法生长无色蓝宝石
1 提拉法生长设备介绍
加热 系统 1.保温
YAG生长设备
传动系统
2.后热器
气氛控制 系统
3.坩锅
后热器的 主要作用 是调节晶 长过程。
b直径自动控制。(ADC技术) c材料挥发的控制。 d 温场的选择与控制。 e 生长速率的控制。
• c生长条件:提拉速度一般在5-10mm/h范 围内。若掺质或生长大直径的晶体,要 放慢生长速度。生长最合适的方向为< 111> • d 掺杂生长:掺质生长存在一个分凝问题。 分凝系数有的大于1有的小于1,因此掺 质的浓度也不同。 • e 晶体的透过率与颜色:
纯GGG和掺杂Cr3+
纯GGG和掺杂Co3+
• 覆盖物质应具有以 下性质:密度小于 熔体的密度,透明, 对熔体、坩埚和气 氛是化学惰性的, 能够浸润晶体、熔 体和坩埚,并具有 较大的粘度。目前, 最好的覆盖物质是 熔融的B2O3
back
• d 温场的选择与控制 为克服组分过冷,需要有大的温度梯度;为防止 开裂、应力和降低位错密度,需要小的温度梯度。因 此,所谓合适的温场没有一个严格的判据。 一般来说,对于掺质的需要大的温度梯度(特别是 界面处);而不掺质的或者容易开裂的,采用小的温 度梯度。因此,合适的温场的选择和控制,只能根据 材料特性作出初步判断,通过实验加以解决。 加大温度梯度方法:缩小熔体和熔体上方空间的距离 (轴向距离) 减小温度梯度的方法:采用适当的后热器
在这三类稀土石榴石中,稀土铁石榴石(YIG) 不透明,难以用作装饰品; 稀土铝石榴石(YAG)存在折射率不够高,不 易掺质. 稀土镓石榴石(GGG)由于其本身的结构特点, 不但能进行多种形式的掺质,而且通过辐照还可 以形成稳定的色心,使其单晶体呈现绚丽多彩的 漂亮颤色,最适宜作为装饰宝石材料。常用的掺 质元素为:Cr,Co,Ni等过渡族元素氧化物和稀土 Nd,Er的氧化物。
• 3 提拉法生长晶体实例-稀土镓石榴石(GGG)
a生长过程
b 直径自动控制(ADC)
弯月面光反射法:
晶体等径生长时对应的弯月面角为: L 当l
L时,直径扩大;反之,缩小。
L的大小取决与材料的性质,不为0的 L意味着 晶体与熔体之间是非完全浸润的。
back
• c材料挥发的控制 • 高温下材料的挥发,改变了熔体的化学 配比,造成熔体某成分的过剩,组分过 冷的改变等一系列影响。因此,人们发 展了液相覆盖技术和高压单晶炉。
石榴石生长的主要方法在于原料的区别和 是否考虑掺杂问题,一般生长过程包括以 下几个方面: a 原料准备 b 保护气氛 c 生长条件 d 掺杂生长 e 晶体的透过率与颜色
• a 原料准备:Ga2O3(氧化镓)Gd2O3(氧化钆) 经过焙烧,脱水,按照比例配料,混合后经 压机压紧后在1250℃进行固相反应,充分反 应后的原料可供晶体生长使用。 • b保护气氛:GGG的熔点为1750摄氏度,一般 采用铱坩埚,但铱坩埚存在氧化的问题。因 此加入高纯氮气和2%的氩气。
• 原料: 白色合成蓝宝石碎块+TiO2+Fe2O3, TiO2、Fe2O3配比视颜色而定。 • 工艺参数:2050℃以上,转速:10- 15r/min ,提拉:1-10mm/h
放肩过程中在dt时间内凝固的晶体质量为:
dm ( r 2 dz 2 rdrz ) v dz / dt 式中: r 2 dz为高为dz的柱体的体积 2 rdrz 为高为z的锥环柱的体积 dm / dt r 2v 2 r (d 2 r / dt 2 )
石榴石主要包括的六种矿物: (1)镁铝榴石(Pyrope) ,也叫红榴石 (2)铁铝榴石(Almandine) ,也叫贵榴石 (3)锰铝榴石(Spessartite) (4)钙铝榴石(Grossular), 水钙铝榴石 (5)钙铁榴石(Andradite),含Cr叫翠榴石 (6)钙铬榴石(Uvarovite) ,也叫绿榴石
相关文档
最新文档