植物蛋白提取

合集下载

蛋白质提取方法(个人总结篇)

蛋白质提取方法(个人总结篇)

植物蛋白质提取方法汇总(本人经验总结)一、植物组织蛋白质提取方法1、根据样品重量(1g样品加入3.5ml提取液,可根据材料不同适当加入),准备提取液放在冰上。

2、把样品放在研钵中用液氮研磨,研磨后加入提取液中在冰上静置(3-4小时)。

3、用离心机离心8000rpm40min4℃或11100rpm20min4℃4、提取上清液,样品制备完成。

蛋白质提取液:300ml1、1Mtris-HCl(PH8)45ml2、甘油(Glycerol)75ml3、聚乙烯吡咯烷酮(Polyvinylpolypyrrordone)6g这种方法针对SDS-PAGE,垂直板电泳!二、植物组织蛋白质提取方法氯醋酸—丙酮沉淀法1、在液氮中研磨叶片2、加入样品体积3倍的提取液在-20℃的条件下过夜,然后离心(4℃8000rpm 以上1小时)弃上清。

3、加入等体积的冰浴丙酮(含0.07%的β-巯基乙醇),摇匀后离心(4℃8000rpm 以上1小时),然后真空干燥沉淀,备用。

4、上样前加入裂解液,室温放置30分钟,使蛋白充分溶于裂解液中,然后离心(15℃8000rpm以上1小时或更长时间以没有沉淀为标准),可临时保存在4℃待用。

5、用Brandford法定量蛋白,然后可分装放入-80℃备用。

药品:提取液:含10%TCA和0.07%的β-巯基乙醇的丙酮。

裂解液:2.7g尿素0.2gCHAPS溶于3ml灭菌的去离子水中(终体积为5ml),使用前再加入1M 的DTT65ul/ml。

这种方法针对双向电泳,杂质少,离子浓度小的特点!当然单向电泳也同样适用,只是电泳的条带会减少!三、组织:肠黏膜目的:WESTERN BLOT检测凋亡相关蛋白的表达应用TRIPURE提取蛋白质步骤:含蛋白质上清液中加入异丙醇:(1.5ml每1mlTRIPURE用量)倒转混匀,置室温10min离心:12000 g,10min,4度,弃上清加入0.3M盐酸胍/95%乙醇:(2ml每1mlTRIPURE用量)振荡,置室温20min离心:7500g,5 min,4度,弃上清重复0.3M盐酸胍/95%乙醇步2次沉淀中加入100%乙醇2ml充分振荡混匀,置室温20 min离心:7500g,5min,4度,弃上清吹干沉淀1%SDS溶解沉淀离心:10000g,10min,4度取上清-20度保存(或可直接用于WESTERN BLOT)存在的问题:加入1%SDS后沉淀不溶解,还是很大的一块,4度离心后又多了白色沉定,SDS结晶?测浓度,含量才1mg/ml左右。

植物蛋白质提取方法汇总

植物蛋白质提取方法汇总

植物蛋白质提取方法汇总一、植物组织蛋白质提取方法1、根据样品重量(1g样品加入3.5ml提取液,可根据材料不同适当加入),准备提取液放在冰上。

2、把样品放在研钵中用液氮研磨,研磨后加入提取液中在冰上静置(3-4小时)。

3、用离心机离心8000rpm40min4?或11100rpm20min4?4、提取上清液,样品制备完成。

蛋白质提取液:300ml1、1Mtris-HCl(pH8)45ml2、甘油(Glycerol)75ml3、聚乙烯吡咯烷酮(Polyvinylpolypyrrordone)6g这种方法针对SDS-PAGE,垂直板电泳~二、植物组织蛋白质提取方法氯醋酸―丙酮沉淀法1、在液氮中研磨叶片2、加入样品体积3倍的提取液在-20?的条件下过夜,然后离心(4?8000rpm以上1小时)弃上清。

3、加入等体积的冰浴丙酮(含0.07%的β-巯基乙醇),摇匀后离心(4?8000rpm 以上1小时),然后真空干燥沉淀,备用。

4、上样前加入裂解液,室温放置30分钟,使蛋白充分溶于裂解液中,然后离心(15?8000rpm以上1小时或更长时间以没有沉淀为标准),可临时保存在4?待用。

5、用Brandford法定量蛋白,然后可分装放入-80?备用。

药品:提取液:含10%TCA和0.07%的β-巯基乙醇的丙酮。

裂解液:2.7g尿素0.2gCHAPS溶于3ml灭菌的去离子水中(终体积为5ml),使用前再加入1M的DTT65μl/ml。

这种方法针对双向电泳,杂质少,离子浓度小的特点~当然单向电泳也同样适用,只是电泳的条带会减少~三、组织:肠黏膜目的:WESTERN BLOT检测凋亡相关蛋白的表达应用TRIPURE提取蛋白质步骤: 含蛋白质上清液中加入异丙醇:(1.5ml每1mlTRIPURE用量)倒转混匀,置室温10min离心:12000 g,10min,4度,弃上清加入0.3M盐酸胍/95%乙醇:(2ml每1mlTRIPURE用量) 振荡,置室温20min 离心: 7500g,5 min,4度,弃上清重复0.3M盐酸胍/95%乙醇步2次沉淀中加入100%乙醇 2ml充分振荡混匀,置室温20 min离心: 7500g,5min,4度,弃上清吹干沉淀1%SDS溶解沉淀离心:10000g,10min,4度取上清-20度保存(或可直接用于WESTERN BLOT) 存在的问题:加入1%SDS后沉淀不溶解,还是很大的一块,4度离心后又多了白色沉定,SDS结晶,测浓度,含量才1mg/ml左右。

植物蛋白质提取方法

植物蛋白质提取方法

植物蛋白质提取方法1.机械破碎法机械破碎法是最常用的蛋白质提取方法之一、这种方法使用高速离心或超声波破碎将植物细胞破碎,释放细胞内的蛋白质。

然后通过离心或过滤将残渣去除,得到植物蛋白质溶液。

2.酸碱提取法酸碱提取法是利用酸碱条件使植物细胞膜溶解,从而释放出蛋白质。

首先将植物材料切碎,然后浸泡在酸碱溶液中。

酸性条件下可溶解细胞壁,碱性条件下可溶解细胞质膜,从而释放蛋白质。

最后通过离心或过滤将杂质去除,得到纯化的植物蛋白质。

3.毛细管电泳法毛细管电泳法是一种利用电场和毛细管将植物蛋白质按照电荷和大小进行分离的方法。

首先将植物材料研磨成粉末,然后将粉末溶解在缓冲液中,再将溶液注入毛细管。

通过施加高电压,蛋白质会被带动在毛细管中移动,根据蛋白质的电荷和大小的不同,移动速度也不同,从而实现分离。

4.总蛋白质沉淀法总蛋白质沉淀法是一种简单且高效的蛋白质提取方法。

首先将植物样品研磨成粉末,然后加入缓冲液进行溶解。

接着加入有机溶剂如酒精或丙酮,使蛋白质沉淀。

将沉淀经过离心后,去除上清液,然后用溶液再次洗涤沉淀。

最后用适当的溶剂溶解沉淀,得到纯净的植物蛋白质。

5.亲和层析法亲和层析法是利用一些特定亲和剂与目标蛋白质之间的特异结合来分离纯化蛋白质的方法。

首先将亲和剂固定在其中一种固定相上,列入柱中。

然后将植物蛋白质样品加入柱中,目标蛋白质与亲和剂结合,其他杂质被洗脱。

然后调整条件,将目标蛋白质洗脱下来,得到纯化的植物蛋白质。

综上所述,植物蛋白质提取方法有多种选择,根据实际需求和植物材料的特性,可以选择合适的提取方法进行蛋白质的纯化。

这些方法都有各自的优缺点,需要根据具体的实验条件和目的进行选择。

植物蛋白提取

植物蛋白提取

植物蛋白提取概述植物蛋白提取是一种研究领域,致力于从植物中提取纯度较高的蛋白质。

蛋白质是生命体中重要的组成部分,对于人类的健康和发展有着重要的作用。

植物蛋白提取技术不仅可以应用于食品工业,还可以应用于药物研发、生物学研究等领域。

提取方法1. 碱提取法碱提取法是最常用的植物蛋白提取方法之一。

它是通过将植物材料与碱性溶液进行混合,使蛋白质溶解在溶液中,然后通过离心等方法将蛋白质和其他杂质分离。

2. 酸提取法酸提取法与碱提取法类似,只是使用酸性溶液来溶解蛋白质。

酸提取法可以提取到一些碱性蛋白质,如谷蛋白等。

3. 酶解法酶解法是利用特定的酶将植物材料中的蛋白质降解为较小的分子量,然后再进行分离和纯化。

酶解法可以提取到一些难溶于水的蛋白质。

冷冻法是一种常用的非溶剂提取方法。

将植物材料冷冻后进行研磨,使细胞壁破裂,然后通过离心等方法将蛋白质和其他杂质分离。

提取步骤植物蛋白提取的一般步骤如下:1.准备植物材料:选择新鲜植物组织作为原料,并将其洗净去除杂质。

2.研磨处理:将植物样品研磨成细粉末。

3.溶解溶液:根据不同的提取方法选择合适的提取溶液,如碱性溶液、酸性溶液或酶解液等。

4.提取过程:将细粉末与提取溶液进行混合,并进行适当的搅拌或震荡,使蛋白质溶解在溶液中。

5.分离纯化:通过离心、过滤或电泳等方法将蛋白质和其他杂质进行分离。

6.蛋白质浓缩:将分离得到的蛋白质溶液进行浓缩,以提高蛋白质的纯度。

7.纯化蛋白质:利用离子交换层析、凝胶过滤层析或逆流色谱等方法对蛋白质进行纯化。

8.蛋白质质量分析:对提取得到的蛋白质进行质量分析,如电泳、质谱等方法。

植物蛋白提取技术具有广泛的应用领域,包括但不限于以下几个方面:1. 食品工业植物蛋白是一种重要的食品添加剂,可以用于增加产品的营养价值、改善质地和口感等。

植物蛋白提取技术可以提取大豆蛋白、豌豆蛋白等常用的植物蛋白原料,被广泛应用于肉制品、豆制品、蛋制品等食品加工工艺中。

植物提取蛋白质的方法

植物提取蛋白质的方法

植物提取蛋白质的方法植物提取蛋白质是一项关键的实验技术,它可以用于分离纯化和研究各种不同的植物蛋白质。

在这篇文章中,我将介绍一些常见的植物提取蛋白质的方法。

一、机械法提取蛋白质机械法提取蛋白质是最常见的提取方法之一。

机械方法能够充分破碎植物细胞壁,释放细胞液中的蛋白质。

这一方法相对简单,并且适用于大多数植物材料。

首先,将植物样品切碎,例如使用搅拌器或切割机。

然后,将样品置于高速搅拌器中,加入一定量的提取缓冲液。

提取缓冲液的选择会因不同植物而异,常见的包括Tris-HCl缓冲液、PBS缓冲液等。

随后,搅拌样品,使其充分混合,一般搅拌时间为30分钟到1小时。

搅拌完成后,使用离心机将混合液离心,离心时间和速度会因样品的不同而有所变化。

离心完成后,上清液中富含蛋白质,可以用于进一步的分离纯化。

二、化学法提取蛋白质化学法提取蛋白质是一种革命性的方法,它可以应用于很多不同类型的植物材料。

化学法提取蛋白质通常使用表面活性剂来破坏细胞膜,从而释放蛋白质。

一个常用的化学法是使用Tween-20。

首先,将植物样品切碎,然后将样品与一定量的提取缓冲液一起加入离心管中。

提取缓冲液中含有Tween-20等表面活性剂,作用是破坏细胞膜结构。

然后,使用离心机将混合液离心,离心时间和速度的选择会因样品的不同而有所不同。

离心完成后,上清液中富含蛋白质,可以用于进一步的分离纯化。

化学法提取蛋白质相比机械法来说,可以更彻底地破坏细胞膜,更有效地释放蛋白质。

但是,使用化学方法也要注意表面活性剂的种类和浓度,过高的浓度可能会使得蛋白质变性。

三、酶解法提取蛋白质酶解法提取蛋白质是一种选择性高、过程温和的方法。

它利用酶的特异性作用,选择性地降解植物组织中的细胞壁,从而释放蛋白质。

酶解法的步骤较为简单。

首先,将植物样品切碎,然后加入适量的酶解缓冲液和适当浓度的酶。

酶解缓冲液的选择会因不同酶而异,常见的包括PBS缓冲液和Tris-HCl缓冲液等。

植物蛋白质提取方法总汇

植物蛋白质提取方法总汇

1、根据样品重量(1g样品加进3.5ml提取液,可根据材料不同适当加进),预备提取液放在冰上。

2、把样品放在研钵中用液氮研磨,研磨后加进提取液中在冰上静置(3-4小时)。

3、用离心机离心8000rpm40min4℃或11100rpm20min4℃4、提取上清液,样品制备完成。

蛋白质提取液:300ml1、1Mtris-HCl(PH8)45ml2、甘油(Glycerol)75ml3、聚乙烯吡咯烷酮(Polyvinylpolypyrrordone)6g这种方法针对SDS-PAGE,垂直板电泳!氯醋酸—丙酮沉淀法1、在液氮中研磨叶片2、加进样品体积3倍的提取液在-20℃的条件下过夜,然后离心(4℃8000rpm以上1小时)弃上清。

3、加进等体积的冰浴丙酮(含0.07%的β-巯基乙醇),摇匀后离心(4℃8000rpm以上1小时),然后真空干燥沉淀,备用。

4、上样前加进裂解液,室温放置30分钟,使蛋白充分溶于裂解液中,然后离心(15℃8000rpm以上1小时或更长时间以没有沉淀为标准),可临时保存在4℃待用。

5、用Brandford法定量蛋白,然后可分装放进-80℃备用。

药品:提取液:含10%TCA和0.07%的β-巯基乙醇的丙酮。

裂解液:2.7g 尿素0.2gCHAPS溶于3ml灭菌的往离子水中(终体积为5ml),使用前再加进1M 的DTT65ul/ml。

这种方法针对双向电泳,杂质少,离子浓度小的特点!当然单向电泳也同样适用,只是电泳的条带会减少!目的:WESTERNBLOT检测凋亡相关蛋白的表达应用TRIPURE提取蛋白质步骤:含蛋白质上清液中加进异丙醇:(1.5ml每1mlTRIPURE用量) 倒转混匀,置室温10min离心:12000g,10min,4度,弃上清加进0.3M盐酸胍/95%乙醇:(2ml每1mlTRIPURE用量)振荡,置室温20min离心:7500g,5min,4度,弃上清重复0.3M盐酸胍/95%乙醇步2次沉淀中加进100%乙醇2ml充分振荡混匀,置室温20min离心:7500g,5min,4度,弃上清吹干沉淀1%SDS溶解沉淀离心:10000g,10min,4度取上清-20度保存(或可直接用于WESTERNBLOT)存在的题目:加进1%SDS后沉淀不溶解,还是很大的一块,4度离心后又多了白色沉定,SDS结晶?测浓度,含量才1mg/ml左右。

植物蛋白提取

植物蛋白提取

植物蛋白提取概述植物蛋白提取是一种将植物中的蛋白质分离和提纯的过程。

植物蛋白具有许多重要的生理功能和营养价值,因此植物蛋白提取技术在食品、药品、化妆品等领域得到广泛应用。

本文将介绍植物蛋白提取的原理、方法和应用。

原理植物蛋白提取的原理是基于蛋白质的溶解性差异。

植物细胞壁中的蛋白质一般以自由态和结合态存在,其中自由态蛋白质溶解性较好,而结合态蛋白质溶解性较差。

利用不同提取剂可以改变蛋白质的溶解性,从而实现蛋白质的分离和提纯。

方法材料准备•植物样品:可以选择各类植物,如大豆、绿豆、花生等。

•提取剂:提取剂的选择与植物样品有关,常用的提取剂包括生理盐水、磷酸盐缓冲液、甲醇、乙醇等。

•辅助试剂:可以根据需要选择添加一些辅助试剂,如酶解酶、蛋白酶抑制剂等。

提取步骤1.样品准备:将植物样品收集并洗净,去除杂质和残存的表面蛋白质。

2.研磨样品:将植物样品切碎或研磨,以增加溶解的效果。

3.提取液配置:根据实验需要选择合适的提取液,可以根据实验室的经验或相关文献进行选择和调配。

4.溶解与搅拌:将研磨的植物样品与提取液混合,在适当的温度和pH条件下进行溶解和搅拌一段时间,促使蛋白质溶解。

5.澄清和分离:通过离心、过滤等方法将植物样品中的残渣和杂质分离出去,得到含有蛋白质的澄清液。

6.浓缩和纯化:通过浓缩和纯化技术,将澄清液中的蛋白质进行富集和纯化,得到纯净的植物蛋白。

应用植物蛋白提取技术广泛应用于食品、药品、化妆品等领域。

以下是一些常见的应用: 1. 食品加工:植物蛋白是一种重要的食品成分,可以用于调制各种食品,如豆腐、豆浆、植物肉等。

2. 药品制造:植物蛋白可以作为药物的原料,用于制备各种药品,如生物药物、保健品等。

3. 化妆品生产:植物蛋白可以用于制造各类面膜、护肤品、洗发水等化妆品,具有良好的保湿和滋养效果。

4. 农业应用:植物蛋白可以用作植物肥料、植物抗病等农业应用,促进植物生长和抗逆能力。

结论植物蛋白提取是一项重要的技术,可以将植物中的蛋白质分离和提纯,为食品、药品、化妆品等领域的生产和研发提供了重要的原料和支持。

植物蛋白的提取方法

植物蛋白的提取方法

植物蛋白的提取方法
植物蛋白啊,那可是个宝!你知道从植物中提取它都有哪些奇妙的方法吗?咱就拿大豆来说吧,那可是植物蛋白的丰富来源。

可以通过浸泡,让大豆吸饱水,就像人喝足了水一样精神饱满。

然后呢,把它们磨碎,哎呀,这就像是把宝藏给挖掘出来了。

还有啊,像花生,那也是提取植物蛋白的好材料呀!把花生炒熟了,香气扑鼻,然后再去提取蛋白,感觉就像是在烹饪一道美味的大餐。

再说说小麦,通过一些特别的工艺,也能从中获取珍贵的植物蛋白呢。

这就好像是在一堆麦粒中寻找闪闪发光的金子。

提取植物蛋白的过程可不简单呢,需要精心的操作和耐心的等待。

这就跟培养一个优秀的孩子一样,得花费好多心思。

难道不是吗?
在这个过程中,每一个步骤都很关键啊。

从选择合适的植物原料,到运用恰当的提取技术,就像走在一条充满挑战的道路上,但一旦成功,那收获可是满满的呀!想想看,得到了纯净的植物蛋白,那是多么让人兴奋的事情。

而且啊,植物蛋白对我们的身体有那么多好处,能提供能量,让我们活力四射。

这就如同给身体注入了一股强大的力量,让我们能够勇往直前。

不用 animal 蛋白,咱用植物蛋白也能打造出健康又美味的食物,这多厉害呀!这就好像我们有了一把神奇的钥匙,可以打开健康生活的大门。

所以呀,大家可别小看了植物蛋白的提取,这可是一项充满魅力和价值的事情呢!。

分子实验-植物蛋白质提取

分子实验-植物蛋白质提取
➢ 大部分蛋白质均可溶于水、稀盐、稀酸或稀碱溶液中,少数与脂类结合的蛋白 质溶于乙醇、丙酮及丁醇等有机溶剂中,因此可采用不同溶剂提取、分离及纯 化蛋白质和酶。
➢ 蛋白质与酶在不同溶剂中溶解度的差异,主要取决于蛋白分子中非极性疏水 基团与极性亲水基团的比例,其次取决于这些基团的排列和偶极矩。故分子 结构性质是不同蛋白质溶解差异的内因,而温度、pH、离子强度等是影响蛋 白质溶解度的外界条件。提取蛋白质时常根据这些内外因素综合加以利用, 将细胞内蛋白质提取出来,并与其它不需要的物质分开。
SDS-PAGE: 一般采用的是不连续缓冲系统,与连续缓冲系统相比,能够有较高的分辨率。浓缩胶的作用是有堆积作用, 凝胶浓度较小,孔径较大,把较稀的样品加在浓缩胶上,经过大孔径凝胶的迁移作用而被浓缩至一个狭窄 的区带。(SDS是阴离子去表面活性剂,作为变性剂和助溶试剂,它能断裂分子内和分子间的氢键,使分子 去折叠,破坏蛋白分子的二、三级结构。)
0 4 蛋白提取操作步骤
蛋白质提取液:
1. 1Mtris- -HCI (PH8) 2. 甘油(Glycerol) 3、聚乙烯吡咯烷酮(Polyvinylpolypyrrordone) (针对SDS- -PAGE) ●pH值 蛋白质,酶是具有等电点的两性电解质,提取液的pH值应选择在偏离等电点两侧的pH 范围内。用稀酸或稀碱提 取时,应防止过酸或过碱而引起蛋白质构象的不可逆变化。 ●盐浓度 稀浓度可促进蛋白质的溶,称为盐溶作用。同时稀盐溶液因盐离子与蛋白质部分结合,具有保护蛋白质不易变 性的优点,因此在提取液中加入少量NaCl等中性盐,一般以0.15摩尔。缓冲液常采用0.02-0.05M磷酸盐和碳酸 盐等渗盐溶液
植物总蛋白的提取与检测
目录
contents
PART 01 植物总蛋白提取原理 PART 02 植物总蛋白检测原理以及操作 PART 03 实验材料与试剂 PART 04 操作步骤 PART 05 注意事项

植物蛋白质提取方法

植物蛋白质提取方法

一、植物蛋白质提取1. TCA-丙酮法(1)称量一定量的样品置于液氮预冷的研钵中,加少许PVPP,反复加液氮研磨至粉末。

(2)研磨好的样品用10 倍体积(w/V)的10%的TCA-丙酮溶液悬浮,加入0.1 M PMSF、1 M DTT 至终浓度为1 mM PMSF、10mM DTT,超声5 分钟,于-20℃静置6 小时或过夜后,4℃,20000g 离心15 分钟,弃上清。

(3)沉淀用10 倍体积于样品的丙酮溶液重悬浮,于-20℃静置1 小时后,4℃,20000g 离心15 分钟,弃上清。

(4)重复步骤(3)一次。

(5)沉淀用10 倍体积于样品的乙醇/乙醚=1:1 洗,于-20℃静置1 小时后,4℃,20000g 离心15 分钟,弃上清。

(6)重复步骤(3)一次。

(7)取出沉淀真空干燥约5 分钟,除尽有机溶剂。

(8)按10mg 干粉末加200 微升裂解液的比例,加入1 mM PMSF、10mM DTT,超声5分钟,充分溶解1 小时,10℃,35000g 离心30 分钟,上清为所需的蛋白溶液。

(9)用Bradford 法测定蛋白样品的蛋白浓度。

(10)蛋白样品溶液小量分装,-80℃保存。

注意事项:(1)TCA 有利于去除酚类色素等物质,但不利于蛋白的抽提,使用浓度不宜过高,在后面丙酮处理中,尽量除去。

(2)蛋白样品保存:样品浓度不宜过高,建议将高浓度样品适度调整,为避免反复冻融应分装保存,长期保存用-80℃,短期保存用-20℃。

(3)1M DTT:0.1542g DTT 用1ml MilliQ 水溶解,-20℃保存。

(4)0.1M PMSF:0.0174g PMSF 用1ml 异丙醇溶解,-20℃保存。

植物蛋白是如何提炼的原理

植物蛋白是如何提炼的原理

植物蛋白是如何提炼的原理
植物蛋白的提炼原理主要涉及到以下几个步骤:
1. 选择合适的植物材料:选用含有较高蛋白质含量的植物作为原料,例如大豆、豌豆、黄豆、蔗糖等。

2. 破碎植物细胞壁:采用物理或化学方法破碎植物细胞壁,使蛋白质从细胞内释放出来。

物理方法可以通过高温、高压或机械力来实现,化学方法可以使用酶解剂或酸碱溶液来破坏细胞壁。

3. 提取植物蛋白:将破碎的植物材料与溶剂(通常为水或盐水)混合搅拌,使蛋白质溶解在溶液中。

溶液通常还会进行调节pH值、温度、时间等条件以促进蛋白质的溶解和提取。

4. 分离蛋白质:利用物理或化学方法对溶液中的蛋白质进行分离纯化。

常用的方法包括离心、过滤、沉淀、电泳、超滤、逆流chromatography等。

这些方法可以根据蛋白质的大小、电荷、亲水性等性质进行选择。

5. 精制和干燥:通过去除杂质、水分等步骤,使提取的植物蛋白质更纯净,并经过干燥处理,将其转化为粉末或颗粒状,方便储存和使用。

提炼植物蛋白的具体方法和步骤可能会因不同的植物和所需的蛋白质类型而有
差异,但以上步骤大致代表了植物蛋白提炼的一般原理和过程。

植物蛋白提取方法和工艺流程

植物蛋白提取方法和工艺流程

植物蛋白提取方法和工艺流程英文回答:Plant protein extraction methods and process.Plant protein extraction is a crucial step in the production of plant-based protein products. There are several methods and processes used for extracting proteins from plants, each with its own advantages and limitations. In this response, I will discuss two commonly used methods: aqueous extraction and solvent extraction.Aqueous extraction is a simple and widely used method for extracting plant proteins. It involves the use of water as a solvent to extract proteins from plant materials. The process typically involves grinding or blending the plant material to increase the surface area and then mixing it with water. The mixture is then subjected to various treatments such as heating, pH adjustment, and enzymatic digestion to facilitate protein extraction. The proteinscan then be separated from the plant material using techniques such as centrifugation or filtration.Solvent extraction, on the other hand, involves the use of organic solvents to extract proteins from plants. This method is often used when aqueous extraction is notefficient enough to extract proteins from certain plant materials. Solvents such as ethanol, methanol, or acetone are commonly used for this purpose. The plant material is typically mixed with the solvent and subjected to agitation or sonication to facilitate protein extraction. The proteins can then be separated from the solvent by techniques such as precipitation or evaporation.Both aqueous extraction and solvent extraction have their advantages and limitations. Aqueous extraction is relatively simple and cost-effective, as it only requires water as a solvent. It is also considered a more environmentally friendly method compared to solvent extraction. However, it may not be efficient enough to extract proteins from certain plant materials or to achieve high protein yields.Solvent extraction, on the other hand, can be more efficient in extracting proteins from a wide range of plant materials. It can also achieve higher protein yields compared to aqueous extraction. However, it requires the use of organic solvents, which can be more expensive and potentially harmful to the environment. It also requires additional steps to remove the solvent from the extracted proteins.In conclusion, plant protein extraction can be achieved through various methods and processes. Aqueous extraction and solvent extraction are two commonly used methods, each with its own advantages and limitations. The choice of extraction method depends on factors such as the plant material, desired protein yield, and cost considerations.中文回答:植物蛋白提取方法和工艺流程。

植物蛋白提取实验的意义

植物蛋白提取实验的意义

植物蛋白提取实验的意义
植物蛋白提取实验的意义
植物蛋白提取实验是一种使用植物组织的方法,用于从植物细胞中提取植物蛋白质。

它是植物蛋白质组学方法的重要组成部分,可以用于提取多种植物的蛋白质。

蛋白质提取实验不仅可以识别植物蛋白质的种类,而且还可以分析植物蛋白质的性质。

这在了解植物蛋白质生理活性和其他生物学功能方面具有重要意义。

植物蛋白提取实验具有多种功能。

例如,它可以用于发现新的植物蛋白质,以及研究其在植物体内的功能。

它还可以用于研究植物蛋白质的结构、生物化学属性和功能。

另外,它还可以用于测定植物蛋白质的表达水平,从而了解植物代谢的情况。

植物蛋白提取实验还可以用于开发新型植物蛋白质分离技术,以及研究植物的发育过程和环境因子的影响。

总之,植物蛋白提取实验具有重要的研究价值,可以为植物蛋白质的结构、功能和表达水平提供有益的信息,有助于研究和发展植物细胞和植物基因组学。

- 1 -。

植物蛋白质的提取方法及举例

植物蛋白质的提取方法及举例

植物蛋白质的提取方法及举例1.机械破碎法机械破碎法是一种常见的植物蛋白质提取方法,其原理是通过物理力学方法将植物细胞结构破碎,使蛋白质从细胞中释放出来。

具体步骤包括:将植物材料切碎,加入缓冲液,经过高压或高速搅拌破碎,然后离心去除残渣得到植物蛋白提取液。

常用的机械破碎设备有搅拌器、超声波处理器和磨碎器等。

案例:以大豆为例,先将大豆材料研磨成颗粒状,然后添加适量的缓冲液,在高速搅拌器中进行破碎处理,最后离心去除渣滓,得到大豆蛋白提取液。

2.酶解法酶解法是利用酶的特异性作用从植物细胞中释放蛋白质的方法。

酶可降解细胞壁和膜,使蛋白质从细胞中释放出来。

常用的酶解剂有纤维素酶、蛋白酶和淀粉酶等。

具体步骤包括:将植物材料切碎,加入相应酶解液,经过适当时间的酶解作用,然后进行离心或其他处理,得到植物蛋白提取液。

案例:以豌豆为例,将豌豆材料切碎,加入含有纤维素酶的酶解液,经过酶解反应后,进行离心去除沉淀,得到豌豆蛋白提取液。

3.酸碱提取法酸碱提取法是通过调节植物材料的pH值,使蛋白质从植物细胞中溶出的方法。

具体步骤包括:将植物材料切碎,加入一定浓度的酸或碱液,调节pH值促使蛋白质溶解,然后进行离心或其他处理,得到植物蛋白提取液。

案例:以玉米为例,将玉米材料切碎,然后加入适量浓度的苏打水,调节pH值,使玉米蛋白质溶解,最后进行离心去除沉淀,得到玉米蛋白提取液。

4.离心法离心法是通过离心力将植物蛋白质从细胞碎片或植物材料中分离出来的方法。

具体步骤包括:将植物材料破碎或酶解,然后进行离心分离,收集上清液中的蛋白质。

案例:以大麦为例,将大麦材料破碎或酶解后,进行离心分离,收集上清液中的大麦蛋白质。

本文介绍了机械破碎法、酶解法、酸碱提取法和离心法等植物蛋白质提取方法,并给出了相关的提取案例。

这些方法各有优劣,选择提取方法应根据具体需求和材料特性来确定。

植物蛋白质的提取对于食品工业、医药和保健品等领域具有重要意义,能够广泛应用于食品增值、功能食品研发和药物制备等方面。

植物蛋白质提取方法总汇

植物蛋白质提取方法总汇

植物蛋白质提取方法总汇1.机械破碎法机械破碎法是最常用的植物蛋白质提取方法之一、该方法通过机械破碎将植物细胞壁破碎,释放出细胞质中的蛋白质。

常用的机械破碎设备有研钵研磨器、研钵超声波破碎器等。

将植物样品与一定的溶液混合,使用机械设备进行研磨或超声处理,破坏细胞结构,使蛋白质溶于溶液中。

然后对提取的植物蛋白质进行离心、过滤等操作,得到纯化的蛋白质。

2.离心沉淀法离心沉淀法是一种将植物细胞破碎后进行离心来分离蛋白质的方法。

通过高速离心,植物细胞组分根据密度的差异分层沉淀,蛋白质可在上清液中得到。

常用的离心设备有高速离心机。

将植物样品与一定的溶液混合,通过高速离心将蛋白质与其他组分分离。

然后对上清液进行过滤、浓缩等操作,得到纯化的蛋白质。

3.溶剂提取法溶剂提取法是一种利用溶剂将植物蛋白质从细胞中提取的方法。

常用的溶剂有酸、碱、有机溶剂等。

将植物样品与溶剂混合,使用搅拌或超声处理进行提取。

然后对溶液进行过滤、浓缩等操作,得到纯化的蛋白质。

4.酶解法酶解法是一种利用酶对植物样品进行消化,将蛋白质释放出来的方法。

常用的酶有蛋白酶、细胞酶等。

将植物样品与酶混合,进行一定条件下的酶解反应。

然后对溶液进行离心、过滤等操作,得到纯化的蛋白质。

5.离子交换法离子交换法是一种利用离子交换树脂分离蛋白质的方法。

将植物样品与经过离子交换树脂平衡的缓冲液混合,在一定条件下,树脂上的蛋白质会与缓冲液中的其他组分进行离子交换,使蛋白质溶液净化。

然后对树脂进行洗脱等操作,得到纯化的蛋白质。

在植物蛋白质提取过程中,需要注意以下几个问题。

首先,应根据不同植物的特点选择合适的提取方法。

其次,提取条件的选择对提取效果有很大影响,包括提取溶剂的选择、激酶浓度和反应时间的控制等。

此外,还需对提取的蛋白质进行纯化和测定等后续处理。

总的来说,植物蛋白质提取方法有许多种,具体的选择应根据实际情况来确定。

不同的提取方法有其优缺点,需要综合考虑提取效率、纯度和操作等方面的因素。

提取植物蛋白的试剂及用途

提取植物蛋白的试剂及用途

提取植物蛋白的试剂及用途植物蛋白提取试剂是用于从植物细胞中提取和纯化蛋白质的化学试剂。

它们被广泛应用于生物医学研究、农业科学和食品工业等领域。

植物蛋白提取试剂可以通过多种方法提取蛋白质,包括化学方法、物理方法和生物化学方法。

以下是一些常用的植物蛋白提取试剂及其用途的举例。

1. 植物蛋白提取缓冲液:这种试剂是最基本的植物蛋白提取试剂之一。

它通常包含有盐类、缓冲剂和表面活性剂等成分,可以有效地破坏细胞壁,并使蛋白质从细胞中释放出来。

这种缓冲液通常用于提取植物细胞质蛋白,用途广泛,可以用于分析蛋白质结构和功能、实现酶的纯化和鉴定、探究植物蛋白质在生物学过程中的作用等。

2. 细胞壁分解酶:植物细胞壁是坚硬而复杂的结构,妨碍了蛋白质的提取。

细胞壁分解酶可以破坏细胞壁,促进蛋白质的释放。

例如,纤维素酶可以催化纤维素降解,木质素酶可以降解植物木质素等。

这些酶可以用于研究植物细胞壁的组成和结构,并提取特定类型的细胞壁相关蛋白质。

3. 蛋白质保护剂:这类试剂可以阻止蛋白质的降解和凝聚,保持蛋白质的活性和稳定性。

例如,EDTA可以螯合金属离子,抑制金属离子催化的蛋白质降解酶的活性。

DTT和β-巯基乙醇可以还原蛋白质的二硫键,防止蛋白质的降解。

这些保护剂在蛋白质提取和制备过程中使用,有助于保持蛋白质的完整性和活性。

4. 蛋白质沉淀试剂:植物蛋白质提取后常常需要进行纯化。

沉淀试剂可以使蛋白质与溶液中的其他物质分离出来,实现蛋白质的纯化和富集。

常用的蛋白质沉淀试剂有:盐类(如氯化铵)、有机溶剂(如酒精、醋酸等)和多聚物(如聚乙二醇),它们能够沉淀蛋白质并与其结合。

这些沉淀试剂可以用于蛋白质的分离纯化、富集高丰度蛋白质等。

5. 蛋白质柱层析试剂:层析是一种常用的蛋白质分离纯化技术。

蛋白质柱层析试剂主要是指各种色谱介质和绑定亲和试剂。

色谱介质如离子交换柱、凝胶过滤柱、亲和柱等,能够通过其独特的理化性质分离蛋白质。

例如,离子交换柱可以根据蛋白质的电荷差异进行分离,凝胶过滤柱可以根据蛋白质的分子大小进行分离。

植物蛋白提取

植物蛋白提取

植物全蛋白提取方法:TCA丙酮沉淀法、Tris-HCl法、Trizol沉淀法提取法。

1TCA丙酮沉淀法基于蛋白在酸或疏水条件下变性使蛋白浓缩并去除污染物原理的TCA丙酮沉淀法,最早用于小麦蛋白的提取,是目前提取植物蛋白的常用方法之一。

具有降低次生代物质的干扰、减少蛋白降解等优点。

TCA能有效地抑制蛋白酶对蛋白质的水解作用,保证在制样过程中蛋白质不被降解;丙酮溶液能除去样品中的酚类及色素等干扰物质,同时实验过程中采用的高速离心办法能较好地去除多糖的影响。

然而该方法的一个最大缺点是蛋白质很难重新溶解,而且样品中的非蛋白成分很难除去,可能会丢失膜蛋白和疏水性蛋白,导致2-DE图谱上有明显的横纵条纹。

在研磨样品时加入聚乙烯吡咯烷酮(PVP )或交联聚乙烯基吡咯烷酮(PVPP )用来吸附样品中富含的酚、醌类物质。

它们能通过疏水键与酚类形成复合物,离心可以去除该复合物。

然而,TCA丙酮沉淀法中与蛋白共沉淀的污染物在随后的有机溶剂清洗步骤常难以去除,可以通过振荡和延长蛋白沉淀在裂解缓冲液中温育时间的方法来增加蛋白的溶解能力。

在提取的过程中同时加入了TCA、B-巯基乙醇及DTT 3种药剂可以更好的抑制蛋白质的水解及去除干扰物质。

TCA丙酮提取法耗时少且容易操作,一般作为植物蛋白提取的初始方案,该方法常用于幼嫩组织中蛋白的提取,对更为复杂的植物组织该方法并非最佳选择。

但该方法还是在植物蛋白的提取中占有重要位置,很多木本植物的样品应用该方法效果很好,如鹅掌楸叶片、巴东木莲的雌蕊柱头、槟榔叶片、银杏叶片及枝条、茶树叶片及芽、红豆杉的愈伤组织、石斛叶片等。

草本植物中的大豆叶片、生菜叶片、黄瓜叶片、番茄子叶、龙胆花芽、灰木相思叶片等应用该方法都获得了较清晰的2-DE图谱。

TCA protein precipitation protocolStock Solutions: 100% (w/v) Trichloroacetic acid (TCA) recipe: dissolve 500g TCA (as shipped) into 350 ml dH2O, store at RT. Precipitation Protocol:1.Add 1 volume of TCA stock to 4 volumes of protein sample.1. e. in 1.5ml tube with maximum vol., add 250讥TCA to 1.0ml sample.2.Incubate 10 min at 4°C.3.Spin tube in microcentrifuge at 14K rpm, 5 min.4.Remove supernatant, leaving protein pellet intact. Pellet should be formed from whitish,fluffy ppt.5.Wash pellet with 200^l cold acetone.6.Spin tune in microfuge at 14K rpm, 5min.7.Repeat steps 4-6 for a total of 2 acetone washes.8.Dry pellet by placing tube in 95°C heat block for 5-10 min to drive off acetone.9.For SDS-PAGE, add 2X or 4X sample buffer (with or without bME) and boil smaple for10 min in 95°C herat block before loading smaple onto polyacrylamide gel.2Trizol沉淀法与TCA丙酮沉淀法相比,Trizol沉淀蛋白质的方法可有效地除去色素、酚类等干扰电泳的化学物质,特别是对植物样品中高丰度蛋白Rubisco1,5-二磷酸核酮糖羧化酶/ 加氧酶(Ribulose-1,5-bisphosphate carboxylase/oxygenase,通常简写为RuBisCO)。

植物蛋白的提取与加工利用

植物蛋白的提取与加工利用

植物蛋白的提取与加工利用植物蛋白是指由植物提取出的富含氨基酸的蛋白质。

与动物蛋白相比,植物蛋白具有易吸收、无胆固醇、低脂肪等优点,因此被广泛应用于食品、保健品、饲料等领域。

本文将探讨植物蛋白的提取方法和加工利用。

提取植物蛋白的方法主要有机械法、化学法和生物发酵法。

机械法是将植物材料通过高速旋转或搅拌,使蛋白质在物理力的作用下与其他成分分离。

常用的机械法包括研磨、搅拌和压榨等。

化学法是利用溶剂或酶对植物材料进行提取,一般分为酸碱法和有机溶剂法。

生物发酵法是通过添加适量的微生物,在其生长过程中产生大量蛋白质,然后通过分离和纯化获得植物蛋白。

在提取植物蛋白后,还需要进行加工利用。

首先,植物蛋白可以用于食品加工。

植物蛋白能够替代传统的动物蛋白,作为食品的重要组成部分。

比如,大豆蛋白被广泛应用于豆制品、素肉和乳制品等领域。

其次,植物蛋白也可以用于保健品制造。

植物蛋白具有良好的保健功能,能够提供人体所需的营养素,同时还能降低血压、血脂等减少心脑血管疾病的风险。

此外,植物蛋白还可以用于饲料生产。

动物饲料中添加植物蛋白可以提高饲料的蛋白质含量,改善动物的生长发育和免疫能力。

加工利用植物蛋白的过程中需要注意一些问题。

首先,提取植物蛋白的方法应选择合适的方法,以确保蛋白质的纯度和活性。

其次,加工过程中要注意蛋白质的保护。

有些蛋白质容易受热或酸碱等因素的影响而失去活性。

因此,在加工过程中需要控制好温度、pH值和时间等因素。

另外,植物蛋白的存储也是一个重要的问题。

植物蛋白容易受潮、发霉等影响,因此需要保存在干燥、阴凉的环境中,以延长其保质期。

总的来说,植物蛋白的提取和加工利用在食品、保健品、饲料等领域具有广泛的应用前景。

随着人们对健康和环保意识的提高,植物蛋白的需求将会进一步增加。

因此,对于植物蛋白的提取和加工利用研究具有重要意义。

通过提高植物蛋白的提取效率和纯度,制造更多种类的植物蛋白产品,不仅可以满足人们对健康食品的需求,还可以促进可持续发展和环境保护。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

植物全蛋白提取方法:TCA丙酮沉淀法、Tris-HC1法、Trizol沉淀法提取法。

1 TCA丙酮沉淀法基于蛋白在酸或疏水条件下变性使蛋白浓缩并去除污染物原理的TCA丙酮沉淀法,最早用于小麦蛋白的提取,是目前提取植物蛋白的常用方法之一。

具有降低次生代谢物质的干扰、减少蛋白降解等优点。

TCA能有效地抑制蛋白酶对蛋白质的水解作用,保证在制样过程中蛋白质不被降解;丙酮溶液能除去样品中的酚类及色素等干扰物质,同时实验过程中采用的高速离心办法能较好地去除多糖的影响。

然而该方法的一个最大缺点是蛋白质很难重新溶解,而且样品中的非蛋白成分很难除去,可能会丢失膜蛋白和疏水性蛋白,导致2-DE图谱上有明显的横纵条纹。

在研磨样品时加入聚乙烯吡咯烷酮(PVP)或交联聚乙烯基吡咯烷酮(PVPP)用来吸附样品中富含的酚、醌类物质。

它们能通过疏水键与酚类形成复合物,离心可以去除该复合物。

然而,TCA丙酮沉淀法中与蛋白共沉淀的污染物在随后的有机溶剂清洗步骤中通常难以去除,可以通过振荡和延长蛋白沉淀在裂解缓冲液中温育时间的方法来增加蛋白的溶解能力。

在提取的过程中同时加入了TCA、β-巯基乙醇及DTT 3 种药剂可以更好的抑制蛋白质的水解及去除干扰物质。

TCA丙酮提取法耗时少且容易操作,一般作为植物蛋白提取的初始方案,该方法常用于幼嫩组织中蛋白的提取,对更为复杂的植物组织该方法并非最佳选择。

但该方法还是在植物蛋白的提取中占有重要位置,很多木本植物的样品应用该方法效果很好,如鹅掌楸叶片、巴东木莲的雌蕊柱头、槟榔叶片、银杏叶片及枝条、茶树叶片及芽、红豆杉的愈伤组织、石斛叶片等。

草本植物中的大豆叶片、生菜叶片、黄瓜叶片、番茄子叶、龙胆花芽、灰木相思叶片等应用该方法都获得了较清晰的2-DE图谱。

TCA protein precipitation protocolStock Solutions: 100% (w/v) Trichloroacetic acid (TCA)recipe: dissolve 500g TCA (as shipped) into 350 ml dH2O, store at RT.Precipitation Protocol:1. Add 1 volume of TCA stock to 4 volumes of protein sample.i.e. in 1.5ml tube with maximum vol., add 250µl TCA to 1.0ml sample.2. Incubate 10 min at 4°C.3. Spin tube in microcentrifuge at 14K rpm, 5 min.4. Remove supernatant, leaving protein pellet intact. Pellet should be formed from whitish,fluffy ppt.5. Wash pellet with 200µl cold acetone.6. Spin tune in microfuge at 14K rpm, 5min.7. Repeat steps 4-6 for a total of 2 acetone washes.8. Dry pellet by placing tube in 95°C heat block for 5-10 min to drive off acetone.9. For SDS-PAGE, add 2X or 4X sample buffer (with or without bME) and boil smaple for10 min in 95°C herat block before loading smaple onto polyacrylamide gel.2 Trizol沉淀法与TCA 丙酮沉淀法相比,Trizol沉淀蛋白质的方法可有效地除去色素、酚类等干扰电泳的化学物质,特别是对植物样品中高丰度蛋白——Rubisco1,5-二磷酸核酮糖羧化酶/加氧酶(Ribulose-1,5-bisphosphate carboxylase/oxygenase,通常简写为RuBisCO)。

采用此方法能够减少高丰度蛋白对2-DE结果的干扰。

植物样品中高丰度蛋白(如Rubisco)的存在对其他蛋白质,尤其是低丰度蛋白的检测的影响也很大,因此,选择合适的蛋白质制备方法尤其重要。

另外,使用聚乙二醇也可以去除该蛋白,效果较好。

Trizol法相对于酚法蛋白质获得产率高,方法操作亦不复杂,但对试剂要求严格,大量制备样品时成本较高。

目前使用此方法的植物比较少,对野牛草的种子、幼苗叶片及黄花苜蓿幼苗提取蛋白的效果很好。

1.取冻存组织加入1ml Trizol(invitrogen)匀浆,样品量不可超过总体积的10%,室温孵育5min,超声粉碎至组织完全溶于液体中;2.加入0.2ml氯仿,剧烈晃动15s,室温孵育2-3min,4℃12000×g离心15min;此时溶液分为水相和有机相。

3.小心吸取并丢弃上层水相(该水相中富含细胞总RNA,用于提取RNA,进行PCR实验);4.在剩下的中间层及有机相中加入0.3ml无水乙醇,颠倒充分混匀后室温放置2-3min,4℃下2000×g离心5min;5.小心吸取并收集上层有机相(沉淀为DNA),转移到新的离心管中,加入1.5ml异丙醇,轻轻混匀后室温放置10min,4℃下12000×g离心10min;此时沉淀为蛋白。

6.弃上清液,加2ml0.3M盐酸胍(95%乙醇溶解)清洗沉淀3次,每次清洗过程中,先将沉淀保存于清洗液中20min,然后在4℃下7500×g离心5min。

最后一次清洗后,丢弃上层液相,将沉淀悬浮于2ml乙醇中,涡旋震荡15s后在室温下放置20min,然后在4℃下7500×g离心5min。

7.丢弃上层液相,将沉淀真空干燥5-10min。

然后将沉淀溶解于1%SDS(十二烷基硫酸钠)中。

在50℃水浴中反复吹打以助溶。

不溶物在4℃下10000×g离心10min去除。

收集上清,转移到新的收集管中。

该上清中的蛋白样品可直接用于Western Blotting实验或保存于-20℃。

常见问题:1.得率低:样品裂解或匀浆处理不彻底;最后得到的蛋白质沉淀未完全溶解2.蛋白质降解:组织取出后未马上冷冻3.电泳时条带变形:蛋白质沉淀洗涤不充分3 Tris-HC1法Tris-HCl法在膜蛋白和疏水性蛋白的提取方面有所改善。

用含SDS的Tris-HCl与TCA丙酮联合使用提取蛋白质;用80%的丙酮洗涤以除去水溶性杂质(包括高浓度的盐离子),比TCA 丙酮法利用高速离心与丙酮洗涤的方法能更有效地排除杂质,也比传统的脱盐和透析方法要省时省力。

Tris-HC1法提取的蛋白图谱效果明显比用TCA丙酮法提取的效果好,主要表现在不同分子量范围内蛋白点的数目及分离效果方面。

TCA丙酮法所提取蛋白在小分子量区域分布不均匀,蛋白点不清晰,水平条纹与竖直条纹较为严重,而Tris-HC1法克服了上述缺点,并分离出TCA丙酮法所不易分离出的酸性蛋白,TCA丙酮法能够得到较多中等分子量蛋白而Tris-HC1法除了分离到较多的中等分子量的蛋白质外,还得到了很多的高分子量和低分子量蛋白质。

另外,Tris-HC1法操作简便,时间较短,成本适中,提取步骤简单,减少了因处理步骤繁多而造成的蛋白质的损失,大大提高了实验结果的重复性。

Tris-HC1法对箭毒木种子、白桦花芽及苹果叶片的提取效果非常好。

在清洗步骤中,用10 倍体积的-20℃预冷10% TCA 丙酮沉降蛋白质,实验表明Tris-HCl 提取法所得图谱背景清晰,没有横纵条纹及弥散状的蛋白质点,蛋白质点数最多。

(1)准确称取0.5g叶片,剪碎后加入0.25mLTris-HCL溶液冰浴研磨。

(2)加入0.75mL提取液。

(7moL/L尿素,2moL/L硫脲,0.4%CHAPS,10mmoL/LDTr)(3)研磨至匀浆后,转移至1.5mL离心管中,10000r/min。

(4)取上清,即为含蛋白样品。

植物提取蛋白定量:总蛋白定量分析1.常用的总蛋白定量分析方法。

2.针对特定蛋白的定量检测常用的方法是酶联免疫吸附试验,免疫印迹分析和质谱。

酶联免疫吸附试验(ELISA)酶联免疫吸附试验(ELISA)是溶液中特定蛋白定量的一种常用方法。

通常是在96孔板上进行的。

关键步骤是特定抗原/蛋白的固定。

具体来说,ELISA有不同变种。

直接或间接ELISA,是特定抗原/蛋白直接吸附到检测板。

封闭未被抗原包被的孔板表面,然后在孔板中加入酶标(直接ELISA)或未酶标(间接ELISA)的第一抗体,在测试孔板中,一抗与抗原/蛋白相结合。

对于未酶标的第一抗体,加入酶标的第二抗体与第一抗体结合。

最后,加入酶底物(通常,四甲基联苯胺-TMB或碱性磷酸酶-AP),溶液发生颜色变化,使用分光光度计检测。

颜色变化与蛋白质浓度是直接相关的。

ELISA常用的一个变种是夹心ELISA,也就是说,特定抗原/蛋白结合在孔板表面包被的第一抗体(捕获抗体)和酶标的第二抗体(检测抗体)之间。

直接ELISA的优点是速度快,并且没有第二抗体的交叉反应问题,但局限是,第一抗体的标记可能是费时和昂贵的。

此外,信号放大是最弱的。

因此,间接ELISA是更常用的,因为可以从公司买到各种各样的第二抗体,最重要的是灵敏度提高了。

然而,可能会发生第二抗体的交叉反应。

最后,任何ELISA测定蛋白质浓度的一个重要环节都是蛋白质标准曲线,通常是连续稀释已知浓度的蛋白质,从而绘制标准曲线。

免疫印迹分析免疫印迹只能半定量。

通过凝胶电泳把原始或变性的蛋白质分开。

把蛋白质转膜(硝酸纤维素或polyvinylidene-PVDF),然后使用特定的酶标抗体检测。

最后,加入适当的底物(化学发光底物)产生可检测的信号。

虽然免疫印迹比ELISA更费时,但是免疫印迹不仅可以对特定的蛋白进行定量,而且可以在一次实验中同时检测蛋白质修饰。

蛋白质质谱蛋白质质谱是蛋白质定量的新兴方法。

在蛋白质组学分析中,除了蛋白定性之外,一个重要的步骤就是对特定的蛋白的定量。

质谱蛋白定量的方法有很多。

常用的方法,较重的稳定同位素碳(13C)或氮(15N)加入到第一个样本(多肽或蛋白质),而相应的轻同位素(12C 和14N)加入到第二个样本(内标),然后混合这两个样本进行分析。

由于两个样本的质量差,用质谱分析仪测定的两个样本峰强度的比值,就相当于其相对丰度比。

相关文档
最新文档