人教版数学八年级上册积的乘方
积的乘方人教版数学八年级上学期(完整版)

板书设计
积的乘方
积的乘方的法则
语言叙述 积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘.
符号叙述 (ab)n anbn (n是正整数)
.
作业布置【知识技能类作业】必做题:
1.计算:
(1)(ab)8; (2)(2m)3;
(3)(-xy)5;
(4)(5ab2)3; (5)(2×102)2; (6)(-3×103)3.
(4×3)2与42×32相等;(2×5)3与23×53相等.
新知讲解
看看运算过程中用到哪些运算律,从运算结果看能发现什么规律?
(1) (ab)2 =(ab)·(ab)=(a·a)·(b·b)2= a2( )b( ) (2) (ab)3 =_(_a_b_)_·__(_a_b_)_·__(_a_b_)__=(_a_·__a_·__a_)_·__(_b__·__b__·__b_)_3= a3( )b( )
(am)n=___a_m_n_ (m,n都是正整数).
幂的乘方,底数不变,指数相乘.
新知讲解
思考:
计算:(1) (4×3)2与42×32;(2) (2×5)3与23×53. 填空: ∵ (4×3)2 =1_2_2___=_1_4_4__ 42×3216=×__9___144=_____, ∴ (4×3)2=___42×32 ∵ (2×5)3 =1_0_3__1_0=0_0____ 23×538×=_1_2_5____1_0=0_0____, ∴ (2×5)3=___23×53 你发现了什么?
解:(1)原式=a8b8;
(2)原式=23•m3=8m3;
(3)原式=(-x)5•y5=-x5y5;
(4)原式=53•a3•(b2)3=125a3b6;
人教版数学八年级上册14.1.3积的乘方..教学设计

(一)教学重难点
1.重点:积的乘方的概念及其性质的掌握,以及在实际问题中的应用。
2.难点:理解积的乘方的性质,并能将其灵活运用于简化计算过程和解决实际问题。
(二)教学设想
1.教学方法:
-采用情境教学法,通过实际问题引入积的乘方概念,让学生感受数学与生活的紧密联系。
-运用启发式教学法,引导学生主动探究积的乘方的性质,培养他们的观察、分析和归纳能力。
1.培养学生对数学学科的兴趣和热情,激发他们主动探究数学问题的积极性。
2.培养学生严谨、细致的学习态度,让他们认识到数学在日常生活和科学研究中的重要性。
3.通过积的乘方知识的学习,引导学生认识到事物之间的联系和规律,培养他们的创新意识和团队合作精神。
在教学过程中,教师应注重启发式教学,引导学生主动参与课堂,关注学生的个体差异,因材施教,使学生在掌握知识的同时,提高自己的综合素质。以下是具体的教学设计:
-学生活动:组织学生进行小组讨论,互相交流积的乘方的性质和应用,培养学生的合作意识和团队精神。
-课堂小结:对本节课的重点知识进行总结,强化学生对积的乘方的认识。
3.课后作业:
-设计分层次的课后作业,满足不同层次学生的学习需求,巩固所学知识。
-鼓励学生利用积的乘方知识解决生活中的实际问题,提高他们的数学应用能力。
4.教学评价:
-采用多元化评价方式,如课堂提问、课后作业、小组讨论等,全面了解学生的学习情况。
-关注学生的个体差异,对学生在学习过程中遇到的问题及时给予指导和帮助,提高他们的自信心。
5.教学拓展:
-结合数学史,介绍积的乘方在数学发展史上的地位,激发学生的学习兴趣。
-开展数学实践活动,如制作积的乘方知识卡片、编写积的乘方小故事等,培养学生的创新意识和动手能力。
八年级上册人教版数学积的乘方

八年级上册人教版数学积的乘方一、积的乘方的定义。
1. 文字表述。
- 积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘。
2. 公式表示。
- 对于(ab)^n(n为正整数),根据积的乘方的定义有(ab)^n = a^n× b^n。
- 这个公式可以推广到多个因数的积的乘方,例如(abc)^n=a^n× b^n× c^n(n 为正整数)。
二、积的乘方公式的推导。
1. 以(ab)^n为例(n为正整数)- 根据乘方的意义(ab)^n=⏟(ab)×(ab)×·s×(ab)_n个(ab)。
- 再根据乘法的交换律和结合律,可以将上式改写为⏟(a× a×·s× a)_n个a×⏟(b×b×·s× b)_n个b。
- 而⏟(a× a×·s× a)_n个a=a^n,⏟(b× b×·s× b)_n个b=b^n,所以(ab)^n = a^n×b^n。
三、积的乘方的应用。
(一)计算。
1. 简单计算示例。
- 计算(2x)^3。
- 根据积的乘方公式(ab)^n=a^n× b^n,这里a = 2,b=x,n = 3。
- 则(2x)^3=2^3× x^3=8x^3。
2. 多个因数积的乘方计算示例。
- 计算( - 3a^2b)^2。
- 这里a=-3,b = a^2b,n = 2。
- 根据公式(abc)^n=a^n× b^n× c^n,则( - 3a^2b)^2=( - 3)^2×(a^2)^2× b^2。
- 因为(-3)^2 = 9,(a^2)^2=a^2×2=a^4,所以( - 3a^2b)^2 = 9a^4b^2。
人教版数学八年级上册14.1.3积的乘方优秀教学案例

1.结合生活实例,引导学生理解积的乘方的定义。如:两个相同的正方形相乘,可以理解为正方形的边长乘以边长,即2×2×2=8,这就是积的乘方。
2.讲解积的乘方的运算法则,通过举例、讲解、演示等方法,使学生理解和掌握运算法则。
3.运用平方差公式和完全平方公式,引导学生发现积的乘方与平方差、完全平方之间的关系,为解决实际问题打下基础。
二、教学目标
(一)知识与技能
1.理解积的乘方的概念,掌握积的乘方的运算法则。
2.能够运用积的乘方解决实际问题,提高运用数学知识解决实际问题的能力。
3.熟练运用平方差公式和完全平方公式,为学习更高阶的数学知识打下基础。
(二)过程与方法
1.通过小组合作、讨论交流的方式,培养学生自主探究、发现规律的能力。
三、教学策略
(一)情景创设
1.利用多媒体展示正方形的巧克力图片,引导学生关注实际问题,激发学生学习兴趣。
2.创设问题情境:小明的妈妈买了一块正方形的巧克力,每块巧克力的边长是4厘米,小明想知道这块巧克力一共有多少立方厘米。让学生感受到数学与生活的紧密联系,引发学生的思考。
3.设计富有挑战性的数学题目,让学生在解决问题的过程中自然引出积的乘方的概念。
3.教师对学生的学习情况进行评价,关注学生的成长和进步,及时调整教学策略。
(五)作业小结
1.布置具有层次性的作业,让学生在课后巩固所学知识。
2.要求学生在作业中运用积的乘方解决实际问题,提高学生的数学应用能力。
3.鼓励学生自主探索,尝试解决更复杂的数学问题,培养学生的创新能力。
作为一名特级教师,我将以以上教学内容与过程为指导,关注学生的个体差异,充分调动学生的学习积极性,使他们在本节课中获得全面的发展。同时,我也将注重教学评价,及时了解学生掌握情况,为下一节课的教学提供有力保障。通过本节课的教学,使学生在知识、能力和情感态度与价值观等方面都得到提升,为他们的全面发展奠定基础。
人教版八年级数学上册(教案).1.3积的乘方

3.在讲解重点难点时,进一步举例和解释,帮助学生克服困难。
4.提高自己在引导学生讨论时的启发和指导能力。
5.培养学生的独立思考能力,提高他们在小组讨论中的参与度。
在今后的教学中,我将继续努力,不断调整和改进教学方法,以期提高学生的学习效果。
五、教学反思
在本次教学过程中,我发现学生们对积的乘方的概念和运算规则的理解存在一些差异。有的学生能够迅速掌握运算规则,而有的学生则在应用时感到困惑。这让我意识到,在今后的教学中,我需要更加关注学生的个体差异,因材施教。
在导入新课环节,通过提问方式引发学生的兴趣,这是一个很好的开始。然而,我发现在这个问题中,部分学生的参与度并不高,可能是因为问题与他们的生活实际联系不够紧密。在今后的教学中,我需要更多地从学生的生活实际出发,设计更具吸引力和启发性的问题。
三、教学难点与重点
1.教学重点
-重点一:(a·b)^n = a^n · b^n公式的理解和应用。这是积的乘方的核心知识,教师需引导学生通过具体例题掌握此公式的运算过程,明确乘方运算的先后顺序。
-重点二:运用积的乘方解决实际问题。通过实际问题的引入,让学生掌握如何将现实问题转化为积的乘方问题,并运用所学知识解决。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“积的乘方在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
四、教学流程
八年级-人教版-数学-上册-第3课时-积的乘方

6.逆用幂的运算法则 (1)作用:逆用幂的运算法则,常能__化__繁__为__简__,__化__难__为__易___, 有事半功倍的效果. (2)变化规律: ①指数为和的形式,转化为__同__底__数__幂__的__乘__法___; ②指数为积的形式,转化为__幂__的__乘__方____.
(3)(xy2)2= x2·(y2)2=x2y4;
(4)(-2x3)4= (-2)4·(x3)4 =16x12.
运用积的乘方的运算法则进行计 算时,注意每个因式都要乘方,尤其 是不要漏掉字母的系数的乘方.
例2 计算:
(1)(5ab2)3; (3)(-3×103)3;
(2)(2×102)2; (4)[m(n+3)]9.
问题 如图,时代中学准备将边长为 a m的正方形花坛,扩大成边长
为 2a m的正方形花坛.扩大后新花坛的面积是多少平方米?
怎样计算呢? 2a 新花坛的边长为 2a m,所以新花坛的面积是(2a)2 m2.
2a
根据乘方的意义, (2a)2=2a·2a =(2×2)·(a·a) =4a2(m2).
所以,扩大后新花坛的面积是4a2 m2. 用同样的方法,你会计算(ab)2和(ab)3吗?
n个ab =(a·a· … ·a)·(b·b· … ·b)
n个a =anbn.
n个b
乘方的意义 乘法运算律 乘方的意义
于是,我们就得到积的乘方的运算法则:
(ab)n=anbn(n为正整数). 即积的乘方,等于把积的每一个因式分别乘方,再把所得 的幂相乘.
人教版-积的乘方教学设计2024-2025学年八年级上册数学

《积的乘方》教学设计一、课题名称积的乘方二、课程课时1课时三、教材内容分析本节课是人教版八年级上册数学第十五章《整式的乘除与因式分解》中的内容。
积的乘方是整式乘法运算中的重要组成部分,它是在学习了同底数幂的乘法和幂的乘方之后进行的。
教材通过具体的实例引导学生观察、分析、归纳出积的乘方的运算法则,让学生体会从特殊到一般的数学思想方法。
四、课标目标1.理解积的乘方的运算法则。
2.能运用积的乘方的运算法则进行计算。
五、教学重点、难点1.教学重点积的乘方运算法则的推导过程。
运用积的乘方运算法则进行计算。
2.教学难点对积的乘方运算法则的理解。
法则中指数的运算及符号的确定。
六、课的类型及主要教学方法1.课的类型:新授课。
2.主要教学方法:讲授法、探究法、练习法。
七、教学过程1.导入新课教学环节:复习旧知。
教师活动:同学们,我们之前学习了同底数幂的乘法和幂的乘方,谁能来分别说一说它们的运算法则?学生活动:学生回答同底数幂的乘法法则是aᵐ×aⁿ=aᵐ⁺ⁿ(m、n都是正整数);幂的乘方法则是(aᵐ)ⁿ=aᵐⁿ(m、n都是正整数)。
设计意图:通过复习旧知,为学习积的乘方做铺垫。
目标达成预测:学生能够准确回答同底数幂的乘法和幂的乘方的运算法则。
2.讲授新课探索积的乘方运算法则教学环节:计算式子。
教师活动:现在我们来计算一下(ab)²和(2x)³,看看结果是多少?并观察式子的特点。
学生活动:(ab)²=ab×ab=a×a×b×b=a²b²;(2x)³=2x×2x×2x=2×2×2×x×x×x=8x³。
学生观察到式子是积的乘方形式。
设计意图:通过具体的计算,让学生初步感受积的乘方的特点。
目标达成预测:学生能够正确计算式子的结果,并观察到式子的特点。
人教版八年级数学上册第十四章 积的乘方

变式:已知xn=2,yn=6,求(x2y)2n的值. 解:∵xn=2,yn=6, ∴(x2y)2n=x4n·y2n=(xn)4·(yn)2=24×62=16×36=576.
1.我们这节课学习了哪些知识? ①积的乘方法则;②幂的三种运算法则的综合运用
底数是2和103的乘积,虽然103是幂,但整体看不 是幂的乘方的形式 3.体积的结果如何计算?能不能找到一个运算性质?
活动导入 请同学们拿出你们的正方形折纸,沿着虚线剪开,裁剪前后的图形面 积会改变吗?
在草稿本上画出裁剪前的图形和裁剪后的图形, 并分别计算其面积.
你发现了什么?
情境导入
老师今天早上收到了一个神秘的礼物,大家看一下它是什么? 说起魔方,大家会想到哪些与它相关的数学知识呢? 大家都知道魔方的每一面都是正方形,现在已知老师的魔方棱 长为3a,它的体积怎么计算呢? 3a×3a×3a=27a3或(3a)3 请同学们观察这个式子((3a)3),它的底数是和、差、积、 商哪一种运算?
14.1整式的乘法
14.1.3 积的乘方
1. 通过探究积的乘方的运算法则,进一步体会和巩固幂的 意义,理解并准确掌握积的乘方的运算法则,培养学生 实事求是、严谨、认真、务实的学习态度.
2.通过练习巩固积的乘方的运算法则,进一步提高应用意 识和创新意识,增强学生解决问题的能力.
3.通过推导法则进一步训练学生的抽象思维能力,完成利 用幂的三种运算性质的混合运算,培养学生综合运用知 识的能力.
【题型二】积的乘方的逆用
例2:计算:2
0252
025×2
1
025
2 024.
解:2
人教版八年级数学上册14.1.3积的乘方教学设计

(二)讲授新知,500字
1.概念讲解:介绍积的乘方的定义,通过具体实例让学生理解积的乘方的意义。
2.运算法则:详细讲解积的乘方的运算法则,并通过典型例题演示运算步骤,强调注意事项。
8.教学评价
采用多元化的评价方式,关注学生在知识掌握、能力提升、情感态度等方面的全面发展。
四、教学内容与过程
(一)导入新课,500字
1.回顾旧知:请学生回顾有理数的乘方、幂的乘方等概念及运算法则,为新课的学习做好知识准备。
2.创设情境:通过生活中的实例,如面积的估算、体积的计算等,让学生感受积的乘方在实际问题中的应用,激发学生学习的兴趣。
例题:已知a^2+b^2=8,求(a+b)^4的值。
4.思考总结题:要求学生结合本节课的学习,总结积的乘方的运算规律及在实际问题中的应用,用自己的语言进行表述。
5.家长评价:请家长对孩子的作业完成情况进行评价,并在作业本上留言,以促进家校共育,共同关注学生的学习成长。
作业布置要求:
1.作业量适中,难度分层,使不同层次的学生都能得到锻炼和提高。
3.通过积的乘方学习,引导学生体会数学在现实生活中的广泛应用,增强学生的应用意识。
1.导入新课
通过回顾有理数乘方、幂的乘方等知识,为新课学习做好铺垫。
2.自主探究
学生自主探究积的乘方法则,教师进行指导。
3.合作交流
学生分组讨论,分享自己的发现,共同总结积的乘方规律。
4.例题讲解
教师选取典型例题,讲解积的乘方运算步骤,强调注意事项。
2.实践应用题:设计2-3道与生活实际相结合的题目,让学生运用积的乘方解决实际问题,提高学生学以致用的能力。
八年级数学上人教版《积的乘方》教案

《积的乘方》教案一、教学目标:1.理解积的乘方的意义,掌握积的乘方的运算法则,并能运用法则进行熟练计算。
2.学会观察、分析、归纳和概括,通过具体实例体验数学化的过程。
3.培养学生对所学知识的归纳、概括和演绎的能力,以及应用意识和解决问题的能力。
二、教学重点:积的乘方的运算法则及其应用。
三、教学难点:灵活运用积的乘方的运算法则进行计算,解决实际问题。
四、教学准备:教师准备多媒体课件、小黑板;学生准备计算器、纸张等。
五、教学过程:1.导入新课:通过复习旧知,引出新课题。
2.新课学习:通过具体实例,引导学生探究积的乘方的意义和运算法则,并尝试用符号语言表示。
然后通过例题讲解和练习,让学生掌握法则的运用。
3.课堂练习:通过练习题,让学生巩固所学知识,加深对积的乘方的理解。
4.归纳小结:总结积的乘方的意义和运算法则,强调运算法则的关键是确定指数,并注意符号问题。
同时提醒学生注意计算过程中符号的变化规律。
5.布置作业:根据学生的实际情况,布置适当的课后练习题,并要求学生在规定的时间内完成。
同时可以安排一些拓展性的任务,如让学生自己设计一个与积的乘方相关的题目等。
6.教学反思:根据学生的学习情况,对教学方法和过程进行反思和总结,发现问题并及时改进。
同时可以引导学生思考积的乘方在现实生活中的应用和价值,培养学生的数学应用意识。
六、板书设计:积的乘方定义:几个数相乘,每个数都提到一个相同的幂次。
法则:a×b^n=a×b×…×b(n个b)。
运算顺序:先乘后指数化。
人教版八年级数学上册《14.1.3积的乘方》教学设计

1.分组讨论:将学生分成小组,针对积的乘方运算规则进行讨论,鼓励学生提出疑问,共同解决问题。
2.交流分享:小组代表分享讨论成果,展示积的乘方运算的解题过程,提高学生的表达能力和逻辑思维能力。
2.引导学生运用已学的乘方知识,发现并总结积的乘方运算规律,提高学生的观察、归纳能力。
3.设计丰富的例题和练习,让学生在实际操作中掌握积的乘方运算方法,提高解决问题的能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生的学习热情。
2.培养学生勇于尝试、善于思考的精神,增强学生的自信心。
②如果一个长方形的长是a厘米,宽是b厘米,求这个长方形的面积。
2.提高拓展题:设计一定数量的提高题,旨在培养学生的逻辑思维能力和数学应用能力。
-提高题:计算以下积的乘方,并解释计算过程。
① (2x - 3y)(3x + 2y)^2
② (a^2 + b^2)(a^2 - b^2)(a^2 + 2ab + b^2)
-拓展题:运用积的乘方运算,简化以下代数表达式。
① (x + y)(x^2 + xy + y^2)
② (2a - 3b)^3(2a + 3b)^3
3.课后反思:要求学生针对本节课的学习内容进行反思,总结自己在积的乘方运算中的优点和不足,并提出改进措施。
4.预习任务:布置下一节课的预习内容,让学生提前了解下节课的学习目标,培养学生的学习计划性和自主学习能力。
3.提出问题:引导学生思考,当两个数相乘后再进行乘方运算,应该如何计算?从而引出本节课的主题——积的乘方。
人教版八年级数学上册教学设计:14.1.3积的乘方

三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-理解积的乘方的概念及其运算法则。
-能够运用积的乘方解决实际问题。
2.教学难点:
-理解并掌握将积的乘方转化为同底数幂的乘法。
4.通过解决实际问题,培养学生的数学应用意识,让学生体会数学在生活中的价值,提高学生的数学素养。
二、学情分析
八年级学生在前两年的数学学习中,已经掌握了基本的算术运算、代数表达式、方程和不等式等内容。在此基础上,学生对积的乘方这一概念的理解和运用具有一定的基础。然而,积的乘方对学生来说是一个新的运算规则,需要引导学生从已掌握的知识出发,逐步过渡到新的运算方法。在教学过程中,需要注意的是:
3.反馈评价:了解学生对本节课内容的掌握情况,鼓励学生提出疑问,及时解答。
4.情感升华:强调数学知识在实际生活中的应用价值,激发学生学习数学的兴趣和热情。
五、作业布置
为了巩固学生对积的乘方的理解和应用,特布置以下作业:
1.基础巩固题:
-完成课本第14.1.3节后的练习题1-5题,重点在于积的乘方的运算方法和符号处理。
-解决运算过程中出现的符号错误和计算顺序混乱问题。
(二)教学设想
1.引入环节:
通过复习同底数幂的乘法,引导学生发现积的乘方的规律,激发学生对新知识的兴趣。
2.新课导入:
-利用生活实例,如面积、体积的计算,引出积的乘方的概念。
-通过具体例子,讲解积的乘方的运算法则,让学生在实际操作中体会和理解。
3.活动设计:
2.生活实例:接着,提出一个生活实例:一个长方体的长、宽、高分别是$a$、$b$、$c$,求它的体积。根据长方体体积公式$V = abc$,引导学生探讨:如果这个长方体的每个维度都扩大2倍,体积会扩大多少倍?由此引出积的乘方概念。
人教版数学八年级上册第十四章积的乘方课件

即积的乘方,等于把积的每个因式分别乘方,再把
所得的幂相. 乘.
公式的拓展
1.三个或三个以上的积的乘方,是否也具有上面 的性质?
2.怎样用公式表示?
(abc )n=an·bnc·n
3.你能证明吗 ?
例题解析
例3 计算:
(1)(2a)3 ; (2)(-5b)3 ; (3)(xy2)2 ; (4)(-2x3)4 .
(2)那(ab)3又表示什么?
探索与交流
(1) 根据乘方定义(幂的意义),(ab)3表示什么? 又可以把它写成什么形式?
(2) 为了计算(化简)算式ab·ab·ab,可以应用乘法的 交换律和结合律.
(ab)3= ab·ab·ab=a·a·a ·b·b·b=a3·b3.
(3)由特殊的 (ab)3=a3b3 出发,你能想到一般公式吗?
(×)
(2)(3cd)3=9c3d3;
结果应改为27c3d3;
(×)
(3)(-3a3)2= -9a6;
结果应改为9a6;
(×)
(4)(-x3y)3= - x6y3.
结果应改为- x9y3 .
强化训练
计算: (1) (ab)6;
(2) (-a )3 ; (3) (-2x)4 ;
(4) (-3ab)2 ; (5) [(-5)3]2 ; (6) [(-t)5]3 .
八年级 上册
第十四章 整式的乘法 与因式分解 积的乘方
知识回顾
n个a
1.乘
2.同底数幂的乘法运算法则:
am ·an= am+n(m, n都是正整数).
3.幂的乘方运算法则:
(am)n= amn (m,n都是正整数).
4.正确写出得数,并说出是属于哪一种幂的运算.
14.1.3 积的乘方 初中数学人教版八年级上册教学课件(共24张PPT)

(1) (ab)2;
(2) (ab)3.
底数为两个因式相乘,积的形式.
这种形式为 积的乘方
探究新知
【探究】尝试应用之前所学的知识进行计算,运算过程用到了 哪些运算律,你能发现结果又什么规律?
(ab)2 (ab)·(ab) (a·a)·(b·b) a(2 )b(2 )
(乘方的意义) (乘法交换律、结合律) (同底数幂相乘的法则)
x3
2
2x3
3
;
(1) x x2
x3
2
2x3
3
x3 x6 23 x3 3
x9 8x9 7x9 .
(2)
a3b2
6
a6b4
3
.
(2)
a3b2
6
a6b4
3
a18b12 a18b12
a18b12 a18b12
2a18b12
混合运算顺序: 积的乘方→幂的乘方→同底数幂的乘法→加减法
(ab)3 (ab)·(ab)·(ab) (a·a·a)·(b·b·b) a( 3 )b( 3 )
(ab)n = ?
【发现】结果把积的 每一个因式分别乘方, 再把所得的幂相乘.
探究新知
猜一猜 (ab)n = anbn .
n个ab 验证 (ab) n= (ab)·(ab)·····(ab)
n个a n个b =(a·a·····a)·(b·b·····b)
(4) ( -2x3 )4.
解:(1) (2a)3 23·a3 8a3 ; (2) (5b)3 (5)3·b3 125b3 ; (3) (xy2)2 x2·(y2)2 x2y4 ; (4) (2x3)4 (2)4·(x3)4 16x12 .
【注意】积的乘方, 要把积的每一个因 式分别乘方,不要 漏掉任何一项
人教版数学八年级上册《第二课时15.1.3 积的乘方》说课稿

人教版数学八年级上册《第二课时 15.1.3积的乘方》说课稿一. 教材分析人教版数学八年级上册《第二课时 15.1.3 积的乘方》这一节,主要让学生掌握积的乘方运算法则。
这是初中数学中一个重要的概念和运算方法,对于培养学生的逻辑思维和抽象思维能力具有重要意义。
教材通过例题和练习,使学生能够理解和运用积的乘方运算法则,为后续的数学学习打下基础。
二. 学情分析学生在学习这一节之前,已经掌握了有理数的乘法、幂的乘方等基础知识。
他们对数学运算有一定的认识和经验,但对于积的乘方这一概念和运算方法可能还比较陌生。
因此,在教学过程中,需要注重引导学生理解和掌握积的乘方运算法则,并通过适当的练习,让学生巩固所学知识。
三. 说教学目标1.让学生理解积的乘方运算法则,掌握其运用方法。
2.培养学生的逻辑思维和抽象思维能力。
3.提高学生解决实际问题的能力。
四. 说教学重难点1.重点:积的乘方运算法则的理解和运用。
2.难点:积的乘方运算法则在实际问题中的应用。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探究积的乘方运算法则。
2.使用多媒体教学手段,展示积的乘方运算的动画过程,帮助学生形象理解。
3.通过小组合作学习和讨论,培养学生团队合作精神,提高解决问题的能力。
六. 说教学过程1.导入:通过一个实际问题,引发学生对积的乘方运算的思考,激发学习兴趣。
2.新课导入:介绍积的乘方运算法则,引导学生理解其含义和运用方法。
3.例题讲解:讲解一个典型的例题,让学生理解积的乘方运算的过程和方法。
4.练习环节:让学生进行一些相关的练习题,巩固所学知识。
5.小组讨论:让学生分组讨论积的乘方运算在实际问题中的应用,分享解题方法。
6.总结提升:对本节课的内容进行总结,强化学生对积的乘方运算法则的理解和运用。
七. 说板书设计板书设计要简洁明了,突出积的乘方运算法则的关键点。
可以设计如下:积的乘方运算法则:1.积的乘方等于每个因数的乘方之积。
八年级数学上人教版《积的乘方》课堂笔记

《积的乘方》课堂笔记
一、知识点梳理
1.积的乘方的意义:将几个数相乘,每个数都提到一个相同的幂次,然后再
进行相乘。
2.积的乘方的运算法则:a×b^n=a×b×…×b(n个b)。
3.积的乘方的运算步骤:
(1)将每个因数分别乘以相同的幂次;
(2)将所得的幂相乘。
二、方法总结
1.观察运算结果,确定幂的个数。
在计算过程中,需要注意观察运算结果中指数的个数,从而确定需要提取几个公因式进行约分。
2.利用分配律简化运算。
在计算过程中,可以将幂与其他因数进行分配,从而简化运算。
3.注意符号问题。
在计算过程中,需要注意符号的变化规律,尤其是当幂的底数为负数时,需要运用分配律进行变形,从而得到正确的结果。
三、注意事项
1.底数可以是正数、负数或0,但在计算时要注意符号问题。
2.当底数为负数时,要注意幂的奇偶性对结果的影响。
3.要掌握符号规律,避免计算错误。
4.结合实例进行讲解和练习,帮助学生更好地理解和掌握知识。
四、例题解析与课堂练习
1.通过例题的解析,掌握积的乘方的运算法则及其应用方法。
2.通过课堂练习,加深对积的乘方的理解,并学会灵活运用运算法则进行计
算。
五、重点与难点解析
1.重点:掌握积的乘方的运算法则及其应用方法。
2.难点:灵活运用积的乘方的运算法则进行计算,解决实际问题。
3.解决难点的关键在于理解积的乘方的意义和符号规律,并多加练习。
人教版八年级数学上册《积的乘方》教学教案【可编辑全文】

可编辑修改精选全文完整版《积的乘方》教学教案教学目标:理解积的乘方运算法则,并能利用法则解决实际问题.重点:积的乘方运算法则及其应用.难点:幂的运算法则的灵活运用.教学流程:一、知识回顾1.说一说同底数幂相乘与幂的乘方是如何计算的?答案:同底数幂相乘,底数不变,指数相加.幂的乘方,底数不变,指数相乘.2.填空2342323223(1)______;(2)()______(3)24_______(4)()______.x x x a x x ⋅⋅=-=⨯=⋅=;(-);答案:x 9;-a 6;28;x 8二、探究 问题:填空,运算过程用到哪些运算律?()()()23()(1)()()()()()(2)()______________________ab ab ab a a b b a b ab ab =⋅=⋅⋅⋅====答案:(1)2,2; (2)()()()ab ab ab ⋅⋅,()()a a a b b b ⋅⋅⋅⋅⋅,3,3乘法交换律、结合律追问:观察计算结果,你发现了什么?指出:一般地,对于任意底数a ,与任意正整数nn n abn a n bn nab ab ab ab a a a b b b a b =⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=个个个()()()()归纳:积的乘方运算法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. .即:()(n n n ab a b n =为正整数)练习:1.计算(-xy 3)2的结果是( )A .x 2y 6B .-x 2y 6C .x 2y 9D .-x 2y 9答案:A2.下列各式中,正确的个数有( )①(2x 2)3=6x 6; ②(a 3y 3)2=(ay )6;③(32m 2)3=272m 6;④(-3a 2b 2)4=81a 8b 8. A .1个 B .2个 C .3个 D .4个答案:B3.计算:332234(1)2;(2)5;(3);(4)2.a b xy x --()()()()解:3333333322222243443412(1)228(2)55125(3)(4)2216.a a a b b b xy x y x y x x x =⨯=-=-⋅=-=⋅=-=-⋅=();()();()();()()() 三、应用提高(1)若(a n b m )3=a 9b 15,则( ) A .m =3,n =5 B .m =5,n =3C .m =12,n =3D .m =9,n =3答案:B(2)若x 2n =2,(xy )3n =3,则x 5n y 3n =_____.答案:6提示:逆用公式:a n · b n = (ab )n四、体验收获今天我们学习了哪些知识?1.说一说积的乘方法则?2.积的乘方法则可以逆用吗?五、达标测评1.下列计算正确的是( )A.m2·m4=m8B.(3m2)2=3m4 C.(-m3)2=m6D.(mn)3=m3n答案:C2 .填空:(1)(3xy)2=_______;(2)(-3a)3=________;(3)(-2×102)5=____________.答案:9x2y2;-27a3;-3.2×10113.计算:(1)(-43ab2c3)2;(2)[(-a2b3)3]2;(3)(-3a2)3·a3+(-4a)2·a7-(5a3)3.解:(1)原式=169a2b4c6(2)原式=(-a6b9)2=a12b18(3)原式=(-27a6)·a3+(16a2) ·a7-125a9=-27a9+16a9-125a9=-136a94.已知n是正整数,且x3n=2,求(3x3n)3+(-2x2n)3的值.解:原式=(3x3n)3-8(x3n)2=(3×2)3-8×22=216-32=184六、布置作业教材98页练习题(1)-(4)题.。
人教版八年级上册数学《积的乘方》说课教学复习课件

随堂测试
3.如果
3+
1
=27 ,则 =_____
。
【详解】
解:3+ = 27
3 × = 27
3
× = 27
又将 = 3代入,得:
27 ⋅ = 27
= 1
随堂测试
20
4.若 = 2, = 5,则(2 ) =__________.
【详解】
幂的乘方的逆运算:
(1)x13·x7=x(20)=(
x4
)5=(±x5 )4=(± x2 )10
(2)a2m =(±am )2 =(±a2 )m (m为正整数)
55
44
33
应用:若 a=3 ,b= 4 ,c=5 , 比较a、b、c 的大小.
11
解: ∵ 355 =(35)
= 24311 ,
11
444 =(44)
法则公式
法则中运
算
计算结果
底数
指数
a m a n a mn
乘法
不变
相加
幂的乘方
( a m)n a mn
乘方
不变
相乘
积的乘方
(ab)n =anbn
乘法、乘方
同底数幂的乘法
积的每一个因式分别乘方,
再把所得的幂相乘。
试一试
(1) (3x)3= 3x×3x×3x=3×3×3×x×x×x=
(2)(2x2)3= 2x2×2x2×2x2=2×2×2×x2×x2×x2=
(3)原式=a3m+3.
(4)原式=(a6)4=a24.
(5)原式=(a+2b)8.
(3)(am+1)3;
【归纳总结】幂的乘方计算“两注意”
人教版初中数学八年级上册第十四章 积的乘方

2.下列运算正确的是( C )
A.(–a2)3=–a5
(–a2)3= –a6;
C.(–a2b3)2=a4b6
B.a3•a5=a15
a3•a5=a8;
D.3a2–2a2=1
3a2–2a2=a2
课堂检测
14.1 整式的乘法/
基础巩固题
1.计算 (–x2y)2的结果是( A )
A.x4y2
B.–x4y2
素养考点 2 含有积的乘方的混合运算
例2
计算:
(1) –4xy2·(xy2)2·(–2x2)3;
(2) (–a3b6)2+(–a2b4)3.
解:(1)原式= –4xy2·x2y4·(–8x6)
=[–4×(–8)]x1+2+6y2+4
方法总结:涉及积的
乘方的混合运算,一
般先算积的乘方,再
算乘法,最后算加减,
证明:
n个ab
(ab) n= (ab)·(ab)··
·
··
(ab)
n个a
n个b
=(a·
a··
·
··
a)·(b·
b··
·
··
Байду номын сангаасb)
= anbn.
因此可得:(ab)n=anbn (n为正整数).
探究新知
14.1 整式的乘法/
积的乘方法则
(ab)n = anbn
(n为正整数)
乘方
积的乘方,等于把积的每一个因式分别_____,再
探究新知
14.1 整式的乘法/
问题1: 下列两题有什么特点?
(1)(ab)2 ;
3
(2)(ab)
.
底数为两个因式相乘,积的形式.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= 14 =1.
人教版数学八年级上册第十四章14.1. 3 积的乘方
人教版数学八年级上册第十四章14.1. 3 积的乘方
33
=(-2)3×(103)3=-8×106
-27x6y9=(
)3
人教版数学八年级上册第十四章14.1. 3 积的乘方
人教版数学八年级上册第十四章14.1. 3 积的乘方
知识拓展
注意:运算顺序是先乘方,再乘除, 最后算加减。
(1) a3 .a4.a+(a2)4+(-2a4)2
(2) 2(x3)2.x3-(3x3)3+(5x)2.x7
√
人教版数学八年级上册第十四章14.1. 3 积的乘方
人教版数学八年级上册第十四章14.1. 3 积的乘方
(公ab)式n =的an反·bn向(m使,n都用是正整数)
反向使用: an·bn = (ab)n
试用简便方法计算: (1) 23×53 = (2×5)3 = 103 (2) 28×58 = (2×5)8 = 108
=16x4y12z8的过程中,应把y3 , z2 看 作一个数,再利用积的乘方性质进行
人教版数学八年级上册第十四章14.1. 3 积的乘方
人教版数学八年级上册第十四章14.1. 3 积的乘方
堂清:一,判断 (1)(ab2)3=ab6 ( × ) (2) (3xy)3=9x3y3 ( × ) (3) (-2a2)2=-4a4 ( × ) (4) -(-ab2)2=a2b4 ( × )
(当m、n都是正整数)
(乘方的意义)
n个a
n个b
=(a·a·……·a) (b·b·……·b)(乘法结合律)ab)n = an·bn (n都是正整数)
语言叙述:积的乘方,等于把积的每一因式 分别乘方,再把所得的幂相乘.
人教版数学八年级上册第十四章14.1. 3 积的乘方
人教版数学八年级上册第十四章14.1. 3 积的乘方
人教版数学八年级上册第十四章14.1. 3 积的乘方
公式的拓展
(-2xy)4 =(-2)4x4y4 =16x4y4
(abc)n=an·bn·cn
(abc)n=[(ab)·c]n =(ab)n·cn = an·bn·cn.
人教版数学八年级上册第十四章14.1. 3 积的乘方
人教版数学八年级上册第十四章14.1. 3 积的乘方
下面的计算对不 对? 如果不对,怎样改正?
(1)(3cd)3=99ca3d36;
×
(2)(-3a3)2= -98xa9y63;
×
(3)(a3+b2)3=a9+b6 ×
(4)(-2x3y)3= -8x6y3; ×
(5)(-1 ab2)2=
9
2 a27c3db3 4;
a 3b 3(乘法交换律、结合律)
(ab) 4(同底数幂相乘的法则)
a 4b 4 同理:
(ab)(ab)(ab)(ab) (aaaa)(bbbb)
(ab)3
积的乘方 (ab)n =?
人教版数学八年级上册第十四章14.1. 3 积的乘方
猜想:
(ab)n = an·bn
n个ab
(ab)n = ab·ab·……·ab
人教版数学八年级上册第十四章14.1. 3 积的乘方
2、计算:
(1) (ab)8 (2) (2m)3 (3) (-xy)5 (4) (5ab2)3 (5) (2×102)2 (6) (-3×103)3
一起探讨(选做题): (0.04)2004×[(-5)2004]2
一起探讨:(0.04)2004×[(-5)2004]2=? 解法一: (0.04)2004×[(-5)2004]2
下列选项中正确的是
9x2y4
(-3xy2)2
= 3x2y3
(2ab3c2)4
(1)若 x3 8 a6 b9, 则x
2若 645 82 2x, 则x
=3 x 1 y 32 0, 则xy2
4已知16m
2 27 4 , 2n2
n
3 9 , m3
求m,, 的值
(-2×10 ) 16a4b12c6
人教版数学八年级上册第十四章14.1. 3 积的乘方
人教版数学八年级上册第十四章14.1. 3 积的乘方
拓展训练
xn 6, yn 5
(5)若n是正整数,且 xy 2n ,
求
的值。
人教版数学八年级上册第十四章14.1. 3 积的乘方
人教版数学八年级上册第十四章14.1. 3 积的乘方
检测三:计算:
=(0.22)2004 × 54008 =(0.2)4008 × 54008 =(0.2 ×5)4008 =14008
=1
解法二: (0.04)2004×[(-5)2004]2
=(0.04)2004 × [(-5)2]2004 = (0.04)2004 ×(25)2004 =(0.04×25)2004 =12004 =1 说明:逆用积的乘方法则 anbn = (ab)n可 以解一些复杂的计算。
(1)(-3x)3 (2) (-5ab)2 (3) (xy2)2 (4) (-2xy3z2)4
人教版数学八年级上册第十四章14.1. 3 积的乘方
注意: 人教版数学八年级上册第十四章14.1.3 积的乘方 (1)负数乘方的符号法则。 (2)积的乘方等于积中“每一个”因式
乘方的积,防止有的因式漏乘方错误。 (3)在计算(-2xy3z2)4=(-2)4x4(y3)4(z2)4
人教版数学八年级上册第十四章14.1. 3 积的乘方
例题 计算 (1) (2a)3
(2a)3 =23·a3=8a3 (3) (xy2)2 (xy2)2 =x2·(y2)2=x2y4
(2) (-5b)3 (-5b)3 =(-5)3·b3=-125b3 (4) (-2x3)4 (-2x3)4 =(-2)4·(x3)4 =16x12
运算 种类
公式
法则 计算结果
中运 算
底数
指数
a a a 同底
数幂 m n
乘法
mn 乘法 不变 指数 相加
幂乘的方(am)n amn 乘方 不变
指数 相乘
(ab)3
观察、猜想 (1)
(ab)(ab)(ab)(ab)
(2) (aaaa)(bbbb)
(ab)(ab)(ab) (aaa) (bbb) (乘方的意义)