20.2 数据的波动程度(1)
数据的波动教案-【经典教育教学资料】
20.2 数据的波动程度教学过程在样本容量相同的情况下,方差越大,说明数据的波动越大, 越不稳定归纳:(1)研究离散程度可用2S(2)方差应用更广泛衡量一组数据的波动大小(3)方差主要应用在平均数相等或接近时(4)方差大波动大,方差小波动小,一般选波动小的方差的简便公式:推导:以3个数为例(二)标准差:方差的算术平方根,即④并把它叫做这组数据的标准差.它也是一个用来衡量一组数据的波动大小的重要的量.注意:波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。
所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。
第三步:解例分析:例1 填空题;(1)一组数据:2-,1-,0,x ,1的平均数是0,则x = .方差=2S .(2)如果样本方差[]242322212)2()2()2()2(41-+-+-+-=x x x x S ,那么这个样本的平均数为 .样本容量为 .(3)已知321,,x x x 的平均数=x 10,方差=2S 3,则3212,2,2x x x 的平均数为 ,方差为 .第4单元比例1.比例的意义和基本性质第3课时解比例【教学目标】知识目标:使学生学会解比例的方法,进一步理解和掌握比例的基本性质。
能力目标:联系生活实际创设情境,体现解比例在生产生活中的广泛应用。
情感目标:利用所学知识解决生活中的问题,进一步培养综合运用知识的能力及情感、价值观的发展。
【教学重难点】重点:使学生学会解比例的方法,进一步理解和掌握比例的基本性质。
难点:体现解比例在生产生活中的广泛应用。
【教学过程】一、创境激疑,旧知铺垫1、什么叫做比例?2、什么叫做比例的基本性质?怎样用比例的基本性质判断两个比能否组成比例?那么组成一个比例需要几项呢?3、比例有几种表示形式?二、合作探究,探索新知1、出示埃菲尔铁塔挂图2、出示例题(1)读题。
数据的波动程度测试题
第二十章数据的分析20.2数据的波动程度一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.能够刻画一组数据离散程度的统计量是A.平均数B.众数C.中位数D.方差【答案】D【解析】由于方差反映数据的波动情况,所以能够刻画一组数据离散程度的统计量是方差,故选D.2.在方差的计算公式s2=110[(x1-20)2+(x2-20)2+…+(x10-20)2]中,数字10和20分别表示的意义可以是A.数据的个数和方差B.平均数和数据的个数C.数据的个数和平均数D.数据组的方差和平均数【答案】C【解析】10位于分数110的分母上,根据方差的计算公式可知,10表明样本数据的个数,也就是样本容量为10,数字20为样本数据的平均数,即样本的均值.故选C.3.一组数据8,0,2,4-,4的方差等于A.15 B.16 C.17 D.18 【答案】B【解析】数据8、0、2、−4、4的平均数8024425++-+==,方差21(364364)165s=+++=,故选B.4.甲、乙两组数据,它们都是由n个数据组成,甲组数据的方差是0.4,乙组数据的方差是0.2,那么下列关于甲乙两组数据波动说法正确的是.A.甲的波动小B.乙的波动小C.甲、乙的波动相同D.甲、乙的波动的大小无法比较【答案】B【解析】因为s甲2=0.4,s乙2=0.2,方差小的为乙,所以本题中成绩比较稳定的是乙,乙的波动小,故选B.5.方差反映了一组数据的波动大小.有两组数据,甲组数据:-1,-1,0,1,2;乙组数据:-1,-1,0,1,1,它们的方差分别记为2s 甲和2s 乙,则 A .2s 甲=2s 乙 B .2s 甲>2s 乙 C .2s 甲<2s 乙D .无法比较【答案】B【解析】(11012)50.2x --+++÷==甲,(11011)50x --+++÷==乙, ∵s 甲2=15[(−1−0.2)2+(−1−0.2)2+(0−0.2)2+(1−0.2)2+(2−0.2)2]=1.224, s 乙2=15[(−1−0)2+(−1−0)2+(0−0)2+(1−0)2+(1−0)2]=0.8,∴s 甲2>s 乙2,故选B . 6.两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学成绩哪一位更稳定,通常还需要比较他们成绩的 A .众数B .中位数C .方差D .以上都不对【答案】C【解析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生三级蛙跳测试成绩的方差.由于方差能反映数据的稳定性,需要比较这两名学生三级蛙跳成绩的方差.故选C .7.如果一组数据x 1,x 2,…,x n 的方差是3,则另一组数据x 1+5,x 2+5,…,x n +5的方差是 A .3B .8C .9D .14【答案】A【解析】设数据x 1,x 2,…,x n 的平均数设为a ,则数据x 1+5,x 2+5,…,x n +5的平均数为a +5,根据方差公式:s 21n=[(x 1-a )2+(x 2-a )2+…+(x n -a )2]=3. 则s 21n={[(x 1+5)-(a +5)]2+[(x 2+5)-(a +5)]2+…+(x n +5)-(a +5)]}2=1n [(x 1-a )2+(x 2-a )2+…+(x n -a )2]=3.故选A .二、填空题:请将答案填在题中横线上.8.已知甲、乙两组数据的平均数相等,若甲组数据的方差2s 甲=0.055,乙组数据的方差2s 乙=0.105,则__________组数据波动较大. 【答案】乙【解析】∵s 甲2<s 乙2,∴乙组数据波动较大.故答案为:乙.9.两个小组进行定点投篮对抗赛,每组6名组员,每人投10次.两组组员进球数的统计结果如下:则组员投篮水平较整齐的小组是__________组. 【答案】乙【解析】甲的方差=[(8-3)2+(5-3)2+(3-3)2+(1-3)2+(1-3)2+(0-3)2]÷6≈7.7, 乙的方差=[(5-3)2+(4-3)2+(3-3)2+(3-3)2+(2-3)2+(1-3)2]÷6≈1.7, 由于乙的方差较小,所以整齐的是乙组.故答案为:乙.10.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差__________(填“变小”“不变”或“变大”). 【答案】变大【解析】∵减少木工2名,增加电工、瓦工各1名,∴这组数据的平均数不变,但是每个数据减去平均数后平方和增大,则该工程队员工月工资的方差变大.故答案为:变大.11.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为2s 甲__________2s 乙(填>或<).【答案】>【解析】观察平均气温统计图可知:乙地的平均气温比较稳定,波动小, 则乙地的日平均气温的方差小,故2s 甲>2s 乙,故答案为:>. 三、解答题:解答应写出文字说明、证明过程或演算步骤.12.甲、乙两个样本的相关信息如下:样本甲数据:1,6,2,3;样本乙方差:2s 乙=3.4.(1)计算样本甲的方差; (2)试判断哪个样本波动大. 【解析】(1)∵样本甲的平均数是1(1623)34⨯+++=, ∴样本甲的方差是:2s 甲=14[(1-3)2+(6-3)2+(2-3)2+(3-3)2]=3.5. (2)∵2s 甲=3.5,2s 乙=3.4,∴2s 甲>2s 乙,∴样本甲的波动大.13.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲,乙这10次射击成绩的方差2s 甲,2s 乙哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选__________参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选__________参赛更合适.【解析】(1)乙的平均成绩是:(8+9+8+8+7+8+9+8+8+7)÷10=8(环). (2)根据图象可知:甲的波动大于乙的波动,则2s 甲>2s 乙,(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适; 如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6B.x-2=xC.x2+3x=1D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为() A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是()A.130°B.40°C.90°D.140°9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD =n,则AB的长是()A.m-n B.m+nC .2m -nD .2m +n10.下列结论:℃若a +b +c =0,且abc ≠0,则a +c 2b =-12;℃若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ℃若a +b +c =0,且abc ≠0,则abc >0; ℃若|a |>|b |,则a -ba +b >0.其中正确的结论是( ) A .℃℃℃ B .℃℃℃ C .℃℃℃D .℃℃℃℃二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:℃两点确定一条直线;℃两点之间,线段最短;℃若℃AOC =12℃AOB ,则射线OC 是℃AOB 的平分线;℃连接两点之间的线段叫做这两点间的距离;℃学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个. 16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a ℃b =a ·b -2a -b +1,如3℃4=3×4-2×3-4+1=3.请比较大小:(-3)℃4________4℃(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1. 22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图℃是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图℃所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,℃COE=90°,OF是℃AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图℃所示),试说明℃BOE=2℃COF.(2)当点C与点E,F在直线AB的两侧时(如图℃所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:℃ON+AQ的值不变;℃ON -AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设℃COF=α,则℃EOF=90°-α.因为OF 是℃AOE 的平分线,所以℃AOE =2℃EOF =2(90°-α)=180°-2α.所以℃BOE =180°-℃AOE =180°-(180°-2α)=2α.所以℃BOE =2℃COF .(2)℃BOE =2℃COF 仍成立.理由:设℃AOC =β,则℃AOE =90°-β,又因为OF 是℃AOE 的平分线,所以℃AOF =90°-β2.所以℃BOE =180°-℃AOE =180°-(90°-β)=90°+β,℃COF =℃AOF +℃AOC =90°-β2+β=12(90°+β).所以℃BOE =2℃COF .25.解:(1)0.5x ;(0.65x -15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a 度.根据题意,得0.65a -15=0.55a ,解得a =150.答:该用户10月用电150度.26.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25; 若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50. 故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130, 解得t =65.65×4=260,260+30=290,所以点D 表示的数为-290.(4)ON -AQ 的值不变.设运动时间为m s,则PO=100+8m,AQ=4m.由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。
《20.2数据的波动程度》教学设计教学反思-2023-2024学年初中数学人教版12八年级下册
《数据的波动程度》教学设计方案(第一课时)一、教学目标本节课的教学目标是让学生掌握数据的波动程度的基本概念,包括平均数、方差和标准差等统计量。
通过学习,学生能够理解这些统计量在描述数据分布和变化规律中的作用,并能够运用这些概念解决实际问题。
同时,培养学生分析数据、处理数据的能力,提高学生的数学素养。
二、教学重难点本课的教学重点是让学生理解方差和标准差的概念及其计算方法,并能够正确运用这些概念描述数据的波动程度。
教学难点在于如何引导学生理解方差和标准差的实际意义,以及如何将理论知识与实际问题相结合。
三、教学准备为确保本课教学的顺利进行,教师需要准备相关的教材、教案、多媒体课件等教学资料。
同时,为帮助学生更好地理解概念,准备一些实际数据案例或模拟数据,以便学生进行实践操作和练习。
此外,还需准备一些评估工具,如小测验、作业等,以检验学生的学习效果。
在接下来的实践操作和练习中,应鼓励学生将理论知识与实际操作相结合,以加深对知识的理解和掌握。
对于不同学科的学习,可以根据学科特点设计具体的实践操作和练习活动。
例如,在科学实验中,学生可以进行实验操作以验证理论知识;在数学学习中,可以通过解决实际问题来锻炼学生的计算能力和逻辑思维能力。
同时,准备评估工具是检验学生学习效果的重要环节。
小测验和作业的目的是检查学生在课堂学习中的理解程度和应用能力。
设计小测验时,应注意其针对性和实效性,使其能准确地反映出学生对知识的掌握程度。
而作业的设计则要注重实际性和创新性,鼓励学生运用所学知识解决实际问题。
通过实践操作和练习,以及有效的评估工具,学生不仅可以巩固所学知识,还能提高自己的实际操作能力和解决问题的能力,为将来的学习和工作打下坚实的基础。
四、教学过程:一、导入与热身本节课我们将开启一段有关“数据的波动程度”的数学之旅。
首先,我们会从大家熟悉的生活场景入手,让大家初步感受到“波动”这个概念的重要性。
比如,老师可以先引用一段股票走势图的分析,展示不同日期的股票价格波动情况,并询问学生:“你们觉得这些价格波动大还是小?为什么会有这样的波动?”通过这样的情境引入,激发学生的好奇心和探究欲望。
2018年春八年级数学下册第二十章数据的分析20.2数据的波动程度第1课时方差导学课件
数据的方差比B组数据的方差小,∴B组数据的波动较大.
2
第1课时
方差
试比较下列两组数据的稳定性. A组:10,5,5,5,5,5,5,0,5,5;
B组:2,8,5,4,5,7,3,6,1,9.
解:∵A组数据的平均数为5,方差为5;B组数据的平均数 为5,方差为6,∴A组数据的波动较大.
上述解答是否正确?若不正确.请指出错误并改正.
第1课时
方差
[答案] 不正确.
2 甲
8.5)2×4]=1.05;
第1课时
方差
1 2 2 2 s = × [(7 - 8.5) × 6 + (8 - 8.5) × 4 + (9 - 8.5) × 4 + (10 - 20
2 乙
8.5) ×6]=1.45; 1 2 2 2 s = × [(7 - 8.5) × 5 + (8 - 8.5) × 5 + (9 - 8.5) × 5 + (10 - 20
2 丙
2
8.5)2×5]=1.25. 因为甲的测试成绩的方差最小,所以甲的测试成绩最稳定.
第1课时
方差
【归纳总结】 1.求方差的步骤:
图20-2-2 2.方差的实际应用“三步法”: (1)找数据:根据实际问题,找出问题中的相关数据; (2)求方差:利用方差公式,求得每一组数据的方差; (3)得结论:根据方差大小,解决实际问题.
2 2 s < s 甲 乙 绩的方差 s ,s 之间的大小关系是________ .
2 甲 2 乙
图20-2-3
教学设计3:20.2数据的波动程度
20.2数据的波动程度
设一组数据,,,,,321n x x x x 中,各数据与它们的平均数的差的平方,分别是,)(,)(,)(2
2
22
1x x x x x x n --- 我们用它们的平均数,即用])()()[(1
222212x x x x x x n
s n -++-+-=
来衡量这组数据的波动大小,并把它叫作这组数据的方差,记作2s 。
方差越大,数据的波动越大;方差越小,数据的波动越小。
注意:
1. 只有当两组数据的平均数相等或相近时,才采用方差比较两组数据波动的大小。
2. 步骤:先计算平均数再计算方差。
活动
3.应用新知: 例1.
为了从甲乙两人中选拔一人参加初中物理实验操作能力竞赛,每个月对他们的实验水平进行一次测验,如图给出了两个人赛前的5次测验成绩.
(1)分别求出甲乙两名学生5次测验成绩的平均数和方差。
(2)如果你是他们的辅导老师,应该选派哪位学生参加这次竞赛,请你结合图形简要说明理由.
如图所示,公园里有两条石阶路,哪条石阶路走起来更舒服?为什么?(图中数字表示每一级的高度,单位:厘米)。
初二数学20.2 数据的波动程度(1)课件
根据这些数据估计,农科院应该选择哪种甜玉米种 子呢?
探究新知
甲 7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41 乙 7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49
(2)如何考察一种甜玉米产量的稳定性呢? ①请设计统计图直观地反映出甜玉米产量的分布情况.
甲种甜玉米的产量
产量波动较大
乙种甜玉米的产量
产量波动较小
探究新知
②统计学中常采用下面的做法来量化这组数据的波动大 小:
设有n个数据x1,x2,…,xn,各数据与它们的平均
数 x 的差的平方分别是(x1-x)2,(x2 -x)2, ,(xn -x)2 ,
来判断它们的波动情况.
课后作业
作业:教科书第128页复习巩固第1题.
③请利用方差公式分析甲、乙两种甜玉米的波动程度.
两组数据的方差分别是:
s甲2
=(7.65-7.54)2 +(7.50-7.54)2 + 10
0.01
s乙2
=(7.55-7.52)2 +(7.56-7.52)2 + 10
0.002
+(7.41-7.54)2 +(7.49-7.52)2
探究新知
成绩/环
11
10
9
8
7
6
甲
乙
0 1 2 3 4 5 6 7 8 9 10
《数据波动程度的几种度量》课件
流程2:展示学习目标
学习目标
1.掌握方差的定义和计算公式; 2.理解方差概念的产生和形成的 过程; 3.会用方差计算公式来比较两组 数据的波动大小.
流程3:展示自学指导
认真自学课本P124—P126练习之上的内 容,思考:
1.什么是方差?方差能反映一组数据的什 么情况?
2.方差的计算公式是什么?方差与数据的 波动情况有什么关系?
教材分析 教学目标分析 教学过程分析 教法分析 学法分析 课堂评价
教教法法分分析析
实际问题 (引入新课)
数学方法 (方差的定
义)
实际问题(理论与 实际相结合,应用 于实际)
学法分析
评价分析
1.自主探究—— 本节课都是通过学生的动手计
算、观察、猜想、推理、验证等活动得出的,使 学生亲历了知识的发生、发展、形成的全过程, 从而变被动接受为主动探究。
2.合作学习——教学中鼓励学生积极合作,充分
交流,帮助学生在学习活动中获得最大的成功, 促使学生学习方法的改变。
教材分析 教学目标分析 教学过程分析 教法分析 学法分析 课堂评价
教学过程分析:教学流程
小结本课 布置作业
巧设问题 引发思考
引入新课
拓展拔高 挑战自我
展示学 习目标
应用概念 公式 小试 牛刀
较为整齐的班级是_(_1__)班.
3.甲、乙、丙、丁四人进行射箭测试,每人10次射箭
成绩的平均数均是9环,方差分别是s2甲=0.55,s2乙=0.65,
s2丙=0.50, s2丁=0.45,则应派( D )去参加比赛.
A.甲
B.乙
C.丙
D.丁
方差越大,说明数据的波动越大,越不稳定. 方差越小,说明数据的波动越小,越稳定.
20.2 数据的波动程度(教案)
20.2 数据的波动程度(教案)【教学目标】1、了解方差的意义。
2、能够利用方差解决实际问题。
3、通过对实际问题情境的探究,形成方差的概念,感知其代表数据的意义。
4、以积极情感态度投入到探究问题的过程中去,学会从不同的角度看问题和处理问题。
【教学重难点】重点:理解方差意义。
难点:准确的利用方差解决实际选择问题。
【教学方法】自学与小组合作学习相结合的方法。
【教学过程】一、导入新课【过渡】本章的第一节内容呢,我们主要学习了数据的集中趋势,包括用平均数、中位数以及众数去代表一组数据的趋势,相信大家都已经掌握了如何正确选择。
现在,我有一个新的问题想要问一下大家。
甲乙两名同学只能从中挑选一个参加竞赛。
老师特意把两名同学本学期五次测验的成绩列表如下:【过渡】根据我们学习过的知识,你能做出判断吗?(学生回答)【过渡】我们计算两位同学的成绩平均数均为90,但是最后,老师选择了甲同学参赛,你们知道为什么吗?今天我们就来探究一下。
二、新知详解1.方差【过渡】要想解决刚刚的问题,我们先来看一下课本上的问题。
【过渡】跟刚刚一样,我们计算出了两种玉米种子的平均产量,发现这两个平均数是相近的,这就说明两种玉米的差量相差不大,也可以估计出这个地区种植这两种玉米,平均产量不会相差太大。
【过渡】为了直观的看出两种玉米差量的分部,我们分别整理了两种玉米的产量图。
由上图可以看出,甲种甜玉米在试验田的产量的波动性较大,乙种甜玉米产量在平均值附近.为了刻画一组数据的波动大小,我们可以采用很多统计的方法,例如方差。
【过渡】在这里,我们就引入方差这样一个概念。
何为方差呢?设有n个数据x1,x2,x3,…,xn,各数据与它们的平均数的差的平方分别是(x1-x)2, (x2-x)2,…,(x n-x)2,我们用它们的平均数,即用s2=1n[(x1-x)2+ (x2-x)2+ …+(x n-x)2 ]来衡量这组数据的波动大小,并把它叫做这组数据的方差,记做s2。
20.2-数据的波动程度-教学设计-教案
教学准备1. 教学目标1、知识与技能:理解方差的概念和意义,学会方差的计算公式和具体应用进一步了解方差的求法。
用方差对实际问题做出判断2、过程与方法:根据描述一组数据离散程度的统计量:方差的大小对实际问题作出解释,培养学生解决问题能力。
3、情感态度与价值观:体会数形结合思想,并利用它解决问题,提高学生数学统计的素养,用数学的眼光看世界.2. 教学重点/难点教学重点方差的概念。
方差的意义.从方差的计算结果对实际作出解释和决策。
教学难点方差的公式和应用.根据方差的计算结果对实际作出解释和决策。
3. 教学用具白板,课件、直尺图标4. 标签教学过程一、提出问题,创设情境农科院的烦恼农科院计划为某地选择合适的甜玉米种子,选择种子时,甜玉米的产量和产量的稳定性是农科院所关心的问题。
为了解甲、乙两种甜玉米的种子的相关情况,农科院各用10块自然条件相同的试验田进行试验,得到各试验田每公顷的产量(单位:t)如表下表所示。
(1)请分别计算两种甜玉米种子的每公顷的平均产量;(2)请根据两种甜玉米种子的每公顷的平均产量画出折线统计图;(3)现要挑哪种甜玉米种子比较合适,你认为该怎样挑比较适宜为什么(1)解说明甲乙两种甜玉米的平均产量相差不大(2)由上图你有什么发现:甲玉米的产量波动较大,乙玉米产量波动较小,乙玉米的产量集中分布在平均产量附近。
从图中看出的结果能否用一个量来刻画呢二、导入新课(1)、方差的概念:设一组数据中,各数据与它们的平均数的差的平方分别是,那么我们用它们的平均数,即归纳:(1)数据的方差都是非负数。
(2)当且仅当每个数据都相等时,方差为零,反过来,若下面我们利用方差来分析甲、乙两种甜玉米的波动程序。
两组数据的方差分别是:即甲种甜玉米的波动较大,这与我们从图和图看动的结果一致。
1、方差的意义:用各数据与平均数偏差平方的平均数来衡量数据的稳定性----就是方差根据讨论下列问题:(1)数据比较分散(即数据在平均数附近波动较大)时,方差值怎样(2)数据比较集中(即数据在平均数附近波动较小)时,方差值怎样(3)方差的大小与数据的波动性大小有怎样的关系学生小组讨论、归纳:(1)方差用来衡量一批数据的波动大小(即这批数据偏离平均数的大小).(2)方差越大,说明数据的波动越大,越不稳定;方差越小,说明数据的波动越小,越稳定。
人教版八年级下册20.2数据的波动程度教案
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《数据的波动程度》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过数据变化很大的情况?”比如,同样的商品在不同商店的价格差异。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索数据波动程度的奥秘。
举例:以班级学生的身高数据为例,引导学生计算极差、方差和标准差,进而分析班级学生身高的波动情况。
2.教学难点
-方差和标准差的计算:这部分内容对学生来说较为复杂,需要教师耐心讲解,并指导学生逐步完成计算过程。
-理解样本标准差的含义:学生对样本标准差的含义可能难以理解,需要教师通过具体实例解释,使其明白样本标准差在描述样本数据波动程度方面的作用。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解极差、方差和标准差的基本概念。极差是一组数据中的最大值与最小值之差,它能够直观地反映数据的波动范围。方差和标准差则是衡量数据离散程度的统计量,它们可以告诉我们数据点相对于平均值的分散程度。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何通过计算极差、方差和标准差来分析一批产品的质量稳定性。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了极差、方差和标准差的基本概念、计算方法以及它们在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对数据波动程度的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.逻辑推理:在教学过程中,强调逻辑推理的重要性,培养学生通过逻辑推理判断数据波动程度的能力,并能运用逻辑思维解释实际问题。
人教八年级数学下册-数据的波动程度(附习题)
2
≈0.002 s2甲>s2乙 ∴乙种甜玉米的产量比较稳定
例1 在一次芭蕾舞比赛中,甲、乙两个芭 蕾舞团都表演了舞剧《天鹅湖》,参加表演的 女演员的身高(单位:cm)如下图所示:
甲 163 164 164 165 165 166 166 167 乙 163 165 165 166 166 167 168 168
2. 从甲、乙两种农作物中各抽取10株苗,分别 测得它的苗高如下:(单位:cm) 甲:9,10,11,12,7,13,10,8,12,8 乙:8,13,12,11,10,12,7,7,9,11 问:(1)哪种农作物的苗长得比较高? (2)哪种农作物的苗长得比较整齐?
解:(1) x甲 x乙 10,∴两种农作物的苗长得一样高 (2) s2甲=3.6,s2乙=4.2,∵s2甲<s2乙 ∴甲种农作物的苗长得比较整齐
x甲
=
7
2
8
2 10
9
5
10
8.5
x乙
=
7
3
8
2
9 102Fra bibliotek103
8.5
方差分别是
S甲2
=(7
8.5)2
2
(8
8.5)2
2 (9 10
8.5)2
5
(10
8.5)2
0.85
S乙2
=(7
8.5)2
3
(8
8.5)2
2
(9 10
8.5)2
2
(10
8.5)2
3
1.35
S甲2 S乙2
基础巩固
随堂演练
166)2 8
(168
166)2
2.5.
人教版八年级下册数学 20.2 ---20.3基础练含答案)
20.2 数据的波动程度1.两名同学各进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对2.在某次射击训练中,甲、乙、丙、丁4人各射击10次,平均成绩相同,方差分别是=0.35,=0.15,=0.25,=0.27,这4人中成绩发挥最稳定的是()A.甲B.乙C.丙D.丁3.若一组数据1,2,x,4的众数是1,则这组数据的方差为.4.今年我市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错的是() A.平均数为160 B.中位数为158C.众数为158D.方差为20.35.如果一组数据x1,x2,…,x n的方差是4,则另一组数据x1+3,x2+3,…,x n+3的方差是()A.4B.7C.8D.196.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8,7,9,8,8乙:7,9,6,9,9则下列说法中错误的是()A.甲、乙得分的平均数是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小7.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①>;②<;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定.由统计图可知正确的结论是()A.①③B.①④C.②③D.②④8.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如下表所示,丁的成绩如图所示.根据以上图表信息,参赛选手应选()A.甲B.乙C.丙D.丁9.甲、乙两班各有8名学生参加数学竞赛,成绩(单位:分)如下:请比较两个班学生成绩的优劣.10.某校要从九年级一班和二班中各选取10名女同学组成礼仪队,选取的两班女生的身高(单位:厘米)如下:一班:168167170165168166171168167170二班:165167169170165168170171168167(1)根据上面两组数据补充完成下面的统计分析表:(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.11.要从甲、乙两名同学中选出一名,代表班级参加射击比赛.如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩.(2)观察统计图,直接写出甲、乙这10次射击成绩的方差,哪个大.(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选参赛更适合;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选参赛更适合.12.甲、乙两名队员参加射击训练,成绩分别被制成如下两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a,b,c的值.(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?13.甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示.根据图中信息,回答下列问题:(1)甲的平均数是,乙的中位数是;(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认哪位运动员的射击成绩更稳定?14.某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如下统计表及如图所示的不完整的折线图:A,B产品单价变化统计表并求得了A产品三次单价这组数据的平均数和方差:=5.9;=×[(6-5.9)2+(5.2-5.9)2+(6.5-5.9)2]=.(1)补全图中B产品单价变化的折线图,B产品第三次的单价比上一次的单价降低了%;(2)求B产品三次单价这组数据的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.15.为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分为10分,学生得分均为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包括9分)为优秀.这次竞赛中甲、乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表.(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组的学生(填“甲”或“乙”).(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.参考答案1.【答案】C2.【答案】B3【答案】解:∵众数是1,∴x=1,则==2,∴s2=×[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=.4.【答案】D解:平均数为(158+160+154+158+170)÷5=160,A正确,不符合题意;将这组数据按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,B正确,不符合题意;数据158出现了2次,次数最多,故众数为158,C正确,不符合题意;这组数据的方差是s2=[(154-160)2+2×(158-160)2+(160-160)2+(170-160)2]=28.8,D错误,符合题意.故选D.5.【答案】A解:设一组数据x1,x2,…,x n的平均数是,则方差为s2=[(x1-)2+(x2-)2+…+(x n-)2]=4;而另一组数据x1+3,x2+3,…,x n+3的平均数是+3,此时方差为s2={[(x1+3)-(+3)]2+[(x2+3)-(+3)]2+…+[(x n+3)-(+3)]2}=[(x1-)2+(x2-)2+…+( x n-)2]=4,故选A.6.【答案】C7.【答案】C解:方法一:从折线统计图可知甲和乙射击10发子弹成绩的数据,根据方差的公式可计算出甲和乙射击成绩的方差,从而进行比较即可得出结果.方法二:根据统计图判断甲、乙成绩的波动情况,根据方差越大,数据的波动越大,越不稳定;方差越小,数据的波动越小,越稳定即可得出结果.8.【答案】D解:由图可知丁射击10次的成绩为:8,8,9,7,8,8,9,7,8,8,则丁的成绩的平均数为×(8+8+9+7+8+8+9+7+8+8)=8(环),丁的成绩的方差为×[6×(8-8)2+2×(7-8)2+2×(9-8)2]=0.4.∵丁的成绩的平均数最大,方差最小,∴参赛选手应选丁.9.解:首先计算这两组数据平均数和方差:=×(65+74+…+71)=70,=×[(65-70)2+(74-70)2+…+(71-70)2]=23;=×(60+75+…+79)=70,=×[(60-70)2+(75-70)2+…+(79-70)2]=67.5.通过计算可知,=,<,甲班的成绩比乙班的成绩稳定.再比较高分情况或优秀率(不妨设75分及以上为优秀):高分情况:得80分的都只有1人,持平;得75分以上(含75分)的甲班有1人,乙班有4人,乙班优于甲班.优秀率:甲班为12.5%,乙班为50%,乙班优于甲班.易错点拨:把方差大小作为评判成绩好坏的唯一标准,这是对方差概念的误解,方差只是反映一组数据的波动情况,至于方差大好还是方差小好,则要看这组数据所反映的实际问题.就这个实际问题而言,方差不应作为评判成绩优劣的唯一标准.从优秀率这个角度来评价两班成绩的优劣才是客观的、准确的,所以并不能说方差小了就好,而是要具体问题具体分析,主要是看从什么角度去比较.10.解:(1)3.2;168(2)选方差作为选择标准,∵一班的方差<二班的方差,∴一班能被选取.11.解:(1)==8(环).(2)大.(3)乙;甲12.解:(1)a=7,b=7.5,c=4.2.(2)从平均成绩看甲、乙二人的平均成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定.综合以上各因素,若选派一名队员参赛,可选择乙参赛,因为乙获得较好成绩的可能更大.13.解:(1)8环;7.5环(2)=[(6-8)2+(10-8)2+…+(7-8)2]=1.6.∵=(7+10+…+7)=8(环),∴=[(7-8)2+(10-8)2+…+(7-8)2]=1.2.∵<,∴乙运动员的射击成绩更稳定. 14.解:(1)如图所示.25(2)=×(3.5+4+3)=3.5,==.因为<,所以B产品的单价波动小.(3)第四次调价后,对于A产品,四次单价这组数据的中位数为=;对于B产品,因为m>0,所以第四次单价大于3元/件.又因为×2-1=>,所以第四次单价小于4元/件.所以×2-1=.所以m=25.15.解:(1)填表如下:组别平均数中位数方差合格率优秀率甲组 6.76 3.4190%20%乙组7.17.5 1.6980%10%(2)甲(3)①乙组的平均数高于甲组,②乙组的成绩比甲组稳定,故乙组成绩好于甲组.(答案不唯一)20.3__课题学习__体质健康测试中的数据分析_1.[2018·嘉兴秀洲中学月考]期中考试后,班里有两位同学议论他们小组的数学成绩.小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是(D)A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数2.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的(A)A.方差B.中位数C.众数D.平均数3.[2018·慈溪模拟]一名射击运动员连续打靶8次,命中的环数如图20-3-1所示,则命中环数的众数与中位数分别为(C)图20-3-1A.9环与8环B.8环与9环C.8环与8.5环D.8.5环与9环4.下面是某一天永州市11个旅游景区最高气温(单位:℃)的统计表:A.该组数据的方差为0B.该组数据的平均数为27C.该组数据的中位数为28D.该组数据的众数为285.小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:__1.4,1.35__.6.[2019·鄞州区一模]港珠澳大桥是目前桥梁设计中广泛采用的斜拉桥,它用粗大的钢索将桥面拉住,为检测钢索的抗拉强度,桥梁建设方从甲、乙两家生产钢索的厂方各随机选取5根钢索进行抗拉强度的检测,数据统计如下(单位:百吨):甲、乙两厂钢索抗拉强度检测统计表(1));(2)桥梁建设方决定从抗拉强度的总体水平和稳定性来决定钢索的质量,问哪一家的钢索质量更优?解:(1)a=(10+8+12+7+13)÷5=10(百吨);把这些数从小到大排列为7,8,10,12,13,最中间的数是10,则中位数b=10百吨;方差为c=15[(10-10)2+(8-10)2+(12-10)2+(7-10)2+(13-10)2]=5.2(平方百吨);(2)甲厂的钢索质量更优,从平均数来看,甲厂的平均数是10.4百吨,而乙厂的平均数是10百吨,所以甲厂高于乙厂;从中位数来看甲厂和乙厂一样;从方差来看,甲厂的方差是1.04平方百吨,而乙厂的方差是5.2平方百吨,所以甲厂的方差小于乙厂的方差,所以甲厂更稳定;所以从总体来看甲厂的钢索质量更优.7.为了了解某学校高一年级学生每周平均课外阅读时间的情况,随机抽查了该学校高一年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图20-3-2①)和扇形统计图(图②):图20-3-2(1)根据以上信息回答下列问题:①求m的值;②求扇形统计图中阅读时间为5 h的扇形圆心角的度数;③补全条形统计图.(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.解:(1)①∵课外阅读时间为2 h的所在扇形的圆心角的度数为90°,∴其所占的百分比为90°360°=14,∵课外阅读时间为2 h的有15人,∴m=15÷14=60;第7题答图②根据题意,得560×360°=30°;③第三小组的频数为60-10-15-10-5=20, 补全条形统计图见答图.(2)∵课外阅读时间为3 h 的有20人,最多,∴众数为3 h ;∵共60人,中位数应该是第30和第31人的平均数,且第30和第31人阅读时间均为3 h ,∴中位数为3 h ;平均数为10×1+15×2+20×3+10×4+5×560=2.75(h).8.[2019·慈溪期末]我市某中学举行“中国梦·校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图20-3-3所示.图20-3-3(1)根据图示填写表;(2)(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.解:(1)由条形统计图可得,初中5名选手的平均分是75+80+85+85+1005=85,众数是85,高中五名选手的成绩是70,75,80,100,100,故中位数是80;(2)由表格可知,初中部与高中部的平均分相同,初中部的中位数高,故初中部决赛成绩较好;(3)由题意可得,s2初中=15[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70,s2高中=15[(70-85)2+(75-85)2+(80-85)2+(100-85)2+(100-85)2]=160,∵70<160,故初中部代表队选手成绩较为稳定.9.太阳山中学九年级举行团体跳绳比赛,要求每班选出5名学生参加,在规定时间内每人跳绳不低于150次为优秀,冠、亚军会在甲、乙两班中产生,下表是这两个班的5名学生的比赛数据(单位:次).(1)求出表中a的值和甲、乙两班比赛学生的优秀率;(2)求出两班的跳绳比赛数据的中位数;(3)请你结合表格和自己所算出的数据判断冠军应发给哪个班?简要说明理由.解:(1)a=(139+150+145+169+147)÷5=150,甲的优秀率为3÷5×100%=60%,乙的优秀率为2÷5×100%=40%;(2)把甲班的数据从小到大排列为:139,148,150,153,160,则甲的中位数是150次;把乙班的数据从小到大排列为:139,145,147,150,169,则乙的中位数是147次;(3)冠军奖应发给甲班,因为甲的优秀率高于乙,说明甲的优秀人数多;甲的中位数大于乙的中位数,说明甲的一般水平高;甲的方差小于乙的方差,说明甲比较稳定.(答案不唯一)。
20.2数据的波动程度——方差(优秀课件重组)
2、计算公式
S2=
1
n
[(x1-x)2+ (x2-x)2 +…+ (xn-x)2 ]
3、计算方差的步骤: “先平均,后求差, 平方后,再平均”.
方差的意义
4、方差用来衡量一批数据的波动大小 (即这批数据偏离平均数的大小). 5、方差 放映的是数据在它的平均数附近波动的情况。
6、方差越大,说明数据的波动越大,越不稳定. 方差越小,说明数据的波动越小,越稳定.
解:
x甲
12
13 14
15 10 17 10
12 1115
11
13
x乙
1116 17
14 1315 10 10
10 10
14
13
方差s甲2 越(1大2,1说3)明2 (数13据110的3)2波动(越11大13,)越2 不4.4稳定.
人教版初中数学八年级下
教学目标
1.了解方差是刻画数据离散程度的
常用统计量。
2.掌握方差的计算方法,并能准确 计算一组数据的方差。
老师的烦恼
假如要数学竞赛了,老师要从甲、乙两名同学 中挑选一个参加。若你是老师,你认为挑选哪 一位比较适宜?
两个同学本学期五次测验的数学成绩分别如下:
(单位:分)
甲 85 90 90 90 95 乙 95 85 95 85 90
2.甲乙两名同学在相同的条件下各射靶10 次,
命中的环数如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
经过计算,两人射击环数的平均数相同,
但S
2 甲
>__S
2 乙
,
所以确定 乙 去参加比赛。
20.2 数据的波动程度
20.2 数据的波动程度一.选择题(共1小题)1.甲、乙两班举行班际电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:输入汉字个数(个)132133134135136137甲班人数(人)102412乙班人数(人)0141222=2.0,s乙2=2.7,则下列说法:①甲组学通过计算可知两组数据的方差分别为s甲生比乙组学生的成绩稳定;②两组学生成绩的中位数相同;③两组学生成绩的众数相同,其中正确的有()A.0个B.1个C.2个D.3个【分析】根据中位数,众数的计算方法,分别求出,就可以分别判断各个命题的真假.【解答】解:①甲组学生比乙组学生的成绩方差小,∴甲组学生比乙组学生的成绩稳定.②甲班学生的成绩按从小到大排列:132、134、134、135、135、135、135、136、137、137,可见其中位数是135;乙班学生的成绩按从小到大排列:133、134、134、134、134、135、136、136、137、137,可见其中位数是134.5,所以两组学生成绩的中位数不相同;③甲班学生成绩的众数是135,乙班学生成绩的众数是134,所以两组学生成绩的众数不相同.故选:B.【点评】此题考查方差问题,对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可.方差是反映数据波动大小的量.二.填空题(共3小题)2.在一次数学测试中,同年级人数相同的甲、乙两个班的成绩统计如下表:班级平均分中位数方差甲班92.595.541.25乙班92.590.536.06应用统计学知识分析乙班成绩较好,理由是甲乙两班平均水平一样,但乙班方差小,成绩比较均衡(或甲班成绩好,甲乙两班平均水平一样,但甲班中位数大,高分段人数多).【分析】根据平均数、中位数和方差的意义进行解答即可得出答案.【解答】解:∵甲班的平均成绩是92.5分,乙班的平均成绩是92.5分,∴这次数学测试成绩中,甲、乙两个班的平均水平相同;∵甲班的方差是41.25分,乙班的方差是36.06分,∴甲班的方差大于乙班的方差,∴乙班学生的数学成绩比较整齐,分化较小;故答案为:乙;甲乙两班平均水平一样,但乙班方差小,成绩比较均衡.【点评】此题考查了平均数、中位数和方差,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.3.已知一组数据a,b,c的平均数为5,方差为3,那么数据a+2,b+2,c+2的平均数和方差分别是7、3.【分析】根据数据a,b,c的平均数为5可知(a+b+c)=5,据此可得出(a+2+b+2+c+2)的值;再由方差为3可得出数据a+2,b+2,c+2的方差.【解答】解:∵数据a,b,c的平均数为5,∴(a+b+c)=5,∴(a+2+b+2+c+2)=(a+b+c)+2=5+2=7,∴数据a+2,b+2,c+2的平均数是3;∵数据a,b,c的方差为3,∴[(a﹣5)2+(b﹣5)2+(c﹣5)2]=3,∴a+2,b+2,c+2的方差=[(a+2﹣7)2+(b+2﹣7)2+(c+2﹣7)2]=[(a﹣5)2+(b﹣5)2+(c﹣5)2]=3.故答案为:7、3.【点评】本题考查的是方差,熟记方差的定义是解答此题的关键.4.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数经统计计算后填入下表:班级参赛人数平均字数中位数方差甲55135149191乙55135151110某同学根据上表分析得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀人数多于甲班优秀人数(每分钟输入汉字数≥150个为优秀);③甲班的成绩波动比乙班的成绩波动大,上述结论正确的是①②③.【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【解答】解:从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,说明甲班的波动情况大,所以③正确;上述结论正确的是①②③;故答案为:①②③.【点评】本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.三.解答题(共7小题)5.在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm),请你用所学过的有关统计的知识回答下列问题(数据15,16,16,14,14,15的方差S甲2=,数据11,15,18,17,10,19的方差S乙2=)(1)分别求甲、乙两段台阶路的高度平均数;(2)哪段台阶路走起来更舒服?与哪个数据(平均数,中位数方差和极差)有关?(3)为方便游客行走,需要重新整修上山的小路,对于这两段台阶路,在总高度及台阶数不变的情况下,请你提出合理的整修建议.【分析】(1)利用平均数的计算公式分别求出甲、乙两段台阶路的高度平均数;(2)根据方差的性质解答;(3)根据方差的性质提出合理的整修建议.【解答】解:(1)甲段台阶路的高度平均数=×(15+16+16+14+14+15)=15,乙段台阶路的高度平均数=×(11+15+18+17+10+19)=15;(2)∵S甲2<S乙2,∴甲段台阶的波动小,∴甲段台阶路走起来更舒服;(3)每个台阶的高度均为15cm,使方差为0,游客行走比较舒服.【点评】本题考查的是平均数、方差,掌握算术平均数的计算公式、方差的计算公式是解题的关键.6.某水果店去年3至8月销售吐鲁番葡萄、哈密大枣的情况见下表:3月4月5月6月7月8月48581013吐鲁番葡萄(单位:百公斤)8797107哈密大枣(单位:百公斤)(Ⅰ)请你根据以上数据填写下表:平均数方差吐鲁番葡萄89哈密大枣8(Ⅱ)请你根据上述信息,对这两种水果在去年3月份至8月份的销售情况进行分析.【分析】从表格中得出相关数据,计算平均数和方差,填入表格中,根据平均数和方差的意义分析.分析两种水果销售量的趋势即可.【解答】解:哈密大枣的月平均销量=(8+7+9+7+10+7)÷6=8吨,2=[(8﹣8)2+(7﹣8)2+(9﹣8)2+(7﹣8)2+(10﹣哈密大枣销量的方差S大枣8)2+(7﹣8)2]÷6=;(Ⅰ)平均数方差吐鲁番葡萄89哈密大枣8(Ⅱ)①由于两种水果的平均数相同,哈密大枣的方差较小,故哈密大枣的销售较稳定;②由于吐鲁番葡萄销售量处于上升趋势,故吐鲁番葡萄销售量前景较好.【点评】此题考查方差问题,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7.某校要从小王和小李两名同学中挑选一人参加全市知识竞赛,在最近的五次选拔测试中,他俩的成绩分别如下表:第1次第2次第3次第4次第5次小王60751009075小李7090808080根据上表解答下列问题:(1)完成下表:姓名平均成绩(分)中位数(分)众数(分)方差小王807575190小李808080104(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为选谁参加比赛比较合适?说明你的理由.【分析】(1)根据平均数、中位数、众数的定义及计算公式分别进行解答即可;(2)根据方差的意义即方差反映数据的波动程度,得出方差越小越稳定,应此小李的成绩稳定;再根据80分以上(含80分)的成绩视为优秀,小王有2次优秀,小李有3次,分别计算出优秀率即可;(3)选谁参加比赛的答案不唯一,小李的成绩稳定,所以获奖的几率大;小王的90分以上的成绩好,则小王获一等奖的机会大.【解答】解:(1)小李的平均成绩是:(70+90+80×3)=80(分);把这些数从小到大排列为70,80,80,80,90,最中间的数是80,则中位数是80;80出现了3次,出现的次数最多,则众数是80;故答案为:80;80;80;(2)在这五次考试中,成绩比较稳定的是小李;小王的优秀率为40%,小李的优秀率为80%;(3)方案一:我选小李去参加比赛,因为小李的优秀率高,有4次得80分以上(含80分),成绩比较稳定,获奖机会大,方案二:我选小王去参加比赛,因为小王的成绩获得一等奖的机率较高,有2次90分以上(含90分),因此有可能获得一等奖.【点评】本题考查了方差、中位数及众数的知识,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8.某班级选派甲、乙两位同学参加学校的跳远比赛,体育老师对他们的5次训练成绩进行了整理,并绘制了不完整的统计图,如图所示,请根据图中信息,解答下列问题:甲、乙两人跳远成绩统计表:第1次第2次第3次第4次第5次甲成绩/厘米588597608610 597乙成绩/厘米613 618580 a 618根据以上信息,请解答下列问题:(1)a=574;(2)请完成图中表示甲成绩变化情况的折线;(3)通过计算,补充完整下面的统计分析表;运动员最好成绩平均数众数方差甲610600597 41.2乙618600.6618378.24 (4)请依据(3)中所统计的数据分析,甲、乙两位同学的训练成绩各有什么特点.【分析】(1)根据折线统计图即可求解;(2)根据统计表即可求解;(3)根据平均数,众数的定义即可求解;(4)分别从平均数,众数;以及方差的角度来解答甲、乙两位同学的训练成绩特点.【解答】解:(1)由折线统计图可知,a=574;(2)如图所示:(3)甲的平均数:(588+597+608+610+597)÷5=600填表如下:运动员最好成绩平均数众数方差甲610600597 41.2乙618600.6618378.24 (4)从最好成绩,平均数,众数来看,乙跳远的成绩优于甲的;从方差来看,甲方差小说明甲成绩比乙的成绩稳定.故答案为:574;610,600,618.【点评】本题考查了折线图的意义和平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.9.某校八年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛,各参赛选手的成绩如下:八(1)班:88,91,92,93,93,93,94,98,98,100八(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差A班10094b93cB班99a95.5938.4(1)表中的a=95,b=93,c=12;(2)依据数据分析表,有人说:“最高分在八(1)班,八(1)班的成绩比八(2)班好”,但也有人说八(2)班的成绩要好,请给出两条支持八(2)班成绩好的理由.【分析】(1)利用平均数,中位数,以及方差的定义计算所求即可;(2)从平均分,以及中位数角度考虑,合理即可.【解答】解:(1)八(2)班的平均分a=×(89+93+93+93+95+96+96+98+98+99)=95;八(1)班的中位数b=93;八(1)班的方差c=×[(88﹣94)2+(91﹣94)2+(92﹣94)2+(93﹣94)2+(93﹣94)2+(93﹣94)2+(94﹣94)2+(998﹣94)2+(98﹣94)2+(100﹣94)2]=12;故答案为:95;93;12;(2)八(2)班的平均分高于八(1)班;八(2)班的成绩集中在中上游,故支持八(2)班成绩好.【点评】此题考查了方差,算术平均数,中位数,以及众数,熟练掌握各自的性质是解本题的关键.10.某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中a,b的值:组别平均分中位数方差合格率优秀率甲组 6.8a 3.7690%30%乙组b7.5 1.9680%20%(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.【分析】(1)由折线图中数据,根据中位数和加权平均数的定义求解可得;(2)根据中位数的意义求解可得;(3)可从平均数和方差两方面阐述即可.【解答】解:(1)由折线统计图可知,甲组成绩从小到大排列为:3、6、6、6、6、6、7、9、9、10,∴其中位数a=6,乙组学生成绩的平均分b==7.2;(2)∵甲组的中位数为6,乙组的中位数为7.5,而小英的成绩位于小组中上游,∴小英属于甲组学生;(3)①乙组的平均分高于甲组,即乙组的总体平均水平高;②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.【点评】本题主要考查折线统计图、加权平均数、中位数及方差,熟练掌握加权平均数、中位数及方差的定义是解题的关键.11.某校要从小明和小芳两名同学中挑选一人参加全县环保知识竞赛,在最近的五次选拔测试中,两人的成绩如下表:第1次第2次第3次第4次第5次小明60751009075小芳7080908080根据上表解答下列问题:(1)分别计算两人成绩的平均数和方差;(2)学校会派哪个同学去参加全县比赛?为什么?【分析】(1)根据平均数、方差的概念即公式即可得出答案;(2)根据方差的意义即方差反映数据的波动程度,得出方差越小越稳定,进而分析即可.【解答】解:(1)小明的平均成绩==80,小芳的平均成绩==80,小明成绩的方差=[(80﹣60)2+(80﹣75)2+(80﹣100)2+(80﹣90)2+(80﹣75)2]=190;小芳成绩的方差=[(80﹣70)2+(80﹣80)2+(80﹣90)2+(80﹣80)2+(80﹣80)2]=40;(2)∵=,>,∴两人平均成绩相当,但小芳成绩稳定,学校会派小芳去参加全县比赛.【点评】本题考查了方差、及平均数的知识,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.。
方差的意义
14.(2015·南京)某工程队有14名员工,他们的工种及相对应的每 人每月工资如下表所示.
工种 电工 木工 瓦工
人数 5 4 5
每人每月工资(元) 7000 6000 5000
现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1 名.与调整前相比,该工程队员工月工资的方差___变__大__.(填“变 小”,“不变”或“变大”)
(4)若测验分数在85分以上(含85分)为优秀,则甲的优秀率为__6_0_%__,乙 的优秀率为__4_0_%___.
17.某校要从九(一)班和九(二)班中各选取10名女同学组成礼仪队, 选取的两班女生的身高如下:(单位:厘米) (一)班:168 167 170 165 168 166 171 168 167 170 (二)班:165 167 169 170 165 168 170 171 168 167 (1)补充完成下面的统计分析表
12.某同学 5 次上学途中所花的时间(单位:分钟)分别为 x,y,10,11, 9,已知这组数据的平均数为 10,方差为 2,则|x-y|的值为( D ) A.1 B.2 C.3 D.4 13.已知一个样本的方差是 s2=210[(x1-3)2+(x2-3)2+…+(x20-3)2], 则这个样本中数据的个数为__2_0_,样本平均数是__3__.
7.已知数据x1,x2,x3,x4,x5,其中每一个数均为非负整数且 互不相等,中位数是2,x=2. (1)求这组数据; (2)计算这组数据的方差.
解:(1)因各数据互不相等,不妨设 x1<x2<x3<x4<x5,且 x3=2,故这 组数据为 0,1,2,3,4 (2)s2=15[(0-2)2+(1-2)2+(2-2)2+(3-2)2+(4-2)2]=2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下册
20.2 数据的波动程度(1)
课件说明
• 本课是在具体问题情境中体会分析一组数据的波动 程度的必要性和重要性,通过对平均数接近的两组 数据的散点图表示,直观地感受数据波动程度的含 义,在此基础上引入了方差的概念.
课件说明
• 学习目标: 1.经历方差的形成过程,了解方差的意义; 2.掌握方差的计算方法并会初步运用方差解决实际 问题. • 学习重点: 方差意义的理解及应用.
成绩/环
11 10 9 8 7 6
甲 乙 1 2 3 4 5 6 7 8 9 10
0
次数
课堂小结
(1)方差怎样计算? 1 2 2 2 2 s = [ (x1 -x) +(x2 -x) + +(xn -x) ] n (2)你如何理解方差的意义? 方差越大,数据的波动越大; 方差越小,数据的波动越小. 方差的适用条件: 当两组数据的平均数相等或相近时,才利用方差 来判断它们的波动情况.
课后作业
作业:教科书第128页复习巩固第1题.
(2)如何考察一种甜玉米产量的稳定性呢? ①请设计统计图直观地反映出甜玉米产量的分布情况.
甲种甜玉米的产量
乙种甜玉米的产量
产量波动较大
产量波动较小
探究新知
②统计学中常采用下面的做法来量化这组数据的波动大 小: 设有n个数据x1,x2,…,xn,各数据与它们的平均 2 2 2 数 x 的差的平方分别是 (x1 -x) , , (x2 -x) , , (xn -x) 我们用这些值的平均数,即用 1 2 2 2 2 s = [ (x1 -x) +(x2 -x ) + +(xn -x) ] n
来衡量这组数据的波动大小,称它为这组数据的方差. 方差越大,数据的波动越大; 方差越小,数据的波动越小.
ቤተ መጻሕፍቲ ባይዱ
探究新知
甲 乙 7.65 7.55 7.50 7.56 7.62 7.53 7.59 7.44 7.65 7.49 7.64 7.52 7.50 7.58 7.40 7.46 7.41 7.53 7.41 7.49
生活中的数学
问题1 农科院计划为某地选择合适的甜玉米种子. 选择种子时,甜玉米的产量和产量的稳定性是农科院所 关心的问题.为了解甲、乙两种甜玉米种子的相关情况, 农科院各用10 块自然条件相同的试验田进行试验,得到 各试验田每公顷的产量(单位:t)如下表:
生活中的数学
甲 乙 7.65 7.55 7.50 7.56 7.62 7.53 7.59 7.44 7.65 7.49 7.64 7.52 7.50 7.58 7.40 7.46 7.41 7.53 7.41 7.49
探究新知
甲 乙 7.65 7.55 7.50 7.56 7.62 7.53 7.59 7.44 7.65 7.49 7.64 7.52 7.50 7.58 7.40 7.46 7.41 7.53 7.41 7.49
③请利用方差公式分析甲、乙两种甜玉米的波动程度.
2 2 s s 显然 甲 > 乙 ,即说明甲种甜玉米的波动较大,这与
x甲 7.54,x乙 7.52
说明在试验田中,甲、乙两种甜玉米的平均产量相 差不大. 可估计这个地区种植这两种甜玉米的平均产量相差 不大.
探究新知
甲 乙 7.65 7.55 7.50 7.56 7.62 7.53 7.59 7.44 7.65 7.49 7.64 7.52 7.50 7.58 7.40 7.46 7.41 7.53 7.41 7.49
根据这些数据估计,农科院应该选择哪种甜玉米种 子呢?
探究新知
甲 乙 7.65 7.55 7.50 7.56 7.62 7.53 7.59 7.44 7.65 7.49 7.64 7.52 7.50 7.58 7.40 7.46 7.41 7.53 7.41 7.49
(1)甜玉米的产量可用什么量来描述?请计算后说明.
③请利用方差公式分析甲、乙两种甜玉米的波动程度.
两组数据的方差分别是:
( 7.65-7.54)+( 7.50-7.54)+ +( 7.41- 7.54) s = 10 0.01
2 甲 2 2 2 ( 7 . 55 7 . 52 ) + ( 7 . 56 7 . 52 ) + + ( 7 . 49 7 . 52 ) 2 s乙 = 10 0.002 2 2 2
我们从产量分布图看到的结果一致. 据样本估计总体的统计思想,种乙种甜玉米产量较 稳定.
应用新知
例 在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都 表演了舞剧《天鹅湖》,参加表演的女演员的身高(单 位:cm)分别是: 甲团 163 乙团 163 164 165 164 165 165 166 165 166 166 167 166 168 167 168
哪个芭蕾舞团女演员的身高更整齐?
巩固新知
练习1 计算下列各组数据的方差: ( 1) 6 6 6 6 6 6 6; ( 2) 5 5 6 6 6 7 7; ( 3) 3 3 4 6 8 9 9;
( 4)
3
3
3
6
9
9
9.
巩固新知
练习2 如图是甲、乙两射击运动员的10 次射击训 练成绩的折线统计图.观察图形,甲、乙这10 次射击成 绩的方差哪个大?