材料力学第11章 压杆稳定

合集下载

第11章压杆的稳定性分析与设计

第11章压杆的稳定性分析与设计
2
d

d
2
d

2 = 0
+

令 2 =

d 2

这样一个二阶常系数线性微分方程,其通解为
w
= sin + cos
式中,A、B为待定常数,可以通过压杆边界条件确定
w(0) = 0, w(l) = 0
大连大学
33
11.2.1 两端铰支的压杆
将边界条件w(0) = 0和 w(l) = 0代入 = sin + cos ,可求得
FF
F
F
F
F
F
F<Fcr
Fcr
Δ

临界点
F>Fcr
Δ
O
稳定
大连大学
不稳定
22
11.1 弹性平衡稳定性的基本概念——
11.1.3 三种类型的压杆的不同临界状态
大连大学
23
11.1.3 三种类型的压杆的不同临界状态
▪ 不是所有受压杆件都会发生屈曲,也不是所有发生屈曲的压杆都是弹
性的。理论分析与试验结果都表明,根据不同的失效形式,受压杆件
形,或称为临界状态(critical state)。处于临界状态的平衡构形,有
的是稳定的,有的是不稳定的,也有的是中性的。
▪ 非线性弹性稳定理论已经证明了:对于细长压杆,临界平衡构形是稳
定的。
▪ 使杆件处于临界状态的压缩载荷称为临界载荷(critical load),用Fcr
表示。
大连大学
21
11.1.2 临界状态与临界载荷
=0
sin = 0
要使 sin = 0, 或者sin 必等于零。但若等于零,且由 = 0可知此

材料力学之压杆稳定

材料力学之压杆稳定

材料力学之压杆稳定引言材料力学是研究物体内部受力和变形的学科,压杆稳定是其中的一个重要内容。

压杆稳定是指在受到压力作用时,压杆能够保持稳定,不发生失稳或破坏的现象。

本文将介绍压杆稳定的基本原理、稳定条件以及一些常见的失稳形式。

压杆的受力分析在进行压杆稳定分析前,我们首先需要对压杆受力进行分析。

压杆通常是一根长条形材料,两端固定或铰接。

在受到外部压力作用时,压杆会受到内部的压力,这些压力会导致杆件产生变形和应力。

在分析压杆稳定性时,我们主要关注压杆的弯曲和侧向稳定性。

压杆的基本原理压杆的稳定性是由杆件的弯曲和侧向刚度共同决定的。

当压杆弯曲和侧向刚度足够大时,压杆能够保持稳定。

所以,为了提高压杆的稳定性,我们可以采取以下几种措施:1.增加杆件的截面面积,增加抗弯能力;2.增加杆件的高度或长度,增加抗弯刚度;3.增加杆件的横向剛性,增加抗侧向位移能力;4.添加支撑或加固结构,增加整体稳定性。

压杆的稳定条件压杆稳定的基本条件是在承受外部压力时,内部应力不超过材料的极限强度。

当内部应力超过材料的极限强度时,压杆将会发生失稳或破坏。

在实际工程中,我们一般采用压杆的临界压力比来判断压杆的稳定性。

临界压力比是指杆件在失稳前的临界弯曲载荷与临界弯曲载荷之比。

当临界压力比大于1时,压杆是稳定的;当临界压力比小于1时,压杆是不稳定的。

临界压力比的计算可以采用欧拉公式或者Vlasov公式等方法。

这些方法能够给出压杆在不同边界条件下的临界压力比。

在工程实践中,我们可以根据具体问题选择合适的方法来计算临界压力比。

压杆的失稳形式压杆失稳通常有两种形式:弯曲失稳和侧向失稳。

弯曲失稳压杆的弯曲失稳是指杆件在受到外部压力作用时,发生弯曲变形并导致失稳。

在弯曲失稳中,压杆的弯曲形态可以分为四种:1.局部弯曲失稳:杆件出现弯曲局部失稳,形成凸起或凹陷;2.局部弯扭失稳:杆件出现弯曲和扭曲共同失稳;3.全截面失稳:整个杆件截面均发生失稳;4.全体失稳:整个杆件完全失稳并失去稳定性。

第11章压杆稳定

第11章压杆稳定

材料力学
第29页/共63页
二、折减因数法
s
F A
[s w ]
s cr
nst
scr、nst与压杆柔度有关,[sw]是的 函数。
[sw]=j [s ]
[s ]——强度许用应力 j —— 折减因数 j 1
稳定条件
与柔度有关
s FP j[s ] 工作应力不大于
A
稳定许用应力
注 不必由柔度判断压杆属何种性质的杆,简化计算。 意
强度 条件
sr
[s ]
s0
n
相当应力不大 于许用应力
极限应力
s0
s
{
s
sb
塑性材料 脆性材料
极限应力和安全因数只与材料有关,与实 际应力状态无关,即强度许用应力为常数。
材料力学
第27页/共63页
稳定 条件
s
F A
[s
w
]
s0
nst
s cr
nst
工作应力不大于稳定许用应力。
极限应力(临界应力)和稳定安全因数不仅 与材料有关,而且与实际压杆的长度、约束 条件、横截面尺寸和形状有关,即与实际压 杆的柔度有关,所以稳定许用应力不是常数。
z
ml
iz
1 940 14.43
65.1
第36页/共63页
F A
z
材料力学
l1 z
B l1
y Fx
z
h
b
F x
x-z 面内,两端固定
绕y轴发生失稳
m = 0.5
iy
b 23
20 23
5.77 mm
y
ml
iy
0.5 880 5.77
76.3

第11章 压杆稳定性问题

第11章  压杆稳定性问题

相等,则此压杆的临界压力又为多少?
(压杆满足欧拉公式计算条件)
h
动脑又动笔
解: 一端固定,一端自由,长度因数 μ=2 在应用欧拉公式时,截面的惯性
矩应取较小的I 值。
Iy 1 3 1 hb 90 403 mm 4 48 104 mm 4 12 12
b
F
l
1 3 1 I z bh 40 903 mm 4 243 104 mm 4 12 12
理解长细比、临界应力和临界应力总图的概念,熟 悉各类压杆的失效形式。
§11–1 压杆稳定性的基本概念
① 强度 衡量构件承载能力的指标 ② 刚度 ③ 稳定性 工程中有些构件具有足够的强度、刚度,却不一定能安全 可靠地工作。 杆件在各种基本变形下的强度和刚度问题在前述各章节中 已作了较详细的阐述,但均未涉及到稳定性问题。事实上, 杆件只有在受到压力作用时,才可能存在稳定性的问题。
屈曲曲线是偏离原直线轴线不远的微弯状态。
F F EI L
M d2w 2 EI dx
§11–2 细长压杆的临界荷载—欧拉临界力
一、两端铰支压杆的临界力
多大的轴向压力才会使压杆失稳?
d2w EI 2 Fw 0 dx
y
M EI x w L

F
k2
F EI
F
F
x
d2w 2 k w0 2 dx
§11–3长细比的概念 三类不同压杆的判断
三、临界应力总图
cr
S
P
cr s
cr a b
2E cr 2
粗短杆 s
s s a
b
中长杆
P
细长杆

材料力学课件(压杆稳定性)

材料力学课件(压杆稳定性)

2 EI
2 a2
改变力F指向,BD成为压杆,临界压力
F2
2 EI
2a 2
Fcr
比较:Fcr Fcr
1 2 EI
2FAB FBD 2 a 2
例9-4.一端固定一端自由压杆,长为 l,弯曲刚度
为EI,设挠曲线方程
w
2l 3
(3lx 2
x3)
,为自由
端挠度。试用能量法去定临界压力的近似值。
思考: P 3169-4,习题9-11,13,14,18
练习: P 319习题9-10,12,15,17
(3)合理稳定性设计
[ ]st

L
i
成反比
合理截面:约束性质接近时,iminimax ——组合截面 提高 i ——使截面积远离形心
增强约束:缩短相当长度
思考:含有压杆的超静定问题
温度变化引起的稳定性问题
、[]st与 成反比
值:木杆——式(9 11,12)
钢杆——表 92,3
(2)稳定性条件
F A
[ ]st
[ ]
稳定性r 或 与 或 i 为非线性关系,选择截面
尺寸时需用迭代法
例9-5. Q235钢连杆,工字型截面A=552mm2,Iz= 7.40×104mm4,Iy=1. 41×104mm4,有效长度l= 580mm,两端柱形铰约束,xy平面失稳μz=1,xz 平面失稳μy=0.6,属 a 类压杆,轴向压力F=35kN, [σ]=206MPa。试求稳定许用应力,并校核稳定性。
思考:比较一根杆的柔度与柔度的界限值
影响大柔度、中柔度和小柔度杆临 界应力因素的异同
3. 压杆的稳定性条件与合理设计
(1)稳定许用应力
实际压杆与理想压杆的差异:初曲率、压力偏心、 材料缺陷等

第11章压杆稳定

第11章压杆稳定

压杆截面如图所示。两端为柱形铰链约束,
若绕 y 轴失稳可视为两端固定,若绕 z 轴失稳可视为 两端铰支。已知,杆长l=1m ,材料的弹性模量
E=200GPa,sp=200MPa。求压杆的临界应力。
解:
iy 1 3 ( 0 . 03 0 . 02 ) Iy 12 0.0058m A 0.03 0.02
3.压杆失稳:
弹性杆件 稳定直线平衡
F Fcr
F Fcr
F Fcr
F Fcr
微小扰动 恢复直线平衡 不稳定直线平衡
F Fcr
弯曲 除去扰动
v
弯曲
微小扰动
新的弯曲平衡 随遇平衡
除去扰动
F Fcr 除直线平衡形式外,无穷小邻域内,可能微弯平衡

压杆从直线平衡形式到弯曲平衡形式的转变,称为失稳
一、两端铰支的细长压杆:
x
Fcr
F M(x)=Fw
l m w B m
m
x
m
B y F
x
y
Fcr
压杆任一 x 截面沿 y 方向的位移 w f ( x ) 该截面的弯矩
M ( x ) Fw
杆的挠曲线近似微分方程
EIw '' M ( x ) Fw
2
( a)
m
F 令k 得 w '' k 2 w 0 (b) EI
16
4.压杆的临界压力: 稳 定 平 衡 临界状态
过 渡
临界压力:Fcr
不 即:使压杆保持在微 稳 弯状态下平衡的最小 定 轴向力。 平 衡
F Fcr —稳定平衡状态 F Fcr —临界平衡状态 F Fcr —不稳定平衡状态

材料力学-压杆稳定

材料力学-压杆稳定

A
பைடு நூலகம்
B
L
L
C
3、钢制矩形截面杆的长度为L=1.732米,横截面为 60×100,P=100KN,许用应力为[σ]=30MPa, 弹性模量E=200GPa,比例极限σP=80MPa, 屈服极限σS=160MPa,稳定安全系数nw=2, a=304MPa,b=1.12MPa。构件安全吗?
L
100
60
4、AB杆的两端固定,在20OC时杆内无内力。已知: 杆长为L=400毫米,杆的直径d=8毫米,材料的弹性 模量为E=200GPa,比例极限为σP=200Mpa,线胀 系数α=1.25×10-51/OC,杆的稳定安全系数为2,当 温度升高到40OC时,校核杆的稳定性。
i I D2d2 16mm A4
得11.713 61230108 P
3、选用公式,计算临界应力
AB为大柔度杆
FcrcrA
2E 2
A
2lE2I118kN
4、计算安全系数
n F cr FN
1184.4 26.6
2nst3
5、结论
AB杆满足稳定性要求
1、圆截面杆BD的直径为d=35毫米,采用普通碳 钢,弹性模量 E=200GPa,比例极限为σP= 200MPa,屈服极限为σS=235MPa,a=304 MPa,b=1.12 MPa,稳定安全系数取nw=3, 载荷G=30K N,校核BD杆的稳定性。
cr
2E 2
临界应力的欧拉公式
塑性材料在压缩时的应力应变曲线
σ
σp
σs
O
σ
σp
σs
O
细长杆 1
σ
当临界应力小于或等于材料的比例极限时 cr p σp
σs

材料力学-第11章 压杆稳定new

材料力学-第11章 压杆稳定new

引言
压杆稳定的利用 - 柔性电子器件
材料力学-第11章 压杆稳定
引言
基本概念
F
压杆失稳(屈曲): 受压杆件由直线平衡状态变为弯曲平衡状态 临界载荷:
使得受压杆件由直线平衡态转为弯曲平衡态的临界力
材料力学-第11章 压杆稳定 受压杆件为什么会失稳?
F
引言
杆件压力超过临界载荷时,弯曲构型具有更 小的应变能
Fcr
π 2 EI
l
2
这一表达式称为欧拉公式。其中l为不同压杆屈曲后挠曲线上正弦 半波的长度,称为有效长度(effective length);
为反映不同支承影响的系数,称为长度因数(coefficient of
1ength),可由屈曲后的正弦半波长度确定。
材料力学-第11章 压杆稳定
FPcr
π 2 EI
l
2
需要注意的是, 临界载荷公式只有在压杆的微弯 曲状态下仍然处于弹性状态时才是成立的。
材料力学-第11章 压杆稳定
§11-3 两端非铰支细长压杆的临界载荷
例题
图示四根压杆,已知杆件横截面和材料完全相同。 试:将压杆按承载能力大小排序
5m
7m
(a)
(b)
3m
(c)
§11-3 两端非铰支细长压杆的临界载荷 长度因数 由屈曲后的正弦半波长度确定
欧拉公式可写为:
2 EI
正弦半波长
2
两端铰支 =1.0
一端自由, 一端固定 =2.0
一端铰支, 一端固定 =0.7
两端固定 =0.5
材料力学-第11章 压杆稳定
§11-3 两端非铰支细长压杆的临界载荷
F
Fcr

第 11 章 压杆的稳定性问题

第 11 章 压杆的稳定性问题

直线形状平衡 稳定的
第 11 章 压杆的稳定性问题 2.不稳定性
F F>Fpcr
压杆稳定性的基本概念
直线平衡平衡状态转变为弯曲平 衡状态,扰动除去后,不能够恢 复到直线平衡状态,则称原来的 直线平衡状态是不稳定的。
FP<FPcr :在扰动作用下,
直线形状平衡 不稳定的
第 11 章 压杆的稳定性问题
第 11 章 压杆的稳定性问题
P
A
(a )
三类不同压杆的判断
h
y
b
h
B
y
P 解:正视图平 面弯曲截面绕 z 轴转。 3 P
x
P
z
l
A bh 1.0
iz Iz A
bh Iz 12

h 2 3
z
l
iz
1 2300 2
60
3
132.8 P 100
σp σe σs
压杆稳定性的基本概念
三、三种类型压杆的不同临界状态
σ
σb
ε
第 11 章 压杆的稳定性问题 欧拉临界力 §11-2 细长压杆的临界载荷---欧拉临界力
一、两端铰支的细长杆
F x F x
F
l M w x w w
压杆
微弯下平衡
内力与变形
第 11 章 压杆的稳定性问题
x
欧拉临界力
M =F w EI w〞= - M =-F w
欧拉临界力
二、其他刚性支承细长压杆临界载荷的通用公式
方法1: 同欧拉公式, 微分方程 + 边界条件 方法2: 相当长度法 在压杆中找出长度相当于两端铰支的 一段(即两端曲率为零或弯矩为零),该 段失稳曲线为半波正弦曲线,该段临界力 即压杆的临界力。

材料力学-11压杆稳定

材料力学-11压杆稳定

π D4 d4 4
D2 d2 64
D2 d 2
17mm
4
μl i
1(1100) 64.7
17
235钢
2EI
Fcr crA Fcr (l)2 ?
2E 2
(D2 d2)
4
226.14 721090(522 4424)
(1) P
F M Fw
w
d 2w
M
dx2
EI
Fw EI
d2w F
dx2
w0 EI
令: k2 F EI
d2w dx2

k2w

0
二阶线性、 常系数齐次
F Fcr 方程解 wAsin B kc xoskx
x
2019/11/22
11
wAsin B kc xoskx
② 边界条件: w(0)0 w(l )0
2 EI
Fcr (2l )2
Euler公式 (固端-自由)
15
[例1] 试由挠曲微分方程,导出下述细长压杆临界力公式
l
Fcr P
解: 1. 挠曲线近似微分方程:
EI,,w M(x) PwMe
Me x x P
令: k2 P w,, k2w Me
EI
EI
M PwMe wAs ik nx Bcoksx M e
S
P
λ μl i
a s
2E
临界应力总图
b
P
2019/11/22
24
§4 压杆的稳定校核
Stability Condition
为保证压杆有足够的稳定性——安全工作
(工作荷载)F

材料力学压杆稳定

材料力学压杆稳定

材料力学压杆稳定材料力学是研究物质在外力作用下的形变和破坏规律的学科。

在材料力学中,压杆是一种常见的结构元素,它能够承受压缩力,用来支撑、传递和稳定结构的荷载。

压杆的稳定性是指在外力作用下,压杆不会发生失稳或破坏。

稳定性的分析对于设计和使用压杆结构具有重要意义,可以保证结构的安全可靠性。

本文将从材料的稳定性理论出发,探讨压杆稳定的原理和影响因素。

压杆的稳定性主要受到两种力的影响:压缩力和弯曲力。

压缩力使得杆件在长轴方向上缩短,而弯曲力使得杆件发生侧向的弯曲变形。

这两种力的作用会引起杆件在截面上的应力分布,当这些应力达到一定的极限时,杆件就会发生失稳或破坏。

为了保证压杆的稳定性,需要考虑以下几个因素:1.杆件的形状和尺寸:杆件的形状和尺寸是影响压杆稳定性的重要因素。

一般来说,杆件的截面形状应当是圆形或类圆形,这样能够均匀地分配应力,在承受压力时能够更好地抵抗失稳。

此外,杆件的直径或截面积也应当足够大,以提高材料的稳定性。

2.材料的性质:材料的性质对杆件的稳定性有着重要的影响。

一般来说,杆件所使用的材料应当具有足够的强度和刚度。

强度可以提供杆件抵抗失稳的能力,而刚度可以减小失稳时的弯曲变形。

此外,材料应当具有足够的韧性,以防止杆件发生断裂。

3.杆件的支撑条件:杆件的支撑条件也会对稳定性产生影响。

一般来说,杆件的两端应当进行良好的支撑,以减小弯曲变形和失稳的发生。

支撑条件可以通过适当的连接方式、支撑点的设置和钢结构的设计来实现。

4.外力的作用:外力的作用是导致杆件发生失稳的主要原因。

外力可以包括静力荷载、动力荷载和温度荷载等。

在设计和使用压杆结构时,需要对外力进行充分的分析和计算,确保结构在外力作用下能够稳定运行。

总之,压杆的稳定性是确保结构安全可靠性的重要因素。

在材料力学中,通过对压杆受力和形变规律的分析,可以找到保证压杆稳定的途径和措施。

合理选择杆件的形状和尺寸,使用适当的材料,提供良好的支撑条件,并进行准确的外力分析和计算,可以有效地提高压杆的稳定性,确保结构的安全运行。

第11章 压杆稳定

第11章 压杆稳定
答案 初弯曲、压力偏心、材料不均匀和支座缺陷
(Buckling of Columns)
3、图示矩形截面细长压杆,两端用圆柱铰连接。其约束在纸平 面内可视为两端铰接,在垂直于纸面的平面内可视为两端固定, 从稳定性考虑,截面合理的长、宽比为h/b= `
压杆在纸平面内的工作柔度为λ=μL/i=1.0L/h/(2×1.732); 在垂直于纸面的平面内的工作柔度为λ’=μL/i=0.5L/b/(2×1.732);
(Buckling of Columns) 1、一受压的圆截面杆件,已知材料的机械性质参数σ p, σ s,σ b,E,杆长L,直径D,长度系数u,并设已知压杆临界应 力的线性经验公式常数a、b为已知。欲计算压杆的临界压力, 写明计算过程,列出有关的公式。 (1)计算工作柔度λ =μ L/i,计算第一特征柔度 λ 1=(π 2E/σ P)1/2 σ
(Buckling of Columns) 7、两根细长压杆a与b的长度、横截面面积、约束状态及材料均 相同,若其横截面形状分别为圆形和正方形,则二压杆的临界压 力Pacr和Pbcr的关系为( )。 C A.Pacr=Pbcr;B.Pacr<Pbcr;C.Pacr>Pbcr;D.不确定 8、材料和柔度都相同的两根压杆( A. B. C. D. )。A 临界应力一定相等,临界压力不一定相等; 临界应力不一定相等,临界压力一定相等; 临界应力和压力都一定相等; 临界应力和压力都不一定相等。
(Buckling of Columns)
1、图示中的桁架结构,两细长杆的长为L,与铅垂线的夹角相 等,均为α。但EI1>EI2,则结构的临界载荷为 。
Fcr=2 cosαπ2EI2/L2
2、在一般情况下,稳定安全系数比强度安全系数要大,这是因 为实际压杆总是不可避免地存在 , ,以及 等不利因素。

建筑力学 第11章 压杆稳定

建筑力学 第11章 压杆稳定

第11章压杆稳定[内容提要]稳定问题是结构设计中的重要问题之一。

本章介绍了压杆稳定的概念、压杆的临界力-欧拉公式,重点讨论了压杆临界应力计算和压杆稳定的实用计算,并介绍了提高压杆稳定性的措施。

11.1 压杆稳定的概念工程中把承受轴向压力的直杆称为压杆。

前面各章中我们从强度的观点出发,认为轴向受压杆,只要其横截面上的正应力不超过材料的极限应力,就不会因其强度不足而失去承载能力。

但实践告诉我们,对于细长的杆件,在轴向压力的作用下,杆内应力并没有达到材料的极限应力,甚至还远低于材料的比例极限σP时,就会引起侧向屈曲而破坏。

杆的破坏,并非抗压强度不足,而是杆件的突然弯曲,改变了它原来的变形性质,即由压缩变形转化为压弯变形(图11-1所示),杆件此时的荷载远小于按抗压强度所确定的荷载。

我们将细长压杆所发生的这种情形称为“丧失稳定”,简称“失稳”,而把这一类性质的问题称为“稳定问题”。

所谓压杆的稳定,就是指受压杆件其平衡状态的稳定性。

为了说明平衡状态的稳定性,我们取细长的受压杆来进行研究。

图11-2(a)为一细长的理想轴心受压杆件,两端铰支且作用压力P,并使杆在微小横向干扰力作用下弯曲。

当P较小时,撤去横向干扰力以后,杆件便来回摆动最后仍恢复到原来的直线位置上保持平衡(图11-2(b))。

因此,我们可以说杆件在轴向压力P的作用下处于稳定平衡状态。

P,杆件受到干扰后,总能回复到它原来的直线增大压力P,只要P小于某个临界值crP时,杆件虽位置上保持平衡。

但如果继续增加荷载,当轴向压力等于某个临界值,即P=cr然暂时还能在原来的位置上维持直线平衡状态,但只要给一轻微干扰,就会立即发生弯曲并停留在某一新的位置上,变成曲线形状的平衡(图11-2(c))。

因此,我们可以认为杆件在P的作用下处在临界平衡状态,这时的压杆实质上是处于不稳定平衡状态。

P=cr(a) (b) (c)图11-1 图11-2继续增大压力P ,当轴向压力P 略大于cr P 时,由于外界不可避免地给予压杆侧向的干扰作用(例如轻微的振动,初偏心存在,材料的不均匀性,杆件制作的误差等),该杆件将立即发生弯曲,甚至折断,从而杆件失去承载能力。

材料力学第11章 压杆稳定

材料力学第11章 压杆稳定

长度系数
一端固定,另一端自由 两端铰支
2 1
一端固定,另一端铰支
2 0.7
3
两端固定
1 0.5
2
第十一章 压杆稳定
§11.3 欧拉公式的使用范围 临界应力总图
一、欧拉临界应力公式及其使用范围 二、中柔度压杆的临界应力 三、小柔度压杆的临界应力 四、临界应力总图
§11.3 欧拉公式的使用范围 临界应力总图
2E 2
O 小 0 中 p 大
柔柔

度度

压压

杆杆

可见:压杆的临界应力随着其柔度的增大而减小
§11.3 欧拉公式的使用范围 临界应力总图
例1 图示用No.28a工字钢制成的立柱,两端固定,
试求立柱的临界压力。
解:1.求
F
查表:i imin iy 2.50 cm, A 55.4 cm2
ymax
欧拉公式适用于小变形情况
§11.2 细长压杆临界压力的欧拉公式
二、其他约束下细长压杆的临界压力
解法:比较变形法
1.一端固定、另一端自由
Fcr
Fcr
2EI
Fcr (2l)2
l
l
l
Fcr
§11.2 细长压杆临界压力的欧拉公式
二、其他约束下细长压杆的临界压力
解法:比较变形法
2.两端固定
b=20
b 2.57 MPa
h=45
cr a b y 289.6 MPa
Fcr cr A 261 kN y
n
Fcr F
4.35
nst
∴ 连杆安全
l 1=800

第11章压杆稳定与.ppt

第11章压杆稳定与.ppt

11.2压杆的临界应力
束之间,从而确定实际问题的长度系数几种理想杆端约束情况下的 长度系数见表11-1
2.临界应力
将细长压杆的临界压力除以横截面面积,便得到横截面上的应
力,称为临界应力,用 cr表示。
令式中的
称为压杆截面的惯性半径,代入上式得
4
上一页 下一页 返回
11.2压杆的临界应力

称为压杆的柔度,它是一个量纲为1的量代入上式得
稳定性
24
上一页 返回
11.5交变应力和疲劳破坏的概念
11.5.1动应力的概念
作用在结构上的载荷,如果是一种由零缓慢地增加到某一数值, 以后就保持不变或变化很小的载荷称为静载荷在静载荷作用下所产生 的应力叫静应力前面几章我们所讨论的问题都属于静应力问题 在工程中,我们会遇到另外一类载荷例如用汽锤打桩,桩在极短的时 间内受到了很大的载荷又如起重机加速起吊重物时,吊绳受到的载荷 与加速度有关,这些载荷都是动载荷
16
上一页 下一页 返回
11.3压杆的稳定性计算
杆(图10--6),故支承系数 =2.0,螺杆的惯性半径为

代入柔度公式得
(2) 计 算 螺 杆 临 界 应 力 并 校 核 其 稳 定 性 因
=100 , 且
=60,故螺杆为中长杆,查表11-2 ,a=578,b=3.744应用经验
公式计算其临界应力
种钢材的弹性模量E相差不大,因此,采用高强度钢并不能有效地提 高细长压杆的临界力工程上一般都采用普通碳素钢制造细长杆,这样 既经济又合理
但对于中长杆,其临界应力 cr与材料的强度有关材料的强度越
23
上一页 下一页 返回
11.4提高压杆稳定性的措施
高,临界应力 cr 也就越高所以,选用优质钢材,可提高中长压杆的

材料力学(单辉祖)第十一章压杆稳定问题

材料力学(单辉祖)第十一章压杆稳定问题
形心主惯矩I的选取准则
Pcr
=
π 2EI
l2
若杆端在各个方向的约束情况相同(如球形 铰),I 应取最小的形心主惯矩,得到直杆 的实际临界力
若杆端在不同方向的约束情况不同, I 应取 挠曲时横截面对其中性轴的惯性矩。即此 时要综合分析杆在各个方向发生失稳时的 临界压力,得到直杆的实际临界力(最小值)。
25
欧拉公式
求解上述非线性微分方程,得挠曲线中
点挠度δ 与压力P之间的近似关系
δ = 2 2l π
其图形为
P Pcr
⎡ − 1⎢1 −

1 2
⎛⎜⎜⎝
P Pcr
−1⎞⎟⎟⎠⎤⎥⎦
P
A
Pcr
可见,只有当P ≥Pcr时,压杆 B 才可能存在非直线的平衡态,
即直杆发生失稳,并且挠度δ
与压力P之间存在一对一关系,
M (x) = Pcrv(x) − Q(l − x)
x Pcr
Q A
M(x)
m
m
l
x
BQ MB y Pcr
39
Example-1
x
代入挠曲线近似微分方程
Pcr
EI
d 2v dx 2
=
−M
(x)
=
− Pcr v( x)
+
Q(l

x)
令 k 2 = Pcr
EI
则控制微分方程化简为
d 2v dx 2
+
k 2v
28
欧拉公式
思考题
29
不同约束下压杆临界力的 欧拉公式 • 压杆长度系数
30
长度系数
问题:
考虑下端固定、上端 自由并在上端承受轴 向压力作用等截面细 长杆,几何尺寸见图 确定此压杆临界压力
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.两端铰支压杆临界平衡时的微弯挠曲线方程
nπx y x C2sin l
k (1)当n=1时,

l
,所以
y A sin
x
l
挠曲线为半波正弦曲线
当 n2 时 F cr
l 2
2 EI
2
失稳挠曲线是两个半波正弦曲线 同理,当n =3、4…时可以依此类推。
11.3 不同杆端约束下细长压杆临界轴力的欧拉公式
FN (x)
M (x )
MB 1 ( sin kl l cos kl ) 0 Fcr l k
杆在微弯状态下平衡时,MB不可 能等于零,于是有
FS (x)=FAy
l
x
F Ay=M B/l A F Ax=Fcr
(a) (b)
FAy
y F Ax=Fcr y
tan kl kl
推导
tan kl kl
最小非零解 故 讨论拐点 kl=4.49
2 2 4.49 EI Fcr EIk 2 2 EI l (0.7l )2
M B sin kx y x Fcr l k cos kl
则 解

tan kx kl 4.49 kx1 1.35,
x1=0.3l;x2=l。
M (x) = Fcr y(x)
代入挠曲线近似微分方程
EIy M (x)
经整理后得
y k 2 y 0 k 2 Fcr / EI
其中
1.公式推导
y k 2 y 0
二阶齐次线性微分方程的通解为
y C1 cos kx C2 sin kx
边界条件 y( 0 ) = 0 , y( l ) = 0
长度因数μ
Fcr
2 EI
l2
=1
0.7
=0.5
=2=10.5l源自 例11.4 欧拉公式适用范围
临界应力总图
Fcr A
一、临界应力与柔度 1.临界应力:中心压杆处于临界状态 且仍在直轴线状态下维持不稳定平 衡时,横截面上的平均应力 cr 。
边界条件:
x 0, y 0,
B0 MB A Fcr kl cos kl
x F cr B MB F By=M B/l y (x ) x
x 0, y 0,
解得
M B sin kx y x Fcr l k cos kl
另,x=l,y=0,得稳定方程
FPcr
2 2 n EI 2 EIk l2
(n=0,1,2,)
(n=0,1,2,)
但n=0时,Fcr=0,无意义。 因此,n的合理最小值是1,于是有 最小临界载荷
欧拉公式的应用条件:
π 2 EI Fcr 2 l
——欧拉公式
1.理想压杆; 2.线弹性范围内; 3.两端为球铰支座。 注:上式是由两端为球铰支座(各方向的约束条件相同)推出, 因此I应为截面的最小形心主惯性矩,即失稳时,将在刚度最 小的平面内发生弯曲。
一、工程背景
自动翻斗车中的活塞杆也 有类似的问题。
如图示塔吊,立柱承受压力,当 压力过大时,立柱也有可能从直 线的平衡构形变成弯曲的平衡构 形。除此之外,组成塔吊的桁架 中受压力的杆子也可能从直线的 平衡构形变成弯曲的平衡构形, 也就是稳定性问题。
一、工程背景
如图示紧凑型超高压输电线路相间绝缘 间隔棒,当它受压从直线的平衡构形变成 弯曲的平衡构形时是否一定丧失正常功能 呢?这需要经过实验确定,观察在不同的 力的作用下弯曲到什么程度。 如图自动升降工作台, 受压的杆子就存在弹 性稳定问题。
2.极值点失稳 实际压杆总是有缺隐的 (残余应力、初弯曲、荷载有 初偏心等等) 。 曲线GJK是有初挠度d0的 实际压杆的FP-d关系曲线。J 点是极值点,对应荷载FPJ是 极值荷载。当FP=FPJ后,将出 现JK段曲线所反映的实际压 杆的崩溃现象——在荷载值 不断降低的情况下杆件急剧 弯曲,不再能维持其原来的 缩短加弯曲的变形形式。这 种现象叫做极值点失稳。它 总是小于临界荷载。
压杆临界轴力欧拉公式的一般形式
Fcr
π EI
2
l0
2

π EI
2
l
2
各种支承约束条件下等截面细长压杆临界轴力的欧拉公式
支承情况
两端铰支 一端固定 两端固定 另端铰支 一端固定 另端自由 Fcr 两端固定但可沿 横向相对移动 Fcr
Fcr
失 稳 时 挠 曲 线 形 状
Fcr B
2.对于实际压杆(有缺陷的压杆),稳定性意味着它维持 其缩短加弯曲的变形形式的能力。 由于压杆的失稳常常发生在杆内的应力还很低的时 候,因此,随着高强度钢的广泛采用,对压杆进行稳 定计算是结构设计中的重要部分。
11.2 两端铰支理想细长压杆的临界轴力
一、两端铰支压杆的临界轴力: 1.公式推导 假定压力已达到临界 值,杆已经处于微弯 状态,如图, 从挠曲 线入手,求临界轴力。
y
M ( x) EI
2
FN (x )
M (x )

MB y k y x EIl
FS (x )=FAy
l
x
F Ay=M B/l A F Ax=F cr
(a) (b)
FAy
y F Ax=F cr y
k Fcr / EI
2
通解
MBx y A sin kx B cos kx FPcr l
y( 0 ) = 0 y( l ) = 0
1• C1 + 0 • C2= 0 coskl • C1 +sinkl • C2 =0
零解表示未加干扰时杆可在直线位置平衡,但无助于求Fcr 非零解条件 1 coskl 0 sinkl =0
sinkl =0
1.公式推导 sinkl =0 故
kl n
F B
F δ 2k δ
l
A (a)
A (b)
3.弹性平衡稳定性的特征 (1)弹性平衡稳定性是对于原来的平衡形态而言的。 (2)弹性平衡的稳定性取决杆件所受的压力值 稳定平衡 F<2kL 不稳定平衡 F>2kL (3)弹性平衡的稳定性与弹性元件的弹簧常数 k 和杆件的长 度L有关。 (4)研究弹性平衡的稳定性,需对结构变形后的形态进行分析。 三、弹性平衡稳定的计算方法 1.小挠度理论: 优点是可以用较简单的方法得到基本正确 的结论,曲率采用近似公式 1 / y 。 y 1 2.大挠度理论:曲率采用精确公式 。 2 3 (1 y )
N
l
S
F Ax=F cr
(a ) (b)
x
F Ax=F cr
推导 压杆在临界轴力作用下,将在微弯情况下保持平衡。由于 固定端B产生反力偶MB,因此,简支端A必有反力FBy=MB/l 。
MB M ( x) Fcr y x l
由挠曲线近似微分方程
x F cr B MB F By=M B/l y (x ) x
五、结论 1.对于理想压杆,稳定性意味着压杆维持其直线压缩的变形 形式的能力。 当压杆所受的轴向压力达到临界力Fcr的值时,该压杆就 处于临界平衡状态。在临界平衡状态下杆件可能在没有受到 外界干扰时还能处于原来的直线平衡状态,也可能在受到微 小干扰后保持微弯状态下的平衡。但由于杆件总不可避免地 要受到外界的干扰,而一经干扰之后,即使还能保持微弯状 态下的平衡,但它已不能回复到它原来的直线平衡状态,这 时的压杆实质上是处于不稳定平衡状态。因此,当作用于压 杆的轴向压力F=Fcr时,压杆开始丧失稳定。
当杆端为其他约束情况时,细长压杆的临界轴力公式可 以仿照两端铰支压杆临界轴力公式的推导方法,根据在不同 的杆端约束情况下压杆的挠曲线近似微分方程式和挠曲线的 边界条件来推导。 x 一端固定、 F cr 一端铰支的细 x MB B 长压杆,杆的 F By=M B/l y (x ) 长度为l,抗弯 F (x ) 刚度为EI,承 M (x ) F (x )=FAy 受轴向压力Fcr, 如图所示。试 F Ay=M B/l FAy 推导其临界轴 A y y 力。
(0 x l)
kx2 4.49
推导 x1=0.3l为挠曲线的拐点坐标值, x2=l为上端铰支座位置。 拐点(反弯点)和铰支座处M=0。可见,该压杆可化为两 端球铰支压杆,其相当长度为l0=0.7l。 综上所述:可以利用两端铰支细长压杆的临界轴力公式, 采用类比的方法,将微弯平衡挠曲线上拐点视为铰,并将 压杆在挠曲线两拐点间的一段视为两端铰支压杆,得到其 他杆端约束情况下细长压杆的临界轴力公式。 挠曲线两拐点间的一段杆长称为原压杆的相当长度或计算 长度或自由长度,并用 l0 l 表示, — 长度因数。
Fcr
0.7l l
0.5l
D
l 2l l
C— 挠曲线拐点
B
B
l
l
A
C C A A C— 挠曲 C、D— 挠 曲线拐点 线拐点
2 EI 临界力Fcr 2 EI 2 EI 2 EI F Fcr F 2 Fcr 2 2 cr 欧拉公式 cr (0.5l ) (0.7l ) (2l )2 l
2.弹性平衡的稳定性 (1)稳定平衡: 系统处于平衡形态。若对原有平衡形态有微 小的位移,其弹性回复力(或力矩)使系统回复原有的平衡形态, 则称系统原有的平衡形态是稳定的。如图,当 F 2k时, l 杆AB的铅垂平衡形态是稳定的。

B
(2)不稳定平衡: 系统处 于平衡形态。若有微小位 移,其弹性回复力(或力矩) 使系统不再回复原有的平 衡形态,则称系统原有的 平衡形态是不稳定的。如 图, 2k l < F 时, 杆AB原有的铅垂平衡形态 是不稳定的。
(2)不稳定平衡: 系统处于平衡状态。若稍离平衡位置,将 出现使系统不再回复到原有平衡位置(或进一步偏离平衡 位置)的倾覆力,则称系统原有的平衡状态是不稳定的。
相关文档
最新文档