塔吊基础设计计算

合集下载

QTZ40塔吊基础计算书

QTZ40塔吊基础计算书

QTZ63塔吊基础计算书根据现场情况,塔机基础采用独立基础,底面尺寸为5.0×5.0米,高度1.35米塔机基础埋深2.5米,配筋○20@130双层双向,“S”形○14@500,梅花形布置,混凝土标号C35,承台底设100厚C15混凝土垫底基础四周用M10水泥砂浆砌筑240厚标准砖挡土墙至室外地坪。

塔机基础中心到基坑距离约3.5米。

一. 参数信息塔吊型号:QTZ63, 自重(包括压重)F1=258.80kN,最大起重荷载F2=40.00kN,塔吊倾覆力距M=544.00kN.m,塔吊起重高度H=20.00m,塔身宽度B=1.40m,混凝土强度等级:C35,基础埋深D=2.50m,基础最小厚度h=1.35m,基础最小宽度Bc=5.00m,二. 基础最小尺寸计算基础的最小厚度取:H=1.35m基础的最小宽度取:Bc=5.00m三. 塔吊基础承载力计算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。

计算简图:当不考虑附着时的基础设计值计算公式:当考虑附着时的基础设计值计算公式:当考虑偏心距较大时的基础设计值计算公式:式中 F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=1.2×298.8=358.56kN;G──基础自重与基础上面的土的自重,G=1.2×(25.0×B c×B c×H c+20.0×B c×B c×D) =2512.50kN;B c──基础底面的宽度,取B c=5.00m;W──基础底面的抵抗矩,W=0.118B c×B c×B c=14.75m3;M──倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4×544.00=761.60kN.m; a──合力作用点至基础底面最大压力边缘距离(m),按下式计算:a=5.00/2-761.60/(358.56+2512.50)=2.23m。

塔式起重机混凝土基础设计计算方法(详细版)

塔式起重机混凝土基础设计计算方法(详细版)

不满足JGJ/T 187-2009第4.1.2-3条要求
案例2
110t•m的倾覆力矩比80t•m的塔吊小
建议
塔吊混凝土独立基础设计必须满足抗倾覆和 地基土容许承载能力要求,特别是抗倾覆要 求,这是确保塔吊安全的主要前提。 厂方提供塔吊使用说明书中的基础图纸只能 作为参考,不能作为现场施工依据,应根据 方方使用说明书内提供的倾覆力矩和自重等 技术参数、该工程地质报告,以及以往设计 经验对塔吊基础进行详细计算与设计。
k vk k k
k
板式或十字形基础

基础的埋置深度应综合考虑工程地质、塔机的荷载大小以及相邻环境 条件等因素确定。基础顶面标高不宜超出现场自然地面。在冻土地区 的基础应采取构造措施避免基底及基侧受冻胀土的作用。 基础高度应满足塔机预埋件的抗拔要求,且不宜小于1000mm,不宜 采用坡形或台阶形顶面的基础。
组合式基础布置示意图
组合式基础设计
南京汇达广场塔吊基础设计实例

塔机基础设计荷载取值



塔机基础的设计应在独立状态下按工作状态和非工作 状态的荷载分别计算。 塔机基础工作状态的荷载应包括塔机和基础的自重荷 载、起重荷载、风荷载、并考虑可变荷载的组合系数, 其中起重荷载不考虑动力系数; 非工作状态下的荷载应包括塔机和基础的自重荷载、 风荷载。 塔机工作状态的基本风压应按0.20 kN/m2取用,非工 作状态的基本风压应按现行国家标准《建筑结构荷载 规范》GB50009附录D.4中给出的50年一遇的风压取用, 且不小于0.30kN/m2,可参考(JGJ/T187-2009)附录 A计算。
桩基承台应进行受弯、受剪承载力计算,将塔机作用于承 台的4根立柱所包围的面积作为柱截面,受弯、受剪承载力 和配筋应按现行《混凝土结构设计规范》GB50010的规定进 行计算。 对于十字型梁式承台和板式承台中的暗梁的弯矩与剪力计 算,可视基桩为不动铰支座,按简支梁或连续梁计算,倾翻 力矩M按其中任一梁纵向作用,竖向荷载F仍由全部基础承 受,宜按对称式配置正、负弯矩筋及箍筋。

QTZ-315塔吊的计算书

QTZ-315塔吊的计算书

一. 参数信息QTZ-315塔吊天然基础的计算书塔吊型号:QTZ315,自重(包括压重)F1=250.00kN,最大起重荷载F2=30.00kN,塔吊倾覆力距M=315.40kN.m,塔吊起重高度H=28.00m,塔身宽度B=1.40m,混凝土强度等级:C35,基础埋深D=1.30m,基础最小厚度h=1.30m,基础最小宽度Bc=5.00m,二. 基础最小尺寸计算基础的最小厚度取:H=1.30m基础的最小宽度取:Bc=5.00m三. 塔吊基础承载力计算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。

计算简图:当不考虑附着时的基础设计值计算公式:当考虑附着时的基础设计值计算公式:当考虑偏心距较大时的基础设计值计算公式:式中F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=1.2×280=336.00kN;G──基础自重与基础上面的土的自重,G=1.2×(25.0×Bc×Bc×Hc+20.0×Bc×Bc×D) =1275.00kN;Bc──基础底面的宽度,取Bc=5.00m;W──基础底面的抵抗矩,W=Bc×Bc×Bc/6=20.83m3;M──倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4×315.40=441.56kN.m;a──合力作用点至基础底面最大压力边缘距离(m),按下式计算:a=5.00/2-441.56/(336.00+1275.00)=2.23m。

经过计算得到:无附着的最大压力设计值 Pmax=(336.00+1275.00)/5.002+441.56/20.83=85.63kPa无附着的最小压力设计值 Pmin=(336.00+1275.00)/5.002-441.56/20.83=43.25kPa有附着的压力设计值 P=(336.00+1275.00)/5.002=64.44kPa偏心距较大时压力设计值Pkmax=2×(336.00+1275.00)/(3×5.00×2.23)=96.50kPa四. 地基基础承载力验算地基基础承载力特征值计算依据《建筑地基基础设计规范》GB 50007-2002第5.2.3条。

塔吊基础设计计算

塔吊基础设计计算

筑龙网WW W.ZH U L ON G.C OM(一)塔吊基础设计计算 1、根据塔吊使用说明书,十字梁设计为1100×1500、砼C25,适当配置钢筋,本基础坐落在5根桩上,即本塔吊基础设计, 2、基础十字梁钢筋设计根据塔吊使用说明书,十字梁所受的荷载为F1=F2=150KN 截面尺寸为1100×1500,砼为C25假如十字梁双排钢筋为5Φ25验算如上草图,M max F ×a =150×3.00=450KN.M 查表:ρ=0.26%As =ρ×b ×h =0.26%×1100×1500=4290mm 2A 设=4908mm 2 >As =4290mm 2故十字梁双排配筋满足要求。

3、 稳定验算以知条件:基础所受的垂直荷载 476KN基础所受的水平荷载 24KN 基础所受的倾翻力矩 1220KN 基础所受的扭矩 185 KN.mm 基础设计重量 610 KN.mm计算塔吊在非工作情况下是否稳定筑龙网WW W.ZH U L ON G.C OMe =(M+H ×h )/(V+G )≤Le/3=(185×103×24103×50)/(476×103+610×103)=1.28<=2.03L/3 故基础满足要求 五、塔吊稳定验算:(1) 塔吊在工作情况下有荷载稳定验算:K1=[G ×(c-h ×sina+b )-v ×(a-h )÷gt] ÷[Q ×(a-b )]=1.534>1.15 取a =0(2) 非工作下的稳定验算(取W3=2KN/M 风载按12级台风取) K2=[G1×(b+c1-h1×sina )] ÷[G2×C2-b + h2×sina+W3×P3]]=1.39>1.15故:塔吊在工作和非工作下均能保持稳定。

塔吊基础计算

塔吊基础计算

塔吊基础计算一、天然基础塔吊在安装完毕后。

其下地基即承受塔吊基础传来的上部荷载,一是竖向荷载,包括塔吊重量F和基础重量G;另一部分是弯矩M,主要是风荷载和塔吊附加荷卸产生的弯矩。

塔吊基础受力,可简化成偏心受压的力学模型(图1),此时,基础边缘的接触压力最大值和最小值分别可以按下式计算:图1塔吊基础受力简图(天然地基)图1塔吊基础受力简图(天然地基)其中:F————塔吊工作状态的重量,单位KNG————基础自重,单位KNG=b×b×h×ρ,单位KNb×h———基础边长、厚度,单位mρ——————基础比重,取25KN/m3e————偏心距,单位me=M/(F+G)M————塔吊非工作状态下的倾覆力矩。

若计算出的P min<0,即基底出现拉力,由于基底和地基之间不能承受拉力,此时基底接触压力将重新分布。

应按下式重新计算P maxF、M可由塔吊说明书中给出,将计算得出的最大接触压力P max和地质资料中给出的地基承载力标准值相比较,小于地基的承载力标准值即可满足要求。

二、桩基础对于有桩基础的塔吊,必须验算桩基础的承载力。

根据计算分析,在非工作状态下,塔吊大臂垂直于基础面对角线时最危险。

当以对角两根桩的连线为轴(图2—1),产生倾覆力矩时,将由单桩受力,此时桩的受力为最不利情况。

图2—1桩基础1、受力简图图2—2塔吊基础受力简图(桩基础)2、荷载计算当只受到倾覆力矩时:当只受到基础承台及塔吊重力时:3、单桩荷载最不利情况3、单桩最小荷载若计算出的P2<0,即桩将受到拉力,拉力为|P2|L———桩的中心距。

4、单桩承载力单桩的受压承载力由桩侧摩阻力共同承担的,单桩受压承载力为:单桩的抗拔承载力由桩侧摩阻力承担,单桩抗拔力为:R K2=U P∑q Si L i (2—6)其中:q p—————桩端承载力标准值,KP aA P—————桩身横截面面积,m2U—————桩身的周长,mPq Si—————桩身第I层土的摩阻力标准值,KP A kL i—————按土层划分的各段桩长,m将计算所得的P1和R K1相比较,|P2|和R K2相比较,若P1< R K1且|P2|< R K2则可满足要求。

塔吊基础设计计算

塔吊基础设计计算

塔吊基础设计计算设计塔吊的基础,就好比盖房子先要打好地基一样,可不是随随便便的事儿,得一步一步来:算重量和压力:先得摸清楚塔吊自身的重量有多大,再加上它能吊多重的货物,还得考虑到风吹过来的力、地震可能带来的冲击力,把这些力气统统算清楚。

挑基础样式:看看工地的地势和地质条件,选择合适的地基类型,比如独立基础(就像单独的一块大石头垫底)、连片基础(很多块石头连起来)或者打入地下的桩基础(像一根根钉子钉在地下)。

力量怎么传过去:接下来想象一下这些力气是怎么从塔吊传到地基上的,算出每个部位承受的压力有多大。

地基扛不扛得住:土壤能承受多大的压力,得根据地质报告来判断。

就像你得知道土地有多硬实,能撑得起多重的东西。

然后算算这块地基能不能顶住塔吊传下来的全部力气,包括抗压、抗弯折和抵抗剪切破坏的能力。

稳不稳定:考虑塔吊在工作时会不会被吹倒或者歪斜,就像一棵大树扎根在地上,得保证它稳稳当当的。

量体裁衣做基础:根据前面的计算结果,给地基设计合适的大小和深度,就像给塔吊穿鞋,得大小合适、底子扎实。

桩基础的细节设计:如果是用桩基础,那还要考虑桩的数量、粗细、打入地下的长度,还有桩顶上的承台怎么设计。

反复检查调整:设计出来了,还要反复检查,看这地基结实不结实,牢不牢靠,不达标的就调整,比如把地基做大点,或者多打几根桩。

施工方法和材料:设计好了,就要定施工方案,选好材料,就像烹饪要有食谱和食材一样,确保施工质量杠杠的。

权威认证:最后,设计成果要给专家和有关部门审核,通过了才算合格,就像考试答完了卷子,得老师批改过了才能安心。

总而言之,设计塔吊基础就像是给塔吊打造一个稳固有力的家,得方方面面都考虑周全,才能保证塔吊在工地上安全高效地工作。

塔吊基础计算

塔吊基础计算

塔吊基础计算QTZ63塔吊天然基础的计算书参数信息:塔吊型号为QTZ63,自重(包括压重)为F1=450.80kN,最大起重荷载为F2=60.00kN,塔吊倾覆力距为M=630.00kN.m,塔吊起重高度为70.00m,塔身宽度为B=1.50m,混凝土强度等级为C35,基础埋深为D=5.00m,基础最小厚度为h=1.35m,基础最小宽度为Bc=5.00m。

基础最小尺寸计算:基础的最小厚度为H=1.35m,基础的最小宽度为Bc=5.00m。

塔吊基础承载力计算:按照《建筑地基基础设计规范》(GB-2002)第5.2条承载力计算。

计算简图如下:当不考虑附着时的基础设计值计算公式为:当考虑附着时的基础设计值计算公式为:当考虑偏心距较大时的基础设计值计算公式为:其中,F为塔吊作用于基础的竖向力,包括塔吊自重、压重和最大起重荷载,F=1.2×510.8=612.96kN;G为基础自重与基础上面的土的自重,G=1.2×(25.0×Bc×Bc×Hc+20.0×Bc×Bc×D) =4012.50kN;Bc为基础底面的宽度,取Bc=5.00m;W为基础底面的抵抗矩,W=Bc×Bc×Bc/6=20.83m3;M为倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4×630.00=882.00kN.m;a为合力作用点至基础底面最大压力边缘距离(m),按下式计算:a=5.00/2-882.00/(612.96+4012.50)=2.31m。

经过计算得到:无附着的最大压力设计值为Pmax=(612.96+4012.50)/5.002+882.00/20.83=227.35kPa;无附着的最小压力设计值为Pmin=(612.96+4012.50)/5.002-882.00/20.83=142.68kPa;有附着的压力设计值为P=(612.96+4012.50)/5.002=185.02kPa;偏心距较大时压力设计值为Pkmax=2×(612.96+4012.50)/(3×5.00×2.31)=267.06kPa。

塔吊天然基础计算

塔吊天然基础计算

天然基础计算一、参数信息塔吊型号:QTZ40,塔吊起升高度H=100.00m,塔吊倾覆力矩M=400.00kN.m,混凝土强度等级:C40,塔身宽度B=1.60m,基础以上土的厚度D:=2.50m,自重F1=342.00kN,基础承台厚度h=1.50m,最大起重荷载F2=40.00kN,基础承台宽度Bc=6.00m,钢筋级别:II级钢。

二、基础最小尺寸计算(内容固定不变)1.最小厚度计算依据《混凝土结构设计规范》(GB50010-2002)第7.7条受冲切承载力计算。

根据塔吊基础对基础的最大压力和最大拔力,按照下式进行抗冲切计算:(7.7.1-2)其中: F──塔吊基础对基脚的最大压力和最大拔力;其它参数参照规范。

η──应按下列两个公式计算,并取其中较小值,取0.00;(7.7.1-2)(7.7.1-3)η1--局部荷载或集中反力作用面积形状的影响系数;η2--临界截面周长与板截面有效高度之比的影响系数;βh--截面高度影响系数:当h≤800mm时,取βh=1.0;当h≥2000mm时,取βh=0.9,其间按线性内插法取用;ft--混凝土轴心抗拉强度设计值,取16.70MPa;σpc,m--临界截面周长上两个方向混凝土有效预压应力按长度的加权平均值,其值宜控制在1.0-3.5N/mm2范围内,取2500.00;u m--临界截面的周长:距离局部荷载或集中反力作用面积周边h o/2处板垂直截面的最不利周长;这里取(塔身宽度+h o)×4=9.60m;h o--截面有效高度,取两个配筋方向的截面有效高度的平均值;βs--局部荷载或集中反力作用面积为矩形时的长边与短边尺寸的比值,βs不宜大于4;当βs<2时,取βs=2;当面积为圆形时,取βs=2;这里取βs=2;αs--板柱结构中柱类型的影响系数:对中性,取αs=40;对边柱,取αs=30;对角柱,取αs=20. 塔吊计算都按照中性柱取值,取αs=40 。

塔吊基础计算书

塔吊基础计算书

塔吊分项参数计算塔吊是施工场地最重要的施工机械之一,其使用贯穿了整个工程。

在这过程中间隔时间长,不可预见性因素多,为确保塔吊的安全,以下计算都按极限苛刻条件下能保证塔吊正常工作计算。

即:塔吊设置在最大开挖深度处;型钢柱与混凝土灌注桩连接按光滑面锚固。

(计算详值见计算表格) 1. 基础竖向极限承载力计算F=F1+ F2F ——基础竖向极限承载力kn F1——塔吊自重(包括压重)kn F2最大起吊重量kn 2.单桩抗压承载力、抗拔力计算桩顶竖向力的计算(依据《建筑桩技术规范》JGJ94-94的第条)F 十。

iV V-A- M =1.2 —±士 弱尹2" Z* ("+”计算结果为抗压,“-”为抗拔)其中 N i ——单桩桩顶竖向力设计值kNn 单桩个数,n=4;F ——作用于桩基承台顶面的竖向力设计值TG ——塔吊基础重量KNMx,My 承台底面的弯矩设计值kN.mxi,yi 单桩相对承台中心轴的XY 方向距离mM ——塔吊的倾覆力矩kN.m3.桩长以及桩径计算 桩采用钻孔灌注桩R =f A +U £ f l >R = N xgk 实际 ppp s ii1U P =n d其中Rk 实际一一实际钻孔灌注桩承载能力KN桩端面承载能力KN桩侧摩擦阻力总和IUp£fsliKNR——单桩轴向承力安全值KN孔一一桩安全系数取2d桩直径m4.桩抗拔验算Ok=入RQk八k实际5.桩配筋计算桩身配筋率可取0.20%〜0.65% (计算取上限0.65%),抗压主筋不应少于6①10,箍筋采用不少于①6@3mm的螺旋箍筋,在桩顶5倍桩身直径范围内箍筋①6@1mm,每隔2m设一道2①12焊接加强箍筋。

As = S桩截面*配筋率n = 4As/ (n 巾2)其中n ——竖筋根数根As ——钢筋总截面积m①一一竖筋直径m6.桩上部钢支柱计算钢支柱采用 hxbxtwxt = 350 * 350 x 12 x 19, H 型钢。

塔吊基础技术计算公式

塔吊基础技术计算公式

塔吊基础技术计算公式引言。

塔吊是建筑工地上常见的起重设备,它具有起重能力大、操作范围广等优点,因此在建筑施工中得到了广泛应用。

在塔吊的设计和施工过程中,基础技术计算是至关重要的一环。

正确的基础技术计算可以确保塔吊的安全稳定运行,保障施工现场的安全。

本文将介绍塔吊基础技术计算的一些常用公式,希望对相关工程师和施工人员有所帮助。

一、塔吊基础技术计算公式。

1. 塔吊的起重能力计算公式。

塔吊的起重能力是指它能够承受的最大起重重量。

起重能力的计算公式如下:Q = (P F) × r。

其中,Q为塔吊的起重能力,P为塔吊的额定起重能力,F为塔吊自重,r为塔吊的工作半径。

2. 塔吊基础承载力计算公式。

塔吊的基础承载力是指它能够承受的最大荷载。

基础承载力的计算公式如下:Pb = ∑(Gk + Qk) + ∑(Ek × Ak)。

其中,Pb为塔吊的基础承载力,Gk为地面荷载,Qk为动载荷,Ek为风载荷,Ak为风载面积。

3. 塔吊的抗倾覆稳定计算公式。

塔吊在使用过程中需要保持稳定,抗倾覆稳定的计算公式如下:Fh = (M × L) / (H × 2)。

其中,Fh为塔吊的抗倾覆稳定系数,M为塔吊的最大起重力矩,L为塔吊的最大工作半径,H为塔吊的高度。

4. 塔吊的基础尺寸计算公式。

塔吊的基础尺寸是指它的基础面积和深度,基础尺寸的计算公式如下:A = Pb / σ。

D = A / B。

其中,A为塔吊的基础面积,Pb为塔吊的基础承载力,σ为土壤承载力,D为塔吊的基础深度,B为土壤的承载力系数。

5. 塔吊的基础沉降计算公式。

塔吊的基础沉降是指它在使用过程中可能发生的沉降情况,基础沉降的计算公式如下:S = (Q / A) × C。

其中,S为塔吊的基础沉降,Q为塔吊的荷载,A为塔吊的基础面积,C为土壤的沉降系数。

二、塔吊基础技术计算实例分析。

为了更好地理解塔吊基础技术计算公式的应用,我们以一个实际工程为例进行分析。

QTZ50塔吊天然基础计算书

QTZ50塔吊天然基础计算书

QTZ50塔吊天然基础计算书一、参数信息型号:QTZ50 塔吊起重高度H=120m塔吊倾覆力距M=530kN.m 混凝土强度等级:C35塔身宽度B=1.50m,基础以上土的厚度:D=1.5m自重F1=240.8fkN,基础承台厚度h=1.3m最大起重荷载F2=40kN,基础承台宽度R=5.5m二、基础最小尺寸计算基础的最小宽度取:Bc=5.00m三. 塔吊基础承载力计算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。

计算简图:当不考虑附着时的基础设计值计算公式:当考虑附着时的基础设计值计算公式:当考虑偏心距较大时的基础设计值计算公式:式中 F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=304.30kN;G──基础自重与基础上面的土的自重,G=1.2×(25.0×Bc×Bc×Hc+Ym×Bc ×Bc×D) =3025.22kN;Ym——土的加权平均重度Bc──基础底面的宽度,取Bc=5.50m;W──基础底面的抵抗矩,W=Bc×Bc×Bc/6=27.73m3;M──倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.3×530=689kN.m;a──合力作用点至基础底面最大压力边缘距离(m),按下式计算:a=Bc/2-m/(F+G)=5.5/2-689/(360.96+3025.219)=2.01m。

经过计算得到:无附着的最大压力设计值Pmax=(360.96+3025.219)/5.52+689/27.73=136.786kPa无附着的最小压力设计值Pmin=(360.960+3025.219)/5.52-689/27.73=80.032kPa有附着的压力设计值 P=(360.96+3025.219)/5.52=111.940kPa偏心距较大时压力设计值Pkmax=2×(360.96+3025.219)/(3×5.5×2.01)=102.101kPa四. 地基基础承载力验算地基基础承载力特征值计算依据《建筑地基基础设计规范》GB 50007-2002第5.2.3条。

QTZ63塔吊基础计算

QTZ63塔吊基础计算

QTZ63塔吊基础计算首先,我们需要确定QTZ63塔吊的荷载。

QTZ63塔吊的额定起重量为6吨,工作半径为3-50米。

其最大起重力矩为630kN·m。

此外,需要考虑塔吊的自重,在设计中通常取其额定载荷的50%作为塔吊的自重。

其次,我们需要确定所在地的土壤承载力。

土壤承载力指的是土壤能够承受的最大荷载。

一般情况下,土壤承载力是根据地质调查和试验得到的,常用单位是千帕(kPa)。

常见的土壤承载力有0-50kPa(砂土)、50-100kPa(黏土)等。

接下来,我们要进行塔基尺寸的计算。

塔基的尺寸需要根据塔吊的荷载和土壤承载力来确定。

一般来说,塔基的底面积要满足荷载与土壤承载力之间的平衡,即荷载应该小于等于土壤承载力乘以塔基底面积。

根据QTZ63塔吊的荷载和土壤承载力,我们可以计算出塔基的尺寸。

以一个具体的示例来说明,假设QTZ63塔吊的荷载为6吨,土壤承载力为50kPa。

由于塔基是一个正方形,可以假设塔基边长为B。

那么,塔基的底面积为B×B,荷载为6吨,转换为千牛(kN)为60kN。

根据平衡条件,我们可以得到以下不等式:60kN≤50kPa×(B×B)进一步计算可得:12kN/m²≤(B×B)/1000由此得出:则B≥ 109.54 mm根据以上计算,我们可以确定塔基边长至少为110 mm。

然后,我们需要考虑塔吊的施工工艺。

对于QTZ63塔吊的基础施工,通常采用的是钢筋混凝土预制桩基础和钢筋混凝土台阶式基础。

塔吊基础的施工工艺需要提前进行设计和准备,确保在施工中能够满足稳固和安全要求。

最后,要注意基础设计要遵守相关的国家和地方法规及标准,例如中国的《建筑结构荷载规范》、《地基与地基处理技术规程》等。

这些法规和标准对于塔吊基础设计提供了详细的要求和规范,确保塔吊基础的稳定和安全。

综上所述,QTZ63塔吊基础计算的关键在于确定荷载、土壤承载力和塔基尺寸。

塔吊基础设计计算

塔吊基础设计计算

塔吊基础设计计算塔吊基础设计计算是指在安装塔吊时,根据塔吊的尺寸、工作条件和安全要求,进行基础设计的计算。

塔吊是一种大型施工机械设备,用于在建筑工地上进行吊装作业,因此其基础设计计算至关重要,直接关系到塔吊的稳定性和安全性。

一、确定塔吊基础设计参数1.确定塔吊的高度和重量,以及工作条件(如最大起吊量和最大回转半径等)。

2.根据塔吊的高度和重量,确定基础的尺寸和类型,常用的基础类型有立柱基础和箱式基础。

二、计算基础尺寸和适应性1.根据塔吊的高度和工作条件,计算基础的尺寸。

通常,基础的宽度应大于塔吊高度的1/4至1/3,长度应大于最大回转半径加上塔吊底座的尺寸。

2.根据计算结果,评估基础的适应性,包括抗倾覆能力、承载能力和稳定性。

三、计算基础的承载能力1.根据塔吊的重量和基础参数,计算基础的垂直承载能力,即基础的承载能力应大于塔吊的重量。

2.根据基础的尺寸和土壤的承载力,计算基础的水平承载能力,即基础的承载能力应大于塔吊的侧向荷载。

四、计算基础的稳定性1.根据基础的尺寸、土壤的稳定性和塔吊的工作条件,计算基础的稳定系数,即基础的稳定系数应大于12.根据计算结果,评估基础的稳定性,包括抗倾覆能力和抗滑移能力。

五、设计基础的细节1.根据基础的尺寸和类型,设计基础的具体结构,包括基础的平面形状和截面形状。

2.根据基础的结构和施工条件,设计基础的施工方案,包括土方开挖、支护和回填等。

六、进行基础的验算和评估1.根据设计结果,进行基础的验算,包括静力分析和动力分析等。

2.根据验算结果,评估基础的安全性和可行性,包括基础的稳定性和承载能力等。

总之,塔吊基础设计计算是一项复杂而重要的工作,需要结合塔吊的特点和工作条件,进行详细的参数计算和结构设计。

只有通过科学合理的设计计算,才能确保塔吊的稳定性和安全性,提高施工效率和质量,确保人员安全。

塔吊基础计算(格构柱)

塔吊基础计算(格构柱)

塔吊基础计算(格构柱)八、基础验算基础承受的垂直力:P=449KN 基础承受的水平力:H=71KN 基础承受的倾翻力矩: M=1668KN.m(一)、塔吊桩竖向承载力计算:1、单桩桩顶竖向力计算:单桩竖向力设计值按下式计算:Q ik=(P + G )/n ±M/a2式中:Q ik—相应于荷载效应标准组合偏心竖向力作用下第i根桩的竖向力;P-塔吊桩基础承受的垂直力,P=449KN;G—桩承台自重,G=(4。

8×4。

8×0。

4+4。

8×4。

8×1.3)×25=979.2KN;P+G=449+979。

2=1428.2KNn—桩根数,n=4;M—桩基础承受的倾翻力矩,M=1668+71×1.3=1760。

3KN。

m;a—桩中心距,a=3.2m。

Q ik=1428.2/4±1760.3/3.2×2单桩最大压力:Q压=357.05+389.03=746。

08KN单桩最大拔力: Q拔=357。

05-389。

03=-31。

98KN2、桩承载力计算:(1)、单桩竖向承载力特征值按下式计算:R a = q pa A P+u P∑q sia L i式中: R a—单桩竖向承载力特征值;q pa、q sia—桩端阻力,桩侧阻力特征值;A P—桩底端横截面面积;u P—桩身周边长度;L i—第i层岩土层的厚度。

5号塔吊桩:对应的是8—8剖的Z52。

桩顶标高为-6。

8m,绝对标高为-1.9m,取有效桩长52m,桩端进入6—1粘土层2。

19m。

52R a = 0.8×3。

14×(4×12。

51+16×3.8+14×14.4+18×19.1+30×2。

19)=1813.51>746。

08KN 满足要求3、承台基础的验算(1)承台弯矩计算Mx1=My1=2×(746。

塔机天然地基基础计算范本

塔机天然地基基础计算范本

塔吊基础设计计算书工程名称: 编制单位:1.计算参数 (1)基本参数采用1台塔式起重机,塔身尺寸m ;现场地面标高m,基础底标高m ,基础埋设深度m 。

(2)塔吊受力情况:M塔吊基础受力示意图基础顶面所受垂直力基础顶面所受水平力基础所受扭矩基础顶面所受倾覆力矩比较桩基础塔吊基础的工作状态和非工作状态的受力情况,塔吊基础按计算: F k =kN ,F h =kN ,M=kN.mF k ,=kN ,F h ,=kN ,M k =kN .m2.基础底面尺寸验算 (1)基础尺寸:长(a)=m ,宽(b)=m ,高(h)=m 。

(2)基础混凝土: 强度等级,f t =N/mm 2,γ砼=25kN/m 3。

(3)基础底面基础底面标高m 、基础置于土层:;地基承载力特征值f ak=kPa、地基土γ=18.8kN/m3。

G k=a×b×h×γ砼=kNkPa基础底面矩W=ab2/6=m3M k/W=kPa3.地基承载力验算(1)修正后的地基承载力特征值计算f a=f ak+ηbγ(b-3)+ηdγm(d–0.5)=kPa(2)地基承载力验算1)当轴心荷载作用时2)当偏心荷载作用时4.抗倾覆验算倾覆力矩M倾=M=kN.m抗倾覆力矩M抗=(F k+G k)×a/2=kN.mM抗/M倾=5.受冲切承载力验算kPaA L=m2h0=m,βhp=a t=m,a b=m,a m=m0.7βhp f t a m h0=kNF L=P j A L=kNα=1,βhs=,a m/L=(α-P j/1.4f tβhs)βhs/βhp=F L=0.7βhp f t a m h0=kN6.受剪切承载力验算a m/L=(α-P j/1.4f tβhs)βhs/βhp=7.基础配筋验算(1)基础弯矩计算a=m,a’=m,L=mP jmax=F k'/A+M k'/W=kPaP jmin=F k'/A-M k'/W=kPaM=1/12a2[P jmax(3L+a’)+P jI(L+a’)]=kN.m(2)基础配筋基础采用钢筋,f y=300N/mm2;A s1=M/(0.95f y h0)=mm2;按照最小配筋率ρ=0.15%计算配筋;A s2=ρbh0=mm2;比较A s1和A s2,按配筋,取mm(钢筋间距满足要求);8.计算结果(1)基础尺寸:长(a)=m,宽(b)=m,高(h)=m,基础底标高m。

QTZ80塔吊基础设计

QTZ80塔吊基础设计

QTZ80塔吊基础设计1、塔吊技术参数:1.1 垂直压力:560KN1.2 倾覆力矩:1526KN·m1.3 扭矩:274KN·m1.4 水平力:62KN2、底板设计:2.1 塔吊基础采用整板基础,板厚h=1400mm,板顶与底板垫层相平,平面尺寸为5500*5500mm。

2.2 混凝土强度等级C25 fcm =13.5N/mm² fc=12.5N/mm² ft=1.5N/mm²2.3 Ⅱ级钢筋fy =310N/mm²Ⅰ级钢筋fy=210N/mm²3、荷载计算:3.1基础自重G=5.5*5.5*1.4*25=1058.75KN荷载值 1058.75*1.2=1270.5KN3.2基础顶部荷载中心轴向力:560KN弯矩:1526KN·m扭矩:274KN·m水平力:62KN4、配筋计算:4.1 基础自重均布荷载:q=1270.5/5.5=231KN/m4.2 由自重引起的弯矩:M1=ql²/8=231*5.5²/8=873.5KN·m4.3 As=M/fy rh=(M1+M2)/fyrh=(1526+873.5)*106/(310*0.9*1330)=6466mm2(H=h-70=1400-70=1330mm) 选33Φ16@170As=33*201=6633mm2>6466mm25、抗剪强度验算:V≤0.07fcAA=5.5*103*1400=7.7*106mm2V=560+1270.5=1830.50.07fA=0.07*12.5*7.7*106=6.74*106=6.74*103KNV<0.07fA6、抗冲切验算:p jmax A1≤0.6ftA2A 1=(b/2-bc/2-h)*l-(l/2-lc/2-h)2=(5.5/2-1.6/2-1.4)*5.5-(5.5/2-1.6/2-1.4)2=2.72m2A 2=h(lc+h)=1.4*(1.6+1.4)=4.2p jmax A1=92*2.72=250.24KN 0.6ftA2=0.6*1.5*103*4.2=3780KNpjmax:基底最大净反力设计值(Kpa)A1:考虑冲切荷载时取用的多边形面积(m2)A2:冲切截面的水平投影面积故Pjmax A1≤0.6ftA2满足抗冲切要求7、地基应力计算:根据地基勘查报告,承台支承于粉质粘土上,其地基承载力标准值fk=200KN/m2f K ≥1.2PmaxPmax=N/A+M/W=(560+1270.5)/(5.5*5.5)+873.5/(1/6*5.53) =60.5KN/m2+31.5KN/m2=92KN/m2Pmin=60.5KN/mm2-31.5KN/mm2=29KN/mm2>0P=60.5KN/mm2<fk=200KN/mm2Pmax=92KN/mm2f K ≥1.2Pmax=1.2*92KN/mm2=110.4KN/mm28、抗扭验算: 8.1截面验算:V/bxh0+T/Wt≤0.25fcV=1830.5KN Wt=b2(3h-b)/6=5.52*(3*5.5-5.5)/6=55.46m3 T=274KN·mV/bxh0+T/Wt=1830.5*103/(5500*5400)+(274*106)/(55.46*109)=0.063+0.005=0.068N/mm2<0.25*12.5N/mm2=3.125N/mm28.2素混凝土抗扭验算:T U =0.7FtWt=0.7*1.5N/mm2*55.46m3*106*10-3=5.82*104KN·m>274KN·m因此不必设置抗扭钢筋9、塔吊基础平面布置及配筋图见附图:10、塔吊具体位置见塔吊基础平面位置布置图。

塔吊基础计算书

塔吊基础计算书

矩形板式基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑地基基础设计规范》GB50007-2011一、塔机属性塔机竖向荷载简图1、塔机自身荷载标准值k三、基础验算基础布置图G k=blhγc=5.5×5.5×1.6×25=1210kN基础及其上土的自重荷载设计值:G=1.2G k=1.2×1210=1452kN荷载效应标准组合时,平行基础边长方向受力:M k''=G1R G1+G2R Qmax-G3R G3-G4R G4+0.9×(M2+0.5F vk H/1.2)=77×30+3.8×18.68-47.5×14.1-168×13.6+0.9×(1120.8+0.5×24.162×48/1.2)=870.07kN·mF vk''=F vk/1.2=24.162/1.2=20.135kN荷载效应基本组合时,平行基础边长方向受力:M''=1.2×(G1R G1+G2R Qmax-G3R G3-G4R G4)+1.4×0.9×(M2+0.5F vk H/1.2)=1.2×(77×30+3.8×18.68-47.5×14.1-168×13.6)+1.4×0.9×(1120.8+0.5×24.162×48/1.2) =1332.811kN·mF v''=F v/1.2=33.827/1.2=28.189kN基础长宽比:l/b=5.5/5.5=1≤1.1,基础计算形式为方形基础。

W x=lb2/6=5.5×5.52/6=27.729m3W y=bl2/6=5.5×5.52/6=27.729m3相应于荷载效应标准组合时,同时作用于基础X、Y方向的倾覆力矩:M kx=M k b/(b2+l2)0.5=957.053×5.5/(5.52+5.52)0.5=676.739kN·mM ky=M k l/(b2+l2)0.5=957.053×5.5/(5.52+5.52)0.5=676.739kN·m1、偏心距验算相应于荷载效应标准组合时,基础边缘的最小压力值:P kmin=(F k+G k)/A-M kx/W x-M ky/W y=(618.45+1210)/30.25-676.739/27.729-676.739/27.729=11.634kPa≥0 偏心荷载合力作用点在核心区内。

塔吊基础计算书

塔吊基础计算书
5.00
配重高度hp(m)
0.70
基础混凝土强度
C35
3、计算简图
二、计算过程:
1. 修正地基承载力设计值:(本基础设计不考虑上部覆土)
f = fk+ηb×r×( b-3)+ηd×rm×( d-0.5)=
208.12
kN/m2
其中:
基础宽度的地基承载力修正系数ηb=
0.3
基础深度的地基承载力修正系数ηd=
fy为钢筋的抗拉、抗压强度设计值查规范
fy=
300
N/mm2
最小配筋面积
Asmin=ρbh=
9375
mm2
其中:
ρ为基础最小配筋率
0.0015
查表得配筋
Φ28 @ 125双向
截面积As(mm2)
13816
mm2
满足要求
冲击承载力Fl≤0.7βhpft×bm×ho=
3512507
N
其中:
βhp为受冲切承载力截面高度影响系数
0.94
ft为混凝土的抗拉强度设计值查表得ft=
1.57
N/mm2
c的取值:
1.6
m
bm为冲切破坏最不利一侧计算长度
bm=(c+bb)/2=
2.81
m
bb==c+2h0=
4.02
m
h0为截面有效高度h0=h-as=
Pmax=2×(F2+G1+G2+G3)/(3×l×a)=
165.01
kN/m2
Pmax

1.2f=
249.75
kN/m2
基础底面处的平均压力值Pk
Pk=Pmax/2=
82.50

塔式起重机基础的设计计算

塔式起重机基础的设计计算

( 3)
式中 MI ——截面 I—I 处的弯矩( kN õm )
p imax —— 基 础 底 面 边 缘 最 大 净 反 力
( kN / m 2)
p iI —— 基础底面 I—I 净反力( kN / m 2)
s—— 截面 I—I 至基底边缘最大净反力 处距离( m)
b、bø —— 基础 底边 长及 塔 基井 架边 长
b——接触宽度之半( m m)
《建筑机械》1 99 7年第6 期
∴足够
4 综议 ( 1) 塔式起重机的基础设计, 在一般的土
建基础设计中是一个特例, 现国内还没有一较 系统阐述的书籍, 进口塔机说明书上介绍的基
础一般都有相当大的保险量。
( 2) 塔机在架设安装后, 无论是工作状态 或非工作状态, 均会承受各种不同的荷截。在进 行力分析过程中, 对于实用设计, 只需进行几个
位面积上的 地基土的净反力, 可
取最大单位净反力
f t—— 混凝土的抗拉强度设计值
3 设计实例
现以表1列北京牌 QT 80塔机为例, 试设计 计算其塔机基础。
3. 1 确定基础有关数据
( a) 确定基础底面尺寸 塔 机 作 用 轴 向 荷 载 F = 480kN; M = 1750kNõm, 先粗估基础重力 G 为2. 5倍 F, 查 地基承载力标准值 f k = 210kP a, 以此借用( 2)
《建筑机械》1 99 7年第6 期
p
max m in
=
458.08+×153.783±
1750
1 6
×
5.
8
3
p max = 109kPa
p min = 1. 3kPa, 如图7示。
图8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

塔式起重机方形独立基础的设计计算余世章余婷媛《容提要》文章通过对天然基础的塔吊基础设计,详细论述整个基础的设计过程,经济适用,安全可靠、结构合理,思路清晰,论述精辟有据;在现场施工中,有着十分重要的指导意义。

关键词:塔机、偏心距、工况、一元三次方程、核心区、基底压力。

一、序言随着建筑业迅猛发展,塔式起重机(简称塔机)在建筑市场中是必不可少的一项重要垂直运输机械设备;塔机基础设计,在建筑行业中是属于重大危险源的畴,正因为如此,塔机基础设计得到各使用单位的高度重视;本人通过网络查阅过许多塔机基础设计方案,除采用桩基外,塔基按独立基础所设计的方形基础,绝大部分都按厂家说明书所提供的基础尺寸进行配筋,按规设计计算的为数不多,厂家所提供基础大小数据有些是不满足规要求,而塔机基础配筋绝大多数情况是配筋过大,浪费较为严重;厂家说明书所提供数据表明,地基承载力特征值小的基础外形尺寸就较大,承载力特征值较大,基础尺寸就相应的小点,似乎看起来这种做法是正确的,其实并非如此。

塔机基础型式方形等截面最为普遍,下面通过一些规限定的条件,对方形截面独立基础规化的设计,很有参考和实用价值。

下面举例采用中联重科的塔吊类型进行论述和阐明。

二、塔吊基础设计步骤2.1、确定塔吊型号首先根据施工总平面图,根据建筑物外形尺寸(长、宽、高)、及材料堆放场地和钢筋加工场地,根据塔机覆盖率情况,按塔机说明书中的主要参数确定塔机型号。

2.2、根据塔机型号确定荷载厂家说明书中都有荷载说明,按塔吊自由独立高度条件提供两组数据(中联重科),一组为工作状态(工况)荷载,另一组为非工作状态(非工况)荷载,确定出一组最不利的工况荷载。

2.3、确定塔吊基础厚度h根据说明书中塔机安装说明,基础固定塔基及有两种形式,一种是地脚螺栓,另一种是埋入固定支腿式;因此根据塔机地脚螺栓锚固长度和支腿的埋深,可以确定塔机基础厚度h。

2.4、基础外形尺寸的确定根据荷载大小和基础厚度h,确定独立方形基础的边长尺寸。

2.5、基础配筋计算求出力进行基础配筋计算,并根据《规》的构造要求进行配筋和验算。

2.6、基础冲切、螺杆(支腿)受拉或局部受压的验算三、方形独立基础尺寸的确定3.1方形基础宽度B的上限值根据上面塔机基础计算步骤可以看出,塔机基础尺寸的确定是方形基础的计算关键。

利用偏心距限定条件,可求出基础最小截面尺寸。

根据偏心距e (荷载按标准组合):对于偏心受压方形基础:当e=GkFk Fvh Mk ++∠B/6时,基底压力呈梯形分布; 当e=Gk Fk Fvh Mk ++≥B/6时,基底压力呈三角形分布; B 为方形基础宽度,在基础设计时,为了使基础截面尺寸不至于过大,造成不必要浪费,因此可取上限值 e ≥b/6; 即:GkFk Fvh Mk ++≥B/6………………………………………(1) 3.2方形基础宽度B 的下限值由《建筑地基基础设计规》GB50007-2011第6.7.5条第4款,对于挡土墙大偏心受压构件,偏心距e ≤B/4;而《高耸结构设计规》GB50135-2006第7.1.2条第5款: 基础底面允许部分脱开地基土的面积应不大于底面全面积的1/4。

对于方形基础,最不利情况,由条件可得出双向偏心距,当e x =e y =B/4时,由《高耸规》7.2.3-4式,可得a x a y =0.125B 2。

按《塔式起重机混凝土基础工程技术规程》JGJ/T187-20094.1.2条第三款可得偏心距e ≤B/4。

这里需要特别强调指出,偏心距e ≤B/4与“基础底面允许部分脱开地基土的面积应不大于底面全面积的1/4”是不同两个概念。

故可得:e=GkFk Fvh Mk ++≤B/4………………………………………(2) 3.3按最不利位置确定方形基础宽度B大家明白,对于方形基础任一轴的惯性矩为a 4/12,而对角线的W 近似值0.118a 3为最小值(一般采用W=a 3/6);《塔式起重机砼基础工程技术规程》JGJ187-2009第4.1.3条:方形基础和底面边长比小于或等于1.1的矩形基础应按双向偏心受压作用验算地基承载力,塔机倾覆力矩的作用方向应取基础对角线方向,基础底面的压力(偏心荷载在核心区外)应符合下列公式要求:3.3.1、当偏心荷载作用时,p k,max =1.2f a (3)3.3.2、当偏心荷载作用在核心区外时,(p kmin ∠0,见图b)(a )偏心荷载在核心区 (b )偏心荷载在核心区外 双向偏心荷载作用下矩形基础的基底压力根据《高耸》7.2.3的第二条:P k,max =(F k +G k )/(3a x a y ) (4)a x a y ≥0.125bl (5)a x ---合力作用点至e x 一侧基础边缘的距离,按(b/2-e x );a y ---合力作用点至e y 一侧基础边缘的距离,按(b/2-e y );e x --- x 方向的偏心距;按 M kx /(F k +G k)e y --- y 方向的偏心距; 按 M ky /(F k +G k )根据上式,对方形基础,取:e x =e y ,即:M kx =M ky =M k /20.5=0.707M k 由于a x a y ≥0.125B 2 故有 a x =a y ≥0.354B从 a x =a y =(B/2-e x ) ≥0.354B 得出:e x =e y ≤0.146Be=( e x 2+e y 2)05=1.4142*0.146B=0.206B ≈B/5 (6)(c) 双向偏心基底脱开时基地压力 3.4 方形基础宽度B 的确定3.4.1 方形基础宽度B 的围由(1)及(2)式,得:B/6≤e=GkFk Fvh Mk ++≤B/4.....(7) 设塔吊基础长和宽均为为B ,且令:B=y (8)由(7)可得出两个一元三次方程,从而解出y 取值围。

3.4.2 方形基础最小宽度B由于塔机倾覆力矩按塔身截面对角线作用最大,此时基础底面的抵抗矩W 最小,故荷载效应为最不利状态。

从(6)式可得:e=GkFk Fvh Mk ++≤0.206B …………………………(9) 由(9)可得一元三次方程,同理可以求出y 值,此时y 值就是宽度B的最小值。

这里需要说明,为了简化计算,也便于记忆,我们可取e=B/5,此时y值与(7)的y平均值是不同的,这是因为它们之间不是简单的线性关系。

基础底面允许部分脱开地基土的面积不应大于底面全面积的1/4,对矩形基础偏心距e不大于b/4;对方形基础和底面边长比小于或等于1.1的矩形基础偏心距e不大于0.206b(倾覆力矩沿塔身截面的对角线作用)。

因此有:G k=γhy2,将砼密度γ=25,G k带入(7)式,可解出y 的取值围。

根据上面解出y=B的取值围,我们就可以很清晰看出,基础尺寸变化围,为了简化计算,也便于记忆,因此可取e=M k/(F k+G k)=B/5,直接解出y值,作为塔吊方形基础的宽度尺寸,然后取一整数;最后进行承载力及配筋计算。

四、应用举例我们以中联重科生产QZT80(H6012-6A)的塔吊举例4.1、主要参数塔吊的自由高度为40.5米,塔身宽度1.6*1.6M,基础厚度h=1400mm,基础砼等级采用C35,垫层为100厚C15砼。

根据厂家说明书所提供荷载情况如下:工作状况:最大自重Fv= 594.6KN,F h=20.5KN ,倾覆力矩M=1831.5KN.m,扭矩T=302.0 KN.m。

非工作状况:最大自重Fv= 493.4KN,F h=81.1KN,倾覆力矩M=1788.3KN.m ,扭矩T=0 KN.m 。

4.2、方形基础宽度B 的确定4.2.1、非工作状态4.2.1.1基础宽度B 的围偏心距(标准组合)根据(7)式: B/4≥e=Gk Fk Fvh Mk ++≥B/6 带入数据:y/6 ≤(1788.3+81.1*1.5)/(493.4+35y 2)≤y/4 可得出两个不同方程,即: y 3+14.1y-327.42=0 (10)y 3+14.1y-218.28=0 (11)从上面(1)、(2)式可以看出,这是标准的一元三次方程,如果一个一元三次方程的二次项系数为0,则该方程可化为x 3+px+q=0。

因此由卡丹公式(仅取实根):X 1=332332)3/()2/(2/)3/()2/(2/-p q q p q q +--+++解(10)、(11)式可得:5.25m ≤B ≤6.21m ,4.2.1.2 最小宽度B 的确定假设e=Gk Fk Fvh Mk ++=(1788.3+81.1*1.5)/(493.4+35y 2)=y/5 上式可变为 y 3+14.1y-272.85=0略去中间过程解之y=5.77m ;按(10)、(11)平均值可得y=5.73m 。

4.2.1.2 基础最小宽度B如果我们采用荷载设计值(基本组合)进行计算:B/6≤e=γQ (M+F h *h)/ γG ( Fv+G) ≤B/4即:y/6≤1.4*(1788.3+81.1*1.5)/{1.35*(493.4+35y 2)}≤y/4带入数据并整理可得:即: y 3+14.1y-339.5=0 (12)y 3+14.1y-226.3=0 (13)解(12)、(13)式可得:5.36m ≤B ≤6.31m ,4.2.1.2 基础最小宽度B e=Gk Fk Fvh Mk ++如果取 e=γQ (M+F h *h)/ {γG ( Fv+G) }≤B/5即:1.4*(1788.3+81.1*1.5)/{1.35*(493.4+35y 2)}=y/5y 3+14.1y-282.9=0解得 y=5.85m4.2.1.2 工作状态偏心距(标准组合),不考虑扭矩,根据(7)式:B/4≥e=M k /(F k +G k )≥B/6带入工作状态下的荷载数据并整理可得:即: y 3+17y-331=0 (14)y 3+17y-220.7=0 (15)解(14)、(15)式可得:5.10m ≤B ≤6.13m ,若取e=M k /(F k +G k )=B/5,可得y 3+17y-275.85=0解得 y=5.856m综上所述,在确定塔吊基础宽度B时,与地基承载力的特征值无关,仅与基础面积和质量有关。

然而基础截面尺寸一旦确定,在验算地基承载力时,它与基础的截面尺寸和地基承载力的特征值有关。

从计算分析结果可知,非工作状态下的力是控制荷载;对于塔吊基础力组合时,一般弯矩较大,轴向力越小是比较危险的控制截面。

由上面计算结果,塔吊基础断面尺寸确定6.0*6.0*1.4M较为合适。

另外,对于荷载采用基本组合,计算塔吊基础外形尺寸,可得出另一组数值,这组数值不过把基础外围尺寸增大一个级别,不会影响设计塔吊基础的基本尺寸;特别指出的是,采用荷载标准组合,所计算数据更能接近于塔吊基础压力的实际情况。

相关文档
最新文档