第4章 Verilog HDL的描述方式

合集下载

EDA技术与Verilog_HDL(潘松)第四章课后习题答案

EDA技术与Verilog_HDL(潘松)第四章课后习题答案

图4-27
1位全减器


x为被减数, y为减数, sub_in为 低位的借 位, diff r为差,su b_out为向 高位的借 位。
x 0 0 0 y 0 0 1 sub_in diffr sub_out 0 1 0 0 1 1 0 1 1
//一个二进制半减器设计进行了阐述
module h_suber(x,y,diff,s_out); input x,y; output diff, s_out; assign diff=x^y; assign s_out=(~x)&y; endmodule
reg [2:0]A ;
wire[7:0]Y ; reg G1 ,G2 ,G3;
decoder3_8 DUT ( G1 ,Y ,G2 ,A ,G3 );
initialቤተ መጻሕፍቲ ባይዱbegin $monitor($time,"A=%d,G1=%b,G2=%b, G3=%b,Y= %d\n",A, G1, G2, G3, Y); end


4-3 阻塞赋值和非阻塞赋值有何区别? 答:Verilog中,用普通等号“=”作为阻塞式赋值语句的赋值符号,如y=b。 Verilog中,用普通等号“<=”作为非阻塞式赋值语句的赋值符号,如y<=b。 阻塞式赋值的特点是,一旦执行完当前的赋值语句,赋值目标变量y即刻 获得来自等号右侧表达式的计算值。如果在一个块语句中含有多条阻塞式赋值 语句,则当执行到其中某条赋值语句时,其他语句将禁止执行,即如同被阻塞 了一样。 非阻塞式赋值的特点是必须在块语句执行结束时才整体完成赋值操作。非 阻塞的含义可以理解为在执行当前语句时,对于块中的其他语句的执行情况一 律不加限制,不加阻塞。这也可以理解为,在begin_end块中的所有赋值语句都 可以并行运行。

verilog的三种描述方式

verilog的三种描述方式

Verilog的三种描述方式Verilog是一种硬件描述语言(HDL),用于描述数字电路和系统。

它是一种高级语言,允许工程师以更高层次的抽象来描述电路,从而简化了电路设计和验证过程。

Verilog有三种主要的描述方式,分别是结构描述、行为描述和数据流描述。

本文将详细介绍这三种描述方式,并分析它们的特点和适用场景。

1. 结构描述结构描述是Verilog的一种描述方式,它通过层次结构和模块之间的连接关系来描述电路。

在结构描述中,我们可以使用模块、端口、电路连接和实例化等概念来描述电路的组成和连接方式。

结构描述类似于画出电路图,只需要关注电路的结构和连接关系,而不需要考虑电路的具体功能。

结构描述的语法如下所示:module ModuleName (input wire A, input wire B, output wire C);// 输入端口定义// 输出端口定义// 内部信号定义// 子模块实例化// 逻辑实现endmodule结构描述的特点是清晰明了,易于理解和调试。

通过模块化的设计和层次结构,可以方便地对电路进行分析和调试。

结构描述适用于需要详细描述电路结构和连接关系的场景,比如设计一个复杂的处理器或系统。

2. 行为描述行为描述是Verilog的另一种描述方式,它通过描述电路的功能和行为来实现对电路的描述。

行为描述使用类似于编程语言的语法,可以使用条件语句、循环语句和顺序语句等来描述电路的行为。

在行为描述中,我们可以直接使用Verilog的语法来描述电路的逻辑功能,而不需要关注电路的结构和连接关系。

行为描述的语法如下所示:module ModuleName (input wire A, input wire B, output wire C);// 输入端口定义// 输出端口定义// 内部信号定义// 逻辑实现always @ (A or B) begin// 行为描述endendmodule行为描述的特点是灵活性高,可以方便地实现复杂的逻辑功能。

第04讲 Verilog-HDL语法——第2部分 语法要点

第04讲 Verilog-HDL语法——第2部分 语法要点

` timescale
`timescale 说明延时单位及延时精度
格式:`timescale <time_unit> / <time_precision> 如:`timescale 1 ns / 100 ps
`timescale必须在模块之前出现 `timescale 1 ns / 100 ps // All time units are in multiples of 1 nanosecond module MUX2_1 (out, a, b, sel); output out; input a, b, sel; wire sel_;
12 'H83a 8'b1100_ 0001 64'hff01 9'O17 32'bz01x 3’b1010_ 1101 6.3 32e- 4 4.1E3 unsized decimal (zero-extended to 32 bits) unsized hexadecimal (zero- extended to 32 bits) 8-bit binary 64-bit hexadecimal (zero- extended to 64 bits) 9-bit octal Z-extended to 32 bits 3-bit number, truncated to 3’b101 decimal notation scientific notation for 0.0032 scientific notation for 4100
hex
oct
dec
bin
ACSII
string
time
strength module
转义符
\t \n \\ \” %% \<1-3 digit octal number>

Verilog HDL

Verilog HDL

Verilog HDL基本程序结构用Verilog HDL描述的电路设计就是该电路的Verilog HDL模型,也称为模块,是Verilog 的基本描述单位。

模块描述某个设计的功能或结构以及与其他模块通信的外部接口,一般来说一个文件就是一个模块,但并不绝对如此。

模块是并行运行的,通常需要一个高层模块通过调用其他模块的实例来定义一个封闭的系统,包括测试数据和硬件描述。

一个模块的基本架构如下:module module_name (port_list)//声明各种变量、信号reg //寄存器wire//线网parameter//参数input//输入信号output/输出信号inout//输入输出信号function//函数task//任务……//程序代码initial assignmentalways assignmentmodule assignmentgate assignmentUDP assignmentcontinous assignmentendmodule说明部分用于定义不同的项,例如模块描述中使用的寄存器和参数。

语句用于定义设计的功能和结构。

说明部分可以分散于模块的任何地方,但是变量、寄存器、线网和参数等的说明必须在使用前出现。

一般的模块结构如下:module <模块名> (<端口列表>)<定义><模块条目>endmodule其中,<定义>用来指定数据对象为寄存器型、存储器型、线型以及过程块。

<模块条目>可以是initial结构、always结构、连续赋值或模块实例。

下面给出一个简单的Verilog模块,实现了一个二选一选择器。

例2-1 二选一选择器(见图2-1)的Verilog实现图2-1 例2-1所示的二选一电路module muxtwo(out, a, b, s1);input a, b, s1;output out;reg out;always @ (s1 or a or b)if (!s1) out = a;else out = b;endmodule模块的名字是muxtwo,模块有4个端口:三个输入端口a、b和s1,一个输出端口out。

硬件描述语言 Verilog HDL

硬件描述语言 Verilog HDL
端口声明,参数声明<可选>
`include指令
变量声明(wire,reg及其它类型) 数据流语句(assign) 低层模块的实例 过程块always和initial(包含所有的行为语句) 任务(task)和函数(function)
endmodule; 模块结束语句
16
4.3.3 模块和端口
17
4.3.3 模块和端口
3.$stop任务和$finish任务
۞ $stop任务使得仿真被挂起(例:暂停仿真以检查 信号值 )
۞ $finish任务将结束仿真,并退出仿真环境
21
4.3.3 系统任务和系统函数
常用的几个系统任务和系统函数:
4.时间函数:$time ,$stime ,$realtime 5.$random函数
32
4.4.2 数据类型
2.变量(Variable)类型 (reg、integer、time、real、realtime) 数据存储单元的抽象,下一次赋值前,变量的值保持不变 (1)寄存器(reg)变量类型
۞ 对应具有状态保持作用的硬件电路,如触发器、锁存器等
۞ 声明形式:reg [msb:lsb] reg1,reg2,...regN;
3
4.1 HDL简介
4.1.1 关于HDL(硬件描述语言)
使用HDL ۞用一种高级语言来表达大规模集成电路的功能,隐藏
其具体实现的细节,对数字电路和数字逻辑系统能够 进行形式化的描述。 ۞提高逻辑设计效率,降低设计成本,缩短设计周期。 ۞多方位的仿真可以在设计完成之前检测到其错误,减 少设计重复的次数,使第一次投片便能成功实现芯片 成为可能。 ۞使检测各种设计方案变得容易和方便,对方案的修改 只需要修改HDL程序,比修改原理图容易得多。

verilog的三种描述方式

verilog的三种描述方式

verilog的三种描述方式(最新版)目录1.引言2.Verilog 描述方式概述1.结构描述2.数据流描述3.行为描述4.混合描述3.结构描述1.门级结构描述2.模块级结构描述4.数据流描述1.逻辑关系2.持续赋值语句5.行为描述1.寄存器传输级描述2.状态机描述6.混合描述7.结论正文一、引言Verilog 是一种硬件描述语言,广泛应用于数字电路和模拟混合信号电路的设计验证。

在 Verilog 中,有多种描述方式可以实现逻辑功能,包括结构描述、数据流描述、行为描述和混合描述。

本文将对这些描述方式进行详细介绍。

二、Verilog 描述方式概述1.结构描述:通过调用逻辑原件,描述它们之间的连接来建立逻辑电路的 Verilog 模型。

这里的逻辑元件包括内置逻辑门、自主研发的已有模块、商业 IP 模块。

结构描述分为门级结构描述和模块级结构描述。

2.数据流描述:根据信号之间的逻辑关系,采用持续赋值语句描述逻辑电路的行为。

数据流描述关注信号的传输和处理过程,适用于组合逻辑电路的设计。

3.行为描述:通过描述电路的输入输出行为,以及电路内部状态的变化,来实现逻辑功能的描述。

行为描述主要包括寄存器传输级描述和状态机描述。

4.混合描述:结合结构描述、数据流描述和行为描述,实现对逻辑功能的全面描述。

混合描述可以充分利用 Verilog 的各种特性,提高描述的准确性和效率。

三、结构描述1.门级结构描述:通过实例化内置逻辑门或使用自定义模块,构建逻辑电路的结构。

例如,可以使用与门、或门、非门等逻辑门实现组合逻辑电路。

2.模块级结构描述:将具有一定功能的模块进行组合,形成复杂的逻辑电路。

模块可以是自主研发的已有模块,也可以是商业 IP 模块。

四、数据流描述1.逻辑关系:根据信号之间的逻辑关系,使用持续赋值语句进行描述。

例如,对于一个与非门,可以使用`assign #5 neg(a);`语句描述其输出信号与输入信号 a 的逻辑关系。

VerilogHDL语言(PDF)

VerilogHDL语言(PDF)

Verilog 讲义(二)1)续Verilog 基础2)Verilog 形为描述3.4 运算符九类运算符分类包含运算符算术运算符+ - * / %位运算符~ & | ^ ^~or~^缩位运算符& ~& | ~| ^ ^~or~^逻辑运算符! && ||关系运算符> < <= >=相等与全等运算符== != === !==逻辑移位运算符 <<>> 连接运算符 {}: 条件运算符 ?根据操作数的不同,又可分为三类:1)单目运算符只有一个操作数,且运算符位于操作数的左边如:~clk &a ~& 缩位运算符wire [7:0] aparity=^a (奇校验)2)双目运算符a+b a%b {a,b,c}3)三目运算符out=(sel)?a:b;运算符的优先级参:P443.4.1 算术运算符1)减法亦可用作单目运算符,取补运算2)除法运算符:整型类数据小数部分被截去: integer a=7/2=33)% 取余运算 7%2=13.4.2 位运算符1)~a 按位取反2)a&b 按位相与若a,b 位数不同,短的高位补0,(x者补x)3)^ ^~ 双目3.4.3 缩位运算符单目运算符,按位进行逻辑运算,结果产生一位的逻辑值。

A=4’b1001&a ~&a |a ~|a ^a ~^a0 1 1 0 1 0 3.4.3 逻辑运算符a&&b结果为一位的逻辑值若操作数为多位,只要有一位为1,整个操作数看作逻辑1;若有不定态,结果亦为不定态。

3.4.5关系运算符结果为一位的逻辑值。

3.4.6 相等与全等运算符结果为一位逻辑值相等:比较每一位,所有相等,关系满足,若有不定态或高阻态,不定态结果。

全等:与相等比较过程相同,亦将不定态及高阻态作为逻辑状态比较。

3.4.7 逻辑移位运算符<< >> 以0补位。

《verilog_数字系统设计课程》(第二版)思考题答案

《verilog_数字系统设计课程》(第二版)思考题答案

绪论1.什么是信号处理电路?它通常由哪两大部分组成?信号处理电路是进行一些复杂的数字运算和数据处理,并且又有实时响应要求的电路。

它通常有高速数据通道接口和高速算法电路两大部分组成。

2.为什么要设计专用的信号处理电路?因为有的数字信号处理对时间的要求非常苛刻,以至于用高速的通用处理器也无法在规定的时间内完成必要的运算。

通用微处理器芯片是为一般目的而设计的,运算的步骤必须通过程序编译后生成的机器码指令加载到存储器中,然后在微处理器芯片控制下,按时钟的节拍,逐条取出指令分析指令和执行指令,直到程序的结束。

微处理器芯片中的内部总线和运算部件也是为通用目的而设计,即使是专为信号处理而设计的通用微处理器,因为它的通用性也不可能为某一特殊的算法来设计一系列的专用的运算电路而且其内部总线的宽度也不能随便的改变,只有通过改变程序,才能实现这个特殊的算法,因而其算法速度也受到限制所以要设计专用的信号处理电路。

3.什么是实时处理系统?实时处理系统是具有实时响应的处理系统。

4.为什么要用硬件描述语言来设计复杂的算法逻辑电路?因为现代复杂数字逻辑系统的设计都是借助于EDA工具完成的,无论电路系统的仿真和综合都需要掌握硬件描述语言。

5.能不能完全用C语言来代替硬件描述语言进行算法逻辑电路的设计?不能,因为基础算法的描述和验证通常用C语言来做。

如果要设计一个专用的电路来进行这种对速度有要求的实时数据处理,除了以上C语言外,还须编写硬件描述语言程序进行仿真以便从电路结构上保证算法能在规定的时间内完成,并能通过与前端和后端的设备接口正确无误地交换数据。

6.为什么在算法逻辑电路的设计中需要用C语言和硬件描述语言配合使用来提高设计效率?首先C语言很灵活,查错功能强,还可以通过PLI编写自己的系统任务,并直接与硬件仿真器结合使用。

C语言是目前世界上应用最为广泛的一种编程语言,因而C程序的设计环境比Verilog HDL更完整,此外,C语言有可靠地编译环境,语法完备,缺陷缺少,应用于许多的领域。

verilog hdl的四值电平逻辑,以及数值的类型和表示方法

verilog hdl的四值电平逻辑,以及数值的类型和表示方法

verilog hdl的四值电平逻辑,以及数值的类型和表示方法在Verilog HDL中,四值电平逻辑指的是逻辑值包括四种状态:高电平(High)、低电平(Low)、高阻态(Z)和未知状态(X)。

这与传统的数字逻辑中只有高和低两种状态不同。

数值的类型和表示方法:1. 逻辑值:`'0'` 或 `'1'`: 逻辑0和逻辑1,分别表示低电平和高电平。

2. 线网类型 (Net Types):`wire`: 用于连接模块之间的信号,可以是四值逻辑中的任何状态。

3. 物理类型 (Physical Types):`reg`: 用于存储器或寄存器类型的变量,其值可以在仿真中被改变。

4. 连续赋值:`assign`: 用于连续赋值语句,例如 `assign a = b;`。

5. 数值表示:十进制、二进制、八进制和十六进制都可以在Verilog中表示数值。

例如,`4'b1010` 是二进制的表示方法。

6. 强类型推导:Verilog可以自动从代码中推导出变量的类型。

例如,如果一个变量只被赋值为逻辑0和1,那么它的类型将被推导为 `logic`。

7. 非确定值:有时,某些信号的值在仿真中可能不可预测或未知,可以使用非确定值 `x` 来表示。

8. 高阻态:在某些情况下,线网可能被配置为高阻态,以模拟开路或断开的情况。

这通常使用 `z` 来表示。

9. 数字系统中的信号和线网:在Verilog中,你可以定义信号(`signal`)和线网(`net`),它们可以是上述提到的任何类型和值。

10. 参数和常量:使用 `parameter` 定义常数,使用 `localparam` 定义局部常数。

这些常数可以是上述的任何数值类型。

11. 操作符:Verilog支持各种操作符,如逻辑操作符(与、或、非等)、算术操作符(加、减、乘、除等)和其他复合操作符(如异或等)。

操作符的行为取决于它们操作的值的类型和状态。

Verilog HDL语言

Verilog HDL语言
关系运算的结果是1位逻辑值。在进行关系运算时,如果 关系是真,则计算结果为1;如果关系是假,则计算结果为0; 如果某个操作数的值不定,则计算结果不定(未知),表示结 果是模糊的。
2021/8/14
22
5. 等式操作符(Equality operators)
等值操作符包括:
==(等于)、!=(不等于)、===(全等)、 !==(不全等)4种。
2021/8/14
4
2. 信号类型声明
变量类型声明用来说明设计电路的功能描述中,所用的信号 的数据类型以及函数声明。
变量的数据类型主要有连线(wire)、寄存器(reg)、整型 (integer)、实型(real)和时间(time)等类型。
2021/8/14
5
3. 功能描述
功能描述是Verilog HDL程序设计中最主要的部分,用 来描述设计模块的内部结构和模块端口间的逻辑关系,在电 路上相当于器件的内部电路结构。
① 首字符不能是数字。
② 字符数不能多于1024个。 ③ 大小写字母是不同的。
④ 不要与关键字同名。
2021/8/14
18
4.2.6 操作符
操作符也称为运算符,是Verilog HDL预定义的函数名 字,这些函数对被操作的对象(即操作数)进行规定的运算, 得到一个结果。
操作符通常由1~3个字符组成,例如,“+”表示加操作, “==”(两个=字符)表示逻辑等操作,“===”(3个=字符) 表示全等操作。有些操作符的操作数只有1个,称为单目操作; 有些操作符的操作数有2个,称为双目操作;有些操作符的操 作数有3个,称为三目操作。
字符串是用双引号括起来的可打印字符序列,它必须包含在同 一行中。例如,
“ABC”, “A BOY.” ,“A”, “1234” 都是字符串。

Verilog HDL简明教程中文版

Verilog HDL简明教程中文版

中文版Verilog HDL简明教程Verilog HDL是一种硬件描述语言,用于从算法级、门级到开关级的多种抽象设计层次的数字系统建模。

被建模的数字系统对象的复杂性可以介于简单的门和完整的电子数字系统之间。

数字系统能够按层次描述,并可在相同描述中显式地进行时序建模。

Verilog HDL 语言具有下述描述能力:设计的行为特性、设计的数据流特性、设计的结构组成以及包含响应监控和设计验证方面的时延和波形产生机制。

所有这些都使用同一种建模语言。

此外,Verilog HDL语言提供了编程语言接口PLI,通过该接口可以在模拟、验证期间从设计外部访问设计,包括模拟的具体控制和运行。

Verilog HDL语言不仅定义了语法,而且对每个语法结构都定义了清晰的模拟、仿真语义。

因此,用这种语言编写的模型能够使用Verilog仿真器进行验证。

语言从C编程语言中继承了多种操作符和结构。

Verilog HDL提供了扩展的建模能力,其中许多扩展最初很难理解。

但是,Verilog HDL语言的核心子集非常易于学习和使用,这对大多数建模应用来说已经足够。

当然,完整的硬件描述语言足以对从最复杂的芯片到完整的电子系统进行描述。

第1章简介Verilog HDL是一种硬件描述语言,用于从算法级、门级到开关级的多种抽象设计层次的数字系统建模。

被建模的数字系统对象的复杂性可以介于简单的门和完整的电子数字系统之间。

数字系统能够按层次描述,并可在相同描述中显式地进行时序建模。

Verilog HDL 语言具有下述描述能力:设计的行为特性、设计的数据流特性、设计的结构组成以及包含响应监控和设计验证方面的时延和波形产生机制。

所有这些都使用同一种建模语言。

此外,Verilog HDL语言提供了编程语言接口,通过该接口可以在模拟、验证期间从设计外部访问设计,包括模拟的具体控制和运行。

Verilog HDL语言不仅定义了语法,而且对每个语法结构都定义了清晰的模拟、仿真语义。

verilog hdl不同级别的描述

verilog hdl不同级别的描述

verilog hdl不同级别的描述
Verilog HDL是一种硬件描述语言,用于描述数字电路和系统的行为、结构和实现。

它支持从算法级到门级的不同级别的描述,以满足不同规模设计的需要。

以下是Verilog HDL不同级别的描述:
算法级描述:算法级描述是最高级别的描述,主要关注算法和数据流的行为。

在算法级描述中,设计者使用过程块(如always、initial等)和连续赋值语句(如assign)来描述信号的行为和变化。

这种描述方法主要用于设计和描述复杂的控制逻辑和算法。

寄存器传输级(RTL)描述:RTL描述是一种中间级别的描述,介于算法级和门级之间。

它关注于寄存器传输的控制逻辑,包括数据路径和控制逻辑。

在RTL描述中,设计者使用连续赋值语句来描述信号的行为,并使用组合逻辑和触发器来定义寄存器、移位器等基本元件的行为。

这种描述方法主要用于设计和描述具有大量寄存器和控制逻辑的数字系统。

门级描述:门级描述是最低级别的描述,主要关注电路元件和连线。

在门级描述中,设计者使用Verilog HDL的内置元件(如AND、OR、NOT等)来描述电路的基本元件和连线。

这种描述方法主要用于设计和描述简单的组合逻辑电路和时序逻辑电路。

除了以上三种级别的描述外,Verilog HDL还支持混合级别的描述,即将不同级别的描述混合在一起使用。

例如,可以在算法级描述中定义一个模块的接口,然后在RTL 或门级描述中实现该模块的具体逻辑。

这种混合级别的描述方法可以使设计更加灵活和
模块化,并方便实现模块重用和层次化设计。

verilog hdl答案

verilog hdl答案

第1章简介1.Verilog HDL是在哪一年首次被IEEE标准化的?Verilog HDL是在1995年首次被IEEE标准化的。

2.Verilog HDL支持哪三种基本描述方式Verilog HDL可采用三种不同方式或混合方式对设计建模。

这些方式包括:行为描述方式—使用过程化结构建模;数据流方式—使用连续赋值语句方式建模;结构化方式—使用门和模块实例语句描述建模3.可以使用Verilog HDL描述一个设计的时序吗?Verilog HDL可以清晰的建立时序模型,故可以使用Verilog HDL描述一个设计的时序。

4.语言中的什么特性能够用于描述参数化设计?在行为级描述中, Verilog HDL不仅能够在RT L级上进行设计描述,而且能够在体系结构级描述及其算法级行为上进行设计描述,而且能够使用门和模块实例化语句在结构级进行结构描述,这种特性可用于描述参数化设计。

5.能够使用Verilog HDL编写测试验证程序吗?能,可以编写testbench来对编写的程序进行验证。

6.Verilog HDL是由哪个公司最先开发的?Verilog HDL是由Gateway Design Automation公司最先开发的7.Verilog HDL中的两类主要数据类型是什么?线网数据类型和寄存器数据类型。

线网类型表示构件间的物理连线,而寄存器类型表示抽象的数据存储元件。

8.UDP代表什么?UDP代表用户定义原语9.写出两个开关级基本门的名称。

pmos nmos10.写出两个基本逻辑门的名称。

and or第2章 HDL指南1. 在数据流描述方式中使用什么语句描述一个设计?设计的数据流行为使用连续赋值语句进行描述2. 使用` t i m e s c a l e 编译器指令的目的是什么?举出一个实例。

使用编译指令将时间单位与物理时间相关联。

例如` timescale 1ns /100ps 此语句说明时延时间单位为1ns并且时间精度为100ps (时间精度是指所有的时延必须被限定在0.1ns内)3. 在过程赋值语句中可以定义哪两种时延?请举例详细说明。

《Verilog HDL数字系统设计——原理、实例及仿真》课件第4章

《Verilog HDL数字系统设计——原理、实例及仿真》课件第4章

拟仿真的过程语句,通常不能被逻辑综合工具所支持。
第4章 行为级建模方法
9
图4.1 initial语句执行顺序
第4章 行为级建模方法
10
【例4.1】 用initial语句在仿真开始时对各变量进行初始 化。
initial begin ina ='b000000; #10 ina ='b011000; #10 ina ='b011010; #10 ina ='b011011; #10 ina ='b010011; #10 ina ='b001100; end
法格式如下: always @ <敏感信号表达式> 语句块
其中,语句块的格式为 <块定义语句1> 时间控制1 行为语句1;
… 时间控制n 行为语句n; <块定义语句2>
第4章 行为级建模方法
13
以上的格式中: (1) 关键词always表明了该过程块是一个“always过程 块”。 (2) @ <敏感信号表达式>是可选项,有敏感事件列表的 语句块被称为“由事件控制的语句块”,它的执行要受敏感 事件的控制。 (3) “时间控制”用来对过程块内各条语句的执行时间进 行控制,它可以是任何一种时间控制方式。 (4) 语句块中的行为语句可以是如下语句中的一种:过程 赋值语句(阻塞型或非阻塞型)、过程连续赋值语句、if条件分 支语句、case条件分支语句、循环控制语句(forever、repeat、 while、for循环控制语句)、wait等待语句、disable中断语句、 事件触发语句、任务调用语句(用户定义第4章 行为级建模方法
4
通过该例,应建立以下概念: (1) 只有寄存器类型的信号才可以在always和initial 语句 中进行赋值,类型定义通过reg语句实现; (2) 采用行为级描述方式,即直接采用“+”来描述加法, {Count,Sum}表示对位数的扩展,因为两个1 bit相加,产生 的和有两位,低位放在Sum变量中,进位放在Count 中; (3) always语句一直重复执行,由敏感列表(always语句括 号内的变量)中的变量触发; (4) always语句从0时刻开始; (5) 在begin和end之间的语句是顺序执行的,属于串行语 句。

4 verilog hdl语法

4 verilog hdl语法
33
5、$readmemh,$readmemb 属于文件读写控制,其作用是从外部文件中读取数据并放 入存储器中,一个是16进制,一个是2进制 格式:$ readmemh(“数据文件名”,存储器名,起始地址, 结束地址) $ readmemb(“数据文件名”,存储器名,起始地址, 结束地址) 6、$random 产生随机数的系统函数,每次调用都会返回一个32位的随 机数,该随机数是一个带符号整数
12
Examples:
8'b11000101 //位宽为八位的二进制数11000101 8'hd5 //位宽为八位的十六进制数d5; 5'O27 //5位八进制数 4'D2 //4位十进制数2 4'B1x_01 //4位二进制数1x01 5'Hx //5位x(扩展的x),即xxxxx 4'hZ //4位z,即zzzz 8□'h□2A /*在位宽和'之间,以及进制和数值 之间允许出现空格,但'和进制之间,数值间是不允许出 现空格的,比如8'□h2A、8'h2□A等形式都是不合法的 写法 */
'Bx0, 5'b0x110, 'da30, 10'd2,
'hzF
18
练习
下列数字的表示是否正确?
6'd18,
d2,
'hzF
19
下列表达式的位模式是什么? 7'o44 'Bx0 5'bx110 'hA0 10'd2 'hzF 0100100
20
345readmemhreadmemb属于文件读写控制其作用是从外部文件中读取数据并放入存储器中一个是16进制一个是2进制格式readmemh数据文件名存储器名起始地址结束地址readmemb数据文件名存储器名起始地址结束地址6random产生随机数的系统函数每次调用都会返回一个32位的随机数该随机数是一个带符号整数35367fopenfclose打开和关闭文件格式fopenfilenamefclosefilename373839404142430低电平逻辑0或逻辑非1高电平逻辑1或真x或x不确定或未知的逻辑状态z或z高阻态verilog中的所有数据类型都在上述4类逻辑状态中取值其中x和z都不区分大小写也就是说值0x1z与值0x1z是等同的

中文版Verilog_HDL简明教程

中文版Verilog_HDL简明教程

模块模块是Verilog 的基本描述单位,用于描述某个设计的功能或结构及其与其他模块通信的外部端口。

一个设计的结构可使用开关级原语、门级原语和用户定义的原语方式描述; 设计的数据流行为使用连续赋值语句进行描述; 时序行为使用过程结构描述。

一个模块可以在另一个模块中使用。

说明部分用于定义不同的项,例如模块描述中使用的寄存器和参数。

语句定义设计的功能和结构。

说明部分和语句可以散布在模块中的任何地方;但是变量、寄存器、线网和参数等的说明部分必须在使用前出现。

为了使模块描述清晰和具有良好的可读性, 最好将所有的说明部分放在语句前。

在模块中,可用下述方式描述一个设计:1) 数据流方式;2) 行为方式;3) 结构方式;4) 上述描述方式的混合。

时延Verilog HDL模型中的所有时延都根据时间单位定义。

下面是带时延的连续赋值语句实例。

assign #2 Sum = A ^ B; #2指2个时间单位。

使用编译指令将时间单位与物理时间相关联。

这样的编译器指令需在模块描述前定义,如下所示:` timescale 1ns /100ps此语句说明时延时间单位为1ns并且时间精度为100ps (时间精度是指所有的时延必须被限定在0.1ns 内)。

如果此编译器指令所在的模块包含上面的连续赋值语句, #2 代表2ns。

如果没有这样的编译器指令, Verilog HDL 模拟器会指定一个缺省时间单位。

数据流描述方式用数据流描述方式对一个设计建模的最基本的机制就是使用连续赋值语句。

在连续赋值语句中,某个值被指派给线网变量。

连续赋值语句的语法为:assign [delay] LHS_net = RHS_ expression;右边表达式使用的操作数无论何时发生变化, 右边表达式都重新计算, 并且在指定的时延后变化值被赋予左边表达式的线网变量。

时延定义了右边表达式操作数变化与赋值给左边表达式之间的持续时间。

如果没有定义时延值, 缺省时延为0。

2024年verilogHDL培训教程华为(多场景)

2024年verilogHDL培训教程华为(多场景)

verilogHDL培训教程华为(多场景)VerilogHDL培训教程——华为第一章:引言随着电子设计自动化(EDA)技术的不断发展,硬件描述语言(HDL)在数字电路设计领域扮演着越来越重要的角色。

VerilogHDL 作为一种主流的硬件描述语言,因其强大的功能、灵活的语法和广泛的应用范围,已成为数字集成电路设计工程师必备的技能之一。

本教程旨在帮助读者掌握VerilogHDL的基本概念、语法和设计方法,为华为等企业培养合格的数字电路设计人才。

第二章:VerilogHDL基础2.1VerilogHDL简介VerilogHDL是一种用于数字电路设计的硬件描述语言,它可以在多个层次上对数字系统进行描述,包括算法级、寄存器传输级(RTL)、门级和开关级。

VerilogHDL的设计初衷是为了提高数字电路设计的可重用性、可移植性和可维护性。

2.2VerilogHDL编程环境(1)文本编辑器:Notepad++、SublimeText等;(2)仿真工具:ModelSim、IcarusVerilog等;(3)综合工具:XilinxISE、AlteraQuartus等。

2.3VerilogHDL语法基础(1)关键字:VerilogHDL中的关键字具有特定含义,如module、endmodule、input、output等;(2)数据类型:包括线网类型(wire)、寄存器类型(reg)、整数类型(integer)等;(3)运算符:包括算术运算符、关系运算符、逻辑运算符等;(4)模块与端口:模块是VerilogHDL设计的基本单元,端口用于模块之间的信号传递;(5)行为描述与结构描述:行为描述用于描述电路的功能,结构描述用于描述电路的结构。

第三章:VerilogHDL设计流程3.1设计流程概述(1)需求分析:明确设计任务和功能要求;(2)模块划分:根据需求分析,将设计任务划分为若干个模块;(3)编写代码:使用VerilogHDL编写各个模块的代码;(4)仿真验证:对设计进行功能仿真和时序仿真,确保设计正确;(5)综合与布局布线:将VerilogHDL代码转换为实际电路,并进行布局布线;(6)硬件测试:在FPGA或ASIC上进行实际硬件测试。

veriloghdl答案

veriloghdl答案

verilog-hdl答案第1章简介1.Verilog HDL是在哪一年首次被IEEE标准化的?Verilog HDL是在1995年首次被IEEE标准化的。

2.Verilog HDL支持哪三种基本描述方式Verilog HDL可采用三种不同方式或混合方式对设计建模。

这些方式包括:行为描述方式—使用过程化结构建模;数据流方式—使用连续赋值语句方式建模;结构化方式—使用门和模块实例语句描述建模3.可以使用Verilog HDL描述一个设计的时序吗?Verilog HDL可以清晰的建立时序模型,故可以使用Verilog HDL描述一个设计的时序。

4.语言中的什么特性能够用于描述参数化设计?在行为级描述中, Verilog HDL不仅能够在RT L级上进行设计描述,而且能够在体系结构级描述及其算法级行为上进行设计描述,而且能够使用门和模块实例化语句在结构级进行结构描述,这种特性可用于描述参数化设计。

5.能够使用Verilog HDL编写测试验证程序吗?能,可以编写testbench来对编写的程序进行验证。

6.Verilog HDL是由哪个公司最先开发的?Verilog HDL是由Gateway Design Automation公司最先开发的7.Verilog HDL中的两类主要数据类型是什么?线网数据类型和寄存器数据类型。

线网类型表示构件间的物理连线,而寄存器类型表示抽象的数据存储元件。

8.UDP代表什么?UDP代表用户定义原语9.写出两个开关级基本门的名称。

pmos nmos10.写出两个基本逻辑门的名称。

and or第2章 HDL指南1. 在数据流描述方式中使用什么语句描述一个设计?设计的数据流行为使用连续赋值语句进行描述2. 使用` t i m e s c a l e 编译器指令的目的是什么?举出一个实例。

使用编译指令将时间单位与物理时间相关联。

例如` timescale 1ns /100ps 此语句说明时延时间单位为1ns并且时间精度为100ps (时间精度是指所有的时延必须被限定在0.1ns内)3. 在过程赋值语句中可以定义哪两种时延?请举例详细说明。

EDA技术习题.

EDA技术习题.

第一章EDA技术概述填空题1.一般把EDA技术的发展分为_______、_______和________三个阶段。

2.在EDA发展的_________阶段,人们只能借助计算机对电路进行模拟、预测,以及辅助进行集成电路版图编辑、印刷电路板(PCB)布局布线等工作。

3.在EDA发展的_______阶段,人们可与将计算机作为单点设计工具,并建立各种设计单元库,开始用计算机将许多单点工具集成在一起使用。

4.EDA设计流程包括_________、__________、__________和_________四个步骤。

5.EDA的设计验证包括________、__________和_________。

6.EDA的设计输入方式主要包括________、________和_________。

7.文本输入是指采用_________进行电路设计的方式。

8.功能仿真是在设计输入完成之后,选择具体器件进行编译之前进行的逻辑功能验证,因此又称为_______。

9.时序仿真是在选择了具体器件并完成布局、布线之后进行的时序关系仿真,因此又称为________或_______。

10.当前最流行的并成为IEEE标准的硬件描述语言包括_________和________.11.硬件描述语言HDL给PLD和数字系统的设计带来了更新的设计方法和理念,产生了目前最常用的并称之为_______的设计法。

12.EDA工具大致可以分为________、_______、_______、________以及_____等5个模块。

13.将硬件描述语言转换为硬件电路的重要工具称为_______。

单项选择题1.将设计的系统或电路按照EDA开发软件要求的某种形式表示出来,并送入计算机的过程称为( ).①设计输入②设计输出③仿真④综合2.在设计输入完成后,应立即对设计文件进行()①编辑②编译③功能仿真④时序仿真3.在设计处理工程中,可产生器件编程使用的数据文件,对于CPLD来说是产生()①熔丝图②位流数据③图形④仿真4.在设计处理过程中,可产生供器件编程使用的数据文件,对于FPGA来说是生成()①熔丝图②位流数据③图形④仿真5.在C语言的基础上演化而来的硬件描述语言是()①VHDL②Verilog HDL③AHD④CUPL6.基于硬件描述语言HDL的数字系统设计目前最常用的设计法称为()设计法。

Verilog HDL数字集成电路设计原理与应用(第二版)(蔡觉平) (4)

Verilog HDL数字集成电路设计原理与应用(第二版)(蔡觉平) (4)
在现阶段,作为设计人员,熟练掌握Verilog HDL程 序设计的多样性和可综合性是至关重要的。作为数字集成电 路的基础,基本数字逻辑电路的设计是进行复杂电路设计的 17 前提。
本章通过数字电路中基本逻辑电路的Verilog HDL程序设计 进行讲述,要求读者掌握基本逻辑电路的可综合性设计,为 具有特定功能的复杂电路的设计打下基础。
组合电路的设计需要从以下几个方面考虑:首先,所 用的逻辑器件数目最少,器件的种类最少,且器件之间的连 线最简单,这样的电路称为“最小化”电路。其次,为了满 足速度要求,应使级数尽量少,以减少门电路的延迟;电路 的功耗应尽可能地小,工作时稳定可靠。
组合逻辑电路的描述方式有四种:真值表、逻辑代数、 结构描述、抽象描述。采用Verilog HDL进行组合逻辑电路 设计主要采用的就是这几种方式。下面结合具体的实例简单 介绍达四种描述方式。 20
6
例4.1-1 用Verilog HDL语言设计模256(8 bit)计数 器。
(a) 可综合程序描述方式: module counter (count,clk,reset); output count; input clk,reset; reg [7:0] count; reg out; always @(posedge clk) 7
wire [1:0] sum; reg OUT; assign sum=A+B+C; always @(sum)
if (sum>1) else
endmodule
OUT=1; OUT=0;
32
可以看到,以上4种Verilog HDL描述方式都可以对表决 电路进行设计。这里应该指出的是,Verilog HDL程序是对 逻辑电路功能的描述性设计,并非最终得到的电路。EDA综 合工具可以将Verilog HDL程序综合成物理电路形式,通过 电路优化,从而得到符合设计要求的最简化电路。采用 Synplify软件对上面4种方法中任一种方法设计的Verilog HDL程序进行综合(采用Altera公司的Stratix Ⅱ器件),可 以得到相同的最简化电路,如图4.2-4所示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X X x x
notif0 数 据 输 入
0 1 X Z
控制信号
0
1 0 X X
1
Z Z Z Z
X
Z
notif1 数 据 输 入
0 1 X Z
控制信号
0
Z Z Z Z
1
1 0 X X
X
Z
1/z 1/z 0/z 0/z X X x x
1/z 1/z 0/z 0/z X X x x
门级结构建模例题
clear nd1 clock b d nd6 f nd8 qb a nd3 c nd5
1.3 多输出门


多输出门有: buf not 这些门都只有单个输入,一个或多个输出。 多输出门的实例语句的基本语法如:
multi_output_gate_type [instance_name] (Out1, Out2, ... OutN, InputA );
output 1 output 2 output N
rnmos、rpmos、驱动强度


rnmos和 rpmos在输入引线和输出引线之间存在高阻抗(电阻)。因 此当数据从输入传输至输出时,对于rpmos和rnmos,存在数据信 号强度衰减。 值1强度supply1 > strong1 > pull1> weak1> highz1 值0强度supply0 > strong0 > pull0> weak0> highz0
由一些Verilog原型
列出结构化的元件
并按网表连接
1.1 内置的基本门

Verilog HDL为门级电路建模的能力提供下列 内置基本门:

多输入门:and, nand, or, nor, xor, xnor 多输出门:buf, not 三态门: bufif0, bufif1, notif0, notif1 上拉、下拉电阻:pullup, pulldown MOS开关:cmos, nmos, pmos, rcmos, rnmos, rpmos 双向开关:tran,tranif0, tranif1, rtran, rtranif0, rtranif1
clear nd1 clock b d nd6 f nd8 qb a nd3 c nd5
e nd7
q
data
iv1
nd2
nd4
iv2
nclock
课堂练习

用verilog的内置基本门结构建模以下电路
参考答案
module Parity_9_Bit(D,Even, Odd); input [0:8] D; output Even, Odd; xor XE0(E0,D[0],D[1]), XE1(E1,D[2],D[3]), XE2(E2,D[4],D[5]), XE3(E3,D[6],D[7]), XF0(F0,E0,E1), XF1(F1,E2,E3), XH0(H0,F0,F1), XEVEN(Even,D[8], H0); not XODD(Odd,Even); endmodule
上节回顾
块语句
语句块提供将两条或更多条语句组合成语法结构上相当 于一条语句的机制。在Verilog HDL中有两类语句块,即:
顺序语句块(begin . . . end):语句块中的语句按给定次序顺序执 行。 并行语句块(fork . . . join):语句块中的语句并行执行。
语句块的标识符是可选的,如果有标识符,寄存器变量 可在语句块内部声明。带标识符的语句块可被引用

1.2 多输入门

内置的多输入门包括: and nand nor or xor xnor 这些逻辑门只有单个输出, 1个或多个输入。门实例语句 的语法如: 第一个端口是输出,其它端口是输入
input 1 input 2
input N
multi_input_gate_type [instance_name] (OutputA, Input1, Input2, ..., Input N);

input A ControlC
三态门
outputA
三态门的真值表
bufif0 数 据 输 入
0
控制信号
0 0 1 Z X 0/z Z 0/z
bufif1 数 据 输 入
0
控制信号
0 Z 1 0 X Z 0/z 0/z
1
X Z
1
X X
Z
Z Z
1/z
X X
1/z
x x
1
X Z
Z
Z Z
1
X X
1/z 1/z
编译预处理
Verilog-HDL语言中有几种特殊命令,编译系统先对这些特殊命令进行 “预处理”,然后将预处理的结果和源程序一起进行通常的编译处理。
这些预处理命令:
以重音符号ˋ开头
行末尾不加分号
常用预处理命令:
`include/`define, `undef/ `timescale/`ifdef, `else, `endif/ `default_nettype`resetall/ `unconnected_drive, `nounconnected_drive `celldefine, `endcelldefine
Z X
0 X X or 0 1 X Z 0 0 1 X X 1 1 1 1 1 X X 1 X X Z X 1 X X
多输入门的真值表(三)
xnor 0
1 X Z
0 1
0 X X
1 0
1 X X
X X
X X X
Z X
X X X xor 0 1 X Z 0 0 1 X X 1 1 0 X X X X X X X Z X X X X
1.6 门的延时

可以使用门时延定义门从任何输入到其输出的信号传 输时延。门时延可以在门自身实例语句中定义。带有 时延定义的门实例语句的语法如下: gate_type [delay] [instance_name] (terminal_list) ; 时延规定了门时延,即从门的任意输入到输出的传输 时延。当没有强调门时延时,缺省的时延值为0。 门时延由三类时延值组成: 上升时延 下降时延 截止时延
1、门级结构描述
a b ci n1 sum n3 n2 co
module addbit (a, b, ci, sum, co); input a, b, ci; output sum, co; wire a, b, ci, sum, co, n1, n2, n3; xor (n1, a, b,); xor (sum, n1, ci); and (n2, a, b); and (n3, n1, ci); or (co, n2, n3); endmodule
e nd7
q
data
iv1
nd2
nd4
iv2
nclock
module flop(data,clock,clear,q,qb); input data,clock,clear; output q,qb;
nand #10 nd1(a,data,clock,clear), nd2(b,ndata,clock), nd4(d,c,b,clear), nd5(e,c,nclock), nd6(f,d,nclock), nd8(qb,q,f,clear); nand #9 nd3(c,a,d), nd7(q,e,qb); not#10 iv1(ndata,data), iv2(nclock,clock); endmodule
门级结构e [instance_name] (term1, term2, ..., termN) ; 注意,instance_name是可选的; gate_type为前面列出的某 种门类型。各term用于表示与门的输入/输出端口相连的线 网或寄存器. 同一门类型的多个实例能够在一个结构形式中定义 gate_type [instance_name1] (term1, term2, ..., termN) , [instance_name2] (term1, term2, ..., termN) , [instance_name3] (term1, term2, ..., termN), [instance_name4] (term1, term2, ..., termN) ;
多输入门的真值表(一)
nand 0
1 X Z
0 1
1 1 1
1 1
0 X X
X 1
X X X
Z 1
X X X and 0 1 X Z 0 0 0 0 0 1 0 1 X X X 0 X X X Z 0 X X X
多输入门的真值表(二)
nor 0
1 X Z
0 1
0 X X
1 0
0 0 0
X X
0 X X
上拉、下拉电阻

pullup, pulldown,这类门设备没有输入只有输出。 上拉电阻将输出置为1。下拉电阻将输出置为0。 门实例的端口表只包含1个输出。例如: pullup PUP (SCL) ; 此上拉电阻实例名为PUP,输出Pwr置为高电平1。
MOS开关


这类门用来为单向开关建模。即数据从输入流向输出,并且可以通过设 置合适的控制输入关闭数据流。 pmos ( p类型MOS管)、nmos ( n类型MOS管),rnmos ( r代表电阻)和rpmos 开关有一个输出、一个输入和一个控制输入,例如: rnmos RN1 (ControlBit, ReadyBit, Hold) ; cmos (mos互补)和rcmos (cmos的高阻态版本)开关有一个数据输出,一个 数据输入和两个控制输入。例如: (r)cmos [instance _name] (OutputA, InputB, NControl, PControl);
相关文档
最新文档