肝病与药物肝毒性及其药物代谢
药物性肝损伤(教学及宣教)
![药物性肝损伤(教学及宣教)](https://img.taocdn.com/s3/m/451ad087a45177232e60a225.png)
药物性肝病可以表现为目前所知任何类型急性或慢性肝脏疾病,其中急性肝损伤约占报告病例数的9O%以上,少数患者可发生威胁生命的暴发性或重症肝功能衰竭。
急性药物型肝病若为肝细胞型,可表现为肝炎型,在黄疸出现前1~2天有乏力、胃纳减退、上腹不适、恶心、呕吐、尿色深等前驱症状。严重病例可呈肝衰竭表现,可并发肝昏迷而死亡。生化检查ALT、AST明显增高,可伴有血清胆红素升高;亦可表现为脂肪肝型,临床特点为脂肪肝、氮质血症和胰腺炎。一般在连续用药3~5天以上,出现恶心、呕吐、厌食、上腹痛、尿色深、肝肿大、黄疸、肾功能减退,有少尿、血尿素氮增高及代谢性酸中毒。生化检查ALT及AST明显增高,血清胆红素一般低于 17.1μmol/L,亦可高达51.3μmol/L。凝血酶原时间延长,偶有血糖过低,本病预后差,如不及时停药,病死率很高。急性药物型肝病还可表现为肝内胆淤型药物性肝炎,包括单纯淤胆型,临床表现为起病隐袭,常无前驱症状,发病时无发热、皮痛或嗜酸粒细胞增多。黄疸轻,于停药后很快消失。生化检查AST增高,碱性磷酸酶和胆固醇大多正常;淤胆伴炎症型肝炎可有发热、畏寒、恶心、腹胀、乏力、皮疹,随后出现黄疸,皮肤瘙痒,大便色浅,肝大并压痛,嗜酸细胞增加。生化检查胆红素、ALT、AST、胆固醇及碱性磷酸酶均中高度升高。混合型药物性肝炎既有肝炎型的表现亦有胆汁淤积的表现。
药物性肝损伤 发病机制
要了解药物致肝损伤的机制,首先需了解药物在肝脏中的代谢特点。通常经消化道吸收的药物,经过门静脉进入肝脏。肝脏是药物聚集、转化、代谢的重要器官,大多数药物在肝内的代谢过程包括转化与结合两个时相即Ⅰ相代谢及Ⅱ相代谢。Ⅰ相代谢反应主要包括氧化、还原和水解反应,药物经过此相反应后极性增高,即水溶性增大,易于排出体外,参与Ⅰ相代谢的酶主要是细胞色素P450(CYP);Ⅱ相代谢反应主要为结合反应,经过此相反应后,药物可与葡萄糖醛酸、甲基、硫基、甘氨酸等基团结合,形成极性更强的物质,通过胆汁或尿液排出体外。有些药物仅需Ⅰ相代谢,有些药物则需要Ⅰ相及Ⅱ相代谢才能完成。肝脏中Ⅰ相及Ⅱ相代谢酶的基因在人群中具有为多态性,因此,不同个体对药物的耐受性及敏感性也有很大差异。在有些个体,有些药物在此代谢过程中会产生有毒或致癌的物质,进一步造成肝损伤,或原本不具抗原性的药物,在肝内转化后形成具有抗原性的代谢产物,引起免疫性肝损伤。
肝病用药的注意事项
![肝病用药的注意事项](https://img.taocdn.com/s3/m/e53df38f5ef7ba0d4b733b0b.png)
肝病患者的用药注意事项肝脏是许多药物代谢的主要场所,当肝功能不全时,药物代谢必然受到影响,药物的生物转化减慢,血中游离型药物增多,从而影响药物的使用效果并增加毒性。
因此,必须减少用药剂量及用药次数,特别是使用肝毒性的药物时更需慎重。
一、肝功能不全患者用药会产生哪些影响1.对药物吸收的影响肝脏疾病时,肝脏内在清除率下降,药物不能有效地经过肝脏的首过作用,使主要在肝脏内代谢清除的药物生物利用度提高,同时,体内血药浓度明显增高而影响药物的作用,药物的不良反应发生率也可能升高。
2.对药物在体内分布的影响药物在体内的分布主要通过与血浆蛋白结合而转运。
当肝功能不全时,肝脏的蛋白合成功能减退,血浆中白蛋白浓度下降,这时药物的血浆蛋白结合率下降,血中结合型药物减少,游离型药物增加,使该药物的作用增强,不良反应也可能相应增加,尤其对蛋白结合率高的药物影响更为显著。
3.对药物代谢的影响肝脏是药物代谢最重要的器官。
当肝功能不全时,肝细胞的数量减少,肝细胞的功能受损,肝细胞多数药物酶的活性和数量都有不同程度减少,长期用药可引起蓄积中毒。
肝功能不全患者常伴有低蛋白血症和高胆红素血症,使血液中非蛋白结合型药物浓度升高,常规剂量可使药效增强或发生毒性反应。
有些药物的毒性不是由于剂量增大的缘故,而是因为肝合成功能减退所造成。
对于肝功能不全患者,应该根据肝功能损害的程度及药动学特点调整药物剂量。
一般来说,对于肝功能损害较轻者,静脉或短期口服给予安全范围较大的药物,可不必调整剂量或仅将药物剂量下调20%;,对于肝功能损害较重者,药物剂量应下调30%,以确保用药安全。
二、肝功能不全患者用药原则1.合理选药,熟悉所选药物对肝脏的毒性,以免加重患者肝脏负担2.定期检查肝功能,以便决定用药时间的长短,及时调整治疗方案。
3.注意药物相互作用,特别应避免肝毒性药物合用。
4.肝功能不全而肾功能正常的病人可选用对肝毒性小,可通过肾脏排泄的药物。
5.初始用药宜小剂量,必要时进行血药浓度监测,实施个体化给药方案。
药物对肝脏功能的影响及安全性评估
![药物对肝脏功能的影响及安全性评估](https://img.taocdn.com/s3/m/b73a087011661ed9ad51f01dc281e53a5802510b.png)
药物对肝脏功能的影响及安全性评估药物的使用是人们维护健康和治疗疾病常用的方法之一。
然而,我们也需要认识到药物对肝脏功能的影响,并评估其安全性。
本文将就药物对肝脏的影响进行探讨,并介绍相关安全性评估方法。
一、药物对肝脏功能的影响药物与肝脏的相互作用是研究药物安全性的重要方面。
不同的药物可能会对肝脏功能产生不同的影响,包括以下几个方面:1. 药物代谢酶的影响:肝脏是身体中重要的药物代谢器官,许多药物在肝脏中会经历代谢转化。
某些药物可抑制或诱导肝脏中特定的药物代谢酶,从而影响其他药物的代谢过程。
这可能导致药物的积累或过快代谢,引起药物治疗效果不理想或药物毒性副作用的发生。
2. 肝毒性:一些药物具有潜在的肝毒性,即药物使用过程中可能对肝脏造成损害。
肝毒性可以表现为肝酶水平升高、肝功能异常、肝细胞损伤等。
一些非甾体抗炎药、抗结核药物等即具有一定的肝毒性。
3. 药物与肝病的相互作用:药物的使用可能会与患有肝病的个体产生相互作用,影响疾病的进展,或增加肝病的风险。
例如,肝炎患者在药物使用上需要更加慎重,以免对肝脏产生进一步伤害。
以上只是药物对肝脏功能的一些常见影响,具体影响因药物种类、剂量、疗程长短、患者个体差异等因素而异。
二、药物安全性评估方法为了评估药物对肝脏功能的影响以及其安全性,研究者们采取了多种评估方法,以确保患者用药的安全性。
以下是常用的安全性评估方法:1. 临床试验:临床试验是评估药物安全性的重要手段之一。
研究者通过对一定数量的患者进行药物治疗,观察药物对肝脏功能的影响以及可能的副作用。
这些试验通常会对肝酶水平、肝功能指标等进行监测,以评估药物的安全性。
2. 动物模型研究:在临床试验之前,通常会在动物模型中进行药物安全性评估。
动物模型能够模拟人体内药物的代谢过程,通过观察动物肝脏功能的变化,初步评估药物的安全性。
3. 医学数据库分析:医学数据库中存储了大量的药物使用和患者用药后的结果,研究者可以通过对这些数据的分析,评估特定药物对肝脏的影响及其安全性。
肝脏药物代谢实验报告
![肝脏药物代谢实验报告](https://img.taocdn.com/s3/m/d399c5b17d1cfad6195f312b3169a4517723e5e8.png)
肝脏药物代谢实验报告尊敬的老师:我在实验室进行了一项关于肝脏药物代谢的实验。
在实验中,我主要研究了肝脏对药物的代谢过程以及其对药物效果的影响。
以下是我根据实验结果所做的实验报告:实验目的:1. 研究肝脏对药物的代谢过程;2. 探究肝脏对药物代谢的影响因素;3. 分析肝脏对药物代谢的作用机制。
实验方法:1. 实验动物:选择实验小鼠作为研究对象,确保实验动物的健康状况良好。
2. 实验药物:选择常用的药物,并通过静脉注射药物的方式将其输入实验小鼠体内。
3. 取样分析:在一定时间间隔内,通过取样分析小鼠血液中药物的浓度变化情况。
实验结果与讨论:通过对实验结果的分析,我发现肝脏在药物代谢过程中起着重要的作用。
肝脏能够对药物进行氧化、还原、水解、酯化等代谢反应,从而使药物变得更易于排泄。
实验结果显示,血液中药物的浓度在注射药物后迅速上升,并在一段时间后开始下降。
这表明肝脏对药物进行了代谢,并将其排出体外。
同时,药物在体内的代谢速度也受到一些因素的影响,如肝脏功能状态、饮食习惯、药物本身特性等。
此外,实验结果还显示,不同的药物在肝脏中的代谢方式和速度各不相同。
有些药物在体内代谢过程中会产生活性代谢产物,这些代谢产物可能具有更强烈的药理作用,或者对机体产生毒性效应。
因此,在药物研发和使用过程中,对药物的代谢途径和代谢产物进行深入研究非常重要,可以指导临床用药和药物调整。
实验结论:通过这次实验,我深入了解了肝脏对药物代谢的重要性以及其影响因素。
肝脏在药物代谢过程中起着关键作用,能够将药物转化为更易排泄的代谢产物。
不同药物的代谢方式和速度也各不相同,这些差异可能会影响药物的治疗效果或产生不良反应。
因此,对肝脏药物代谢的研究具有重要的临床意义,能够促进合理用药和药物研发。
在今后的研究中,我将进一步探究肝脏对药物代谢的机制,并考虑其他因素对代谢过程的影响,如肝脏疾病、基因差异等。
希望我的研究能为药物临床应用提供更有针对性的指导,以促进药物疗效和减少不良反应的发生。
常见肝病治疗及保肝药物介绍
![常见肝病治疗及保肝药物介绍](https://img.taocdn.com/s3/m/c7b28617b90d6c85ec3ac6cf.png)
长期大量饮酒者
我国酒精性肝病的发病率明显提高。导致酒精损伤的饮酒量因人而异,一般男性每日饮50%度酒100ml 以上,连续5年以上可导致酒精性肝病。
服用损肝药物者
俗话说“是药三分毒”,常见损肝药物有:抗结核病药、解热镇痛药、抗真菌药及某些抗癫痫、抗精 神病、抗甲状腺药、抗生素、降糖药、口服避孕药、部分中药。
营养过剩的肥胖者
肥胖者易发生脂肪肝,肝细胞内脂肪过度沉积,影响肝脏功能,持续发展也可进展至肝硬化,而常 常病人的不适症状轻微。
肝病的生活调理治疗
肝病生活禁忌:忌辛辣、忌烟、忌酒、忌食加工食品、忌滥用药、忌乱用补 品、忌过多食用蛋白饮食、忌高铜饮食、忌生活不规律、忌情志不畅、忌劳 累;
肝病患者饮食原则:适量摄入蛋白质、少量脂肪、丰富的维生素。蛋白质必 不可少,但不要过多多吃新鲜蔬菜瓜果。
如何看肝炎的化验结果
反映肝细胞有无受损及严重程度的指标: 谷丙转氨酶ALT(GPT)、谷草转氨酶AST(GOT)、腺苷脱氨酶(ADA)、胆酯酶(CHE) 、乳酸脱氢酶(LDH)等。
反映肝脏胆排泄、分泌及解毒功能的指标: 总胆红素(TBIL)、直接胆红素(DBIL)、总胆 酸(TBA)、血氨(NH3)。肝细胞损害时,其排泄、分 泌、运输及解毒功能出现障碍,造成血液中TBIL、DBIL、TBA和NH3浓度升高。
抗炎类
解毒类
•
•
参与体内三羧酸循环及糖代谢,激活多种酶,促进糖、脂肪及蛋白质代谢, 减轻组织损伤,促进修复
代表药物为GSH(还原型谷胱甘肽)、葡醛内酯、硫普罗宁 抗脂质过氧化,增强肝细胞膜对多种损伤因素的抵抗力 代表药物为水飞蓟素类、联苯双酯、双环醇 促进胆汁酸转运,达到退黄,降酶的作用 代表药物为熊去氧胆酸(UDCA)、丁二磺酸腺苷蛋氨酸
肝功能不全患者的用药选择
![肝功能不全患者的用药选择](https://img.taocdn.com/s3/m/b7102aeeb0717fd5370cdc3b.png)
肝功能不全患者的用药选择肝脏是许多药物代谢的主要场所,大多数药物的体内过程都与肝脏有关。
在慢性肝脏疾病时,常伴有部分肝细胞的坏死和不同程度的肝细胞纤维化,使肝脏的血流量降低,微粒体内代谢酶减少、活性降低,从而使药物的代谢减慢、药物半衰期延长。
会导致体内药物浓度过高而中毒。
长期的肝脏疾病可使肝脏的蛋白合成能力减弱,使血中的血浆蛋白的数量降低或结合部位的性质发生改变,对药物肝功能不全患者的药动学改变的蛋白结合减少,使游离型药物的浓度增加,容易引起不良反应,甚至发生蓄积中毒。
当肝功能不全时,药物生物转化减慢,药物排泄减慢,血中游离型药物增多,从而影响药物的效应并增加毒性。
特别是给予肝毒性的药物时更需慎重[1]。
一、肝功能不全患者如何选用抗菌药物患者选择抗菌药物时,除应考虑抗感染治疗的一般原则外,还应考虑肝功能不全患者使用此类抗菌药物是否会增加肝脏损害程度[2]、是否会发生药物相互作用增加毒性或对药物动力学等体内过程的影响等。
虽然目前还不能根据肝功能状态对抗菌药物的给药剂量做出非常准确的调整,但临床上遇到肝功能损害的患者, 在选择药物时一定要重视并考虑这个问题。
(1)主要由肝脏清除的药物,肝功能减退时清除明显减少,但并无明显毒性反应发生,肝病时仍可正常应用,但需谨慎,必要时减量给药,治疗过程中需严密监测肝功能。
红霉素等大环内酯类(不包括酯化物)林可霉素、克林霉素属此类。
(2)药物主要经肝脏或有相当量经肝脏清除或代谢,肝功能减退时清除减少,并可导致毒性反应的发生,肝功能减退患者应避免使用此类药物,氯霉素、利福平、红霉素酯化物等属此类。
(3)药物经肝、肾两途径清除,肝功能减退者药物清除减少,血药浓度升高,同时有肾功能减退的患者血药浓度升高尤为明显,但药物本身的毒性不大,严重肝病患者,尤其肝肾功能同时减退的患者在使用此类药物时需减量应用经肾肝两途径排出的青霉素类头孢菌素类均属此种情况。
(4)药物主要由肾排泄,肝功能减退者不需调整剂量。
肝病与药物肝毒性及其药物代谢
![肝病与药物肝毒性及其药物代谢](https://img.taocdn.com/s3/m/c8fc176302768e9950e73804.png)
肝病与药物肝毒性及其药物代谢周权浙江大学医学院附属二院药剂科临床药学室(310009)肝病状态下药物代谢能力如何、药物的肝毒性是否与药物代谢机制参与等话题,是临床药师必须关心的内容。
笔者简要介绍相关知识。
一、肝脏疾病状态下的药物代谢肝脏是药物代谢的主要场所,所以肝脏疾病对药物代谢酶的影响最为直接。
a. 病毒性肝炎甲型肝炎患者的CYP2A6活性显著下降,而且在儿童中更甚。
慢性活动性丙型肝炎患者CYP2D6和CYP3A4的活性显著下降。
经 -干扰素、利巴韦林联合治疗1个月后活性恢复。
提示经抗病毒药物治疗后,应用CYP2D6和CYP3A4底物时剂量无需调整。
与无脂肪变性的慢性丙型肝炎患者相比,慢性丙型肝炎合并脂肪变性患者的CYP2E1 mRNA表达增加37%。
机制与TNF-α mRNA表达增加和氧化应激(谷胱甘肽、超氧化物歧化酶、过氧化氢酶活性下降)有关。
提示这些患者应用CYP2E1底物时剂量应适度增加。
b. 肝硬化一般来说,肝硬化比其他肝脏疾病对药物代谢的影响要大。
肝硬化对一相代谢有抑制作用,而相对而言葡醛酸转移酶的活性不受肝硬化和慢性肝病的影响。
例如地西泮的去甲基化和普萘洛尔的氧化代谢受影响非常显著。
奥沙西泮、罗拉西泮的代谢纯粹为葡醛化,在肝硬化病中并无影响。
肝硬化患者的CYP3A4活性、含量和基因表达显著下降,且CYP3A4活性与血清白蛋白浓度显著相关,与血清转氨酶浓度则无关。
慢性活动性肝炎和代偿期肝硬化患者的CYP1A2和NAT2的活性显著降低。
因此,肝硬化患者使用CYP3A4或CYP1A2底物时剂量应降低,参考血清白蛋白浓度有一定的临床价值。
c. 酒精性肝病乙醇对肝药酶活性的影响呈双相性,短时间内大量饮酒,乙醇通过直接竞争性结合CYP2E1而产生药酶抑制作用;乙醇慢性中毒者肝内质网增生,CYP2E1数量和活性增加,使同时服用药物的代谢加快、t1/2缩短、药效降低。
d. 胆汁淤积肝内胆汁淤积患者的P450含量和CYP2E1显著受损,且下降程度与血清总胆红素、胆汁酸浓度相关,但与血清谷草转氨酶水平无相关性。
药物性肝损伤
![药物性肝损伤](https://img.taocdn.com/s3/m/422a8c41fe4733687e21aa41.png)
药物性肝损伤(drug-induced liver injury,DILI),是指人体暴露于常规剂量或高剂量药物后,因药物本身或其代谢产物对肝脏的直接毒性,或人体对药物或其代谢产物产生过敏或代谢特异质反应,而导致的肝脏损伤,是肝生化异常的常见原因之一。
DILI约占药物不良反应的6%,是药物上市后被撤回的最常见原因。
推算年发病率约19/10万,发病率男、女相似,但随着年龄增长显著增加。
药物性肝病占社区急性肝炎或黄疸患者的5%,是急性肝功能衰竭的主要原因(在美国占50%以上,其中36%为非甾体类消炎药,特别是对乙酰氨基酚),DILI是不明原因肝损伤的常见原因,尤其是50岁以上患者。
DILI可区分为可预测性和不可预测性两种,前者主要是药物的直接毒性作用所致。
近年来,由于对新药的筛选越来越严格、对药物不良反应的监测更加严密,除非药物有特异作用且评价效益与风险时前者明显地占上风,否则不能上市,因此临床上直接肝细胞毒性药物引起肝损伤的比例下降。
大多数(>95%)药物性肝损伤系不可预测性,其发生机制又可以分为:代谢特异质(metabolic idiosyncrasy)和过敏特异体质(hypersensitive idiosyncrasy)两类,其特征如表1。
免疫特异质肝损伤机制过敏即免疫机制介导的肝损害有以下特点:(1)不可预测性;(2)仅发生在某些人或人群(特异体质),或有家族集聚现象;(3)与用药剂量和疗程无关;(4)在实验动物模型上常无法复制;(5)具有免疫异常的指征;(6)可有肝外组织器官损害的表现。
免疫介导相关的药物性肝损的通常临床依据为:(1)使用过某种药物后,出现发热、关节痛、皮疹等肝外表现;(2)血液学检查发现嗜酸性细胞增多、循环免疫复合物阳性、非器官特异性的自身抗体阳性(药物相关的自身抗体);(3)肝组织学检查表现为嗜酸性细胞浸润、肉芽肿形成等。
在这类肝损中,通常药物中间代谢物通过抗原提呈细胞(树突状细胞)作用,经I型组织相容性抗原激活特异性细胞毒性T细胞介导致肝细胞损伤。
肝病患者慎用的药物
![肝病患者慎用的药物](https://img.taocdn.com/s3/m/83909c80ed3a87c24028915f804d2b160b4e86f2.png)
肝病患者慎用的药物有些药物对肝有损害,正常人用药时要注意。
有肝功能不全的患者尤其要谨慎,防止发生药源性肝损伤。
,,,0.0.0.0 91052,217,肝功能不全时根据肝功能减退时,对有关药物药动学影响和发生毒性反应的可能性可将药物分为以下4类,作为给药方案的调整时参考。
1.由肝脏清除,但并无明显毒性反应的药物须谨慎使用,必要时减量给药。
2.要经肝或相当药量经肝清除,肝功能减退时其清除或代谢物形成减少,可致明显毒性反应的药物这类药在有肝病时尽可能避免使用。
3.肝肾两种途径清除的药物在严重肝功能减退时血药浓度升高,加之此类病人常伴功能性肾功能不全,可使血药浓度更明显升高,故须减量应用。
4.要经肾排泄的药物在肝功能障碍时,一般无须调整剂量。
但这类药物中的肾毒性明显的药物,在用于严重肝功能减退者时,仍需谨慎或减量,以防肝肾综合征的发生。
,,,0.0.0.0 91053,217, (一)吸收肾功能不全患者肾单位数量减少、肾小管酸中毒。
如维生素D羟化不足,可导致肠道钙吸收减少。
慢性尿毒症患者常伴有胃肠功能紊乱,如腹泻、呕吐,这些均减少药物的吸收。
(二)分布肾功能损害能改变药物与血浆蛋白的结合率。
一般而言,酸性药物血浆蛋白结合率下降(苯妥英钠、呋塞米);而碱性药物血浆蛋白结合率不变(普萘洛尔、筒箭毒碱)或降低(地西泮、吗啡)。
其作用机制为:①血浆蛋白含量下降;②酸性代谢产物蓄积,竞争血浆蛋白,使药物蛋白结合率下降;③血浆蛋白结构或构型改变,导致药物与蛋白结合点减少或亲和力下降。
肾功能不全,血浆蛋白结合率改变,药物分布容积也可改变。
大多数药物表现为分布容积增加,某些蛋白结合率低的药物,如庆大霉素、异烟肼等分布容积无改变。
例外的是,地高辛分布容积减少。
肾功能不全所致药物蛋白结合率及分布容积改变的临床意义很难预测。
一方面,药物蛋白结合率下降,游离血药浓度增高,作用增强,毒性增加,但另一方面,分布容积增加,消除加快,半衰期缩短。
药物在肝脏内的代谢
![药物在肝脏内的代谢](https://img.taocdn.com/s3/m/683ec28e192e45361066f5c3.png)
药物在肝脏内的代谢药物在肝脏内的代谢一、药物在肝内的生物转化肝脏在药物(或外源性毒物)的代谢与处置中起着十分重要的作用,大多数药物与毒物在肝内经生物转化作用而排出体外。
肝脏的病理状态可以影响药物在体内的代谢过程,从而影响药物的疗效与不良反应。
另一方面,药物的代谢过程中的产物,可以造成肝损害。
药物在肝内所进行的生物转化过程,可分为两个阶段:①氧化、还原与水解反应;②结合作用。
(一)第一相反应多数药物的第一相反应在肝细胞的光面内质网(微粒体)处进行。
此系由一组药酶(又称混合功能氧化酶系)所催化的各种类型的氧化作用,使非极性脂溶性化合物产生带氧的极性基因(如羟基),从而增加其水溶性。
有时羟化后形成的不稳定产物还可进一步分解,脱去原来的烷基或氨基等。
其反应可概括如下:D+A→DANADPH+DA+H+→DAH2+NADP-DAH2+O2+HADPH→A+DOH+H2O+NADP-(注:D=药物;A=细胞色素P450)药酶就是光面内质网上的一组混合功能氧化酶系,其中最重要的就是细胞色素P450,其她有关的酶与辅酶包括:NADPH细胞色素P450还原酶、细胞色素b5、磷脂酰胆碱与NADPH等。
细胞色素P450(以下简称P450)就是一种铁卟啉蛋白,能进行氧化与还原。
当外源性化学物质进入肝细胞后,即在光面内质网上与氧化型P450结合,形成一种复合物,再在NADPH细胞色素P450还原酶作用下,被NADPH所提供的电子还原,并形成还原型复合物。
后者与分子氧(O2)作用,产生含氧复合物,并接受NADPH所提供的电子,与O2形成H2O,同时药物(或毒物)被氧化成为氧化产物。
细胞色素P450:药物代谢的第一相反应,主要在肝细胞的光面内质网(微粒体)进行,此过程系由一组混合功能氧化酶系(又称药酶)所催化促进,其中最重要的就是P450与有关的辅酶类。
P450酶系包括二个重要的蛋白质组分:含铁的血红素蛋白与黄素蛋白,后者能从NADPH将电子转移至P450底物复合体。
药物性肝损害ppt课件
![药物性肝损害ppt课件](https://img.taocdn.com/s3/m/8c47c33d83d049649a66580b.png)
约占黄疸住院病人中的2%-5%
“急性肝炎”住院病人中10% 老年肝病中可达20%以上 欧美国家急性肝功衰竭30%-40%
引起肝损的药物分类
抗结核药32.7% 中草药23.4% 抗肿瘤药 10.9% 解热镇痛药9.0% 抗霉菌药6.3% 抗生素 6.1%
心血管药3.0% 激素类药 2.6% 抗病毒药1.5 % 抗甲状腺及糖尿病药1.3% 其他 3.3%
组织学表现缺乏特异性
药物性肝病
背景
当前人类正暴露于6万种以上化学物质威胁中。其 中包括3万种以上的药品和保健品,另3万余种的食 品添加剂和环境污染物质。
目前至少有600多种药物可引起不同程度的肝损害 肝脏是药物代谢主要脏器,也是药物损伤的主要靶
器官。
定义
药物性肝病(DILD): Drug Induced Liver Disease,由于药物或其代谢产物引起的肝脏 损害,叫做药物性肝病,是目前的常见疾病
氧应激
两种机制均与氧应激有关
自由基:独自存在,含有一个或多个不配对电子的原子或 原子团。受磁场吸引、具高度活性,可捕获相临稳定分子中电 子,使后者成为自由基。
活性氧体系(ROS):各种活性分子氧(氧自由基)及其 他自由基总称。
正常肝脏有活性氧产生系统和消除系统, 两者平衡
药物性肝损害的病理(了解)
药物性肝损害机制
可预测性: 中毒性,直接毒性,剂量依赖,
可复制
不可预测性:特异体质性,非剂量依赖,
不可复制 分为:过敏性(免疫特异质):可伴过敏症状
代谢性(代谢特异质):与药酶CYP遗传 多态性相关
中毒性肝损害
药物
细胞色素P450酶系
转化、活化
亲电子物质和自由基等代谢产物
药物性肝损害PPT课件
![药物性肝损害PPT课件](https://img.taocdn.com/s3/m/7ca8955ef12d2af90242e6a3.png)
国外报导药源性肝损害的发生率占所有 药物反应病例的10~15%,仅次于皮肤粘膜 损害和药物热
15% 药源性肝损
85%
5
一般人群中10%的肝炎为药物性肝损害 老年人群中40%的肝炎为药物性肝损害
其它肝炎 90%
其它肝炎 60%
6
美国15-25%的暴发性肝功能衰竭由药物不 良反应引起,病死率高达50%
直接毒性作用
不再使用了的“毒药”,如:锑剂 还必须使用的“毒药”,如:各种肿瘤化疗药物 被挖掘的新的“毒药”,如:三氧化二砷(砒霜) 、
斑蝥
17
P450酶
自由基、氧基
药物
膜脂质过氧化
膜破坏溶酶 体酶释放
释放酶类
亲电子基
共价结合
肝细胞受损或
膜泵受损等
细胞死亡
18
直接毒性作用特点
❖可预测性 ❖剂量依赖性 ❖首次应用肝毒性物质和发生肝损伤之间的间隔常
8
药物性肝病的易患因素(2)
因素
酗酒
肥胖
影响
肝毒性阈值降低,发 生率增加,预后差 增加发生率
举例
对乙酰氨基酚、异烟肼、甲氨喋呤
氟烷、曲格列酮、他莫昔芬、甲氨喋呤
饥饿
增加发生率
肝脏病
增加肝损伤
糖尿病
增加肝纤维化
HIV/艾滋病 过敏反应增加
肾功能减退 增加肝毒性、纤维化
对乙酰氨基酚 海恩酮、培美林、抗结核药、布洛芬 甲氨喋呤 磺胺药 四环素、甲氨喋呤
是固定和短暂的 ❖暴露人群中肝损伤发病率高 ❖在实验动物模型上可复制 ❖代表药物:对乙酰氨基酚(扑热息痛) 、四氯化
碳、氯仿, 2-硝基丙烷、三氯乙烷
19
“间接”毒性作用
引起药物性肝损害的常见药物及相关机制
![引起药物性肝损害的常见药物及相关机制](https://img.taocdn.com/s3/m/4251e4910129bd64783e0912a216147917117ee7.png)
引起药物性肝损害的常见药物及相关机制药物性肝损伤是如何分型的临床上,药物性肝损伤可分为肝细胞损伤型、胆汁淤积型和混合型;如果以谷丙转氨酶升高ALT和/或谷草转氨酶AST明显升高为主要表现,通常提示肝细胞有损伤, ALT升高幅度超过3倍正常上限时,为肝细胞损伤型;如果以碱性磷酸酶AKP和/或谷氨酰转肽酶GGT明显升高为主要表现,AKP升高幅度超过2倍正常上限时,为胆汁淤积型;有些患者,既有ALT升高的表现,也有AKP或GGT升高的表现,为混合型.哪些指标异常预示严重的肝损伤ALT/AST、ALP/GGT等酶学指标升高的幅度越大,通常反映肝脏的损伤也越大;此外,总胆红素、白蛋白、凝血酶原时间等指标明显的异常,比如总胆红素明显升高、白蛋白明显降低、凝血酶原时间明显延长,通常意味着肝脏的损伤更严重,肝脏的真正功能受到了损害;临床上,出现“胆酶分离”转氨酶水平下降,但总胆红素却明显升高时,往往是严重肝损伤的特征,这些患者的预后不良,可出现急性肝功能衰竭,死亡风险增加,此时的转氨酶下降并不是好事情;在药物性肝损伤的患者中,如果ALT水平超过3倍正常上限,同时总胆红素水平超过2倍正常上限,那么,这些患者的预后同样不良,死亡率可高达10%;前言由于许多种药物有潜在的肝毒性,所以肝脏是较易受损害的脏器之一;据世界卫生组织统计,药物性肝损害已上升至全球死亡原因的第5位;在美国,50%以上的急性肝功能衰竭是由药物引起的;在我国,药物性肝炎约占急性肝炎住院患者的10%;此外,有研究发现,氨基转移酶升高的成人中有10%-50%是由药物引起的;因此,在临床医务工作中,我们应该重视药物所引起的肝损害;定义及流行病学由于药物及其代谢产物的毒性作用或机体对药物产生过敏反应从而对肝脏造成损害,引起肝组织发炎,即为药物性肝损害drug-induced liver injury, DILI;DILI的发生大多数是由于特异质或意外反应所致;同扑热息痛药所诱导的依赖过量药物所致的肝毒性相比,人们传统上认为特异质反应呈剂量非依赖性;然而,具有良好记载的致特质性药物性肝损伤的诸多药物已被证明有剂量依赖组分,对大多数药物而言,肝毒性是非常罕见的,据估计,其发生率在1/10000 - 1/ 100000范围内, 在大多数临床药物试验中,因所包含的患者人数最多不超过10000,而且药物的肝毒性几乎都是在上市阶段才得以发现的;所以,对多数药物而言,使用者用药后发生DILI的频率仍是未知的,在这方面,大多数流行病学的研究受到研究方法的局限性;在既往报道的许多研究中,药物与肝损伤的关系尚不确定;大部分流行病的逻辑研究是回顾性的,且缺乏标准化的诊断检查以排除引起肝损伤的其他原因;而且,许多研究来自于三级转诊中心,且许多研究有偏倚,药品不良反应少报漏报情况人所共知,当然DILI也不例外;因此,我们对DlLI真正发病率情况,仍然知之甚少;到目前为止,仅在法国有一个以人群为基础的针对DILI发生率所着手进行的研究,本研究表明,居民的DlLI发病率是100000, 此结果可作为DILI真实发生率的金标准8.来自瑞典和英国的回顾性研究,据报道粗发病率是每年每10万居民中有2-3人出现本病,这一结果可能被低估了;因黄疸住院的患者中有2-10%是源于药物性急性肝损害;在瑞典,%77/1164的肝病门诊患者是DILI所致,其中一半是新发病者,另一半是因为DILI住院治疗后门诊随访者;来自瑞士的一个研究表明,在住院患者中,DILI的总发病率是%;引起肝损害药物的种类引发药物性肝损害的药物品种几乎遍及各类药物,约有1 000多种,其中包括我们一直认为安全可靠的中草药17;不同种类药物引起肝损伤的比例国内外报道不一致,但归纳起来主要有以下几类:1.抗微生物药物:包括利福平,阿奇霉素,异烟肼,克拉霉素,左氧氟沙星,氟康唑,伊曲康唑,头孢他啶,阿昔洛韦,阿莫西林,头孢呋辛,头孢曲松,更昔洛韦,替卡西林/克拉维酸,头孢羟氨苄,头孢唑啉,头孢克洛,头孢哌酮,头孢噻肟,亚胺培南+西司他丁钠,红霉素,罗红霉素,庆大霉素,米诺环素,去甲万古霉素,吡哌酸,环丙沙星,呋喃妥因,甲硝唑,替硝唑,丙硫异烟胺,帕司烟肼,伏立康唑,利巴韦林等;2.中草药:包括雷公藤多甙,血脂康,小金丸,追风透骨丸,复方青黛丸,脉络宁,鳖甲煎丸,六味安消,壮骨关节丸,消核片,松龄血脉康,西黄丸,桃红清血丸,正天丸,大黄蔗虫丸,龙胆泻肝丸,双黄连口服液,生精胶囊,骨疏康,珍宝丸,痔血胶囊,骨康,癃闭舒,降脂片,仙灵骨葆,胃痛定,九郡败毒丸,银屑敌,通栓灵1 号,降压宝,鹿茸红参胶囊,4 号蜜丸,跌打止痛类中成药,含土茯苓汤剂,含何首乌汤剂,含藏红花汤剂,含全蝎、僵蚕、白附子汤剂,795 和792 号汤剂,土三七,溪黄草,何首乌等;目前已知的能够引起肝损伤的常用中药包括:黄药子、菊三七、苍耳子、何首乌、雷公藤、艾叶、望江南、苍术、天花粉、桑寄生、贯众、蒲黄、麻黄、柴胡、番泻叶、蜈蚣、合欢皮、丁香、川楝子、鸦胆子、毛冬青、蓖麻子、黎芦、丹参、罂粟、姜半夏、泽泻、大黄、虎杖、贯众、千里光、防己、土荆芥、肉豆蔻、商陆、常山、大枫子、朱砂、斑蝥、穿山甲、黄芩、缬草、乌头、白果等;已知可引起肝损伤的中药复方制剂包括有: 壮骨关节丸、小柴胡汤、大柴胡汤、复方青黛胶囊丸、克银丸、消银片丸、消核片、白癜风胶囊、白复康冲剂、白蚀丸、六神丸、疳积散、麻杏石甘汤、葛根汤、大黄牡丹皮汤、防风通圣散、湿毒清、血毒丸、追风透骨丸、消咳喘、壮骨伸筋胶囊、骨仙片、增生平、牛黄解毒片、天麻丸、复方丹参注射液、地奥心血康、昆明山海棠片等;需注意,即使是一些外用中药也可致不同程度的肝损伤:如鱼胆、鱼藤、海兔、雄黄、薄荷油、生棉子油、桐子及桐油等;因此,在服用上述中药时,尤其应该谨慎,无法用其他药物替代而必须选择上述中药治疗时,应注意定期到医院随访监测,以期早期发现肝损伤的信号;3.激素、抗甲状腺及降糖药物:包括泼尼松,甲泼尼龙,妊马雌酮,孕三烯酮,甲巯咪唑,丙硫氧嘧啶,格列喹酮,二甲双胍,格列吡嗪等;4.抗肿瘤药物:包括环磷酰胺,甲氨蝶呤,吡柔比星,阿柔比星,紫杉醇,门冬酰胺酶,索拉非尼,多西他赛,长春地辛,长春瑞宾,阿糖胞苷,氟脲嘧啶,氟达拉滨,奥沙利铂,舒尼替尼,阿那曲唑,托瑞米芬,曲妥珠单抗,亚砷酸,替吉奥,CHOP 方案环磷酰胺+阿霉素+长春新碱+泼尼松等;5.循环系统用药:包括辛伐他汀,阿托伐他汀钙,非诺贝特,吉非贝齐,氟伐他汀,洛伐他等;汀,普伐他汀,瑞舒伐他汀,阿昔莫司,藻酸双酯钠,氟桂利嗪,胺碘酮,硝酸异山梨酯,吲达帕胺,复方利血平氨苯蝶啶,1,6-二磷酸果糖等;6.神经系统用药:包括对乙酰氨基酚,别嘌醇,布洛芬,卡马西平,阿司匹林,安乃近,双氯芬酸,洛索洛芬,美洛昔康,尼美舒利,去痛片,复方氨酚烷胺片含对乙酰氨基酚,氨咖黄敏胶囊含对乙酰氨基酚,苯溴马隆,地西泮,米氮平,氯美扎酮等;7.调节机体免疫功能药物:包括环孢素15,吗替麦考酚酯,他克莫司各2,西罗莫司, 硫唑嘌呤,来氟米特,干扰素等;8.血液系统用药:低分子肝素, 噻氯匹定,尿激酶,蚓激酶等;9.消化系统用药:西咪替丁,美沙拉嗪等;10.其他:坦洛新,依达拉奉,异维A 酸,阿法骨化醇,阿苯达唑等;药物在肝内的生物转化肝脏在药物或外源性毒物的代谢和处置中起着十分重要的作用,大多数药物和毒物在肝内经生物转化作用而排出体外;肝脏的病理状态可以影响药物在体内的代谢过程,从而影响药物的疗效和不良反应;另一方面,药物的代谢过程中的产物,可以造成肝损害;药物在肝内所进行的生物转化过程,可分为两个阶段:①氧化、还原和水解反应;②结合作用;1.第一相反应多数药物的第一相反应在肝细胞的光面内质网微粒体处进行;此系由一组药酶又称混合功能氧化酶系所催化的各种类型的氧化作用,使非极性脂溶性化合物产生带氧的极性基因如羟基,从而增加其水溶性;有时羟化后形成的不稳定产物还可进一步分解,脱去原来的烷基或氨基等;其反应可概括如下:D+A→DA NADPH+DA+H+→DAH2+NADP- DAH2+O2+HADPH→A+DOH+H2O+NADP- 注:D=药物;A=细胞色素P450药酶是光面内质网上的一组混合功能氧化酶系,其中最重要的是细胞色素P450以下简称P450,其他有关的酶和辅酶包括:NADPH细胞色素P450还原酶、细胞色素b5、磷脂酰胆碱和NADPH等;P450是一种铁卟啉蛋白,能进行氧化和还原;当外源性化学物质进入肝细胞后,即在光面内质网上与氧化型P450结合,形成一种复合物,再在NADPH细胞色素P450还原酶作用下,被NADPH所提供的电子还原,并形成还原型复合物;后者与分子氧O2作用,产生含氧复合物,并接受NADPH所提供的电子,与O2形成H2O,同时药物或毒物被氧化成为氧化产物; P450:药物代谢的第一相反应,主要在肝细胞的光面内质网微粒体进行,此过程系由一组混合功能氧化酶系又称药酶所催化促进,其中最重要的是P450和有关的辅酶类;P450酶系包括二个重要的蛋白质组分:含铁的血红素蛋白和黄素蛋白,后者能从NADPH将电子转移至P450底物复合体;药物与P450结合位点与血红素分子非常接近,有利于电子的转移;药物与氧化型P450结合,此时血红素的铁为三价铁Fe3+,通过NADPH还原酶的作用,将NADPH的电子转移给P450,使其还原,血红素铁成二价Fe2+;还原型的P450药物复合物与氧分子作用,成为含氧复合物,并接受NADPH所提供的电子,与氧生成H2O,同时药物也被氧化,P450又成为氧化型Fe3+;如此反复循环,使药物进行第一相的代谢;P450实际上为同一家庭的多种异构型;迄今为止,人类P450的基因已发现有27种,编码多种P450;基本上分成至少4个基因族,又可进一步区分为不同亚族;其分类为CYP1,CYP2,CYP3和CYP4,亚族的分类按英语A、B、C……和阿拉伯数字1,2,3,……进一步分类;按其功能,人类的P450可分成二类;CYP1,2,3,主要代谢外源性化合物,如药物、毒物等,有交叉的底物特异性,常可被外源性物质诱导,在进化过程中,其保守性差;GYP4则主要代谢内源性物质,有高度特异性,通常不能被外源性物质诱导,在进行过程中相对保守;此类P450在类固醇、脂肪酸和前列腺素代谢中起作用;在药物代谢中起重要作用的P450;一般说来,药物经过第一相的氧化、还原等作用,变为极性和水溶性较高而活性低的代谢物,再经过第二相的结合作用,通过胆汁或尿液排到体外;但有些药物,在P450药酶作用下,转化为对肝细胞肝毒性的代谢物;2.第二相反应药物经过第一相反应后,往往要通过结合反应,分别与极性配体如葡萄糖醛酸、硫酸、甲基、乙酰基、硫基、谷胱甘肽、甘氨酸、谷酰胺等基因结合;药物的结合反应有两种类型,第一种药物与活性基团结合表39-2,第二种是被激活的药物与有关化合物结合通过结合作用,不仅遮盖了药物分子上某些功能基因,而且还可改变其理化性质,增加其水溶性,通过胆汁或尿液排出体外;药物结合作用的相对能力也有不同,如葡萄糖醛酸结合、乙酰化和甲基化是高能力组,甘氨酸、谷酰胺和硫酸结合为低能力组;例如,与硫酸结合通常是代谢苯环化合物的主要途径之一,但它有一定的限度,可能是可利用的“活性硫酸盐”PAPS含量有一定的限度;如低剂量的扑热息痛,主要是与硫酸结合,高剂量时则主要与葡萄糖醛酸结合;很大剂量时,由于结合能力耗竭,可能通过第一种途径,生成N-羟基衍生物,造成肝损害;发病机制药物在体内代谢过程中,大多数需经肝脏生物转化后被消除,药物或其代谢产物均可能对肝脏造成损伤;不同药物所导致的肝脏损伤机制不同;有些药物可以直接导致肝脏损伤,有些则需要在肝内转化成为另外一些物质对肝脏产生直接或间接的损害;药物性肝病可能的发病机制有:1.非免疫机制:包括直接损害及间接损害;直接损害主要有毒性代谢产物的作用,即某些药物在肝内经过P450药酶的作用,代谢转化为一些毒性产物,例如亲电子基、自由基和氧基,与大分子物质蛋白、核酸结合造成脂质过氧化,最终导致肝细胞坏死和凋亡;间接损害则是由于胆汁排泌机制出现障碍时,导致肝内胆汁淤积,肝细胞膜结构完整性被破坏,进而对肝脏造成损害;2.免疫机制:主要有药物作为半抗原造成变态反应和药物诱发的CYP抗体反应;前者为药物或其活性代谢产物作为半抗原与肝特异蛋白结合形成抗原,经抗原呈递细胞加工后,与MHC组织相容复合物分子一起被免疫活性细胞识别,导致变态反应,进而出现不同程度的肝脏损害;后者为药物在CYP转化为活性代谢产物,与CYP共价结合修饰蛋白质形成抗原,激活Th、B细胞产生抗体,进而对肝细胞产生损害;易感性因素药物性肝损害的易感性因素有以下几个方面:1.遗传性因素由于遗传基因差异可使得某些个体肝脏药酶系统与众不同, 故可呈现药物代谢的个体差异, 其中以CYP450 的酶基因变异最为重要;如CYP2D6 缺陷为异喹呱肝毒性的主要决定因子,实际上,超过75 %的异喹呱肝毒性患者为CYP2D6 缺陷,这种酶缺乏为常染色体隐性遗传;CYP2C19 缺陷与At rium 肝毒性有关,一项既往有At rium肝毒性的小量患者研究表明所有患者均有部分或完全的CYP2C19 缺陷,而在对照组中只有3 %~5 %存在缺陷,结论尚需大样本试验证实;乙酰化功能缺陷与2 型N2乙酰基转移酶NAT2 失活有关, NAT2 缺陷可致磺胺及肼苯酞嗪肝毒性;另在N2乙酰转移酶2 个基因位点发生的突变者,人群中存在着乙酰化快型和慢型两种类型;在乙酰化慢型者,异烟肼性肝损害发病的危险性较高;巯氧化缺陷可能与氯丙嗪肝炎有关; 谷胱甘肽合成缺陷对扑热息痛肝毒性更敏感;免疫系统的遗传变异可能与药物肝毒性有关, 一些HLA 单倍型与一些药物代谢有关,在HLA A11者,氟烷、三环类抗抑郁剂、双氯芬酸导致的肝损害发生率高,在HLA DR6 者,氯丙嗪导致的肝损伤发生率高,尤其是阿莫西林/克拉维酸肝毒性与HLA DRB1 1501 关系更密切;2.酶诱导及抑制因素是指某些亲脂性药物或外源性物质农药、毒物等可以使肝内药酶的合成明显增加, 从而对其他药物的代谢能力增加;到目前为止, 已知有200 多种的药物和环境中的化学物质, 具有酶诱导作用;例如苯巴比妥、保泰松、苯妥英钠、利福平、灰黄霉素、DDT、杀虫剂等;药酶的诱导有时会造成药物性肝损害或化学致癌;酶抑制作用正好与前者相反,有时药物通过抑制药酶, 使另外一种药物的代谢延迟, 药物的作用加强或延长;鉴于以上作用, 一种药物或毒物在体内代谢时, 对另一种药物的代谢可以产生巨大影响;这也是联合用药更容易发生药物性肝损害的重要原因;3.获得性因素:这些因素包括:1 年龄: 大于60 岁为异烟肼及呋喃坦啶的肝毒性促进因子;而儿童多对水杨酸盐毒性敏感,常可引起微囊泡性脂肪肝及Reye′综合征;2 性别:相比男性而言,女性更易出现甲基多巴及硝基呋喃肝毒性,而男性易患硫唑嘌呤所致肝炎;3 营养状况:可通过不同途径影响肝毒性;例如,肥胖可促进氟烷的肝毒性,而禁食及营养不良由于消耗肝细胞谷胱甘肽的储存,可促进扑热息痛性肝炎;4 妊娠:亦可为影响因素;例如,大部分四环素所致严重肝炎可在妊娠妇女接受静脉用药时发生;动物实验中,孕鼠对扑热息痛肝毒性更为敏感,可能由于胎儿及胎盘对谷胱甘肽过度利用有关;5 慢性酒精滥用:促进扑热息痛肝毒性,可能由复杂机制引起,包括CYP450 的诱导,由CYP2 E1 形成的毒性代谢产物,及由于谷胱甘肽缺陷降低了对这些代谢产物的抵抗力;6 药物相互作用: 可由不同途径产生药物肝毒性;如:酶的诱导可增加某种药物的毒性代谢产物,如在利福平-异烟肼合用时,利福平加速了异烟肼向毒性代谢产物的转换;苯巴比妥的酶诱导可因同样机制加速抗抑郁药的肝毒性;相反,酶阻滞亦可起作用,如在三乙酰夹竹桃毒素-雌激素相互作用时,三乙酰夹竹桃毒素通过阻滞CYP3A4 ,阻滞了雌激素的代谢,导致雌激素过量性胆汁淤积;7 自体合并的肝脏疾病或肝外疾病:自身合并有急性或慢性肝病并不更易有肝中毒,但在有进展性肝病的患者,肝损易于发生,部分是由于肝容量、对组织损伤的修复能力及重生肝细胞的减少所致;某些肝外疾病可加重药物的肝毒性,如甲亢可促进卤烷性肝炎, HIV 感染加重磺胺甲基异恶唑的肝毒性;8 炎症反应: 炎症反应本身可致动物对药物损伤敏感,亦可能是个体肝毒性易感性的重要决定因素之一;在急性与慢性炎症状态下可影响药物毒性的敏感性;在急性炎症,炎症调节因子的增加会加速甚至启动细胞死亡过程,促进药物的肝毒性作用,例如:在人体中,雷尼替丁可导致很轻微并可逆转的异质性肝损,而对于小鼠没有肝毒性,但当预先用小剂量的脂多糖内毒素LPS使小鼠对雷尼替丁肝毒性易感,即可产生类似于人的药物异质性反应,考虑与LPS 导致的炎症调节作用有关;而在慢性炎症中,细胞会有适应的改变以减少药物的损伤;临床病理类型及其表现药物引起的肝细胞毒性包括几乎任何急性或慢性肝损害的临床和病理表现, 在所有类型中最常见的是急性肝炎;据报道由药物引起的急性肝损伤占因黄疽住院患者的5-10%, 占急性肝衰竭的1/3-1/2,而药物是美国和欧洲暴发性肝衰竭最常见原因;药物性肝损害的主要临床表现类似于急性黄疽性肝炎或胆汁淤积性肝病,,急性肝炎分3种类型:1.肝细胞损伤型急性肝细胞性肝炎最常见, 约占%, 通常与病毒性肝炎相似, 可导致暴发性肝衰竭和数天内死亡或致隐袭性肝硬化, 如氟烷;多表现为发热、乏力、纳差和转氨酶升高至正常的2倍以上;引起此型肝损害的药物多见于扑热息痛、异烟腆、曲格列酮和抗病毒药等, 多在服药1周到1个月发病, 停药后恢复较快;2.胆汁淤积型急性胆汁淤积性肝炎约%,, 可能被误解为胆道阻塞;这种类型的损伤可能与免疫介导的门静脉炎氯丙嗪或单独归因于转运系统的抑制环抱菌素A,但预后较好, 不常危及生命, 表现为黄疽、瘙痒,ALT中度增加;常见药物血管紧张素转换酶抑制剂、阿莫西林/克拉维酸、冬眠灵、红霉素等;起病隐匿, 服药时间都在1个月以上, 停药后恢复较慢;3.混合型混合性肝炎约%,多由苯妥英钠、磺胺类药物引起;兼具肝细胞性肝炎和胆汁淤积性肝炎的特点,ALT, 和ALP中等至显着增加, 类似于非典型肝炎或颗粒区肝炎,此外, 还可出现急性肝坏死;药物性肝损害的预防临床工作中,可以通过以下几个方面尽可能减少或避免药物性肝损害的发生:1.用药前,认真评价患者机体的基础情况,严格掌握适应症;2.对于曾有药物过敏史或过敏体质的患者,选用的药物、剂量及给药途径应倍加注意;3.具有肝毒性的药物应避免联用,对于肝功能不良患者、老年人及儿童应慎用或减量使用;4.制定合理给药方案:尽可能减少多药并用,避免剂量偏大,疗程过长;5.注意观察患者体征、监测肝功能,一旦发现肝功能异常或黄疸,尽快查明原因,更换治疗药物,使药物性肝损害降至最低;临床药师应积极向患者宣传安全合理用药,并应消除患者一些错误观念;如中药同样可致不良反应,而且近年发生率呈不断上升趋势;临床药师应与医师和护师通力协作,积极开展药物不良反应监测工作,并注意收集国内外文献报道的药物性肝损伤信息,协助医师对药物性肝损伤尽快做出判断,及早采取相应;。
药物与肝脏的有关问题
![药物与肝脏的有关问题](https://img.taocdn.com/s3/m/3a15461f50e2524de5187ed5.png)
• 分类:A型不良反应(量变型异常)、B型 不良反应(质变型异常)。
Davies分类
• A型:主要是由于药物的药理作用过强所致, 可以预测,通常与剂量有关。 发生率高,死亡率低。
• B型:是与正常药理作用完全无关的一种异 常反应,一般很难预测,常规的毒理学筛 选难以发现。特异体质反应。 发生率低,死亡率高。
• 药源性消化系统疾病的发生有种族易感性, 与性别、年龄、并存疾病等许多因素有关。
• 肝脏是人体内进行解毒及药物转化的主要 器官,最容易受到药物或毒物的损害而导 致肝病。
药物性肝病
发生机制
• 直接毒性作用:可以预测,呈剂量依赖 性,可复制疾病模型。
• 特异体质反应:不可预测,非剂量依赖 性,无法复制疾病模型,包括间接毒性 和免疫毒性两大类。
间接毒性作用
• 药物经1相药酶催化后变为有毒物质或毒性 增加。
• 具有解毒作用的1相药酶先天或后天缺乏。 • 1相药酶被诱导或抑制,低毒或无毒的药物
变得有毒,或者相反。 • 2相药酶减少或缺乏,毒性代谢产物堆积。
免疫毒性作用
• 不可预测性; • 仅发生在某些人群,可有家族集聚现象; • 与用药剂量和疗程无关; • 通常无法复制实验动物模型; • 具有免疫异常或变态反应相关症象,可有
肝外组织器官损害的表现。
变态反应相关症象
• 使用过某种药物后,出现发热、关节痛、皮 疹等 肝外症象;
• 血液学检查显示嗜酸粒细胞增多、循环免疫 复合物和非器官特异性的自身抗体阳性,以 及药物相关自身抗体或致敏T淋巴细胞;
• 肝活检显示嗜酸粒细胞浸润、肉芽肿形成等。
流行现状
➢ 损肝药物高达1000多种,几乎遍及各类药物,包括 抗生素、抗结核药、抗真菌药、降血脂药、解热镇 痛药以及中草药。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
肝病与药物肝毒性及其药物代谢周权浙江大学医学院附属二院药剂科临床药学室(310009)肝病状态下药物代谢能力如何、药物的肝毒性是否与药物代谢机制参与等话题,是临床药师必须关心的内容。
笔者简要介绍相关知识。
一、肝脏疾病状态下的药物代谢肝脏是药物代谢的主要场所,所以肝脏疾病对药物代谢酶的影响最为直接。
a. 病毒性肝炎甲型肝炎患者的CYP2A6活性显著下降,而且在儿童中更甚。
慢性活动性丙型肝炎患者CYP2D6和CYP3A4的活性显著下降。
经 -干扰素、利巴韦林联合治疗1个月后活性恢复。
提示经抗病毒药物治疗后,应用CYP2D6和CYP3A4底物时剂量无需调整。
与无脂肪变性的慢性丙型肝炎患者相比,慢性丙型肝炎合并脂肪变性患者的CYP2E1 mRNA表达增加37%。
机制与TNF-α mRNA表达增加和氧化应激(谷胱甘肽、超氧化物歧化酶、过氧化氢酶活性下降)有关。
提示这些患者应用CYP2E1底物时剂量应适度增加。
b. 肝硬化一般来说,肝硬化比其他肝脏疾病对药物代谢的影响要大。
肝硬化对一相代谢有抑制作用,而相对而言葡醛酸转移酶的活性不受肝硬化和慢性肝病的影响。
例如地西泮的去甲基化和普萘洛尔的氧化代谢受影响非常显著。
奥沙西泮、罗拉西泮的代谢纯粹为葡醛化,在肝硬化病中并无影响。
肝硬化患者的CYP3A4活性、含量和基因表达显著下降,且CYP3A4活性与血清白蛋白浓度显著相关,与血清转氨酶浓度则无关。
慢性活动性肝炎和代偿期肝硬化患者的CYP1A2和NAT2的活性显著降低。
因此,肝硬化患者使用CYP3A4或CYP1A2底物时剂量应降低,参考血清白蛋白浓度有一定的临床价值。
c. 酒精性肝病乙醇对肝药酶活性的影响呈双相性,短时间内大量饮酒,乙醇通过直接竞争性结合CYP2E1而产生药酶抑制作用;乙醇慢性中毒者肝内质网增生,CYP2E1数量和活性增加,使同时服用药物的代谢加快、t1/2缩短、药效降低。
d. 胆汁淤积肝内胆汁淤积患者的P450含量和CYP2E1显著受损,且下降程度与血清总胆红素、胆汁酸浓度相关,但与血清谷草转氨酶水平无相关性。
细胞色素b5含量、NADPH-细胞色素还原酶活性无改变。
慢性肝病伴血清胆红素浓度升高患者的CYP1A2、CYP2C8/10含量显著下降。
提示这些患者应用经P450代谢的药物时,剂量应下降,参考血清胆红素和胆汁酸浓度具有临床价值。
二、肝毒性与药物代谢药物性肝损伤的机制可纳为:(1)药物的直接损伤;(2)免疫特异质机制损伤;(3)代谢特异质机制损伤和(4)氧应激损伤。
本文着重介绍与药物代谢有关的机制。
某些药物在肝细胞内经CYP450代谢产生亲电子物、自由基、氧基等,他们可与肝细胞内大分子物质共价结合,引起膜系统脂质过氧化,破坏膜完整性和膜Ca2+-ATP酶系,扰乱细胞内外Ca2+稳态,影响线粒体、内质网等重要细胞器的功能,并最终导致肝细胞损伤甚至死亡。
1 长期饮酒者服用对乙酰氨基酚后致肝细胞损伤- 118 -在对乙酰氨基酚代谢过程中,GST起到解毒作用。
对乙酰氨基酚在治疗剂量范围内使用时,绝大部分通过葡醛酸化和硫酸化而解毒,少量经CYP2E1、CYP1A2和CYP3A4代谢为反应性代谢物N-乙酰苯亚胺醌(NAPQI)。
见图1。
NAPQI通过谷胱甘肽结合反应而解毒。
但服用过量对乙酰氨基酚可耗竭肝细胞内的谷胱甘肽,NAPQI便与细胞内大分子结合,造成肝细胞损伤。
上述CYP诱导剂可加重对乙酰氨基酚的肝毒性,而及时应用谷胱甘肽前体乙酰半胱氨酸可减轻肝毒性。
2 快乙酰化者应用异烟肼的肝毒性快乙酰化者的基因型为NAT2*4的纯合子(EMs)或杂合子(IMs)。
慢乙酰化者为各种突变等位基因的组合,其发生率白种人为50%~59%,中国人为20%,日本人为8%~10%。
快乙酰化者服用异烟肼后肝毒性发生率要大于慢乙酰化者,而且异烟肼和利福平合用可明显增加肝毒性。
实验证明,联合用药的肝毒性增加与肝细胞脂质过氧化及CYP2E1活性增加有关。
口服银杏提取物除对人体CYP2E1和NAT2活性有抑制作用,还有自由基清除作用和线粒体膜Ca2+-ATP 酶保护作用,因此服用银杏提取物可以降低快乙酰化者以及异烟肼联用利福平引起的肝毒性。
3 曲格列酮撤出市场的原因及机制曲格列酮用于治疗II型糖尿病,2%的接受曲格列酮治疗的患者谷丙转氨酶异常升高,大约1/1250的患者出现黄疸,1/40000~50000的患者出现不可逆的肝衰竭。
CYP2C8、CYP3A4和CYP2C19介导了曲格列酮代谢为醌的过程,这些酶的多态性可能与其肝毒性有关。
曲格列酮肝损害是多发于CYP2C19*2/*2、CYP2C19*2/*3和CYP2C19*3/*3的个体。
也多发于GSTT1和GSTM1双无效突变病例。
CYP450个体差异的检测等. 这些问题的解决将有助于进一步了解药源性肝损伤的发生和发展,并对药源性肝损伤的预防和治疗起指导作用。
对于具有直接肝毒性的药物,如果其代谢相关CYP450被抑制,那么肝毒性的发生将不可避免。
近年来由于对新药筛选和评审的严格要求,此类药物很难通过临床前实验和临床试验而上市,因此临床上因CYP450 抑制而引起肝损伤的发生率较低。
但临床实践中,必须注意代谢性药物相互作用引发的肝毒性发生。
例如辛伐他汀、阿托伐他汀和洛伐他汀具有潜在肝损作用,具有临床意义的血清转氨酶升高(>正常上限3倍)的发生率为0.5%~2.0%。
但若与CYP3A4强抑制剂合用时,肝损作- 119 -用将大大增加。
与CYP3A4底物合用时也要注意,例如笔者在临床上曾发现一例因为硝苯地平与血脂康(含洛伐他汀)相互作用导致的肝功能异常反应。
机制是两种药物均是CYP3A4的底物,可发生竞争反应,导致他汀药物浓度增加。
他汀类药物的肝毒性具有剂量依赖性。
临床意义突出的CYP的底物、抑制剂和诱导剂见表1。
表3-1 CYP的主要底物CYP 底物CYP1A2 利多卡因,非那西丁,萘普生,美西律,普罗帕酮,维拉帕米,氟他胺,β-受体阻滞剂,咖啡因,茶碱,齐留通,褪黑素,氯氮平,氟哌啶醇,氯米帕明,他克林,利鲁唑,石杉碱甲CYP2C8 西立伐他汀,紫杉醇,罗格列酮,吡格列酮CYP2C9 甲苯磺丁脲,氯沙坦,苯妥英,S-华法林,氟伐他汀,双氯芬酸,布洛芬,氟比洛芬,塞来昔布,托拉塞米,格列吡嗪,格列本脲,扎鲁司特CYP2C19 丙米嗪,氯米帕明,氯胍,阿米替林,西酞普兰,地西泮,奥美拉唑,兰索拉唑,泮托拉唑,托吡酯,美芬妥英,普萘洛尔CYP2D6 可待因,曲马多,抗心律失常药,抗抑郁剂,利培酮,奋乃静,β受体阻滞剂,卡托普利,右美沙芬,异喹胍,甲氧氯普胺,地昔帕明,昂丹司琼CYP2E1 含氟吸入麻醉药,氯唑沙宗,对乙酰氨基酚CYP3A4 利多卡因,普罗帕酮,奎尼丁,氯吡格雷,阿司咪唑,特非那定,西沙必利,氯雷他啶,莫沙必利,多泮立酮,环孢素,他克莫司,西地那非,洛伐他汀,辛伐他汀,阿托伐他汀,咪达唑仑,阿普唑仑,三唑仑,卡马西平,丁螺环酮,麦角类药物、蛋白酶抑制剂,美沙酮,二氢吡啶类钙通道阻滞剂,阿霉素,紫杉醇,长春新碱,他莫西芬,雌二醇,西布曲明,可的松,甲泼尼龙,瑞格列奈,睾酮,非那甾胺,地塞米松表3-2 CYP的主要抑制剂和诱导剂CYP 抑制剂诱导剂CYP1A2 西米替丁,氟伏沙明,异烟肼,干扰素,红霉素,克拉霉素,依诺沙星,环丙沙星,诺氟沙星苯妥英,利托那韦,利福平,苯巴比妥,奥美拉唑CYP2C9 胺碘酮,氟伐他汀,氟伏沙明,氟康唑,甲硝唑,磺胺甲唑,利托那韦,氯霉素,异烟肼,氟西汀,西咪替丁卡马西平,苯巴比妥,苯妥英,利福平,利托那韦,奈非那韦CYP2C19 氟伏沙明,氟西汀,利托那韦,噻氯匹定,奥美拉唑利福平,苯巴比妥,阿司匹林- 120 -CYP2D6 氟西汀,帕罗西汀,苯海拉明,塞来昔布,普罗帕酮,奎尼丁,特比萘芬,利托那韦CYP2E1 双硫仑异烟肼,乙醇CYP3A4 酮康唑,伊曲康唑,甲硝唑,葡萄柚汁,环孢素,氟西汀,氟伏沙明,萘法唑酮,地尔硫,维拉帕米,利托那韦,茚地那韦,奈非那韦,红霉素,克拉霉素卡马西平,苯巴比妥,乙琥胺,利福平,利福喷丁,地塞米松,奈韦拉平、依法韦瑞- 121 -肝病与药物肝毒性及其药物代谢作者:周权作者单位:浙江大学医学院附属二院药剂科临床药学室,3100091.杜文惠HBsAg 转阴后检测HBV-DNA 的临床意义(附30例报告)[会议论文]-20072.钮志林.徐密琴.沈燕.叶杨.吴建成阿德福韦酯治疗乙型肝炎后失代偿期肝硬化的临床研究[会议论文]-20073.徐承富.徐磊.石巧娟.虞朝辉.厉有名不同方案缺血预处理对小鼠肝脏缺血再灌注损伤的影响[会议论文]-20074.竟永华.李行.郭剑非.JING Yong-hua.LI Xing.GUO Jian-fei美国FDA药物肝毒性监测和管理文件简析[期刊论文]-中国药物警戒2006,3(6)5.王临润.张国兵.黄明珠.申屠建中.徐农吉西他滨固定速率输注的峰浓度与血液学毒性的相关性研究[会议论文]-20076.王文虎.王鲁文.龚作炯肝硬化腹水低钠血症的发生率及其临床意义[会议论文]-20077.李玉凤.吴纯启.廖明阳药物特异质肝毒性的发生机制及预测筛选方法[期刊论文]-国外医学(药学分册)2005,32(5)8.张嫡群.石晓伟.王云志.ZHANG Di-qun.SHI Xiao-wei.WANG Yun-zhi药物代谢在新药研究中的作用[期刊论文]-中国药学杂志2006,41(11)9.戚静燕.鲍红荣.俞建平.陈振明.王佶.王海燕高效液相色谱法同时测定人血浆中乙酰半胱氨酸和谷胱甘肽浓度[会议论文]-200710.何小爱.刘智.程泽能高通量药物代谢与毒性筛选平台研究进展[期刊论文]-中南药学2008,6(5)本文链接:/Conference_6543507.aspx。