北师大版七年级上册专题复习
北师大版七年级数学上册:期末压轴题综合专题复习 (含答案)
北师大版七年级数学上册期末压轴题综合专题复习题1、如图,A,B,C三棵树在同一直线上,若小明正好站在线段的AC中点Q处,BC=2BQ.(1)填空:AQ==AC,AQ﹣BC=.(2)若BQ=3米,求AC的长.2、如图,已知线段60AC CD DB=,AB=,点C、D分别是线段AB上的两点,且满足::3:4:5点K是线段CD的中点,求线段AK的长.3、如图,直线AB、CD相交于O,OD平分AOF∠、∠=︒,求COB⊥于点O,150∠,OE CD∠的度数.BOF4、如图,已知点C为AB上一点,15AC cm=,35CB AC=,D,E分别为AC,AB的中点,求DE的长.5、如图,已知射线OC在∠AOB内,OM和ON分别平分∠AOC和∠BOC.(1)若∠AOC=50°,∠BOC=30°,求∠MON的度数.(2)探究∠MON与∠AOB的数量关系.6、如图,点B、O、C在一条直线上,OA平分BOC∠,90DOE∠=︒,OF平分AOD∠,36AOE∠=︒.(1)求COD∠的度数;(2)求BOF∠的度数.7、已知:如图,120AOB ∠=︒,过点O 作射线OP ,若OM 平分AOP ∠,ON 平分BOP ∠, AOP α∠=.(1)如图1,补全图形,直接写出MON ∠= ° ; (2)如图2,若4BOM BON ∠=∠,求α的值.8、已知点A ,B ,C 在同一条直线上,点M ,N 分别是AC ,BC 的中点. (1)如图,若点C 在线段AB 上,6AC cm =,4CB cm =,求线段MN 的长; (2)若点C 在线段AB 上,且AC CB acm +=,试求MN 的长度,并说明理由;(3)若点C 在线段AB 的延长线上,且AC BC bcm -=,猜测MN 的长度,写出你的结论,画出图形并说明理由.BAOP图1BAOPMN图29、如图,已知点O 为直线AB 上一点,将一直角三角板MON 的直角顶点放在O 处. (1)如图1,将三角板的一边ON 与射线OB 重合,过点O 在三角板的内部做射线OC ,使2NOC MOC ∠=∠,求AOC ∠的度数;(2)如图2,将三角板绕点O 逆时针旋转一定角度到图2的位置,过点O 在三角板MON 的内部作射线OC 使得OC 恰好是MOB ∠的角的平分线,此时AOM ∠与NOC ∠满足怎样的关系?并说明理由.10、已知数轴上A ,B 两点对应的数分别为a 和b ,且a ,b 满足等式2(9)|7|0a b ++-=,p 为数轴上一动点,对应的数为x .(1)a = ,b = ,线段AB = .(2)数轴上是否存在点p ,使3PA PB =?若存在,求出x 的值;若不存在,请说明理由. (3)在(2)的条件下,若M ,N 分别是线段AB ,PB 的中点,试求线段MN 的长.11、如图1,点C 把线段AB 分成两条线段AC 和BC ,如果AC =2BC ,则称点C 是线段AB的内二倍分割点;如图2,如果BC =2AC ,则称点C 是线段BA 的内二倍分割点.图1 图2例如:如图3,数轴上,点A 、B 、C 、D 分别表示数-1、2、1、0,则点C 是线段AB 的内二倍分割点;点D 是线段BA 的内二倍分割点.图3(1)如图4,M 、N 为数轴上两点,点M所表示的数为-2,点N 所表示的数为7.图4(2)数轴上,点A 所表示的数为-30,点B 所表示的数为20.点P 从点B 出发,以2个单位每秒的速度沿数轴向左运动,设运动时间为t (t >0)秒. ②求当t 为何值时,P 、A 、B 三个点中恰有一个点为其余两点的内二倍分割点.12、已知A 、B 在数轴上对应的数分别用a 、b 表示,且21(100)|10|02ab a ++-=.P 是数轴的一动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)数轴上一点C 距A 点24个单位的长度,其对应的数c 满足||ac ac =-,当P 点满足2=时,求P点对应的数PB PC(3)动点M从原点开始第一次向左移动1个单位,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,⋯⋯点M能移动到与A或B重合的位置吗?若能,请探究第几次移动是重合;若不能,请说明理由.13、数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A,B在数轴上分别对应的数为a,()<,则AB的长度可以表示为AB b ab a b=-.请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B点,然后向右移动5个单位长度到达C点.(1)请你在图②的数轴上表示出A,B,C三点的位置.(2)若点A以每秒1个单位长度的速度向左移动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t秒.①当2t=时,求AB和AC的长度;②试探究:在移动过程中,34-的值是否随着时间t的变化而改变?若变化,请说明AC AB理由;若不变,请求其值.14、阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.(1)如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D【A,B】的好点,但点D【B,A】的好点.(请在横线上填是或不是)知识运用:(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2.数所表示的点是【M,N】的好点;(3)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当经过秒时,P、A和B中恰有一个点为其余两点的好点?15、对于数轴上的A,B,C三点,给出如下定义:若其中一个点到另外两个点的距离恰好满足n(n是大于1的整数)倍的数量关系,则称该点是另外两个点的“n倍和谐点”.例如:数轴上点A,B,C所表示的数分别为1,2,4,此时点B是点A,C的“2倍和谐点”;(1)若点A表示数是-1, 点C表示的数是5,点B1,B2,B3,依次表示-4,1,7各数,其2中是点A,C的“3倍和谐点”的是;(2)点A表示的数是-20,点C表示的数是40,点Q是数轴上一个动点.①若点Q是点A,C的“4倍和谐点”,求此时点Q表示的数;①若点Q在点A的右侧,且点Q是点A,C的“n倍和谐点”,用含有n的式子直接写出此时点Q所表示的数.参考答案1、如图,A,B,C三棵树在同一直线上,若小明正好站在线段的AC中点Q处,BC=2BQ.(1)填空:AQ=CQ=AC,AQ﹣BC=BQ.(2)若BQ=3米,求AC的长.【解答】解:(1)∵O是线段AC的中点,∴AQ=CQ=AC,AQ﹣BC=CQ﹣BC=QB,故答案为;(2)∵BQ=3米,BC=2BQ,∴BC=2BQ=6米,∴CQ=BC+BQ=6+3=9(米),∵Q是AC中点,∴AQ=QC=9(米),∴AC=AQ+QC=9+9=18(米),∴AC的长是18米.2、如图,已知线段60AB=,点C、D分别是线段AB上的两点,且满足::3:4:5AC CD DB=,点K是线段CD的中点,求线段AK的长.【解答】解:设3AC x =,则4CD x =,5DB x =, 60AB AC CD DB =++= 34560AB x x x ∴=++=.5x ∴=.点K 是线段CD 的中点. 1102KC CD ∴==.25AK KC AC ∴=+=.3、如图,直线AB 、CD 相交于O ,OD 平分AOF ∠,OE CD ⊥于点O ,150∠=︒,求COB ∠、BOF ∠的度数.【解答】解:OE CD ⊥于点O ,150∠=︒, 90140AOD ∴∠=︒-∠=︒, BOC ∠与AOD ∠是对顶角,40BOC AOD ∴∠=∠=︒. OD 平分AOF ∠, 40DOF AOD ∴∠=∠=︒, 180BOF BOC DOF ∴∠=︒-∠-∠1804040100=︒-︒-︒=︒.4、如图,已知点C 为AB 上一点,15AC cm =,35CB AC =,D ,E 分别为AC ,AB 的中点,求DE 的长.【解答】解:15AC cm =,35CB AC =, 31595CB cm ∴=⨯=,15924AB cm ∴=+=.D ,E 分别为AC ,AB 的中点,1122AE BE AB cm ∴===,17.52DC AD AC cm ===, 127.5 4.5DE AE AD cm ∴=-=-=.5、如图,已知射线OC 在∠AOB 内,OM 和ON 分别平分∠AOC 和∠BOC . (1)若∠AOC =50°,∠BOC =30°,求∠MON 的度数. (2)探究∠MON 与∠AOB 的数量关系.【解答】解:(1)∵OM ,ON 分别平分∠AOC 、∠BOC , ∴.∵∠AOC =50°,∠BOC =30°, ∴∠COM =25°,∠CON =15°,∴∠MON =∠COM +∠CON =25°+15°=40°. (2)∵OM 和ON 分别平分∠AOC 和∠BOC , ∴,∴=即:.6、如图,点B 、O 、C 在一条直线上,OA 平分BOC ∠,90DOE ∠=︒,OF 平分AOD ∠,36AOE ∠=︒.(1)求COD ∠的度数; (2)求BOF ∠的度数.【解答】解:(1)90DOE ∠=︒,36AOE ∠=︒, 903654AOD DOE AOE ∴∠=∠-∠=︒-︒=︒,点B 、O 、C 在一条直线上,OA 平分BOC ∠, 1180902AOB AOC ∴∠=∠=⨯︒=︒,5490144COD AOD AOC ∴∠=∠+∠=︒+︒=︒.(2)OF 平分AOD ∠, 154272AOF ∴∠=⨯︒=︒,90AOB ∠=︒,902763BOF AOB AOF ∴∠=∠-∠=︒-︒=︒.7、已知:如图,120AOB ∠=︒,过点O 作射线OP ,若OM 平分AOP ∠,ON 平分BOP ∠, AOP α∠=.(1)如图1,补全图形,直接写出MON ∠= ° ; (2)如图2,若4BOM BON ∠=∠,求α的值.解:(1)补全图形如图1所示,直接写出MON ∠= 60 ° ;BAOP图1BAOPMN图2(2)∵ OM 平分AOP ∠,AOP α∠=, ∴12AOM α∠=, ∵120AOB ∠=︒, ∴11202BOM α∠=︒- 120BOP α∠=-︒. ∵ON 平分BOP ∠,∴1202BON α-︒∠=∵ 4BOM BON ∠=∠, ∴11201204()22αα-︒︒-=⋅.解得144α=︒.8、已知点A ,B ,C 在同一条直线上,点M ,N 分别是AC ,BC 的中点. (1)如图,若点C 在线段AB 上,6AC cm =,4CB cm =,求线段MN 的长; (2)若点C 在线段AB 上,且AC CB acm +=,试求MN 的长度,并说明理由;(3)若点C 在线段AB 的延长线上,且AC BC bcm -=,猜测MN 的长度,写出你的结论,画出图形并说明理由.【解答】解:(1)6AC cm =,点M 是AC 的中点,0.53CM AC cm ∴==,4CB cm =,点N 是BC 的中点,0.52CN BC cm ∴==, 5MN CM CN cm ∴=+=,∴线段MN 的长度为5cm ,(2)12MN a =,当C 为线段AB 上一点,且M ,N 分别是AC ,BC 的中点,则存在12MN a =,(3)当点C 在线段AB 的延长线时,如图:则AC BC >,M 是AC 的中点,12CM AC ∴=, 点N 是BC 的中点, 12CN BC ∴=, 11()22MN CM CN AC BC b ∴=-=-=.9、如图,已知点O 为直线AB 上一点,将一直角三角板MON 的直角顶点放在O 处. (1)如图1,将三角板的一边ON 与射线OB 重合,过点O 在三角板的内部做射线OC ,使2NOC MOC ∠=∠,求AOC ∠的度数;(2)如图2,将三角板绕点O 逆时针旋转一定角度到图2的位置,过点O 在三角板MON 的内部作射线OC 使得OC 恰好是MOB ∠的角的平分线,此时AOM ∠与NOC ∠满足怎样的关系?并说明理由.【解答】解:(1)2NOC MOC ∠=∠, 1903021MOC ∴∠=︒⨯=︒+, 9030120AOC AOM MOC ∴∠=∠+∠=︒+︒=︒.(2)2AOM NOC ∠=∠,令NOC ∠为β,AOM ∠为γ,90MOC β∠=︒-, 180AOM MOC BOC ∠+∠+∠=︒,9090180γββ∴+︒-+︒-=︒, 20γβ∴-=,即2γβ=, 2AOM NOC ∴∠=∠.10、已知数轴上A ,B 两点对应的数分别为a 和b ,且a ,b 满足等式2(9)|7|0a b ++-=,p 为数轴上一动点,对应的数为x .(1)a = 9- ,b = ,线段AB = .(2)数轴上是否存在点p ,使3PA PB =?若存在,求出x 的值;若不存在,请说明理由. (3)在(2)的条件下,若M ,N 分别是线段AB ,PB 的中点,试求线段MN 的长.【解答】解:(1)由2(9)|7|0a b ++-=,得 90a +=,70b -=.解得9a =-,7b =.线段7(9)16AB b a =-=--=;(2)当P 在AB 上时,PA PB AB +=,即3PB PB AB +=, 即4PB =, 74x -=,解得3x =;当P 在线段AB 的延长线上时,PA PB AB -=, 3PB PB AB -=, 8PB =, 7815x =+=;(3)当P 在AB 上时,如图1;,点M 、点N 分别是线段AB ,PB 的中点,得 182MB AB ==,122BN PB ==. 由线段的和差,得826MN MB NB =-=-=;当P 在AB 的延长线上时,如图2;,点M 、点N 分别是线段AB ,PB 的中点,得 182MB AB ==,142BN PB ==. 由线段的和差,得8412MN MB NB =-=+=.综上所述:MN 的长为6或12. 故答案为:9-,7,16.11、如图1,点C 把线段AB 分成两条线段AC 和BC ,如果AC =2BC ,则称点C 是线段AB 的内二倍分割点;如图2,如果BC =2AC ,则称点C 是线段BA 的内二倍分割点.图1 图2例如:如图3,数轴上,点A 、B 、C 、D 分别表示数-1、2、1、0,则点C 是线段AB 的内二倍分割点;点D 是线段BA 的内二倍分割点.图3(1)如图4,M 、N 为数轴上两点,点M所表示的数为-2,点N 所表示的数为7.图4(2)数轴上,点A 所表示的数为-30,点B 所表示的数为20.点P 从点B 出发,以2个单位每秒的速度沿数轴向左运动,设运动时间为t (t >0)秒.②求当t为何值时,P、A、B三个点中恰有一个点为其余两点的内二倍分割点.【解答】(1(2)①则线段BP②当P在线段AB上时,有以下两种情况:如果P是AB的内二倍分割点时,则AP=2BP,所以50-2t = 2×2t,解得t=253;如果P是BA的内二倍分割点时,则BP=2AP,所以2t=2(50-2t),解得t=503;当P在点A左侧时,有以下两种情况:如果A是BP的内二倍分割点时,则BA=2PA,所以50=2(2t-50)解得t=752;如果A是PB的内二倍分割点时,则PA=2BA,所以2t-50=2×50,解得t=75;综上所述:当t 为253,503,752,75时,P 、A 、B 中恰有 一个点为其余两点的内二倍分割点。
北师大版七年级上册数学总复习
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
Hale Waihona Puke 先求出所抽查的这5天的平均用电量,从而估计他家6月份日用电量为.
【详解】
解:∵这5天的日用电量的平均数为 =9(度),
∴估计他家6月份日用电量为9度,
故选:D.
【点睛】
本题考查平均数的定义和用样本去估计总体.平均数等于所有数据的和除以数据的个数.
A. B. C. D.
12.观察下列算式: , , , , , , , ,…….根据上述算式中的规律,你认为 的个位数字是()
A.2B.4C.6D.8
13.已知 和 是同类项,则 的值是()
A.-2B.1C.0D.-1
14.已知整数 、 、 、 、…满足下列条件: , , , ,…, ( 为正整数)依此类推,则 的值为()
21.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为().
A.36块B.41块C.46块D.51块
22.有两个正数a,b,且 ,把大于等于a且小于等于b所有数记作[a,b],例如大于等于1且小于等于4的所有数记作[1,4] .如果m在[5,15]内,n在[20,30]内,那么 的一切值中属于整数的有()
A.a﹣b>0B.a+b>0C. >0D.ab>0
26.“比 的3倍大5的数”用代数式表示为( )
A. B. C. D.
27.长方形ABCD中,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示.设图1中阴影部分的周长为C1,图2中阴影部分的周长为C2,则C1-C2的值为( )
北师大版七年级数学上册字母表示数和代数式专题复习(含答案)
北师大版七年级数学上册字母表示数和代数式专题复习一、选择题1.某商品打八折后价格为a元,则原价为()A. a元B. 20%a元C. 54a元 D. 45a元2.一辆汽车在a秒内行驶m6米,则它在2分钟内行驶()A. m3米 B. 20ma米 C. 10ma米 D. 120ma米3.某商品原价每件x元,后来店主将每件增加10元,再降价25﹪,则现在的单价是()A. (25﹪x+10)元B. ﹝(1−25﹪)x+10﹞元C. 25﹪(x+10)元D. (1−25﹪)(x+10)元4.一块地有a公顷,平均每公顷产粮食m千克;另一块地有b公顷,平均每公顷产粮食n千克,则这两块地平均每公顷的粮食产量为()A. m+n2B. a+b2C. am+bna+bD. am+bmm+n5.用18米长的铝合金做成一个长方形的窗框(如图),设长方形的窗框的横条长度为x米,则长方形窗框的面积为()A. x(18−3x2)平方米 B. x(x−9)平方米C. x(18−x)平方米D. x(18−2x3)平方米6.工人师傅要把一根质地均匀的圆柱形木料锯成若干段,按如图的方式锯开,每锯断一次所用的时间相同.若锯成6段需要时间10分钟,则锯成n(n≥2,且n为整数)段所需的时间为()n分钟 B. 2n分钟 C. (2n+2)分钟 D. (2n−2)分钟A. 537.小慧家购买一套价格为12万元的住房.按要求,需首期(第一年)付房款3万元,从第二年起,每年应付房款0.5万元与上一年剩余房款的利息的和.假设剩余房款年利率为0.4%,小慧列表推算如下:第一年第二年第三年…应还款(万元)30.5+9×0.4%0.5+8.5×0.4%…剩余房款(万元)98.58…若第n年小慧家仍需还款,则第n年(n>1)应还款().A. 0.5+[9−0.5(n+1)]×0.4%B. 0.5+(9−0.5n)×0.4%C. 0.5+[9−0.5(n−1)]×0.4%D. 0.5+[9−0.5(n−2)]×0.4%8.我们知道,式子|x−3|的几何意义是数轴上表示x的点与表示3的点之间的距离,则式子|x−2|+2|x+1|的最小值是()A. 2B. 3C. 4D. 59.如图是一正方体的展开图,若正方体相对面所表示的数相等,则x+y的值为()A. −5B. −4C. 1D. 510.甲乙两个超市为了促销一种定价相等的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买同样数量的这种商品最合算()A. 甲B. 乙C. 相同D. 不能确定11.若x2−3y−5=0,则6y−2x2−6的值为()A. 4B. −4C. 16D. −1612.若分式|x|−23x−2的值是负数,则x的取值范围是().A. 23<x<2 B. x>23或x<−2C. −2<x<2且x≠23D. 23<x<2或x<−2二、填空题13.一种商品每件成本是a元,原来按成本增加20%定出价格进销售,一段时间后,由于库存积压减价,按原价的9折出售,则现在每件售价为______元.14.已知a是两位数,b是一位数,把a接写在b的后面,就成为一个三位数,这个三位数可表示为.15.一个两位数,个位数字是x,十位数字比个位数字大3,则这个两位数是______.16.若x2−3y−5=0,则6y−2x2−6=______.17.已知当x=2时,ax5+bx5+cx5+5=9,则当x=−2时,ax5+bx5+cx5+5的值是_____.18.若2a−b=2,则6+4b−8a=______.三、解答题19.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分长四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中的大正方形的边长为_____;阴影部分的正方形的边长为_____;(2)请用两种方式表示图②中阴影部分的面积.20.如图,已知长方形的长为a,宽为2,两个半圆的直径都是2,用含a的式子表示阴影部分的面积.21.用1块A型钢板可制成2块C型钢板和1块D型钢板,用1块B型钢板可制成1块C型钢板和3块D型钢板.现有A、B型钢板共100块,并全部加工成C、D型钢板,其中A型钢板有x块(x为整数).(1)用含x的代数式分别表示可制成C型钢板和D型钢板的数量;(2)出售C型钢板每块利润为100元,出售D型钢板每块利润为120元.现将这些C型钢板与D型钢板全部售出,则所得的总利润为多少?22.已知当x=2,y=−4时,代数式ax+12by的值为2016.求当x=−1.y=−12时,代数式3ax−24by3+2015的值.答案和解析1.【答案】C【解析】解:a÷80%=54a(元).2.【答案】B【解答】解:汽车每秒行驶路程为m6a米,故2分钟内行驶距离为120× m 6a =20ma米.故选B.3.【答案】D【解答】解:由题意可得,现在的单价是:(x+10)(1−25%),故选D.4.【答案】C【解答】解:两块地的总产量为ma+nb(千克),所以,这两块地平均每公顷的粮食产量为:am+bna+b (千克).故选:C.5.【答案】A【解答】解:窗框的另一边是18−3x2米,根据长方形的面积公式,得:窗框的面积是x(18−3x2)平方米.故选A.6.【答案】D【解答】解:∵锯成6段需要锯5次,需要时间10分钟,∴每锯断一次所用的时间是2分钟,∵锯成n段需要锯(n−1)次,∴需要时间2(n−1)=2n−2(分钟).故选D.7.【答案】D【解答】解:根据还款规律,首付3万元后,从第二年起,每年应付房款0.5万元与上一年剩余房款的利息的和可得,第n年小慧家需还款:0.5+[9−0.5(n−2)]×0.4%.故选D.8.【答案】B【解答】解:根据题意,可知当−1≤x≤2时,|x−2|+2|x+1|有最小值。
北师大版七年级上册数学复习提纲(精炼简洁版)
北师大版七年级上册数学复习提纲(精炼
简洁版)
一、整数的认识和运算
- 整数的概念和表示方法
- 整数的加法和减法
二、分数的认识和运算
- 分数的概念和表示方法
- 分数的加法和减法
三、百分数与小数的认识和运用
- 百分数的概念和表示方法
- 小数的概念和表示方法
- 百分数与小数的相互转化
四、几何图形的认识和性质
- 点、线段、射线和直线的认识
- 角、平行线和垂线的认识
- 三角形、四边形和圆的认识
五、长、面积和体积的认识和计算- 长的认识和计算
- 面积的认识和计算
- 体积的认识和计算
六、图表的认识和应用
- 柱状图和折线图的认识和制作
- 图表的数据分析和应用
七、函数的认识和应用
- 函数的概念和表示方法
- 函数的应用和求值
八、方程的认识和应用
- 方程的概念和求解方法
- 方程的应用和实际问题解决
九、数据的收集、整理和描述
- 数据的收集和整理方法
- 数据的描述和分析方法
以上是北师大版七年级上册数学复习提纲,包括整数、分数、百分数、几何图形、长、面积、体积、图表、函数、方程以及数据的相关内容。
学生可以根据提纲进行复习和巩固相应的知识点。
注意理解概念和掌握基本计算方法,同时加强解题能力和应用能力,做好练习题和习题的积累,提高数学素养和思维能力。
北师大版七年级生物上册复习资料
七年级生物上册复习资料(北师大版)第1单元认识生命第1章生命的世界§1.1.1 形形色色的生物一、生物的多样性1.物种多样性无脊椎动物:原生动物、腔肠动物、扁形动物、线性动物、环节动物、动物软体动物、节肢动物。
脊椎动物:鱼类、两栖类、鸟类、哺乳类植物:藻类植物、苔藓植物、蕨类植物、种子植物(裸子和被子)微生物:细菌、真菌、病毒2.遗传(基因)多样性在地球上,不同种生物体内所携带的基因是不同的,即使是同种生物,不同个体的基因也不尽相同。
如菊花有2万至2.5万个品种;同一头母猪却生下了一窝白猪、花猪和黑猪等不同毛色的小猪。
3.生态系统多样性生态系统:一定自然区域内所有生物和其生存环境组成。
种类繁多的生物都生活在一定的环境中,生物与环境相互影响、相互作用,构成了生态系统。
生物圈是地球上最大的生态系统。
它又可划分为陆地生态系统、湿地生态系统和海洋生态系统。
一片森林、一个池塘、一块草地、一块农田都可称为一个生态系统。
二、生物的特征生物在表现为多样性的同时也具有共性:新陈代谢是生物最基本的特征,在此基础上生物才有生长、繁殖和应激性等生命特征。
(1)应激性生物在遇到外界刺激时能够作出的规律性反应,叫做应激性。
应激性是生物具有的普遍特性,它能够使生物“趋利避害”。
如向日葵的花盘随着太阳转动;含羞草的叶片受到触动时会自然下垂等。
(2)生长生长是生物普遍具有的一种特性,生物通过生长使体形增大,体重增加。
(3)繁殖生物产生后代的过程,叫做繁殖。
如蜻蜓点水、母鸡生蛋等。
(4)新陈代谢生物能排出体内产生的废物(如汗液、尿液、二氧化碳等)。
动、植物的遗体,枯枝落叶等不是生物,因为它们不具有上述生物的几个基本特征。
§1.1.2 生物与环境的相互影响生物的生存空间统称环境。
生物既适应环境,也影响和改变环境。
一、环境对生物的影响1.环境中影响生物形态、生理、分布的因素称为生态因素。
分为非生物因素和生物因素。
2.非生物因素包括:阳光、空气、水分、土壤、温度、湿度等多种因素。
北师大版七年级数学上册全册期末复习知识点
北师大版七年级数学上册全册期末复习知点第一章丰盛的形世界.生活中多的立体形:柱、、棱柱、棱、球)柱与棱柱同样点:柱和棱柱都有两个底面且两个底面的形状、大小完整同样。
例外点:① 柱的底面是,棱柱的底面是多形。
② 柱的面是一个曲面,棱柱的面是由几个平面成的,且每个平面都是平行四形,棱柱的底面是多形,而柱的底面是。
2)棱柱的相关看法及特色(1)棱柱的相关看法:在棱柱中相两个面的交叫做棱,相两个面的交叫做棱。
(2)棱柱的三个特色:一是棱柱的全部棱都相等;二是棱柱的上、下底面的形状同样,并且都是多形;三是面的形状都是平行四形。
(3)棱柱的分:棱柱可分直棱柱和斜棱柱。
本只直棱柱(称棱柱),直棱柱的面是方形。
人往常依据底面形的数将棱柱分三棱柱、四棱柱、五棱柱⋯⋯它的底面形的形状分是三角形、四形、五形⋯⋯( 4)棱柱中的点、棱、面之的关系:底面多形的数n 确立棱柱是n 棱柱,它有 2n 个点, 3n 条棱,此中有 n 条棱,有( n+2)个面, n 个面。
3)点、、面构建立体形(形的构成元素)形是由点、、面构成的,此中面有平面,也有曲面;有直也有曲。
点、线、面、体之间的关系是:点动成线,线动成面、面动成体,面与面订交获取线,线与线订交获取点。
2.睁开与折叠)棱柱的表面睁开图是由两个同样的多边形和一些长方形构成的。
沿棱柱表面例外的棱剪开,可获取例外组合方式的表面睁开图。
2)圆柱的表面睁开图是由两个大小同样的圆(底面)和一个长方形(侧面)构成,此中侧面睁开图长方形的一边的长是底面圆的周长,另一边的长是圆柱的高。
3)圆锥的表面睁开图是由一个扇形(侧面)和一个圆(底面)构成,此中扇形的半径长是圆锥母线的长,而扇形的弧长则是圆锥底面圆的周长。
4)正方体是格外的棱柱,它的六个面都是大小同样的正方形,将一个正方形的表面睁开,可获取 11 个例外的睁开图。
(此中“一四一”的 6 个,“二三一”3个,“二二二”1个,“三三”1个)3.截一个几何体)用一个平面去截一个几何体,截出的面叫做截面,截面的形状既与被截面的几何体相关,还与截面的角度和方向相关。
北师大版七年级上册数学期末总复习
北师大版七年级上册数学期末总复习一、重点:1. 能在数轴上表示有理数,并借助数轴理解相反数和绝对值的意义。
2. 掌握有理数的加、减、乘、除和乘方的运算法则。
能进行有理数的加、减、乘、除、乘方运算和简单的混合运算。
3. 了解单项式、多项式、整式的概念,弄清它们之间的联系和区别,并会把一个多项式按某个字母升幂排列或降幂排列。
4. 能准确地进行去括号与添括号,能熟练地进行整式的加减运算。
5. 了解同位角、内错角和同旁内角的概念,并学会识别。
6. 会根据图形中的已知条件,通过简单说理,得出欲求结果。
—7. 理解频数和频率的概念,借助频率或考虑实验能够观察到的结果,区分不可能发生、可能发生、必然发生这三个概念。
二、难点:1.懂得数学的价值,形成用数学的意识。
2.绝对值概念与代数式、方程等知识的综合应用。
3.较为复杂的整式运算。
4.几何基本图形的识别,及在变式图形的应用。
5.分析所给数据表现出来的信息及可靠性。
三、例题及分析:|例1. 已知|a-2|与(b-3)2互为相反数,求a+2b的值。
分析:由|a-2|与(b-3)2互为相反数可知:|a-2|+(b-3)2=0故a-2=0且b-3=0故a=2且b=3答案:8例2. 若|x|=2,|y|=3,求xy的值。
分析:由|x|=2,应得出:x=2或者x=-2,注意是两个(同理,由|y|=3,应得出:y=3或者y=-3然后分情况讨论答案:6,或者-6例3. 计算:5-3×{-2+4×[-3×(-2)2-(-4)÷(-1)3]-7}分析:注意运算顺序和去括号时的符号问题。
5-3×{-2+4×[-3×(-2)2-(-4)÷(-1)3]-7}=5-3×{-2+4×[-3×4-4]-7}=5-3×{-2+4×[-16]-7}<=5-3×{-2-64-7}=5+3×73=224例4. 已知a2+a=1,求:a3+2a2+2002的值。
北师大版七年级数学上册期末复习压轴题专题(带解析)
北师大版七年级上册期末压轴题压轴题选讲一选择题1.某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值用代数式表示为( )A.(1﹣10%+15%)x万元 B.(1+10%﹣15%)x万元C.(x﹣10%)(x+15%)万元D.(1﹣10%)(1+15%)x万元2.有理数a、b在数轴上的位置如图所示,则化简|a﹣b|+|a+b|的结果为()A.﹣2a B.2a C.2b D.﹣2b3.如图,已知点A是射线BE上一点,过A作CA⊥BE交射线BF于点C,AD⊥BF交射线BF于点D,给出下列结论:①∠1是∠B的余角;②图中互余的角共有3对;③∠1的补角只有∠ACF;④与∠ADB互补的角共有3个.则上述结论正确的个数有( )A.1个B.2个C.3个D.4个4.如图是由一副三角尺拼成的图案,它们有公共顶点O,且有一部分重叠,已知∠BOD=40°,则∠AOC的度数是( )A.40°B.120°C.140°D.150°二填空题1.如图,线段AB=8,C是AB的中点,点D在直线CB上,DB=1.5,则线段CD的长等于.2.如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动2个单位长度到达点A1,第二次将点A1,向右移动4个单位长度到达点A2,第三次将点A2向左移动6个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离等于19,那么n的值是.3.如图所示,甲乙两人沿着边长为60cm的正方形,按A→B→C→D→A…的方向行走,甲从A点以60m/min的速度,乙从B点以69m/min的速度行走,两人同时出发,当乙第一次追上甲时,用了____________.4.将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n 个“龟图”中有245个“○”,则n=______________.5.如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到长方形A n B n C n D n(n>2),若AB n的长度为56,则n=.三、解答题1.如图,M是定长线段AB上一定点,点C在线段AM上,点D在线段BM上,点C、点D分别从点M、点B出发以1cm/s、2cm/s的速度沿直线BA向左运动,运动方向如箭头所示.(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值;(2)若点C、D运动时,总有MD=2AC,直接填空:AM=AB;(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.2.已知数轴上有A,B,C三点,分别表示数﹣24,﹣10,10.两只电子蚂蚁甲、乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)问甲、乙在数轴上的哪个点相遇?(2)问多少秒后甲到A,B,C三点的距离之和为40个单位?若此时甲调头返回,问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.3.甲、乙两地相距720km,一列快车和一列慢车都从甲地驶往乙地,慢车先行驶1小时后,快车才开始行驶.已知快车的速度是120km/h,慢车的速度是80km/h,快车到达乙地后,停留了20min,由于有新的任务,于是立即按原速返回甲地.在快车从甲地出发到回到甲地的整个程中,与慢车相遇了两次,这两次相遇时间间隔是多少?4.(1)如图1,若CO⊥AB,垂足为O,OE、OF分别平分∠AOC与∠BOC.求∠EOF的度数;(2)如图2,若∠AOC=∠BOD=80°,OE、OF分别平分∠AOD与∠BOC.求∠EOF的度数;(3)若∠AOC=∠BOD=α,将∠BOD绕点O旋转,使得射线OC与射线OD的夹角为β,OE、OF分别平分∠AOD与∠BOC.若α+β≤180°,α>β,则∠EOC=.(用含α与β的代数式表示)5.如图,已知∠AOB=90°,以O为顶点、OB为一边画∠BOC,然后再分别画出∠AOC与∠BOC的平分线OM、ON.(1)在图1中,射线OC在∠AOB的内部.①若锐角∠BOC=30°,则∠MON=45°;②若锐角∠BOC=n°,则∠MON=45°.(2)在图2中,射线OC在∠AOB的外部,且∠BOC为任意锐角,求∠MON的度数.(3)在(2)中,“∠BOC为任意锐角”改为“∠BOC为任意钝角”,其余条件不变,(图3),求∠MON的度数.6.如图,∠AOB=120°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每分钟20°;射线OD从OB开始,绕点O逆时针旋转,旋转的速度为每分钟5°,OC和OD同时旋转,设旋转的时间为t(0≤t≤15).(1)当t为何值时,射线OC与OD重合;(2)当t为何值时,射线OC⊥OD;(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC,OB与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值,若不存在,请说明理由.7.如图,∠AOB的边OA上有一动点P,从距离O点18cm的点M处出发,沿线段MO,射线OB运动,速度为2cm/s;动点Q从点O出发,沿射线OB运动,速度为1cm/s.P、Q 同时出发,设运动时间是t(s).(1)当点P在MO上运动时,PO=cm (用含t的代数式表示);(2)当点P在MO上运动时,t为何值,能使OP=OQ?(3)若点Q运动到距离O点16cm的点N处停止,在点Q停止运动前,点P能否追上点Q?如果能,求出t的值;如果不能,请说出理由.8.如图,两个形状.大小完全相同的含有30゜、60゜的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.(1)试说明:∠DPC=90゜;(2)如图,若三角板PAC的边PA从PN处开始绕点P逆时针旋转一定角度,PF平分∠APD,PE平分∠CPD,求∠EPF;(3)如图,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为3゜/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2゜/秒,在两个三角板旋转过程中(PC转到与PM重合时,两三角板都停止转动).设两个三角板旋转时间为t秒,则∠BPN=__________,∠CPD=________ (用含有t的代数式表示,并化简);以下两个结论:①为定值;②∠BPN+∠CPD为定值,正确的是___________(填写你认为正确结论的对应序号).压轴题选讲解析一选择题1.某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值用代数式表示为( )A.(1﹣10%+15%)x万元 B.(1+10%﹣15%)x万元C.(x﹣10%)(x+15%)万元D.(1﹣10%)(1+15%)x万元【考点】列代数式.【分析】根据3月份、1月份与2月份的产值的百分比的关系列式计算即可得解.【解答】解:3月份的产值为:(1﹣10%)(1+15%)x万元.故选D.【点评】本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.2.有理数a、b在数轴上的位置如图所示,则化简|a﹣b|+|a+b|的结果为()A.﹣2a B.2a C.2b D.﹣2b【考点】整式的加减;数轴;绝对值.【专题】计算题;整式.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,合并即可得到结果.【解答】解:根据数轴上点的位置得:a<﹣1<0<b<1,∴a﹣b<0,a+b<0,则原式=b﹣a﹣a﹣b=﹣2a.故选A.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.3.如图,已知点A是射线BE上一点,过A作CA⊥BE交射线BF于点C,AD⊥BF交射线BF于点D,给出下列结论:①∠1是∠B的余角;②图中互余的角共有3对;③∠1的补角只有∠ACF;④与∠ADB互补的角共有3个.则上述结论正确的个数有( )A.1个B.2个C.3个D.4个【考点】余角和补角.【分析】根据已知推出∠CAB=∠CAE=∠ADC=∠ADB=90°,再根据三角形内角和定理和三角形外角性质,互余、互补的定义逐个分析,即可得出答案.【解答】解:∵CA⊥AB,∴∠CAB=90°,∴∠1+∠B=90°,即∠1是∠B的余角,∴①正确;图中互余的角有∠1和∠B,∠1和∠DAC,∠DAC和∠BAD,共3对,∴②正确;∵CA⊥AB,AD⊥BC,∴∠CAB=∠ADC=90°,∵∠B+∠1=90°,∠1+∠DAC=90°,∴∠B=∠DAC,∵∠CAE=∠CAB=90°,∴∠B+∠CAB=∠DAC+∠CAE,∴∠ACF=∠DAE,∴∠1的补角有∠ACF和∠DAE两个,∴③错误;∵∠CAB=∠CAE=∠ADC=∠ADB=90°,∴与∠ADB互补的角共有3个,∴④正确;故选C.【点评】本题考查了互余、互补,三角形内角和定理,三角形的外角性质的应用,主要考查学生的推理能力和辨析能力,题目比较好,但是比较容易出错.4.如图是由一副三角尺拼成的图案,它们有公共顶点O,且有一部分重叠,已知∠BOD=40°,则∠AOC的度数是( )A.40°B.120°C.140°D.150°【考点】角的计算.【分析】根据同角的余角相等即可求解.【解答】解:∵∠AOB=∠COD=90°,∴∠AOD+∠BOD=∠BOC+∠BOD=90°,∴∠AOD=∠BOC=90°﹣∠BOD=50°,∴∠AOC=∠AOD+∠BOD+∠BOC=140°,故选C.【点评】此题主要考查了角的计算,余角的性质,熟记余角的性质是解题的关键二填空题1.如图,线段AB=8,C是AB的中点,点D在直线CB上,DB=1.5,则线段CD的长等于 2.5或5.5.【考点】两点间的距离.【分析】根据题意求出线段CB的长,分点D在线段CB的延长线上和点D在线段CB上两种情况、结合图形计算即可.【解答】解:∵线段AB=8,C是AB的中点,∴CB=AB=4,如图1,当点D在线段CB的延长线上时,CD=CB+BD=5.5,如图2,当点D在线段CB上时,CD=CB﹣BD=2.5.故答案为:2.5或5.5.【点评】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想和分情况讨论思想是解题的关键.2.如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动2个单位长度到达点A1,第二次将点A1,向右移动4个单位长度到达点A2,第三次将点A2向左移动6个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离等于19,那么n的值是18或19.【考点】数轴.【专题】推理填空题.【分析】根据题意可以分别写出点A移动的规律,当点A奇数次移动后对应数的都是负数,偶数次移动对应的数都是正数,从而可知A n与原点的距离等于19分两种情况,从而可以解答本题.【解答】解:由题意可得,第奇数次移动的点表示的数是:1+(﹣2)×,第偶数次移动的点表示的数是:1+2×,∵点A n与原点的距离等于19,∴当点n为奇数时,则﹣19=1+(﹣2)×,解得,n=19;当点n为偶数,则19=1+2×解得n=18.故答案为:18或19.【点评】本题考查数轴,解题的关键是明确题意,可以分别写出点A奇数次和偶数次移动的关系式.3.如图所示,甲乙两人沿着边长为60cm的正方形,按A→B→C→D→A…的方向行走,甲从A点以60m/min的速度,乙从B点以69m/min的速度行走,两人同时出发,当乙第一次追上甲时,用了20min.【考点】一元一次方程的应用.【专题】几何动点问题.【分析】设乙第一次追上甲用了x分钟,则有乙行走的路程等于甲行走的路程加上90×3,根据其相等关系列方程得69x=60x+60×3,解方程即可得出答案.【解答】解:设乙第一次追上甲用了x分钟,由题意得:69x=60x+60×3,解得:x=20.答:用了20min.故答案为:20【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.4.将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n 个“龟图”中有245个“○”,则n=16.【考点】规律型:图形的变化类.【分析】由图可知:第1个图形中小圆的个数为5;第2个图形中小圆的个数为7;第3个图形中小圆的个数为11;第4个图形中小圆的个数为17;则知第n个图形中小圆的个数为n(n﹣1)+5.据此可以再求得“龟图”中有245个“○”是n的值.【解答】解:第一个图形有:5个○,第二个图形有:2×1+5=7个○,第三个图形有:3×2+5=11个○,第四个图形有:4×3+5=17个○,由此可得第n个图形有:[n(n﹣1)+5]个○,则可得方程:[n(n﹣1)+5]=245解得:n1=16,n2=﹣15(舍去).故答案为:16.【点评】此题主要考查了图形的规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键,注意公式必须符合所有的图形.5.如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到长方形A n B n C n D n(n>2),若AB n的长度为56,则n=10.【考点】平移的性质.【专题】规律型.【分析】根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1﹣A1A2=6﹣5=1,进而求出AB1和AB2的长,然后根据所求得出数字变化规律,进而得出AB n=(n+1)×5+1求出n即可.【解答】解:∵AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,∴AA1=5,A1A2=5,A2B1=A1B1﹣A1A2=6﹣5=1,∴AB1=AA1+A1A2+A2B1=5+5+1=11,∴AB2的长为:5+5+6=16;∵AB1=2×5+1=11,AB2=3×5+1=16,∴AB n=(n+1)×5+1=56,解得:n=10.故答案为:10.【点评】此题主要考查了平移的性质以及一元一次方程的应用,根据平移的性质得出AA1=5,A1A2=5是解题关键.三、解答题1.如图,M是定长线段AB上一定点,点C在线段AM上,点D在线段BM上,点C、点D分别从点M、点B出发以1cm/s、2cm/s的速度沿直线BA向左运动,运动方向如箭头所示.(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值;(2)若点C、D运动时,总有MD=2AC,直接填空:AM=AB;(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.【考点】一元一次方程的应用;两点间的距离.【专题】几何动点问题.【分析】(1)计算出CM及BD的长,进而可得出答案;(2)根据C、D的运动速度知BD=2MC,再由已知条件MD=2AC求得MB=2AM,所以AM=AB;(3)分两种情况讨论,①当点N在线段AB上时,②当点N在线段AB的延长线上时,然后根据数量关系即可求解.【解答】解:(1)当点C、D运动了2s时,CM=2cm,BD=4cm,∵AB=10cm,CM=2cm,BD=4cm,∴AC+MD=AB﹣CM﹣BD=10﹣2﹣4=4cm;(2)根据C、D的运动速度知:BD=2MC,∵MD=2AC,∴BD+MD=2(MC+AC),即MB=2AM,∵AM+BM=AB,∴AM+2AM=AB,∴AM=AB.故答案为;(3)当点N在线段AB上时,如图.∵AN﹣BN=MN,又∵AN﹣AM=MN,∴BN=AM=AB,∴MN=AB,即=;当点N在线段AB的延长线上时,如图.∵AN﹣BN=MN,又∵AN﹣BN=AB,∴MN=AB,即=1.综上所述,=或1.【点评】本题考查了一元一次方程的应用,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.2.已知数轴上有A,B,C三点,分别表示数﹣24,﹣10,10.两只电子蚂蚁甲、乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)问甲、乙在数轴上的哪个点相遇?(2)问多少秒后甲到A,B,C三点的距离之和为40个单位?若此时甲调头返回,问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.【考点】一元一次方程的应用;数轴.【分析】(1)可设x秒后甲与乙相遇,根据甲与乙的路程差为34,可列出方程求解即可;(2)设y秒后甲到A,B,C三点的距离之和为40个单位,分甲应为于AB或BC之间两种情况讨论即可求解.【解答】解:(1)设x秒后甲与乙相遇,则4x+6x=34,解得x=3.4,4×3.4=13.6,﹣24+13.6=﹣10.4.故甲、乙在数轴上的﹣10.4相遇;(2)设y秒后甲到A,B,C三点的距离之和为40个单位,B点距A,C两点的距离为14+20=34<40,A点距B、C两点的距离为14+34=48>40,C 点距A、B的距离为34+20=54>40,故甲应为于AB或BC之间.①AB之间时:4y+(14﹣4y)+(14﹣4y+20)=40解得y=2;②BC之间时:4y+(4y﹣14)+(34﹣4y)=40,解得y=5.①甲从A向右运动2秒时返回,设y秒后与乙相遇.此时甲、乙表示在数轴上为同一点,所表示的数相同.甲表示的数为:﹣24+4×2﹣4y;乙表示的数为:10﹣6×2﹣6y,依据题意得:﹣24+4×2﹣4y=10﹣6×2﹣6y,解得:y=7,相遇点表示的数为:﹣24+4×2﹣4y=﹣44(或:10﹣6×2﹣6y=﹣44),②甲从A向右运动5秒时返回,设y秒后与乙相遇.甲表示的数为:﹣24+4×5﹣4y;乙表示的数为:10﹣6×5﹣6y,依据题意得:﹣24+4×5﹣4y=10﹣6×5﹣6y,解得:y=﹣8(不合题意舍去),即甲从A向右运动2秒时返回,能在数轴上与乙相遇,相遇点表示的数为﹣44.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.本题在解答第二问注意分类思想的运用.3.甲、乙两地相距720km,一列快车和一列慢车都从甲地驶往乙地,慢车先行驶1小时后,快车才开始行驶.已知快车的速度是120km/h,慢车的速度是80km/h,快车到达乙地后,停留了20min,由于有新的任务,于是立即按原速返回甲地.在快车从甲地出发到回到甲地的整个程中,与慢车相遇了两次,这两次相遇时间间隔是多少?【考点】一元一次方程的应用.【分析】在快车从甲地出发到回到甲地的整个程中,与慢车相遇了两次,第一次是从甲地驶往乙地时,快车追上慢车,根据追上时快车行驶的路程=慢车行驶的路程列方程求解;第二次是快车到达乙地后返回甲地时与慢车相遇,根据相遇时快车行驶的路程+慢车行驶的路程=甲、乙两地之间的路程×2列方程求解.【解答】解:设从甲地驶往乙地时,快车行驶x小时追上慢车,由题意得120x=80(x+1),解得x=2,则慢车行驶了3小时.设在整个程中,慢车行驶了y小时,则快车行驶了(y﹣1﹣)小时,由题意得120(y﹣1﹣)+80y=720×2,解得y=8,8﹣3=5(小时).答:在快车从甲地出发到回到甲地的整个程中,与慢车相遇了两次,这两次相遇时间间隔是5小时.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.4.(1)如图1,若CO⊥AB,垂足为O,OE、OF分别平分∠AOC与∠BOC.求∠EOF的度数;(2)如图2,若∠AOC=∠BOD=80°,OE、OF分别平分∠AOD与∠BOC.求∠EOF的度数;(3)若∠AOC=∠BOD=α,将∠BOD绕点O旋转,使得射线OC与射线OD的夹角为β,OE、OF分别平分∠AOD与∠BOC.若α+β≤180°,α>β,则∠EOC=.(用含α与β的代数式表示)【考点】角的计算;角平分线的定义.【分析】(1)根据垂直的定义得到∠AOC=∠BOC=90°,根据角平分线的定义即可得到结论;(2)根据角平分线的定义得到∠EOD=∠AOD=×(80+β)=40+β,∠COF=∠BOC=×(80+β)=40+β,根据角的和差即可得到结论;(3)如图2由已知条件得到∠AOD=α+β,根据角平分线的定义得到∠DOE=(α+β),即可得到结论.【解答】解:(1)∵CO⊥AB,∴∠AOC=∠BOC=90°,∵OE平分∠AOC,∴∠EOC=∠AOC=×90°=45°,∵OF平分∠BOC,∴∠COF=∠BOC=×90°=45°,∠EOF=∠EOC+∠COF=45°+45°=90°;(2)∵OE平分∠AOD,∴∠EOD=∠AOD=×(80+β)=40+β,∵OF平分∠BOC,∴∠COF=∠BOC=×(80+β)=40+β,∠COE=∠EOD﹣∠COD=40+β﹣β=40﹣β;∠EOF=∠COE+∠COF=40﹣β+40+β=80°;(3)如图2,∵∠AOC=∠BOD=α,∠COD=β,∴∠AOD=α+β,∵OE平分∠AOD,∴∠DOE=(α+β),∴∠COE=∠DOE﹣∠COD==,如图3,∵∠AOC=∠BOD=α,∠COD=β,∴∠AOD=α+β,∵OE平分∠AOD,∴∠DOE=(α﹣β),∴∠COE=∠DOE+∠COD=.综上所述:,故答案为:.【点评】本题考查了角平分线的定义,角的计算,解题的关键是找出题中的等量关系列方程求解.5.如图,已知∠AOB=90°,以O为顶点、OB为一边画∠BOC,然后再分别画出∠AOC 与∠BOC的平分线OM、ON.(1)在图1中,射线OC在∠AOB的内部.①若锐角∠BOC=30°,则∠MON=45°;②若锐角∠BOC=n°,则∠MON=45°.(2)在图2中,射线OC在∠AOB的外部,且∠BOC为任意锐角,求∠MON的度数.(3)在(2)中,“∠BOC为任意锐角”改为“∠BOC为任意钝角”,其余条件不变,(图3),求∠MON的度数.【考点】角的计算;角平分线的定义.【分析】(1)①由角平分线的定义,计算出∠MOA和∠NOA的度数,然后将两个角相加即可;②由角平分线的定义,计算出∠MOA和∠NOA的度数,然后将两个角相加即可;(2)由角平分线的定义,计算出∠MOA和∠NOA的度数,然后将两个角相减即可;(3)由角平分线的定义,计算出∠MOA和∠NOA的度数,然后将两个角相加即可.【解答】解:(1)①∵∠AOB=90°,∠BOC=30°,∴∠AOC=60°,∵OM,ON分别平分∠AOC,∠BOC,∴∠COM=AOC,BOC,∴∠MON=∠COM+∠CON=∠AOB=45°,故答案为:45°,②∵∠AOB=90°,∠BOC=n°,∴∠AOC=(90﹣n)°,∵OM,ON分别平分∠AOC,∠BOC,∴∠COM=AOC=(90﹣n)°,BOC=n°,∴∠MON=∠COM+∠CON=∠AOB=45°,故答案为:45°;(2)∵∠AOB=90°,设∠BOC=α,∴∠AOC=90°+α,∵OM,ON分别平分∠AOC,∠BOC,∴∠COM=AOC,BOC,∴∠MON=∠COM﹣∠CON=∠AOB=45°,(3)∵OM,ON分别平分∠AOC,∠BOC,∴∠COM=AOC,BOC,∴∠MON=∠COM+∠CON=(∠AOC+∠BOC)=(360°﹣90°)=135°.【点评】本题考查了角平分线定义,角的有关计算的应用,解此题的关键是求出∠COM和∠CON的大小.6.如图,∠AOB=120°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每分钟20°;射线OD从OB开始,绕点O逆时针旋转,旋转的速度为每分钟5°,OC和OD同时旋转,设旋转的时间为t(0≤t≤15).(1)当t为何值时,射线OC与OD重合;(2)当t为何值时,射线OC⊥OD;(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC,OB与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值,若不存在,请说明理由.【考点】角的计算;角平分线的定义.【专题】探究型.【分析】(1)根据题意可得,射线OC与OD重合时,20t=5t+120,可得t的值;(2)根据题意可得,射线OC⊥OD时,20t+90=120+5t或20t﹣90=120+5t,可得t的值;(3)分三种情况,一种是以OB为角平分线,一种是以OC为角平分线,一种是以OD为角平分线,然后分别进行讨论即可解答本题.【解答】解:(1)由题意可得,20t=5t+120解得t=8,即t=8min时,射线OC与OD重合;(2)由题意得,20t+90=120+5t或20t﹣90=120+5t,解得,t=2或t=14即当t=2min或t=14min时,射线OC⊥OD;(3)存在,由题意得,120﹣20t=5t或20t﹣120=5t+120﹣20t或20t﹣120﹣5t=5t,解得t=4.8或t=或t=12,即当以OB为角平分线时,t的值为4.8min;当以OC为角平分线时,t的值为min,当以OD为角平分线时,t的值为12min.【点评】本题考查角的计算、角平分线的性质,解题的关键是明确题意,找出所求问题需要的条件.7.如图,∠AOB的边OA上有一动点P,从距离O点18cm的点M处出发,沿线段MO,射线OB运动,速度为2cm/s;动点Q从点O出发,沿射线OB运动,速度为1cm/s.P、Q 同时出发,设运动时间是t(s).(1)当点P在MO上运动时,PO=cm (用含t的代数式表示);(2)当点P在MO上运动时,t为何值,能使OP=OQ?(3)若点Q运动到距离O点16cm的点N处停止,在点Q停止运动前,点P能否追上点Q?如果能,求出t的值;如果不能,请说出理由.8.如图,两个形状.大小完全相同的含有30゜、60゜的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.(1)试说明:∠DPC=90゜;(2)如图,若三角板PAC的边PA从PN处开始绕点P逆时针旋转一定角度,PF平分∠APD,PE平分∠CPD,求∠EPF;(3)如图,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为3゜/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2゜/秒,在两个三角板旋转过程中(PC转到与PM重合时,两三角板都停止转动).设两个三角板旋转时间为t秒,则∠BPN=180﹣2t,∠CPD=90﹣t (用含有t的代数式表示,并化简);以下两个结论:①为定值;②∠BPN+∠CPD为定值,正确的是①(填写你认为正确结论的对应序号).【考点】角的计算;角平分线的定义.【分析】(1)利用含有30゜、60゜的三角板得出∠DPC=180°﹣∠CPA﹣∠DPB,进而求出即可;(2)设∠CPE=∠DPE=x,∠CPF=y,则∠APF=∠DPF=2x+y,进而利用∠CPA=60゜求出即可;(3)首先得出①正确,设运动时间为t秒,则∠BPM=2t,表示出∠CPD和∠BPN的度数即可得出答案.【解答】解:(1)∵∠DPC=180°﹣∠CPA﹣∠DPB,∠CPA=60°,∠DPB=30°,∴∠DPC=180゜﹣30゜﹣60゜=90゜;(2)设∠CPE=∠DPE=x,∠CPF=y,则∠APF=∠DPF=2x+y,∵∠CPA=60゜,∴y+2x+y=60゜,∴x+y=30゜∴∠EPF=x+y=30゜(3)①正确.设运动时间为t秒,则∠BPM=2t,∴∠BPN=180﹣2t,∠DPM=30﹣2t,∠APN=3t.∴∠CPD=180﹣∠DPM﹣∠CPA﹣∠APN=90﹣t,∴==.②∠BPN+∠CPD=180﹣2t+90﹣t=270﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误.故答案为:180﹣2t;90﹣t;①.【点评】此题主要考查了角的计算,利用数形结合得出等式是解题关键,还要理清角之间的关系.精品文档考试教学资料施工组织设计方案。
2024年北师大版七年级上册生物期末复习专题三 教材重点图示特训
D.d
4.下列哪项是人体具有而荔枝不具有的结构层次 ( D )
A.a
B.d
C.b
D.c
·生物 5.如图所示为油菜植株个体发育时不同时期结构层次,据图 回答下列问题。
(1)图中a过程表示细胞 分裂 的过程,此过程中细胞内最 明显的变化是 染色体 ;其数量先加倍,后平均分配到两 个子细胞中,从而确保了亲、子代细胞内所含的 遗传物质_ 是一样的;b表示细胞 分化 的过程,图中通过b过程形成 的 保护组织具有保护作用。
·生物
(3)B通过 细胞分化 形成C。在此过程中,细胞的形态、 结构和功能产生了差异。 (4)在如图的结构层次当中,人体具有而植物没有的是 [ E ] 系统 。 (5)人体的四种基本组织分别是 上皮组织 , 肌肉组织 ,
神经组织 和 结缔组织 。
三、绿色开花植物的生活方式、绿色开花植物的生活史
·生物
A.若观察到的图像如图2所示,是因为步骤①滴加了生理盐水 B.图1中步骤②和步骤④都要用到刀片和镊子 C.用低倍镜观察时,视野中染色最深的结构是液泡 D.图1中步骤③展平的目的是防止观察标本时出现细胞重叠现象
·生物 5.如图是动、植物细胞结构模式图,据图回答下列问题。 ([ ]内填序号)
(1)表示动物细胞的是图 乙 (选填“甲”或“乙”)。 (2)西瓜之所以甘甜可口,主要是因为[ ⑤ ] 液泡 含有 较多的糖分。 (3)结构①是 细胞壁 。它具有 保护和支持 的功能。
5.开花和结果
雌蕊Байду номын сангаас
柱头 花柱
子房 胚珠
花药 花丝
花的结构
·生物
雄蕊
子房壁
果皮 种子
果实的结构及来源
·生物
6.叶片结构示意图
2024年北师大版七年级上册数学复习专项突破练8 线段的有关计算
(1)若 AB =6, BD = BC ,求线段 CD 的长度;
解:(1)如图①,
由题意,得 BC = AB =3,所以 BD = BC =1.5.
所以 CD = BC - BD =1.5.
1
2
3
4
5
6
7
(2)点E是线段AB上一点,且AE=2BE,当AD∶BD=
所以点A对应的数是1-6=-5,点C对应的数是
1+2=3.
1
2
3
4
5
6
7
(2)经过 t 秒后,求点 P , Q 分别对应的数(用含 t 的式子表
=3, CM = AM =2,
所以 MN = MC + CN =5.
1
2
3
4
5
6
7
(2)若 AB =10,求 MN 的长度.
解:(2)由题易得 MN = MC + CN = AC + BC =
(AC+ BC )= AB =5.
1
2
3
4
5
6
7
2. 【2023西安高新一中月考】已知 A , B , C , D 四点在同
所以 MC = AC , CN = BC .
所以 MN = MC + CN = AC + BC = (AC+ BC )=
×(12+8)=10(cm).
1
2
3
4
5
6
7
北师大版七年级数学上册)数据的收集及表示专题复习(含答案)
北师大版七年级数学上册数据的收集及表示专题复习一、选择题1.以下场合宜采用标准式访问的是()A. 居民入户调查B. 座谈会C. 当事人或知情者个别采访D. 对试验数据的调查2.某市期末考试中,甲校满分人数占4%,乙校满分人数占5%,比较两校满分人数()A. 甲校多于乙校B. 甲校与乙校一样多C. 甲校少于乙校D. 不能确定3.要调查某校学生学业负担是否过重,选用下列哪种方法最恰当()A. 查阅学校的有关规定B. 对学生随机调查C. 上网查询D. 对任课教师进行问卷调查4.下列统计活动中不适宜用问卷调查的方式收集数据的是()A. 某停车场中每天停放的蓝色汽车的数量B. 全镇七年级同学家中电视机的数量C. 每天早晨同学们起床的时间D. 各种手机在使用时所产生的辐射5.某同学想了解2017年10月国庆节期间某一天,新泰市青云路与向阳路交叉路口1min内各个方向通行的车辆数量,他应采取的收集数据方法为()A. 查阅资料B. 实验C. 问卷调查D. 观察6.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A. 9B. 18C. 12D. 67.为庆祝建党99周年,某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”:B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是()A. 0.25B. 0.3C. 25D. 308.某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是()A. 0.1B. 0.17C. 0.33D. 0.49.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其它类同).这个时间段顾客等待时间不少于6分钟的人数为()A. 5B. 7C. 16D. 3310.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:抽取件数501001502005008001000合格频数4288141176448720900估计出售2000件衬衣,其中次品大约是()A. 50件B. 100件C. 150件D. 200件11.一个容量为70的样本最大值为141,最小值60,取组距为10,则可以分成()A. 10组B. 9组C. 8组D. 7组12.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:抽取件数(件)501001502005008001000合格频数4288141176445724901若出售1500件衬衣,则其中的次品最接近()件.A. 100B. 150C. 200D. 240二、填空题13.随着我国人口增长速度变缓,小学入学儿童的人数逐年下降,下表显现了某地区小学入学儿童人数的变化情况,由此估计,从______年起,该地区小学入学儿童人数将不超过1600人.年份(年)201020112012…小学入学儿童人数(人)252023202120…14.有4名学生分别从编号为1∼50的总体中抽取出8个个体组成一个样本,他们选取的样本中,个体的编号分别为: ①5,10,15,20,25,30,35,40; ②43,44,45,46,47,48,49,50; ③1,3,5,7,9,11,13,15; ④43,25,12,7,35,29,24,19.其中,具有随机性的样本是(填序号).15.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是7,频率是0.2,那么该班级的人数是_______人.16.某班有48名同学,在一次数学测验中,分别只取整数统计其成绩,绘制出频数分布直方图如图所示,图中从左到右的小长方形的高度比是1:3:6:4:2,则分数在70.5到80.5之间的人数是________.17.为了支援边远山区贫困学校的同学读书,某校开展捐书活动,七(1)班同学积极参与,现将捐书数量绘制成频数分布直方图(如图所示),如果捐书数量在3.5~4.5组别所占的百分比是30%,那么捐书数量在4.5~5.5组别的人数是________.18.某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数量相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:某校60名学生体育测试成绩频数分布表a3093如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为______人.三、解答题19.小龙在学校组织的社会调查活动中负责了解他所居住的小区400户居民的家庭收入情况他从中随机调查了40户居民家庭收入情况(收入取整数,单位元),并绘制了如下的频率分布表和频数分布直方图根据以上提供的信息解答下列问题:(1)补全频数分布表;(2)补全频数分布直方图;(3)绘制相应的频数分布折线图;(4)你估计该居民小区家庭属于中等收入(大于等于1000不足1600元)的大约多少户?20.为了增强学生的安全意识,某校组织了一次全校2500名学生都参加的“安全知识”考试.阅卷后,学校团委随机抽取了100份考卷进行分析统计,发现考试成绩(x分)的最低分为51分,最高分为满分100分,并绘制了如下尚不完整的统计图表.请根据图表提供的信息,解答下列问题:分数段(分)频数(人)频率51≤x<61a0.161≤x<71180.1871≤x<81b n81≤x<91350.3591≤x<101120.12合计1001(1)填空:a=______,b=______,n=______;(2)将频数分布直方图补充完整;(3)该校对考试成绩为91≤x≤100的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为1:3:6,请你估算全校获得二等奖的学生人数.21.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有______人,a+b=______,m=______;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额在60≤x<120范围的人数.答案和解析1.【答案】C【解答】解:当事人或知情者个别采访适宜采用标准式访问.故选C.2.【答案】D【解答】解:因为两校的总数不确定,所以两校的满分人数也无法比较,故选D.3.【答案】B【解答】解:A.要调查某校学生学业负担是否过重,查阅学校的有关规定,这种方式太片面,不合理,故A不合题意;B.要调查某校学生学业负担是否过重,对学生随机调查,比较合理,故B符合题意;C.要调查某校学生学业负担是否过重,上网查询,这种方式不具有代表性,不合理,故C不合题意;D.要调查某校学生学业负担是否过重,对任课教师进行问卷调查,这种方式太片面,不具代表性,不合理,故D不合题意.故选B.4.【答案】D5.【答案】D【解析】解答:某同学想了解2017年10月国庆节期间某一天,新泰市青云路与向阳路交叉路口1min内各个方向通行的车辆数量他可以获取有关数据的方式是观察.6.【答案】B【解析】解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,=18(人).所以分数在70.5~80.5之间的人数是48×61+3+6+4+27.【答案】B【解析】解:由图知,八年级(3)班的全体人数为:25+30+10+20+15=100(人),选择“5G时代”的人数为:30人,=0.3;∴选择“5G时代”的频率是:301008.【答案】A【解析】解:由频率的意义可知,从左到右各个小组的频率之和是1,同时每小组的频率=频数总人数,所以仰卧起坐次数在15~20间的小组的频数是30−5−10−12=3,其频率为330=0.1,9.【答案】B【解答】解:由频数直方图可以看出:顾客等待时间不少于6分钟的人数即最后两组的人数为5+2=7人. 故选:B .10.【答案】D【解析】解:2000×(1−42+88+141+176+448+720+90050+100+150+200+500+800+1000)≈200件,11.【答案】B【解析】解:(141−60)÷10=8.1, 因此可以分9组,12.【答案】B【解析】解:1500×(1−42+88+141+176+445+724+90150+100+150+200+500+800+1000)=151.6件13.【答案】2015【解答】解:设年份为x ,对应年份小学入学儿童人数为y 满足y =kx +b 的函数关系式, 则由题意得:{2010k +b =25202011k +b =2320,解得:{k =−200b =404520.故函数解析式为:y =−200x +404520. 由题意得;y =−200x +404520≤1600, 解得:x ≥2014.6,∵x 是年份,根据题意及实际情况取x ≥2015, ∴从2015年起入学儿童的人数不超过1600人. 故答案为2015.14.【答案】④【解答】解:15.【答案】35【解答】解:∵80.5~90.5分这一组的频数是7,频率是0.2,∴该班级的人数是:7÷0.2=35人.故答案为:35.16.【答案】18【解答】解:∵某班有48位同学,图中从左到右的小矩形的高度比是1:3:6:4:2,×48=18.∴由图可知其中分数在70.5到80.5之间的人数是:61+3+6+4+2故答案为18.17.【答案】16【解答】解:由题意得捐书总人数为12÷0.3=40(人),∴捐书数量在4.5~5.5组别的人数是40−4−12−8=16(人).故答案为16.18.【答案】240【解析】解:根据频数分布表可知:9÷15%=60,∴a=60×30%=18,b=1−30%−15%−5%=50%,∴300×(30%+50%)=240(人).答:估计该校七年级学生身体素质良好及以上的人数为240人.19.【答案】解:(1)40×45%=18,40−2−6−18−9−2=3,3÷40=7.5%,2÷40=5%,故答案为:18,1200≤x<1400,1400≤x<1600,3,7.5%,5%.(2)频数分布直方图.(3)频数分布折线图;(4)400×18+9+340=300(户).故属于中等收入(大于等于1000不足1600元)的大约300户.20.【答案】解:(1)1025 0.25(2)补全频数分布直方图如图所示;(3)2500×12100×310=90(人),答:全校获得二等奖的学生人数90人.【解答】解:(1)a=100×0.1=10,b=100−10−18−35−12=25,n=25100=0.25;故答案为:10,25,0.25;(2)(3)见答案.21.【答案】(1)50,28,8;=144°;(2)扇形统计图中扇形C的圆心角度数是360°×2850=560(人).(3)每月零花钱的数额在60≤x<120范围的人数是1000×2850。
北师大版七年级英语上册知识点复习总结
北师大版七年级英语上册知识点复习总结一、单词复1. 数字:one, two, three, four, five, six, seven, eight, nine, ten2. 颜色:red, blue, yellow, green, orange, purple, black, white, pink,brown3. 动物:cat, dog, bird, fish, rabbit, monkey, tiger, lion, elephant, panda4. 学科:English, math, Chinese, history, geography, science, music, art, PE5. 家庭成员:father, mother, brother, sister, grandfather, grandmother, uncle, aunt6. 问候语:hello, hi, good morning, good afternoon, good evening, goodbye, see you7. 季节:spring, summer, autumn/fall, winter8. 喜欢的食物:apple, banana, orange, tomato, cucumber, bread, rice, noodles, egg, milk二、语法复1. 祈使句:Speak English. Sit down. Open the door.2. 一般疑问句:Do you like apples? Is she a teacher? Can I go to the park?3. 介词的用法:in, on, under, behind, in front of4. 形容词的比较级和最高级:big, bigger, biggest; small, smaller, smallest5. 物主代词:my, your, his, her, its, our, their三、基础句型复1. 主语+动词:I eat an apple.2. 主语+be动词:He is a student.3. 主语+动词+宾语:She likes dogs.4. 主语+be动词+形容词:The cat is cute.5. 主语+be动词+名词:This is my bag.6. 主语+情态动词+动词原形:We can play football.以上是北师大版七年级英语上册的知识点复习总结,希望对你有帮助!。
北师大版七年级数学上册期末复习压轴题专题(带解析)
北师大版七年级上册期末压轴题压轴题选讲一选择题1.某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值用代数式表示为( )A.(1﹣10%+15%)x万元 B.(1+10%﹣15%)x万元C.(x﹣10%)(x+15%)万元D.(1﹣10%)(1+15%)x万元2.有理数a、b在数轴上的位置如图所示,则化简|a﹣b|+|a+b|的结果为()A.﹣2a B.2a C.2b D.﹣2b3.如图,已知点A是射线BE上一点,过A作CA⊥BE交射线BF于点C,AD⊥BF交射线BF于点D,给出下列结论:①∠1是∠B的余角;②图中互余的角共有3对;③∠1的补角只有∠ACF;④与∠ADB互补的角共有3个.则上述结论正确的个数有( )A.1个B.2个C.3个D.4个4.如图是由一副三角尺拼成的图案,它们有公共顶点O,且有一部分重叠,已知∠BOD=40°,则∠AOC的度数是( )A.40°B.120°C.140°D.150°二填空题1.如图,线段AB=8,C是AB的中点,点D在直线CB上,DB=1.5,则线段CD的长等于.2.如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动2个单位长度到达点A1,第二次将点A1,向右移动4个单位长度到达点A2,第三次将点A2向左移动6个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离等于19,那么n的值是.3.如图所示,甲乙两人沿着边长为60cm的正方形,按A→B→C→D→A…的方向行走,甲从A点以60m/min的速度,乙从B点以69m/min的速度行走,两人同时出发,当乙第一次追上甲时,用了____________.4.将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n 个“龟图”中有245个“○”,则n=______________.5.如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到长方形A n B n C n D n(n>2),若AB n的长度为56,则n=.三、解答题1.如图,M是定长线段AB上一定点,点C在线段AM上,点D在线段BM上,点C、点D分别从点M、点B出发以1cm/s、2cm/s的速度沿直线BA向左运动,运动方向如箭头所示.(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值;(2)若点C、D运动时,总有MD=2AC,直接填空:AM=AB;(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.2.已知数轴上有A,B,C三点,分别表示数﹣24,﹣10,10.两只电子蚂蚁甲、乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)问甲、乙在数轴上的哪个点相遇?(2)问多少秒后甲到A,B,C三点的距离之和为40个单位?若此时甲调头返回,问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.3.甲、乙两地相距720km,一列快车和一列慢车都从甲地驶往乙地,慢车先行驶1小时后,快车才开始行驶.已知快车的速度是120km/h,慢车的速度是80km/h,快车到达乙地后,停留了20min,由于有新的任务,于是立即按原速返回甲地.在快车从甲地出发到回到甲地的整个程中,与慢车相遇了两次,这两次相遇时间间隔是多少?4.(1)如图1,若CO⊥AB,垂足为O,OE、OF分别平分∠AOC与∠BOC.求∠EOF的度数;(2)如图2,若∠AOC=∠BOD=80°,OE、OF分别平分∠AOD与∠BOC.求∠EOF的度数;(3)若∠AOC=∠BOD=α,将∠BOD绕点O旋转,使得射线OC与射线OD的夹角为β,OE、OF分别平分∠AOD与∠BOC.若α+β≤180°,α>β,则∠EOC=.(用含α与β的代数式表示)5.如图,已知∠AOB=90°,以O为顶点、OB为一边画∠BOC,然后再分别画出∠AOC与∠BOC的平分线OM、ON.(1)在图1中,射线OC在∠AOB的内部.①若锐角∠BOC=30°,则∠MON=45°;②若锐角∠BOC=n°,则∠MON=45°.(2)在图2中,射线OC在∠AOB的外部,且∠BOC为任意锐角,求∠MON的度数.(3)在(2)中,“∠BOC为任意锐角”改为“∠BOC为任意钝角”,其余条件不变,(图3),求∠MON的度数.6.如图,∠AOB=120°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每分钟20°;射线OD从OB开始,绕点O逆时针旋转,旋转的速度为每分钟5°,OC和OD同时旋转,设旋转的时间为t(0≤t≤15).(1)当t为何值时,射线OC与OD重合;(2)当t为何值时,射线OC⊥OD;(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC,OB与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值,若不存在,请说明理由.7.如图,∠AOB的边OA上有一动点P,从距离O点18cm的点M处出发,沿线段MO,射线OB运动,速度为2cm/s;动点Q从点O出发,沿射线OB运动,速度为1cm/s.P、Q 同时出发,设运动时间是t(s).(1)当点P在MO上运动时,PO=cm (用含t的代数式表示);(2)当点P在MO上运动时,t为何值,能使OP=OQ?(3)若点Q运动到距离O点16cm的点N处停止,在点Q停止运动前,点P能否追上点Q?如果能,求出t的值;如果不能,请说出理由.8.如图,两个形状.大小完全相同的含有30゜、60゜的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.(1)试说明:∠DPC=90゜;(2)如图,若三角板PAC的边PA从PN处开始绕点P逆时针旋转一定角度,PF平分∠APD,PE平分∠CPD,求∠EPF;(3)如图,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为3゜/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2゜/秒,在两个三角板旋转过程中(PC转到与PM重合时,两三角板都停止转动).设两个三角板旋转时间为t秒,则∠BPN=__________,∠CPD=________ (用含有t的代数式表示,并化简);以下两个结论:①为定值;②∠BPN+∠CPD为定值,正确的是___________(填写你认为正确结论的对应序号).压轴题选讲解析一选择题1.某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值用代数式表示为( )A.(1﹣10%+15%)x万元 B.(1+10%﹣15%)x万元C.(x﹣10%)(x+15%)万元D.(1﹣10%)(1+15%)x万元【考点】列代数式.【分析】根据3月份、1月份与2月份的产值的百分比的关系列式计算即可得解.【解答】解:3月份的产值为:(1﹣10%)(1+15%)x万元.故选D.【点评】本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.2.有理数a、b在数轴上的位置如图所示,则化简|a﹣b|+|a+b|的结果为()A.﹣2a B.2a C.2b D.﹣2b【考点】整式的加减;数轴;绝对值.【专题】计算题;整式.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,合并即可得到结果.【解答】解:根据数轴上点的位置得:a<﹣1<0<b<1,∴a﹣b<0,a+b<0,则原式=b﹣a﹣a﹣b=﹣2a.故选A.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.3.如图,已知点A是射线BE上一点,过A作CA⊥BE交射线BF于点C,AD⊥BF交射线BF于点D,给出下列结论:①∠1是∠B的余角;②图中互余的角共有3对;③∠1的补角只有∠ACF;④与∠ADB互补的角共有3个.则上述结论正确的个数有( )A.1个B.2个C.3个D.4个【考点】余角和补角.【分析】根据已知推出∠CAB=∠CAE=∠ADC=∠ADB=90°,再根据三角形内角和定理和三角形外角性质,互余、互补的定义逐个分析,即可得出答案.【解答】解:∵CA⊥AB,∴∠CAB=90°,∴∠1+∠B=90°,即∠1是∠B的余角,∴①正确;图中互余的角有∠1和∠B,∠1和∠DAC,∠DAC和∠BAD,共3对,∴②正确;∵CA⊥AB,AD⊥BC,∴∠CAB=∠ADC=90°,∵∠B+∠1=90°,∠1+∠DAC=90°,∴∠B=∠DAC,∵∠CAE=∠CAB=90°,∴∠B+∠CAB=∠DAC+∠CAE,∴∠ACF=∠DAE,∴∠1的补角有∠ACF和∠DAE两个,∴③错误;∵∠CAB=∠CAE=∠ADC=∠ADB=90°,∴与∠ADB互补的角共有3个,∴④正确;故选C.【点评】本题考查了互余、互补,三角形内角和定理,三角形的外角性质的应用,主要考查学生的推理能力和辨析能力,题目比较好,但是比较容易出错.4.如图是由一副三角尺拼成的图案,它们有公共顶点O,且有一部分重叠,已知∠BOD=40°,则∠AOC的度数是( )A.40°B.120°C.140°D.150°【考点】角的计算.【分析】根据同角的余角相等即可求解.【解答】解:∵∠AOB=∠COD=90°,∴∠AOD+∠BOD=∠BOC+∠BOD=90°,∴∠AOD=∠BOC=90°﹣∠BOD=50°,∴∠AOC=∠AOD+∠BOD+∠BOC=140°,故选C.【点评】此题主要考查了角的计算,余角的性质,熟记余角的性质是解题的关键二填空题1.如图,线段AB=8,C是AB的中点,点D在直线CB上,DB=1.5,则线段CD的长等于 2.5或5.5.【考点】两点间的距离.【分析】根据题意求出线段CB的长,分点D在线段CB的延长线上和点D在线段CB上两种情况、结合图形计算即可.【解答】解:∵线段AB=8,C是AB的中点,∴CB=AB=4,如图1,当点D在线段CB的延长线上时,CD=CB+BD=5.5,如图2,当点D在线段CB上时,CD=CB﹣BD=2.5.故答案为:2.5或5.5.【点评】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想和分情况讨论思想是解题的关键.2.如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动2个单位长度到达点A1,第二次将点A1,向右移动4个单位长度到达点A2,第三次将点A2向左移动6个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离等于19,那么n的值是18或19.【考点】数轴.【专题】推理填空题.【分析】根据题意可以分别写出点A移动的规律,当点A奇数次移动后对应数的都是负数,偶数次移动对应的数都是正数,从而可知A n与原点的距离等于19分两种情况,从而可以解答本题.【解答】解:由题意可得,第奇数次移动的点表示的数是:1+(﹣2)×,第偶数次移动的点表示的数是:1+2×,∵点A n与原点的距离等于19,∴当点n为奇数时,则﹣19=1+(﹣2)×,解得,n=19;当点n为偶数,则19=1+2×解得n=18.故答案为:18或19.【点评】本题考查数轴,解题的关键是明确题意,可以分别写出点A奇数次和偶数次移动的关系式.3.如图所示,甲乙两人沿着边长为60cm的正方形,按A→B→C→D→A…的方向行走,甲从A点以60m/min的速度,乙从B点以69m/min的速度行走,两人同时出发,当乙第一次追上甲时,用了20min.【考点】一元一次方程的应用.【专题】几何动点问题.【分析】设乙第一次追上甲用了x分钟,则有乙行走的路程等于甲行走的路程加上90×3,根据其相等关系列方程得69x=60x+60×3,解方程即可得出答案.【解答】解:设乙第一次追上甲用了x分钟,由题意得:69x=60x+60×3,解得:x=20.答:用了20min.故答案为:20【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.4.将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n 个“龟图”中有245个“○”,则n=16.【考点】规律型:图形的变化类.【分析】由图可知:第1个图形中小圆的个数为5;第2个图形中小圆的个数为7;第3个图形中小圆的个数为11;第4个图形中小圆的个数为17;则知第n个图形中小圆的个数为n(n﹣1)+5.据此可以再求得“龟图”中有245个“○”是n的值.【解答】解:第一个图形有:5个○,第二个图形有:2×1+5=7个○,第三个图形有:3×2+5=11个○,第四个图形有:4×3+5=17个○,由此可得第n个图形有:[n(n﹣1)+5]个○,则可得方程:[n(n﹣1)+5]=245解得:n1=16,n2=﹣15(舍去).故答案为:16.【点评】此题主要考查了图形的规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键,注意公式必须符合所有的图形.5.如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到长方形A n B n C n D n(n>2),若AB n的长度为56,则n=10.【考点】平移的性质.【专题】规律型.【分析】根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1﹣A1A2=6﹣5=1,进而求出AB1和AB2的长,然后根据所求得出数字变化规律,进而得出AB n=(n+1)×5+1求出n即可.【解答】解:∵AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,∴AA1=5,A1A2=5,A2B1=A1B1﹣A1A2=6﹣5=1,∴AB1=AA1+A1A2+A2B1=5+5+1=11,∴AB2的长为:5+5+6=16;∵AB1=2×5+1=11,AB2=3×5+1=16,∴AB n=(n+1)×5+1=56,解得:n=10.故答案为:10.【点评】此题主要考查了平移的性质以及一元一次方程的应用,根据平移的性质得出AA1=5,A1A2=5是解题关键.三、解答题1.如图,M是定长线段AB上一定点,点C在线段AM上,点D在线段BM上,点C、点D分别从点M、点B出发以1cm/s、2cm/s的速度沿直线BA向左运动,运动方向如箭头所示.(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值;(2)若点C、D运动时,总有MD=2AC,直接填空:AM=AB;(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.【考点】一元一次方程的应用;两点间的距离.【专题】几何动点问题.【分析】(1)计算出CM及BD的长,进而可得出答案;(2)根据C、D的运动速度知BD=2MC,再由已知条件MD=2AC求得MB=2AM,所以AM=AB;(3)分两种情况讨论,①当点N在线段AB上时,②当点N在线段AB的延长线上时,然后根据数量关系即可求解.【解答】解:(1)当点C、D运动了2s时,CM=2cm,BD=4cm,∵AB=10cm,CM=2cm,BD=4cm,∴AC+MD=AB﹣CM﹣BD=10﹣2﹣4=4cm;(2)根据C、D的运动速度知:BD=2MC,∵MD=2AC,∴BD+MD=2(MC+AC),即MB=2AM,∵AM+BM=AB,∴AM+2AM=AB,∴AM=AB.故答案为;(3)当点N在线段AB上时,如图.∵AN﹣BN=MN,又∵AN﹣AM=MN,∴BN=AM=AB,∴MN=AB,即=;当点N在线段AB的延长线上时,如图.∵AN﹣BN=MN,又∵AN﹣BN=AB,∴MN=AB,即=1.综上所述,=或1.【点评】本题考查了一元一次方程的应用,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.2.已知数轴上有A,B,C三点,分别表示数﹣24,﹣10,10.两只电子蚂蚁甲、乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)问甲、乙在数轴上的哪个点相遇?(2)问多少秒后甲到A,B,C三点的距离之和为40个单位?若此时甲调头返回,问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.【考点】一元一次方程的应用;数轴.【分析】(1)可设x秒后甲与乙相遇,根据甲与乙的路程差为34,可列出方程求解即可;(2)设y秒后甲到A,B,C三点的距离之和为40个单位,分甲应为于AB或BC之间两种情况讨论即可求解.【解答】解:(1)设x秒后甲与乙相遇,则4x+6x=34,解得x=3.4,4×3.4=13.6,﹣24+13.6=﹣10.4.故甲、乙在数轴上的﹣10.4相遇;(2)设y秒后甲到A,B,C三点的距离之和为40个单位,B点距A,C两点的距离为14+20=34<40,A点距B、C两点的距离为14+34=48>40,C 点距A、B的距离为34+20=54>40,故甲应为于AB或BC之间.①AB之间时:4y+(14﹣4y)+(14﹣4y+20)=40解得y=2;②BC之间时:4y+(4y﹣14)+(34﹣4y)=40,解得y=5.①甲从A向右运动2秒时返回,设y秒后与乙相遇.此时甲、乙表示在数轴上为同一点,所表示的数相同.甲表示的数为:﹣24+4×2﹣4y;乙表示的数为:10﹣6×2﹣6y,依据题意得:﹣24+4×2﹣4y=10﹣6×2﹣6y,解得:y=7,相遇点表示的数为:﹣24+4×2﹣4y=﹣44(或:10﹣6×2﹣6y=﹣44),②甲从A向右运动5秒时返回,设y秒后与乙相遇.甲表示的数为:﹣24+4×5﹣4y;乙表示的数为:10﹣6×5﹣6y,依据题意得:﹣24+4×5﹣4y=10﹣6×5﹣6y,解得:y=﹣8(不合题意舍去),即甲从A向右运动2秒时返回,能在数轴上与乙相遇,相遇点表示的数为﹣44.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.本题在解答第二问注意分类思想的运用.3.甲、乙两地相距720km,一列快车和一列慢车都从甲地驶往乙地,慢车先行驶1小时后,快车才开始行驶.已知快车的速度是120km/h,慢车的速度是80km/h,快车到达乙地后,停留了20min,由于有新的任务,于是立即按原速返回甲地.在快车从甲地出发到回到甲地的整个程中,与慢车相遇了两次,这两次相遇时间间隔是多少?【考点】一元一次方程的应用.【分析】在快车从甲地出发到回到甲地的整个程中,与慢车相遇了两次,第一次是从甲地驶往乙地时,快车追上慢车,根据追上时快车行驶的路程=慢车行驶的路程列方程求解;第二次是快车到达乙地后返回甲地时与慢车相遇,根据相遇时快车行驶的路程+慢车行驶的路程=甲、乙两地之间的路程×2列方程求解.【解答】解:设从甲地驶往乙地时,快车行驶x小时追上慢车,由题意得120x=80(x+1),解得x=2,则慢车行驶了3小时.设在整个程中,慢车行驶了y小时,则快车行驶了(y﹣1﹣)小时,由题意得120(y﹣1﹣)+80y=720×2,解得y=8,8﹣3=5(小时).答:在快车从甲地出发到回到甲地的整个程中,与慢车相遇了两次,这两次相遇时间间隔是5小时.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.4.(1)如图1,若CO⊥AB,垂足为O,OE、OF分别平分∠AOC与∠BOC.求∠EOF的度数;(2)如图2,若∠AOC=∠BOD=80°,OE、OF分别平分∠AOD与∠BOC.求∠EOF的度数;(3)若∠AOC=∠BOD=α,将∠BOD绕点O旋转,使得射线OC与射线OD的夹角为β,OE、OF分别平分∠AOD与∠BOC.若α+β≤180°,α>β,则∠EOC=.(用含α与β的代数式表示)【考点】角的计算;角平分线的定义.【分析】(1)根据垂直的定义得到∠AOC=∠BOC=90°,根据角平分线的定义即可得到结论;(2)根据角平分线的定义得到∠EOD=∠AOD=×(80+β)=40+β,∠COF=∠BOC=×(80+β)=40+β,根据角的和差即可得到结论;(3)如图2由已知条件得到∠AOD=α+β,根据角平分线的定义得到∠DOE=(α+β),即可得到结论.【解答】解:(1)∵CO⊥AB,∴∠AOC=∠BOC=90°,∵OE平分∠AOC,∴∠EOC=∠AOC=×90°=45°,∵OF平分∠BOC,∴∠COF=∠BOC=×90°=45°,∠EOF=∠EOC+∠COF=45°+45°=90°;(2)∵OE平分∠AOD,∴∠EOD=∠AOD=×(80+β)=40+β,∵OF平分∠BOC,∴∠COF=∠BOC=×(80+β)=40+β,∠COE=∠EOD﹣∠COD=40+β﹣β=40﹣β;∠EOF=∠COE+∠COF=40﹣β+40+β=80°;(3)如图2,∵∠AOC=∠BOD=α,∠COD=β,∴∠AOD=α+β,∵OE平分∠AOD,∴∠DOE=(α+β),∴∠COE=∠DOE﹣∠COD==,如图3,∵∠AOC=∠BOD=α,∠COD=β,∴∠AOD=α+β,∵OE平分∠AOD,∴∠DOE=(α﹣β),∴∠COE=∠DOE+∠COD=.综上所述:,故答案为:.【点评】本题考查了角平分线的定义,角的计算,解题的关键是找出题中的等量关系列方程求解.5.如图,已知∠AOB=90°,以O为顶点、OB为一边画∠BOC,然后再分别画出∠AOC 与∠BOC的平分线OM、ON.(1)在图1中,射线OC在∠AOB的内部.①若锐角∠BOC=30°,则∠MON=45°;②若锐角∠BOC=n°,则∠MON=45°.(2)在图2中,射线OC在∠AOB的外部,且∠BOC为任意锐角,求∠MON的度数.(3)在(2)中,“∠BOC为任意锐角”改为“∠BOC为任意钝角”,其余条件不变,(图3),求∠MON的度数.【考点】角的计算;角平分线的定义.【分析】(1)①由角平分线的定义,计算出∠MOA和∠NOA的度数,然后将两个角相加即可;②由角平分线的定义,计算出∠MOA和∠NOA的度数,然后将两个角相加即可;(2)由角平分线的定义,计算出∠MOA和∠NOA的度数,然后将两个角相减即可;(3)由角平分线的定义,计算出∠MOA和∠NOA的度数,然后将两个角相加即可.【解答】解:(1)①∵∠AOB=90°,∠BOC=30°,∴∠AOC=60°,∵OM,ON分别平分∠AOC,∠BOC,∴∠COM=AOC,BOC,∴∠MON=∠COM+∠CON=∠AOB=45°,故答案为:45°,②∵∠AOB=90°,∠BOC=n°,∴∠AOC=(90﹣n)°,∵OM,ON分别平分∠AOC,∠BOC,∴∠COM=AOC=(90﹣n)°,BOC=n°,∴∠MON=∠COM+∠CON=∠AOB=45°,故答案为:45°;(2)∵∠AOB=90°,设∠BOC=α,∴∠AOC=90°+α,∵OM,ON分别平分∠AOC,∠BOC,∴∠COM=AOC,BOC,∴∠MON=∠COM﹣∠CON=∠AOB=45°,(3)∵OM,ON分别平分∠AOC,∠BOC,∴∠COM=AOC,BOC,∴∠MON=∠COM+∠CON=(∠AOC+∠BOC)=(360°﹣90°)=135°.【点评】本题考查了角平分线定义,角的有关计算的应用,解此题的关键是求出∠COM和∠CON的大小.6.如图,∠AOB=120°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每分钟20°;射线OD从OB开始,绕点O逆时针旋转,旋转的速度为每分钟5°,OC和OD同时旋转,设旋转的时间为t(0≤t≤15).(1)当t为何值时,射线OC与OD重合;(2)当t为何值时,射线OC⊥OD;(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC,OB与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值,若不存在,请说明理由.【考点】角的计算;角平分线的定义.【专题】探究型.【分析】(1)根据题意可得,射线OC与OD重合时,20t=5t+120,可得t的值;(2)根据题意可得,射线OC⊥OD时,20t+90=120+5t或20t﹣90=120+5t,可得t的值;(3)分三种情况,一种是以OB为角平分线,一种是以OC为角平分线,一种是以OD为角平分线,然后分别进行讨论即可解答本题.【解答】解:(1)由题意可得,20t=5t+120解得t=8,即t=8min时,射线OC与OD重合;(2)由题意得,20t+90=120+5t或20t﹣90=120+5t,解得,t=2或t=14即当t=2min或t=14min时,射线OC⊥OD;(3)存在,由题意得,120﹣20t=5t或20t﹣120=5t+120﹣20t或20t﹣120﹣5t=5t,解得t=4.8或t=或t=12,即当以OB为角平分线时,t的值为4.8min;当以OC为角平分线时,t的值为min,当以OD为角平分线时,t的值为12min.【点评】本题考查角的计算、角平分线的性质,解题的关键是明确题意,找出所求问题需要的条件.7.如图,∠AOB的边OA上有一动点P,从距离O点18cm的点M处出发,沿线段MO,射线OB运动,速度为2cm/s;动点Q从点O出发,沿射线OB运动,速度为1cm/s.P、Q 同时出发,设运动时间是t(s).(1)当点P在MO上运动时,PO=cm (用含t的代数式表示);(2)当点P在MO上运动时,t为何值,能使OP=OQ?(3)若点Q运动到距离O点16cm的点N处停止,在点Q停止运动前,点P能否追上点Q?如果能,求出t的值;如果不能,请说出理由.8.如图,两个形状.大小完全相同的含有30゜、60゜的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.(1)试说明:∠DPC=90゜;(2)如图,若三角板PAC的边PA从PN处开始绕点P逆时针旋转一定角度,PF平分∠APD,PE平分∠CPD,求∠EPF;(3)如图,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为3゜/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2゜/秒,在两个三角板旋转过程中(PC转到与PM重合时,两三角板都停止转动).设两个三角板旋转时间为t秒,则∠BPN=180﹣2t,∠CPD=90﹣t (用含有t的代数式表示,并化简);以下两个结论:①为定值;②∠BPN+∠CPD为定值,正确的是①(填写你认为正确结论的对应序号).【考点】角的计算;角平分线的定义.【分析】(1)利用含有30゜、60゜的三角板得出∠DPC=180°﹣∠CPA﹣∠DPB,进而求出即可;(2)设∠CPE=∠DPE=x,∠CPF=y,则∠APF=∠DPF=2x+y,进而利用∠CPA=60゜求出即可;(3)首先得出①正确,设运动时间为t秒,则∠BPM=2t,表示出∠CPD和∠BPN的度数即可得出答案.【解答】解:(1)∵∠DPC=180°﹣∠CPA﹣∠DPB,∠CPA=60°,∠DPB=30°,∴∠DPC=180゜﹣30゜﹣60゜=90゜;(2)设∠CPE=∠DPE=x,∠CPF=y,则∠APF=∠DPF=2x+y,∵∠CPA=60゜,∴y+2x+y=60゜,∴x+y=30゜∴∠EPF=x+y=30゜(3)①正确.设运动时间为t秒,则∠BPM=2t,∴∠BPN=180﹣2t,∠DPM=30﹣2t,∠APN=3t.∴∠CPD=180﹣∠DPM﹣∠CPA﹣∠APN=90﹣t,∴==.②∠BPN+∠CPD=180﹣2t+90﹣t=270﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误.故答案为:180﹣2t;90﹣t;①.【点评】此题主要考查了角的计算,利用数形结合得出等式是解题关键,还要理清角之间的关系.精品文档考试教学资料施工组织设计方案。
新版北师大版七年级上册极品复习
丰富图形世界复习一、常见几何体分类及其特点:1.柱体点拨:棱柱与圆柱统称柱体.①棱柱体:〔如图〔1)(2〕〕,图中上下两个面称棱柱,周围面称棱柱侧面,面与面交线是棱柱.其中侧面与侧面交线是,棱与棱交点是.点拨:正方体与长方体是棱柱,它们都是四棱柱.正方体是长方体.②圆柱:图〔3)上下两个圆面是圆柱,这两个是半径一样圆,周围是圆柱.2.锥体点拨:棱锥与圆锥统称锥体.①圆锥:〔如图〔4〕〕图中圆面是圆锥一个,中间曲面是圆锥,圆锥只有一个顶点.②棱锥:〔如图〔5〕〕图中下面多边形面是棱锥一个,其余各三角形面是棱锥侧面.3.台体①圆台:〔如图〔6〕〕图中上下两个大小不同圆面是圆台底面,中间曲面是圆台侧面.②棱台:〔如图〔7〕〕图中上下两个大小不同多边形是棱台底面,其余四边形是棱台侧面.4.球体:〔如图〔8〕〕图中半圆绕其直径旋转而成几何体,球体外表是曲面.二、.图形是由点、线、面构成。
动成线,线动成,动成体。
面与面相交得到,线与线相交得到。
面动成体可以通过平移与旋转实现。
例如:五棱柱、圆柱分别可以看作是由五边形或圆沿着竖直方向平移形成。
圆柱又可以看作是矩形绕着一边旋转一周形成。
三、展开与折叠1.两种展开图肯定不能拼成正方体〔1〕“田〞字格型,只要所给图形出现“田字格〞,就不能拼成正方体。
如:〔2〕“4+2〞型,即中间有一行〔列〕是连续四个小正方形,还有两个小正方形出现在同一侧,如:2. 正方体平面展开图(有11种):正方体有12条棱,需要剪7刀才能展开成平面图形。
〔2〕圆柱、圆锥、正三棱锥、正四棱锥、正五棱锥、正三棱柱展开图:四、截一个几何体1.用一个平面去截正方体,可能出现下面几种情况:〔1〕、截面是三角形〔2〕、截面是四边形〔3〕、截面是五边形〔4〕、截面为六边形点拨:为什么截面图形最多是六边形?为什么不能截出直角三角形?2. 几种常见几何体截面:点拨例如.用一个平面去截一个正方体,如果截去几何体是一个三棱锥,请答复以下问题:〔1〕截面一定是什么图形?〔2〕剩下几何体可能有几个顶点?五、三视图1.主视图、左视图、俯视图定义从不同方向观察同一物体,从正面看图叫_______,从左面看图叫_______,从上面看图叫做_________.2.几种几何体三视图--(1)正方体:三视图都是_________.(2)球体:三视图都是_________(3)圆柱体:(4)圆锥体:三种视图之间关系:主俯长对正,主左高平齐,俯左宽相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版七年级上册数学知识点总结第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
第一章丰富的图形世界一、你一定能选对1.下列图形中,不能..经过折叠围成正方形的是()(A)ﻩ(B)ﻩ(C)(D)2.一个物体的三视图如图所示,该物体是( )A、圆柱B、圆锥C、棱锥D、棱柱第1题图第2题图3.正视图、左视图和俯视图完全相同的几何体是()4.小明从正面观察下图所示的物体,看到的是( )5.下列四个几何体中,正视图、左视图与俯视图是全等图形的几何体是()(A)圆柱ﻩﻩ(B)圆锥ﻩ(C)三棱锥ﻩﻩ(D)球6.将下面的直角梯形绕直线l旋转一周,可以得到右边立体图形的是7.下图是由10把相同的折扇组成的“蝶恋花”(图l)和梅花图案(图 2 )(图中的折扇无重叠), 则梅花图案中的五角星的五个锐角均为()A .36ºB . 42ºC . 45ºD.48º第10题8.下列一组几何体的俯视图是( )9.图2是由6个相同的小立方块搭成的几何体,那么这个几何体的俯视图是()正面A.B.C.D.第3题图第4题图10.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1分米的正方体摆在课桌上成如图6形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为( )A . 33分米2ﻩB .24分米2C .21分米2ﻩﻩD .42分米2二、认真填一填!请把正确的结论填在题中的横线上11.小林同学在一个正方体盒子的每个面都写有一个字,分别是:我、喜、欢、数、学、课,其平面展开图如图所示.那么在该正方体盒子中,和“我”相对的面所写的字是“ ”. 12. 如图是某个几何体的展开图,这个几何体是 .13·如图,将标号为A 、B 、C、D的正方形沿图中的虚线剪开后得到标号为P、Q 、M、N的四组图形.试按照“哪个正方形剪开后得到哪组图形”的对应关系,填空:A 、与____对应B 、与____对应C 、与____对应D 、与_____对应 14.圆柱的底面半径是3cm ,圆柱的高是5cm ,则圆柱的侧面积是 15.如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n ,则n 的所有可能的值之和为 .16·观察下列图形:(1)第一个图形有1个三角形,第二个图形有 个三角形,第三个图形有 个三角形;第四个图形有 个三角形,(2)以此类推,第5图形应该有 三角形。
图2 A B C D 第11题第12题图 主视图三、解答题。
注意写出必要的解答过程!17.(6分)如图,至少找出下列几何体的四个共同点.18·若要使得下图中平面展开图折叠成正方体后,相对面上的两个数之和为5,先写出x,y,z的值,再求x+y+z的值.19、用一个平面去截一个正方体,如果截去的几何体是一个三棱锥,请回答下列问题:(1)截面一定是什么图形?(2)剩下的几何体可能有几个顶点?第二章 有理数及其运算1、有理数的分类ﻩ正有理数 整数 有理数 零 有理数负有理数 分数 2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零 3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。
任何一个有理数都可以用数轴上的一个点来表示。
4、倒数:如果a 与b 互为倒数,则有a b=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a |≥0)。
若|a|=a,则a ≥0;若|a|=-a,则a ≤0。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
互为相反数的两个数的绝对值相等。
6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
7、有理数的运算:(1)五种运算:加、减、乘、除、乘方多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。
只要有一个数为零,积就为零。
有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
一个数同0相加,仍得这个数。
互为相反数的两个数相加和为0。
有理数减法法则:减去一个数,等于加上这个数的相反数! 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘,积仍为0。
有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除。
0除以任何非0的数都得0。
注意:0不能作除数。
有理数的乘方:求n 个相同因数a的积的运算叫做乘方。
正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。
(2)有理数的运算顺序先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。
(3)运算律加法交换律 a b b a +=+ 加法结合律 )()(c b a c b a ++=++ 乘法交换律 ba ab = 乘法结合律 )()(bc a c ab =乘法对加法的分配律 ac ab c b a +=+)( 8、科学记数法一般地,一个大于10的数可以表示成na 10⨯的形式,其中101<≤a ,n 是正整数,这种记数方法叫做科学记数法。
(n=整数位数-1)有理数的乘、除、乘方混合运算练习题一、有理数的乘法运算法则:(一)没有0因数相乘的情况下-----答案由两部分组成1、由负因数的个数确定符号----------+⎧⎨⎩奇数(如1,3,5,)个负因数,积为“—”偶数(如2,4,6,)个负因数,积为“”,可省略----------先写 2、把绝对值相乘--------------------------------------后写 (二)有一个以上的0因数相乘,积为0(三)适用的应算律: 1.2.()3.()a b b a a b c a b c a b c d a b a c a d ⨯=⨯⎧⎪⨯⨯=⨯⨯⎨⎪ ⨯+-=⨯+⨯-⨯⎩(四)策略:在有理数的乘、除中,碰到小数就 ,碰到带分数就 练习:1、(–4)×(–9) 2、(–52)×813、(–12)×2.45×0×9×1004、(–253)×1355、10.12512(16)(2)2-⨯⨯-⨯- 6、(-6)×(-4)-(-5)×107、(0.7-103-254+ 0.03)×(-100) 8、(–11)×52+(–11)×953二、有理数的倒数:(一)定义:如 ,则称a 与b 互为倒数;其中一个是另一个的倒数。
(二)几种情况下的倒数:1、整数:2的倒数是 ;12-的倒数是 ;0没有倒数发现:①互为倒数的两数必然 ;②把整数的分母看成 ,然后分子与分母2、分数:12的倒数是 ;23-的倒数是 ; 112的倒数是 ;223-的倒数是 ;发现:求倒数时,碰到带分数,必须化为3、小数:0.25的倒数是 ; 1.125-的倒数是 ; 发现:求倒数时,碰到小数,必须化为 , 练习:求下列各数的倒数: 4.25- , 235, 1.14- 三、有理数的除法法则:(a b a b ÷=⨯的 )--------------- 就是看到除法,就转化为练习:1、(-18)÷(-9) 2、-3÷(-31)3、0÷(–105)4、(-2)÷(-1.5)×(-3)5、 -0.2÷(-151)×(-261) 6、[65÷(-21-31)+281]÷(-181)四、乘方:(一)在na 中,a 称为 ;n 称为 ;na 称为 。
(二)几个不同表达式的意义1、na = ; 4、()n ab= ; 2、()na -= ; 5、na b= ; 3、na -= ; 6、na b-= ; (三)、负数的奇次幂是___ __,负数的偶次幂是 _ ____。
正数的任何次幂都是 ,0的任何正整数次幂都是 ,1的任何正整数次幂都是 。
练习:1、42-()的意义是__________________,结果是______; 42-的意义是__________________,结果是______。
2、下列各组数中,其值相等的是( )A. 23和32 B .32-()和32- C. 23-和23-() D. 232-⨯()和232-⨯()3、计算:①23-= ;②223⨯= ;③223=(-) ;④223-=4、若212)||02x y ++-=(,则2011()xy = 五、有理数混合运算顺序:1,先乘方,再乘除,最后加减:2,同级运算,从左到右进行;3,如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
练习:1、12411 ()()()23523+-++-+- 2、4(81)( 2.25)()169-÷-⨯-÷3、11(22)3(11)+--⨯-4、33102(4)8-÷--5、 31(12)()15(1)45+⨯--⨯- 6、2232[3()2]23-⨯-⨯--7、23533||()14714-⨯-÷ 8、1[4(3)]12⨯-⨯9、2(0.25)(36)3-⨯- 10、1112()42÷-11、2223116(1)(3)(1)(3)22-⨯---÷-⨯- 12、251()()0.6(1)( 4.9)563-+-----+13、199711(1)(10.5)()312----⨯÷- 14、636(5)312(2)3757-⨯-+-⨯15、—22—(—2)2—23+(—2)316、33514(1)(8)(3)[(2)5]217---⨯+-÷-+17、237335[3(1)(10.6)( 2.5)]()(1)443÷-+-⨯-÷--- 18、20102011(2)(0.5)-⨯-19、1111 45566778+++⨯⨯⨯⨯ 20、111113355779+++⨯⨯⨯⨯ 提示:111(1)1n n n n =-⨯++ 提示:1111()35235=⨯-⨯第三章 整式及其加减1、代数式用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。