北师大版九年级数学下册各单元练习题合集
最新北师大版九年级数学下册单元测试题全套及答案
解:连接AE,在Rt△ABE中,已知AB=3,BE=,∴AE==2.又∵tan∠EAB==,∴∠EAB=30°.在Rt△AEF中,∠EAF=∠EAB+∠BAC=60°,∴EF=AE·sin∠EAF=2×sin60°=2×=3(m)
最新北师大版九年级数学下册单元测试题全套及答案
本文档含本书3章的单元测试题,同时含期中,期末试题,共5套试题
第一章检测题
(时间:100分钟满分:120分)
一、精心选一选(每小题3分,共30分)
1.把△ABC三边的长度都扩大为原来的3倍,则锐角A的正弦函数值(A)
A.不变B.缩小为原来的
C.扩大为原来的3倍D.不能确定
14.如果方程x2-4x+3=0的两个根分别是Rt△ABC的两条边,△ABC最小角是∠A,那么tanA的值为__或__.
15.如图,CD是Rt△ABC斜边上的高,AC=4,BC=3,则cos∠BCD的值是____
,第15题图) ,第16题图) ,第17题图) ,第18题图)
16.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE,若BE=9,BC=12,则cosC=____.
A.(2,2)B.(,2-)
C.(2,4-2)D.(,4-2)
二、细心填一填(每小题3分,共24分)
11.计算:-4sin30°+(2016-π)0-22=__-2__.
12.在△ABC中,∠A,∠B的度数满足:+(-cosB)2=0,则∠C=__105°__.
13.若<cosα<1,则锐角α的范围是__0°<α<45°__.
(含答案)九年级数学北师大版下册第1章《单元测试》02
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!北师大版九年级下单元测试第1单元班级________姓名________一、选择题:本题共10小题,每小题5分,共50分.1.已知a Ð为锐角,且1sin 2a =,则a Ð=()A.30°B.45°C.60°D.90°2.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 相互垂直(A ,D ,B 在同一条直线上),设CAB a Ð=,则拉线BC 的长度为()A.sin h aB.cos h aC.tan h aD.cos h a×3.构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图,在Rt ACB △中,90C Ð=°,30ABC Ð=°,延长CB 使BD AB =,连接AD ,得15D Ð=°,所以tan152AC CD ==-°.类比这种方法,计算tan 22.5°的值为()1+1- C. D.124.如图,ABC △的顶点是正方形网格的格点,则cos ABC Ð的值为()A.23B.22C.43D.2235.如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为a 时,梯子顶端靠在墙面上的点A 处,底端落在水平地面的点B 处,现将梯子底端向墙面靠近,使梯子与地面所成角为b ,已知3sin cos 5a b ==,则梯子顶端上升了()A.1米B.1.5米C.2米D.2.5米6.图(1)是第七届国际数学教育大会(ICME )的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图(2)所示的四边形OABC .若1AB BC ==,AOB a Ð=,则2OC 的值为()A.211sin a+ B.2sin 1a + C.211cos a+ D.2cos 1a +7.如图,Rt ABC △中,90BAC Ð=°,1cos 4B =,点D 是边BC 的中点,以AD 为底边在其右侧作等腰三角形ADE ,使ADE B Ð=Ð,连接CE ,则CEAD的值为()A.323 C.15 D.28.如图,相邻两个山坡上,分别有垂直于水平面的通信基站MA 和ND .甲在山脚点C 处测得通信基站顶端M 的仰角为60°,测得点C 距离通信基站MA 的水平距离CB 为30m ;乙在另一座山脚点F 处测得点F 距离通信基站ND 的水平距离FE 为50m ,测得山坡DF 的坡度1:1.25i =.若58ND DE =,点C ,B ,E ,F 在同一水平线上,则两个通信基站顶端M 与顶端N2 1.41»3 1.73»)()A.9.0mB.12.8mC.13.1mD.22.7m9.如图,在Rt ABC △中,90ACB Ð=°,CE 是斜边AB 上的中线,过点E 作EF AB ^交AC 于点F .若4BC =,AEF △的面积为5,则sin CEF Ð的值为()A.355 C.452510.如图,AB 是一垂直于水平面的建筑物,某同学从建筑物底端B 出发,先沿水平方向向右行走20米到达点C ,再经过一段坡度(或坡比)为1:0.75i =、坡长为10米的斜坡CD 到达点D ,然后再沿水平方向向右行走40米到达点E (A ,B ,C ,D ,E )均在同一平面内).在E 处测得建筑物顶端A 的仰角为24°,则建筑物AB 的高度约为(参考数据sin240.41°»,cos240.91°»,tan240.45°=)()A.21.7米B.22.4米C.27.4米D.28.8米二、填空题:本题共5小题,每小题5分,共25分.11.如图,在四边形ABCD 中,90B Ð=°,2AB =,8CD =,AC CD ^.若1sin 3ACB Ð=,则tan D =______________.12.如图,在ABC 中,6AB AC ==,2sin 3B =,则ABC 的面积=___________.13.如图,ABC △的顶点B ,C 的坐标分别是(1,0),,且90ABC Ð=°,30A Ð=°,则顶点A 的坐标是____________________.14.如图,运载火箭从地面L 处垂直向上发射,当火箭到达A 点时,从位于地面R 处的雷达测得AR 的距离是40km ,仰角是30°,n 秒后,火箭到达B 点,此时在R 处测得仰角是45°,则火箭在这n 秒中上升的高度是____________km.15.如图,在矩形ABCD 中,BD 是对角线,AE BD ^,垂足为E ,连接CE .若30ADB Ð=°,则tan DEC Ð的值为______________.三、解答题:本题共2小题,第一小题10分,第二小题15分,共25分.16.小明想利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B ,如图所示.于是他们先在古树周围的空地上选取了一点D ,并在点D 处安装了测倾器DC ,测得古树的顶端A 的仰角为45°;再在BD 的延长线上确定一点G ,使5m DG =,并在点G 处的地面上水平放置了一个小平面镜,小明沿BG 方向移动,当移动到点F 时,他刚好在小平面镜内看到这棵古树的顶端A 的像,此时,测得2m FG =,小明眼睛与地面的距离 1.6m EF =,测倾器的高0.5m CD =.已知点F ,G ,D ,B 在同一水平直线上,且EF ,CD ,AB 均垂直于FB ,求这棵古树的高AB (小平面镜的大小忽略不计).17.如图,在直角梯形ABCD 中,//AB DC ,90DAB Ð=°,8AB =,5CD =,BC =.(1)求梯形ABCD 的面积;(2)连接BD ,求DBC Ð的正切值.参考答案1.A2.B3.B4.B5.C6.A7.D8.C9.A 10.A 11.3412.13.14.20)15.16.如图,过点C 作CH AB ^于点H ,则CH BD =,0.5m BH CD ==.在Rt ACH △中,45ACH Ð=°,AH CH BD \==.0.5AB AH BH BD \=+=+.EF FB ^ ,AB FB ^,90EFG ABG \Ð=Ð=°.由题意知EGF AGB Ð=Ð,EFG ABG \△△.EF FG AB BG \=,即 1.620.55BD BD=++,解得17.5m BD =.17.50.518(m)AB \=+=.答:这棵古树的高AB 为18m.17.(1)如图,过点C 作CE AB ^于点E .//AB DC ,90DAB Ð=°,90D \Ð=°.90A D AEC \Ð=Ð=Ð=°.\四边形ADCE 是矩形.AD CE \=,5AE CD ==.853BE AB AE \=-=-=.BC = ,6AD CE \==.\梯形ABCD 的面积为1(58)6392´+´=.(2)如图,过点C 作CH BD ^于点H .//CD AB ,CDB ABD \Ð=Ð,又90CHD A Ð=Ð=° ,CDH DBA \△△.CH CDAD BD\=.10BD === ,5610CH \=,解得3CH =.6BH \=.31tan 62CH DBC BH \Ð===.。
北师大版九年级数学下册各单元同步测试题【精品全套】
北师大版九年级数学下册各单元同步测试题【精品全套】九年级数学(下)单元评估试卷第一 章 直角三形的边角关系(总分:100分;时间: 分) 姓名 学号 成绩 一、精心选一选,相信自己的判断!(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案A.4/5B.3/5C.3/4D.4/32、在Rt △ABC 中,如果各边长度都扩大为原来的2倍,那么锐角A 的正弦值( ) A.扩大2倍 B.缩小2倍 C.扩大4倍 D.没有变化3、等腰三角形的底角为30°,底边长为23,则腰长为( ) A .4B .23C .2D .224、如图1,在菱形ABCD 中,∠ABC =60°,AC =4,则BD 长为( ) A .83B .43C .23D .85、在△ABC 中,∠C =90°,下列式子一定能成立的是( )A .sin a cB = B .cos a b B =C .tan c a B =D .tan a b A =6、△ABC 中,∠A ,∠B 均为锐角,且有2|tan 3|2sin 30B A -+-=(),则△ABC 是( )A .直角(不等腰)三角形B .等腰直角三角形C .等腰(不等边)三角形D .等边三角形7、已知tan 1α=,那么2sin cos 2sin cos αααα-+的值等于( )A .13B .12C .1D .168、如图2,沿AC 方向开山修路,为了加快施工进度,要在小山的另一边同时施工.从AC上的一点B ,取∠ABD =145°,BD =500米,∠D =55°,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( )A .500sin55°米B .500cos55°米C .500tan55°米D .500tan35°米9、如图3,在矩形ABCD 中,D E ⊥AC ,垂足为E ,设∠ADE =α,且cos α=35,AB =4, 则AD 的长为( )A .3B .163C .203D .16510、如图4,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么tan ∠BAD ′等于( ) A .1BC.2D二、耐心填一填:(把答案填放相应的空格里。
(北师大版九下)九年级数学下册一二章综合测试题(含答案)
BCD 解直角三角形和二次函数综合测试题一、选择题(10×3=30分)1. 在△ABC 中,∠C =90O,∠B =2∠A ,则CosA 等于( ) A.23B. 21C. 3D. 332.在△ABC 中,∠C =90O,BC :CA =3:4,那么SinA 等于( ) A .43 B.34 C.53 D.543.二次函数y =(x -1)2+2的最小值是( ) A .-2 B.2 C.1 D.-1 4.二次函数y =ax 2+bx +c 的图像如图所示,根据图像可得a ,b ,c 与0的大小关系是( ) A. a>0,b<0,c<0 B. a>0,b>0,c>0 C. a<0,b<0,c<0 D. a<0,b>0,c<0 5.已知∠A 为锐角,且COSA ≤21,那么( ) A .00<A ≤600B.600≤A<900C.00<A<300D.300≤A<906.函数y =ax 2-a 与y =xa(a ≠0)在同一直角坐标系中的图像可能是图中的( )7.已知二次函数y =x 2+(2a +1)x +a 2-1的最小值为O ,则a 的值是( ) A .43 B.43- C.45 D.45- 8.如图,在等腰三角形ABC 中,∠C =900,AC =6,D 是AC 上一点,若tan ∠DBA =51,则AD 的长为( )A.2B.2C.1D.229.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,若这种商品在一定范围内每降价1元,每日销量就增加1个,为了获得最大利润,则应该降价( )A.5元B.10元C.15元D.20元10.某二元方程的解是21x my m m =⎧⎨=++⎩,若把x 看作平面直角坐标系中点的横坐标,y 看作是纵坐标,下面说法正确的是( )A.点(x,y )一定不在第一象限B.点(x,y )一定不是坐标原点C.y 随x 的增大而增大D.y 随x 的增大而减小 二、填空题:(8×3=24分)11.∠A 和∠B 是一直角三角形的两锐角,则tan2BA +=_________。
2022-2023学年北师大版九年级数学下册《第2章二次函数》单元综合达标测试题(附答案)
2022-2023学年北师大版九年级数学下册《第2章二次函数》单元综合达标测试题(附答案)一.选择题(共10小题,满分30分)1.在下列关于x的函数中,一定是二次函数的是()A.y=﹣3x B.xy=2C.y=ax2+bx+c D.y=2x2+52.下列各点中,在抛物线y=x2﹣4上的是()A.(1,3)B.(﹣1,﹣3)C.(1,﹣5)D.(﹣1,﹣5)3.抛物线y=﹣(x﹣5)2+3的顶点坐标是()A.(﹣5,3)B.(5,3)C.(3,5)D.(5,﹣3)4.将抛物线y=x2﹣3向左平移2个单位后得到的抛物线表达式是()A.y=x2﹣1B.y=x2﹣5C.y=(x+2)2﹣3D.y=(x﹣2)2﹣3 5.已知b>0时,二次函数y=ax2+bx+a2﹣1的图象如下列四个图之一所示:根据图象分析,a的值等于()A.﹣2B.﹣1C.1D.26.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加()A.1m B.2m C.(2﹣4)m D.(﹣2)m 7.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y28.如图,抛物线y1=a(x+1)2﹣5与抛物线y2=﹣a(x﹣1)2+5(a≠0)交于点A(2,4),B(m,﹣4),若无论x取任何值,y总取y1,y2中的最小值,则y的最大值是()A.4B.5C.2D.19.已知函数y=,若使y=k成立的x值恰好有两个,则k的值为()A.﹣1B.1C.0D.±110.抛物线y=ax2+bx+c的顶点坐标(﹣2,3),抛物线与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,有下列说法:①4a﹣b=0;②a﹣b+c=0;③若(﹣4,y1),(1,y2)是抛物线上的两点,则y1>y2;④b2+3b=4ac.其中正确的个数有()A.4B.3C.2D.1二.填空题(共7小题,满分21分)11.已知抛物线y=(a+3)x2开口向下,那么a的取值范围是.12.请写出一个开口向下,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式.13.已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m的取值范围是.14.抛物线y=(m2﹣2)x2﹣4mx+n的对称轴是直线x=2,且它的最高点在直线y=x+2上,则m=,n=.15.二次函数y=ax2+bx+c的部分对应值如下表:x…﹣3﹣20135…y…70﹣8﹣9﹣57…则当x=2时对应的函数值y=.16.如图在平面直角坐标系中,二次函数y=x2+mx+2的图象与x轴交于A、B两点,与y 轴交于C点,其顶点为D,若△ABC与△ABD的面积比为3:5,则m值为.17.如图,在平面直角坐标系中,直线y=x+3交x轴于点A,交y轴于点B,抛物线y=﹣x2+2x+1与y轴交于C点,若点E在抛物线的对称轴上移动,点F在直线AB上移动,则CE+EF的最小值为.三.解答题(共9小题,满分69分)18.用配方法把二次函数y=x2﹣4x+5化为y=a(x﹣m)2+k的形式,并写出该函数图象的顶点坐标.19.已知抛物线y=ax2+bx+1经过点(1,﹣2),(﹣2,13).(1)求a,b的值;(2)若(5,n),(m,n)是抛物线上不同的两点,求m的值.20.已知二次函数的图象经过点A(﹣1,0)和点B(3,0),且有最小值为﹣2.(1)求这个函数的解析式;(2)函数的开口方向、对称轴;(3)当y>0时,x的取值范围.21.已知函数y=(n+1)x m+mx+1﹣n(m,n为实数)(1)当m,n取何值时,此函数是我们学过的哪一类函数?它一定与x轴有交点吗?请判断并说明理由;(2)若它是一个二次函数,假设n>﹣1,那么:①当x<0时,y随x的增大而减小,请判断这个命题的真假并说明理由;②它一定经过哪个点?请说明理由.22.如图所示,抛物线y=x2+bx+c与x轴交于点A和点B(5,0),与y轴交于点C(0,5).(1)求抛物线的表达式;(2)若点M是抛物线在x轴下方的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值.23.如图1,地面OB上两根等长立柱AO,CB之间悬挂一根近似成抛物线y=x2﹣x+3的绳子.(1)求绳子最低点离地面的距离;(2)因实际需要,在离AO为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面1.8米,求MN的长;(3)保持(2)中点N的位置不变,将立柱MN的长度提升为3米,发现抛物线F1和F2的形状和大小都一样,测得抛物线F1和F2的最低点到地面的高度相差0.5米,求抛物线F1对应函数的二次项系数.24.已知二次函数y=x2+px+q图象的顶点M为直线y=x与y=﹣x+m的交点.(1)用含m的代数式表示顶点M的坐标;(2)若二次函数y=x2+px+q的图象经过点A(0,3),求二次函数的表达式;(3)当m=6且x满足t﹣1≤x≤t+3时,二次函数y=x2+px+q的最小值为2,求t的取值范围.25.某商品的进价为每件20元,售价为每件30元,每月可卖出180件.如果该商品的售价每上涨1元,就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x 元(x为整数)时,月销售利润为y元.(1)求y与x之间的函数解析式,并直接写出自变量x的取值范围.(2)当每件商品的售价定为多少元时,可获得的月利润最大?最大月利润是多少?26.在平面直角坐标系中,点A(0,4),点B(2m,4)(m为常数,且m>0),将点A绕线段AB中点顺时针旋转90°得到点C.经过A、B、C三点的抛物线记为G.(1)当m=2时,求抛物线G所对应的函数表达式.(2)用含m的式子分别表示点C的坐标和抛物线G所对应的函数表达式.(直接写出即可)(3)当抛物线G在直线x=﹣2和x=2之间的部分(包括边界点)的最高点与最低点的纵坐标之差为8时,直接写出m的取值范围.(4)连结AC,点R在线段AC上,过点R作x轴的平行线与抛物线G交于P、Q两点,连结AP、AQ.当点R将线段PQ分成1:3两部分,且△APQ的面积为时,求m的值.参考答案一.选择题(共10小题,满分30分)1.解:A、y=﹣3x是一次函数,不是二次函数,故此选项不符合题意;B、xy=2不是二次函数,故此选项不符合题意;C、a=0时不是二次函数,故此选项不符合题意;D、y=2x2+5是二次函数,故此选项符合题意;故选:D.2.解:当x=1时,y=x2﹣4=﹣3;当x=﹣1时,y=x2﹣5=﹣3;∴点(﹣1,﹣3)在抛物线上,点(1,3)、(1,﹣5)、(﹣1,﹣5)都不在抛物线上.故选:B.3.解:抛物线y=﹣(x﹣5)2+3的顶点坐标是(5,3).故选:B.4.解:将抛物线y=x2﹣3向左平移2个单位后得到的抛物线表达式是y=(x+2)2﹣3.故选:C.5.解:因为前两个图象的对称轴是y轴,所以﹣=0,又因为a≠0,所以b=0,与b>0矛盾;第三个图的对称轴﹣>0,a>0,则b<0,与b>0矛盾;故第四个图正确.由于第四个图过原点,所以将(0,0)代入解析式,得:a2﹣1=0,解得a=±1,由于开口向下,a=﹣1.故选:B.6.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,可求出OA和OB为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度增加到2米,比原先的宽度当然是增加了2﹣4.故选:C.7.解:∵函数的解析式是y=﹣(x+1)2+a,如右图,∴对称轴是直线x=﹣1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随x的增大而减小,于是y1>y2>y3.故选:A.8.解:由题意可知:y的函数图象如图所示:观察函数图象可知:点A为函数y的图象的最高点,∴y的最大值为4.故选:A.9.解:函数y=的图象如图:根据图象知道当y=﹣1或y=1时,对应成立的x有恰好有2个,则k的值为±1.故选:D.10.解:∵抛物线y=ax2+bx+c的对称轴是直线x=﹣2,∴﹣=﹣2,∴4a﹣b=0,因此①正确;∵抛物线的对称轴为x=﹣2,图象与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,∴抛物线与x轴的另一个交点在点(﹣1,0)和点(0,0)之间,∴当x=﹣1时,y=a﹣b+c>0,因此②不正确;∵|﹣4﹣(﹣2)|<|1﹣(﹣2)|,∴(﹣4,y1)到对称轴的水平距离小于(1,y2)到对称轴的水平距离,且抛物线开口向下,∴y1>y2,故③正确;∵抛物线的顶点坐标为(﹣2,3),∴=3,∴b2+12a=4ac,∵4a﹣b=0,∴b=4a,∴b2+3b=4ac,故④正确;∴正确的有:①③④,故选:B.二.填空题(共7小题,满分21分)11.解:∵抛物线y=(a+3)x2开口向下,∴a+3<0,∴a<﹣3.故答案为:a<﹣3.12.解:∵抛物线开口向下,∴a<0,令a=﹣1,设抛物线的关系式为y=﹣(x﹣h)2+k,∵对称轴为直线x=2,∴h=2,把(0,3)代入得,3=﹣(0﹣2)2+k,解得,k=7,∴抛物线的关系式为:y=﹣(x﹣2)2+7,故答案为:y=﹣(x﹣2)2+7(答案不唯一).13.解:抛物线的对称轴为直线x=﹣=﹣m,∵a=1>0,∴抛物线开口向上,∵当x>2时,y的值随x值的增大而增大,∴﹣m≤2,解得m≥﹣2.故答案为:m≥﹣2.14.解:∵抛物线y=(m2﹣2)x2﹣4mx+n的对称轴是直线x=2,且它的最高点在直线y =x+2上,∴,当x=2时,y=×2+2=3,∴m=﹣1,该抛物线的顶点坐标为(2,3),∴3=[(﹣1)2﹣2]×22﹣4×(﹣1)×2+n,解得,n=﹣1,故答案为:﹣1,﹣1.15.解:观察表格可知,当x=﹣3或5时,y=7,根据二次函数图象的对称性,(﹣3,7),(5,7)是抛物线上两对称点,对称轴为直线x==1,顶点(1,﹣9),根据对称性,x=2与x=0时,函数值相等,都是﹣8.16.解:∵y=x2+mx+2=(x+)2+2﹣,∴顶点D(﹣,2﹣),C(0,2),∴OC=2,∵S△ABC=AB•OC=AB×2=AB,S△ABD=AB•|2﹣|,△ABC与△ABD的面积比为3:5,∴AB:AB•|2﹣|=3:5,解得:m=﹣.故答案是:﹣.17.解:如图,设C点关于抛物线对称轴的对称点为C′,由对称的性质可得CE=C′E,∴CE+EF=C′E+EF,∴当F、E、C′三点一线且C′F与AB垂直时CE+EF最小,直线AB的解析式为y=x+3,∵C(0,1),∴C′(2,1),∴直线C′F的解析式为y=﹣x+,联立直线C′F和直线AB得:x+3=﹣x+,解得x=,代入解得y=,∴F(,),∴C′F==,即CE+EF的最小值为.故答案为.三.解答题(共9小题,满分69分)18.解:y=x2﹣4x+5=(x2﹣8x)+5=(x2﹣8x+16)+5﹣8=(x﹣4)2﹣3,∴顶点(4,﹣3).19.解:(1)把点(1,﹣2),(﹣2,13)代入y=ax2+bx+1得,,解得:;(2)由(1)得函数解析式为y=x2﹣4x+1,∴对称轴是直线x=﹣=2,∵(5,n),(m,n)是抛物线上不同的两点,纵坐标相同,∴(5,n),(m,n)是对称点,∴=2,解得m=﹣1.20.解:(1)由题意得:函数的对称轴为x=1,此时y=﹣2,则函数的表达式为:y=a(x﹣1)2﹣2,把点A坐标代入上式,解得:a=,则函数的表达式为:y=x2﹣x﹣(2)a=>0,函数开口向上,对称轴为:x=1;(3)当y>0时,x的取值范围为:x>3或x<﹣1.21.解:(1)①当m=1,n≠﹣2时,函数y=(n+1)x m+mx+1﹣n(m,n为实数)是一次函数,它一定与x轴有一个交点,∵当y=0时,(n+1)x m+mx+1﹣n=0,∴x=,∴函数y=(n+1)x m+mx+1﹣n(m,n为实数)与x轴有交点;②当m=2,n≠﹣1时,函数y=(n+1)x m+mx+1﹣n(m,n为实数)是二次函数,当y=0时,y=(n+1)x m+mx+1﹣n=0,即:(n+1)x2+2x+1﹣n=0,△=22﹣4(1+n)(1﹣n)=4n2≥0;∴函数y=(n+1)x m+mx+1﹣n(m,n为实数)与x轴有交点;③当n=﹣1,m≠0时,函数y=(n+1)x m+mx+1﹣n是一次函数,当y=0时,x=,∴函数y=(n+1)x m+mx+1﹣n(m,n为实数)与x轴有交点;(2)①假命题,若它是一个二次函数,则m=2,函数y=(n+1)x2+2x+1﹣n,∵n>﹣1,∴n+1>0,抛物线开口向上,对称轴:﹣==﹣<0,∴对称轴在y轴左侧,当x<0时,y有可能随x的增大而增大,也可能随x的增大而减小,②当x=1时,y=n+1+2+1﹣n=4.当x=﹣1时,y=0.∴它一定经过点(1,4)和(﹣1,0).22.解:(1)将(5,0),(0,5)代入y=x2+bx+c得,解得,∴y=x2﹣6x+5.(2)设直线BC解析式为y=kx+n,将(5,0),(0,5)代入y=kx+n得,解得,∴y=﹣x+5,设点M坐标为(m,m2﹣6m+5),则点N坐标为(m,﹣m+5),∴MN=﹣m+5﹣(m2﹣6m+5)=﹣m2+5m=﹣(m﹣)2+,∴MN最大值为.23.解:(1)∵>0,∴抛物线开口向上,抛物线的顶点为最低点,∵y=x2﹣x+3=(x﹣4)2+,∴绳子最低点离地面的距离为m;(2)由(1)可知,对称轴为x=4,则BO=8,令x=0得y=3,∴A(0,3),C(8,3),由题意可得:抛物线F1的顶点坐标为:(2,1.8),设F1的解析式为:y=a(x﹣2)2+1.8,将(0,3)代入得:4a+1.8=3,解得:a=0.3,∴抛物线F1为:y=0.3(x﹣2)2+1.8,当x=3时,y=0.3×1+1.8=2.1,∴MN的长度为2.1米;(3)∵MN=3,点M(3,3),∵抛物线F1和F2的形状和大小都一样,∴设抛物线F1的解析式为y=a(x﹣)2+k1,F2的解析式为y=a(x﹣)2+k2,抛物线F1和F2的最低点到地面的高度分别为k1和k2,由题意,得k1﹣k2=0.5,把点M(3,3)分别代入y=a(x﹣)2+k1和y=a(x﹣)2+k2,得k1=3﹣a,k2=3﹣a,∴3﹣a﹣(3﹣a)=0.5,解得:a=.∴抛物线F1对应函数的二次项系数为.24.解:(1)由,得,即顶点M坐标为(m,m);(2)∵此时二次函数为y=(x﹣m)2+m过点A(0,3),∴3=(0﹣m)2+m得m1=﹣3,m2=,∴y=(x+2)2﹣1或y=(x﹣)2+;(3)当m=6时,顶点为M(4,2),∴抛物线为y=(x﹣4)2+2,函数的最小值为2,∵x满足t﹣1≤x≤t+3时,二次函数的最小值为2,∴,解得1≤t≤5.25.解:(1)y=(30﹣20+x)(180﹣10x)=﹣10x2+80x+1800(0≤x≤5,且x为整数);(2)由(1)知,y=﹣10x2+80x+1800(0≤x≤5,且x为整数).∵﹣10<0,∴当x==4时,y最大=1960元;∴每件商品的售价为34元.答:每件商品的售价为34元时,商品的利润最大,为1960元;26.解:(1)由题意可知,点C为抛物线G的顶点,当m=2时,C(2,6),设G所对应的函数的表达式为y=a(x﹣2)2+6(a≠0),将点A(0,4)代入y=a(x﹣2)2+6得4=4a+6,解得a=﹣.∴y=﹣(x﹣2)2+6.(2)∵抛物线对称轴为直线x==m,∴点C坐标为(m,m+4),设抛物线解析式为y=a(x﹣m)2+m+4,把(0,4)代入y=a(x﹣m)2+m+4得4=am2+m+4,解得a=﹣,∴y=﹣(x﹣m)2+m+4.(3)①0<m≤2时,在直线x=﹣2和x=2之间的部分的抛物线最高点为顶点(m,m+4),最低点为直线x=﹣2与抛物线交点(﹣2,﹣),m+4﹣(﹣)=8时,解得m=2.②当m>2时,图象最高点为直线x=2与抛物线交点(2,﹣+8),最低点为直线x=﹣2与抛物线交点(﹣2,﹣),﹣+8﹣(﹣)=8,∴m>2符合题意,∴m≥2.(4)作CD⊥PQ于点D,∵点R将线段PQ分成1:3两部分,∴PQ=4PR=2PD,∴PR=RD,∴CD=RD,∴PQ=4CD,设CD=t,则PQ=4t,∴点Q的坐标为(m+2t,m+4﹣t),∴=﹣(m+2t﹣m)2+m+4=m+4﹣t.解得t=m.∴点Q坐标为(m,m+4),PQ=m,∵△APQ的面积为,∴m(m+4﹣4)=,解得m=或m=﹣(舍).∴m=.。
2019-2020北师大版九年级数学下册单元测试题及答案全套
北师大版九年级数学下册单元测试题及答案第一章达标测试卷一、选择题(每题3分,共30分)1.cos 30°的值为( )A.12B.32C.22D.332.如图,已知Rt △BAC 中,∠C =90°,AC =4,tan A =12,则BC 的长是( ) A .2 B .8 C .2 5 D .45(第2题) (第3题)3.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D 点,已知AC =5,BC =2,那么sin ∠ACD 等于( ) A.53 B.23 C.253 D.524.若3tan (α+10°)=1,则锐角α的度数是( )A .20°B .30°C .40°D .50°5.已知cos θ=0.253 4,则锐角θ约等于( )A .14.7°B .14°7′C .75.3°D .75°3′6.如图,某课外活动小组在测量旗杆高度的活动中,已测得仰角∠CAE =33°,AB =a ,BD =b ,则下列求旗杆CD 长的式子中正确的是( )A .CD =b sin 33°+aB .CD =b cos 33°+aC .CD =b tan 33°+a D .CD =b tan 33°+a(第6题) (第7题)7.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC的正切值是( )A .2 B.255 C.55 D.128.在△ABC 中,∠A =30°,∠B =45°,AB =2(1+3),则BC 等于( )A .2 B. 6 C .2 2 D .1+ 39.如图,在高楼前D 点测得楼顶的仰角为30°,向高楼前进60 m 到C 点,又测得仰角为45°,则该高楼的高度大约为( )A .82 mB .163 mC .52 mD .30 m(第9题) (第10题)10.如图,钓鱼竿AC 长6 m ,露在水面上的鱼线BC 长3 2 m ,某钓者想看看鱼钓上的情况,把鱼竿AC 转动到AC ′的位置,此时露在水面上的鱼线B ′C ′长为3 3 m ,则鱼竿转过的角度是( )A .60°B .45°C .15°D .90°二、填空题(每题3分,共30分)11.已知α为等腰直角三角形的一个锐角,则tan α=________. 12.若反比例函数y =k x的图象经过点(tan 30°,cos 60°),则k =________.13.在△ABC中,∠C=90°,BC=6,sin A=23,则AB=________.14.某梯子与地面所成的角α满足45°≤α≤60°时,人可以安全地爬上斜靠在墙面上的梯子的顶端,现有一个长6 m的梯子,则使用这个梯子最高可以安全爬上__________高的墙.15.某游客在山脚处看见一个标注海拔40 m的牌子,当他沿山坡前进50 m时,他又看见一个标注海拔70 m的牌子,于是他走过的山坡的坡度是__________.16.如图,△ABC的顶点A,C的坐标分别是(0,23),(2,0),且∠ACB=90°,∠B=30°,则顶点B的坐标是__________.(第16题) (第17题) (第18题)(第19题) (第20题)17.如图,一棵树的枝叶部分AB在太阳光下的投影CD的长是5.5 m,此时太阳光线与地面的夹角是52°,则AB的长约为__________ (结果精确到0.1 m.参考数据:sin 52°≈0.79,tan 52°≈1.28).18.如图,秋千链子的长度OA=3 m,静止时秋千踏板处于A位置,此时踏板距离地面0.3 m,秋千向两边摆动,当踏板处于A′位置时,摆角最大,此时∠AOA′=50°,则在A′位置,踏板与地面的距离约为________m(sin 50°≈0.766,cos 50°≈0.642 8,结果精确到0.01 m).19.如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20 n m i l e 的速度沿南偏西50°方向匀速航行,1 h 后到达码头B 处,此时,观测灯塔C 位于北偏西25°方向上,则灯塔C 与码头B 的距离约是________n m i l e(结果精确到个位,参考数据:2≈1.4,3≈1.7,6≈2.4).20.如图,正方形ABCD 的边长为22,过点A 作AE ⊥AC ,AE =1,连接BE ,则tan E =________.三、解答题(21题8分,26题12分,其余每题10分,共60分)21.计算:(1)2-1-3sin 60°+(π-2 019)0+⎪⎪⎪⎪⎪⎪-12;(2)12-3+4cos 60°·sin 45°-(tan 60°-2)2.22.在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,2a =3b ,求∠B 的正弦、余弦和正切值.23.如图,在△ABD 中,AC ⊥BD 于点C ,BC CD =32,点E 是AB 的中点,tan D =2,CE =1,求sin ∠ECB 的值和AD 的长.(第23题)24.为建设“宜居宜业宜游”山水园林城市,正在对某城市河段进行区域性景观打造.某施工单位为测得某河段的宽度,测量员先在河对岸岸边取一点A ,再在河这边沿河边取两点B 和C ,在B 处测得点A 在北偏东30°方向上,在C 处测得点A 在西北方向上,如图,量得BC 长为200 m ,求该河段的宽度(结果保留根号).(第24题)25.如图,海中一小岛上有一个观测点A,某天上午9:00观测到某渔船在观测点A的西南方向上的B处跟踪鱼群由南向北匀速航行.当天上午9:30观测到该渔船在观测点A的北偏西60°方向上的C处.若该渔船的速度为30 n m i l e/h,在此航行过程中,该渔船从B处开始航行多少小时,离观测点A 的距离最近?(计算结果用根号表示,不取近似值)(第25题)26.如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼.已知点A到MN的距离为15 m,BA的延长线与MN相交于点D,且∠BDN=30°.假设汽车在高架道路上行驶时,周围39 m以内会受到噪音的影响.(1)过点A作MN的垂线,垂足为点H.如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排居民楼,那么此时汽车与点H的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板.当汽车行驶到点Q时,它与这一排居民楼的距离QC为39 m,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(结果精确到1 m,参考数据:3≈1.7)(第26题)答案一、1.B 2.A 3.A 4.A 5.C 6.C 7.D 8.A 9.A10.C 点拨:∵sin ∠CAB =BC AC =326=22,∴∠CAB =45°. ∵sin ∠C ′AB ′=B ′C ′AC ′=336=32,∴∠C ′AB ′=60°. ∴∠CAC ′=60°-45°=15°,即鱼竿转过的角度是15°.二、11.1 12.36 13.9 14.3 3 m 15.3∶4 16.(8,23) 17.7.0 m 点拨:过点B 作BE ∥CD ,交AD 于点E . ∵太阳光线与地面的夹角是52°,且太阳光线是平行的,∴tan 52°=AB BE,BE =CD =5.5 m. ∴AB =5.5×tan 52°≈5.5×1.28=7.04≈7.0(m).18.1.37 点拨:如图,作A ′D ⊥OA 于点D ,A ′C 垂直地面于点C ,延长OA 交地面于点B .(第18题)易得四边形BCA ′D 为矩形,∴A ′C =DB .∵∠AOA ′=50°,且OA =OA ′=3 m ,∴在Rt △OA ′D 中,OD =OA ′·cos ∠AOA ′≈3×0.642 8≈1.93(m). 又AB =0.3 m ,∴OB =OA +AB =3.3 m. ∴A ′C =DB =OB -OD ≈1.37 m.19.2420.23点拨:延长CA 到F 使AF =AE ,连接BF ,过B 点作BG ⊥AC ,垂足为G .根据题干条件证明△BAF ≌△BAE ,得出∠E =∠F ,然后在Rt △BGF 中,求出tan F 的值,进而求出tan E 的值.三、21.解:(1)原式=12-3×32+1+12=12-32+1+12=12; (2)原式=-(2+3)+4×12×22-(3-2)=-2-3+2-3+2=-23+ 2.22.解:由2a =3b ,可得a b =32. 设a =3k (k >0),则b =2k ,由勾股定理,得c =a 2+b 2=9k 2+4k 2=13k . ∴sin B =bc =2k 13k=21313, cos B =a c =3k 13k=31313, tan B =b a =2k 3k =23. 23.解:∵AC ⊥BD ,∴∠ACB =∠ACD =90°.∵点E 是AB 的中点,CE =1,∴BE =CE =1,AB =2CE =2.∴∠B =∠ECB . ∵BC CD =32, ∴设BC =3x ,则CD =2x .在Rt △ACD 中,tan D =2,∴AC CD=2. ∴AC =4x .在Rt △ACB 中,由勾股定理得AB =AC 2+BC 2=5x ,∴sin ∠ECB =sin B =AC AB =45. 由AB =2,得x =25, ∴AD =AC 2+CD 2=(4x )2+(2x )2=25x =25×25=455. 24.解:如图,过点A 作AD ⊥BC 于点D .(第24题)根据题意知∠ABC =90°-30°=60°,∠ACD =45°, ∴∠CAD =45°.∴∠ACD =∠CAD .∴AD =CD .∴BD =BC -CD =200-AD .在Rt △ABD 中,tan ∠ABD =AD BD, ∴AD =BD ·tan ∠ABD =(200-AD )·tan 60°=3(200-AD ). ∴AD +3AD =200 3.∴AD =20033+1=300-1003(m).答:该河段的宽度为(300-1003)m. 25.解:如图,过点A 作AP ⊥BC , 垂足为P ,设AP =x n mi l e.(第25题)在Rt △APC 中,∵∠APC =90°, ∠PAC =90°-60°=30°,∴tan ∠PAC =CP AP =33.∴CP =33x n mi l e.在Rt △APB 中,∵∠APB =90°, ∠PAB =45°, ∴BP =AP =x n mi l e.∵PC +BP =BC =30×12=15(n mi l e),∴33x +x =15.解得x =15(3-3)2.∴PB =15(3-3)2n mi l e.∴航行时间为15(3-3)2÷30=3-34(h).答:该渔船从B 处开始航行3-34h ,离观测点A 的距离最近.26.解:(1)如图,连接PA.(第26题)由已知得AP=39 m,在Rt△APH中,PH=AP2-AH2=392-152=36(m).答:此时汽车与点H的距离为36 m.(2)由题意,隔音板位置应从P到Q,在Rt△ADH中,DH=AHtan 30°=1533=153(m);在Rt△CDQ中,DQ=CQsin 30°=3912=78(m).∴PQ=PH+HQ=PH+DQ-DH=36+78-153≈114-15×1.7≈89(m).答:高架道路旁安装的隔音板至少需要89 m长.第二章达标测试卷1.下列函数属于二次函数的是( )A.y=5x+3 B.y=1x2C.y=2x2+x+1 D.y=x2+12.二次函数y=x2-2x+4化为y=a(x-h)2+k的形式,下列正确的是( ) A.y=(x-1)2+2 B.y=(x-1)2+3 C.y=(x-2)2+2 D.y=(x-2)2+43.一小球被抛出后,距离地面的高度h (m)和飞行时间t (s)满足的函数表达式为h=-5(t -1)2+6,则小球距离地面的最大高度是( )A.1 m B.5 m C.6 m D.7 m4.下列抛物线中,开口向下且开口最大的是( )A.y=-x2B.y=-23x2C.y=13x2D.y=-3x25.已知二次函数y=ax2+bx+c的x,y的部分对应值如下表:x-1 0 1 2 3y 5 1 -1 -1 1 则该二次函数图象的对称轴为( )A.y轴B.直线x=52C.直线x=2 D.直线x=326.抛物线y=x2+2x+m-1与x轴有两个不同的交点,则m的取值范围是( ) A.m<2 B.m>2 C.0<m≤2 D.m<-27.将抛物线y=x2-4x-4向左平移3个单位长度,再向上平移5个单位长度,得到抛物线的函数表达式为( )A.y=(x+1)2-13 B.y=(x-5)2-3C.y=(x-5)2-13 D.y=(x+1)2-38.二次函数y=ax2+bx+c的图象如图所示,反比例函数y=ax与正比例函数y=bx在同一坐标系内的大致图象是( )9.以x为自变量的二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,则实数b的取值范围是( )A.b≥54B.b≥1或b≤-1 C.b≥2 D.1≤b≤210.如图是抛物线y 1=ax2+bx+c(a≠0)的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点为B(4,0),直线y2=m x+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(-1,0);⑤当1<x<4时,有y2<y1,其中正确的是( )A.①②③B.①③④C.①③⑤D.②④⑤二、填空题(每题3分,共30分)11.当a =________时,函数y =(a -1)xa 2+1+x -3是二次函数.12.已知抛物线y =-2(x -3)2+1,当x 1>x 2>3时,y 1________y 2(填“>”或“<”). 13.某一型号飞机着陆后滑行的距离y (单位:m)与滑行时间x (单位:s)之间的函数表达式是y =60x -1.5x 2,该型号飞机着陆后滑行距离为__________时才能停下来. 14.如图是二次函数y =ax 2-x +a 2-1的图象,则a =________.15.已知二次函数的图象经过原点及⎝⎛⎭⎪⎫-12,-14,且图象与x 轴的另一个交点到原点的距离为1,则该二次函数的表达式为________________________.16.若抛物线y =kx 2-7x -7和x 轴有交点,则k 的取值范围是__________________. 17.抛物线y =x 2-2kx +4k 通过一个定点,这个定点坐标是____________.18.廊桥是我国古老的文化遗产,如图是一抛物线形的廊桥示意图,已知抛物线的函数表达式为y=-140x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8 m的点E,F处要安装两盏警示灯,则这两盏警示灯的水平距离EF约是________m(结果精确到1 m,5≈2.236).19.某商店经营一种水产品,成本为每千克40元,据市场分析,若按每千克50元销售,一个月能售出500 k g;销售单价每涨1元,月销售量减少10 k g,针对这种水产品的销售情况,销售单价定为________元时,获得的月利润最大.20.如图,在边长为10 cm的正方形ABCD中,P为AB边上任意一点(P不与A,B两点重合),连接DP,过点P作PE⊥DP,垂足为P,交BC于点E,则BE的最大长度为__________.三、解答题(21~24题每题9分,其余每题12分,共60分)21.已知二次函数y=ax2+bx+c(a≠0)的图象上部分点的横坐标x与纵坐标y的对应值如下表所示:求:(1)这个二次函数的表达式;(2)这个二次函数图象的顶点坐标及上表中m的值.22.如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.(1)求二次函数与一次函数的表达式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.23.如图,已知抛物线与x轴交于A(-1,0),E(3,0)两点,与y轴交于点B(0,3).(1)求抛物线对应的函数表达式;(2)若抛物线的顶点为D,求四边形AEDB的面积.24.已知函数y=(m+6)x2+2(m-1)x+m+1的图象与x轴总有交点.(1)求m的取值范围;(2)当函数图象与x轴两交点的横坐标的倒数和等于-4时,求m的值.25.某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润为6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1 120元,求该产品的质量档次.26.有一个例题:有一个窗户形状如图①,上部是一个半圆,下部是一个矩形.如果制作窗框的材料总长为6 m,如何设计这个窗户,使透光面积最大?这个例题的答案:当窗户半圆的半径约为0.35 m时,透光面积的最大值约为1.05 m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图②,材料总长仍为6 m.解答下列问题:(1)若AB为1 m,求此时窗户的透光面积;(2)与上面的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明理由.答案一、1.C 2.B 3.C 4.B 5.D 6.A 7.D8.C 点拨:由y =ax 2+bx +c 的图象开口向下,得a <0;由图象,得-b2a>0;由不等式的基本性质,得b >0. ∵a <0,∴y =a x的图象位于第二、四象限. ∵b >0,∴y =bx 的图象经过第一、三象限. 9.A10.C 点拨:对于抛物线y 1=ax 2+bx +c (a ≠0),对称轴为直线x =-b 2a ,∴-b2a=1,∴2a+b =0,①正确;由图象可知a <0,c >0,x =-b2a>0, ∴b >0,∴abc <0,②错误;∵抛物线y 1=ax 2+bx +c (a ≠0)与直线y =3只有一个交点,∴方程ax 2+bx +c =3有两个相等的实数根,③正确;设抛物线与x 轴的另一个交点是(x 2,0),由抛物线的对称性可知4+x 22=1,∴x 2=-2,即抛物线与x 轴的另一个交点是(-2,0),④错误; 通过函数图象可直接得到当1<x <4时,有y 2<y 1,⑤正确. 故选C .二、11.-1 12.< 13.600 m14.1 点拨:∵抛物线过原点,∴0=a ×02-0+a 2-1,∴a =±1.又∵抛物线开口向上,∴a =1.15.y =x 2+x 或y =-13x 2+13x点拨:由题意知,抛物线与x 轴的另一个交点坐标为(1,0)或(-1,0),故可得相应函数表达式为y =-13x 2+13x 或y =x 2+x .16.k ≥-74且k ≠0 17.(2,4)18.18 点拨:当y =8时,-140x 2+10=8,得x =±45,∴E (-45,8),F (45,8).∴EF =2×45=85≈18(m).19.70 点拨:设销售单价为x (元),且利润为y (元),则y =(x -40)·[500-10(x -50)],即y =-10(x -70)2+9 000(50≤x ≤100),当x =70时,y 有最大值,获得月利润最大. 20.52cm 点拨:设AP =x cm ,BE =y cm.如图,∵四边形ABCD 是正方形,∴∠A =∠B =90°.∴∠1+∠2=90°.∵PE ⊥DP ,∴∠2+∠3=90°.∴∠1=∠3.∴△ADP ∽△BPE .∴AD BP =APBE ,即1010-x =x y .整理得y =-110(x -5)2+52(0<x <10),∴当x =5时,y 有最大值52.三、21.解:(1)将点(-1,-5),(0,1),(2,1)的坐标代入y =ax 2+bx +c ,得⎩⎨⎧a -b +c =-5,c =1,4a +2b +c =1,解得⎩⎨⎧a =-2,b =4,c =1.∴这个二次函数的表达式为y =-2x 2+4x +1.(2)y =-2x 2+4x +1=-2(x -1)2+3,故图象的顶点坐标为(1,3).当x =4时,m =-2×16+16+1=-15.22.解:(1)将点A (1,0)的横纵坐标代入y =(x -2)2+m ,得(1-2)2+m =0,解得m =-1.∴二次函数的表达式为y =(x -2)2-1. 当x =0时,y =4-1=3, ∴C 点坐标为(0,3).∵点C 和点B 关于对称轴直线x =2对称,∴B 点坐标为(4,3).分别将A (1,0),B (4,3)的坐标代入y =kx +b ,得⎩⎨⎧k +b =0,4k +b =3,解得⎩⎨⎧k =1,b =-1.∴一次函数的表达式为y =x -1. (2)A ,B 两点的坐标分别为(1,0),(4,3).当kx +b ≥(x -2)2+m 时,在坐标系内对应的直线不在抛物线的下方,此时1≤x ≤4. 23.解:(1)因为抛物线与y 轴交于点B (0,3),所以设抛物线对应的函数表达式为y =ax 2+bx +3(a ≠0). 由题意得⎩⎨⎧a -b +3=0,9a +3b +3=0,解得⎩⎨⎧a =-1,b =2.所以抛物线对应的函数表达式为y =-x 2+2x +3.(2)由顶点坐标公式得抛物线的顶点坐标为(1,4). 作抛物线的对称轴,与x 轴交于点F , 所以S四边形AEDB =S △ABO +S梯形BOFD +S △DEF=12AO ·BO +12(BO +DF )·OF +12EF ·DF =12×1×3+12×(3+4)×1+12×2×4=9.24.解:(1)当m +6=0即m =-6时,函数y =(m +6)x 2+2(m -1)x +m +1,即y =-14x -5的图象与x 轴有交点;当m +6≠0时,Δ=4(m -1)2-4(m +6)·(m +1)=4(-9m -5)≥0,解得m ≤-59,即m ≤-59且m ≠-6时抛物线与x 轴有交点.综合m +6=0和m +6≠0两种情况可知,当m ≤-59时,此函数的图象与x 轴有交点.(2)设x 1,x 2是方程(m +6)x 2+2(m -1)x +m +1=0的两个实数根,则x 1+x 2=-2(m -1)m +6,x 1x 2=m +1m +6.∵1x 1+1x 2=-4,即x 1+x 2x 1x 2=-4,∴-2(m -1)m +1=-4,解得m =-3.当m =-3时,m +6≠0,Δ>0,符合题意,∴m 的值是-3.25.解:(1)∵第1档次的产品一天能生产95件,每件利润为6元,每提高一个档次,每件利润增加2元,但一天产量减少5件,生产第x 档次的产品提高了(x -1)档, ∴y =[6+2(x -1)][95-5(x -1)],即y =-10x 2+180x +400(其中x 是正整数,且1≤x ≤10).(2)由题意,得-10x 2+180x +400=1 120,整理得x 2-18x +72=0, 解得x 1=6,x 2=12(舍去). ∴该产品的质量档次为第6档.26.解:(1)由已知得AD =54 m ,∴窗户的透光面积为54×1=54(m 2).(2)窗户透光面积的最大值变大. 理由:设AB =x m , 则AD =⎝ ⎛⎭⎪⎫3-74x m ,∵3-74x >0,且x >0,∴0<x <127. 设窗户透光面积为S m 2,由已知得S =x ⎝ ⎛⎭⎪⎫3-74x =-74x 2+3x =-74⎝ ⎛⎭⎪⎫x -672+97,当x =67时(x =67在0<x <127的范围内),S 最大=97>1.05.∴与例题比较,现在窗户透光面积的最大值变大.第三章达标测试卷一、选择题(每题3分,共30分)1.⊙O的半径为6,点P在⊙O内,则OP的长可能是( )A.5 B.6 C.7 D.82.如图,在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径为( ) A.5 B.10 C.8 D.6(第2题)(第3题)(第4题)3.如图,AB是⊙O的直径,BC是⊙O的弦,若∠OBC=60°,则tan∠BAC的值是( )A. 3 B.1 C.32D.334.如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD等于( ) A.128° B.100° C.64° D.32°5.已知扇形的面积为4π,扇形的弧长为π,则该扇形的半径为( ) A.4 B.6 C.8 D.8π6.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则⊙O的半径是( ) A.1 B.2 C. 3 D. 5(第6题)(第7题)(第9题)(第10题)7.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,CD ⊥AB 于点E ,则下列结论中不成立的是( )A .∠A =∠D B.CB ︵=BD ︵C .∠ACB =90° D.∠COB =3∠D8.同一个圆的内接正六边形和外切正六边形的周长之比为( )A .3∶4 B.3∶2 C .2∶ 3 D .1∶29.如图,在平面直角坐标系中,⊙M 与x 轴相切于点A (8,0),与y 轴分别交于点B (0,4)和点C (0,16),则圆心M 到坐标原点O 的距离是( ) A .10 B .8 2 C .413 D .24110.如图,已知⊙O 是等腰直角三角形ABC 的外接圆,点D 是AC ︵上一点,BD 交AC 于点E ,若BC =4,AD =45,则AE 的长是( ) A .3 B .2 C .1 D .1.2 二、填空题(每题3分,共30分)11.如图,在⊙O 中,AB ︵=AC ︵,∠A =40°,则∠B =________.(第11题)(第12题)(第13题)(第14题)12.如图,已知△ABC的内切圆⊙O与BC边相切于点D,连接OB,OD.若∠ABC=40°,则∠BOD的度数是________.13.如图,AB为⊙O的直径,点C在AB的延长线上,CD,CE分别与⊙O相切于点D,E,若AD=2,∠DAC=∠DCA,则CE=________.14.如图,⊙P的半径为2,P在函数y=8x(x>0)的图象上运动,当⊙P与x轴相切时,点P的坐标为__________.15.如图,AB是⊙O的直径,AB=8,点C在圆上,且∠BAC=30°,∠ABD=120°,CD⊥BD 于点D,则BD=________.(第15题)(第16题)(第17题)16.如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧BC的长为________.17.如图,已知在⊙O中,直径MN=10,正方形ABCD的四个顶点分别在半径OM,OP以及⊙O 上,而且∠POM=45°,则AB的长为________.18.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=________.(第18题)(第19题)(第20题)19.如图,直线y =33x +3与x 轴、y 轴分别相交于A ,B 两点,圆心P 的坐标为(1,0),⊙P 与y 轴相切于点O ,若将⊙P 沿x 轴向左移动,当⊙P 与该直线相交时,横坐标为整数的点P 有________个.20.如图,在Rt △ABC 中,∠ACB =90°,AC =23,以点C 为圆心,CB 的长为半径画弧,与AB 边交于点D ,将BD ︵绕点D 旋转180°后点B 与点A 恰好重合,则图中阴影部分的面积为__________.三、解答题(21题8分,26题12分,其余每题10分,共60分)21.如图,A ,B ,C 三点都在⊙O 上,AE 是⊙O 的直径,AD 是△ABC 的高,⊙O 的半径R =4,AD =6.求证:AB ·AC 的值是一个常数.(第21题)22.如图,⊙O 的直径AB =10,弦DE ⊥AB 于点H ,AH =2. (1)求DE 的长;(2)延长ED 到点P ,过P 作⊙O 的切线,切点为C ,若PC =25,求PD 的长.(第22题)23.如图,已知P为反比例函数y=4x(x>0)图象上一点,以点P为圆心,OP长为半径画圆,⊙P与x轴相交于点A,连接PA,且点A的坐标为(4,0).求:(1)⊙P的半径;(2)图中阴影部分的面积.(第23题)24.如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆O交AC于点D,点E为BC的中点,连接DE.(1)求证:DE是半圆O的切线;(2)若∠BAC=30°,DE=2,求AD的长.(第24题)25.如图,在直角坐标系中,点O′的坐标为(-2,0),⊙O′与x轴相交于原点O和点A,B,C两点的坐标分别为(0,b),(1,0).(1)当b=3时,求经过B,C两点的直线对应的函数表达式.(2)当B点在y轴上运动时,直线BC与⊙O′有哪几种位置关系?并求出每种位置关系时b的取值范围.(第25题)26.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB,BC于点M,N,点P 在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线;(2)若BC=25,sin ∠BCP=55,求点B到AC的距离;(3)在(2)的条件下,求△ACP的周长.(第26题)答案一、1.A 2.A 3.D 4.A 5.C 6.A7.D 8.B9.D 点拨:连接BM,OM,AM,过点M作MH⊥BC于点H.∵⊙M与x轴相切于点A(8,0),∴AM⊥OA,OA=8.∴∠OAM=∠MHO=∠HOA=90°.∴四边形OAMH是矩形,∴AM=OH.∵点B的坐标为(0,4),点C的坐标为(0,16),∴OB=4,OC=16.∴BC=12.∵MH⊥BC,∴CH=BH=12BC=12×12=6.∴OH=OB+BH=4+6=10.∴AM=10.在Rt△AOM中,OM=AM2+OA2=102+82=241.10.C点拨:∵⊙O是等腰直角三角形ABC的外接圆,BC=4,∴AB为⊙O的直径,AC=4,AB=4 2.∴∠D=90°.在Rt△ABD中,AD=45,AB=42,∴BD=28 5.∵∠D=∠C,∠DAE=∠CBE,∴△ADE∽△BCE.∴AD∶BC=AE∶BE=DE∶CE=45∶4=1∶5.∴相似比为1∶5.设AE=x,∴BE=5x.∴DE=285-5x.∴CE =5DE =28-25x . 又∵AC =4,∴x +28-25x =4. 解得x =1.二、11.70° 12.70° 13.2 14.(4,2) 15.2 16.4π3 17. 518.392 点拨:延长CO 与圆交于点D ,连接AD ,可得∠B =∠D ,故sin B =sin D .∴AH AB =AC CD ,即18AB =2426,可得AB =392. 19.3 20.23-2π3点拨:依题意,有AD =BD ,又∠ACB =90°,所以CB =CD =BD ,即△BCD 为等边三角形,∠BCD =∠ABC =60°,∠BAC =∠ACD =30°;由AC =23,得BC =2,AB =4.阴影部分面积为S △ACD -S 弓形AD =S △ACD -S 弓形BD =S △ACD -(S 扇形BCD -S △BCD )=S △ABC -S 扇形BCD ,根据面积公式计算即可.三、21.证明:连接BE ,如图所示.(第21题)∵AE 为⊙O 的直径,AD 是△ABC 的高, ∴∠ABE =∠ADC =90°. 又∵∠C =∠E ,∴△ADC ∽△ABE .∴AC AE =AD AB. ∴AB ·AC =AD ·AE =6×2R=6×2×4=48, 即AB ·AC 的值是一个常数. 22.解:(1)连接OD .∵AB =10,∴OA =OD =5.∵AH=2,∴OH=3.∵AB⊥DE,∴∠DHO=90°,DH=EH.∴DH=OD2-OH2=52-32=4.∴DE=2DH=2×4=8.(2)连接OC,OP.∵CP与⊙O相切,∴OC⊥CP.∴OP=OC2+CP2=52+(25)2=3 5.∴PH=OP2-OH2=(35)2-32=6.∴PD=PH-DH=6-4=2.23.解:(1)过点P作PD⊥x轴于点D.∵A点的坐标为(4,0),∴OA=4.∴OD=2,即点P的横坐标为2.将x=2代入y=4x,可得y=2,即PD=2.在Rt△OPD中,根据勾股定理可得OP=22,即⊙P的半径为2 2.(2)由(1)可得PD=OD,且∠ODP=90°,∴∠OPD=45°.又∵OP=PA,∴∠APD=∠OPD=45°.∴∠OPA=90°.又∵OA=2OD=4,∴S阴影=S扇形OPA-S△OPA=90×(22)2×π360-4×22=2π-4.24.(1)证明:连接OD,OE,BD.∵AB为半圆O的直径,∴∠ADB=∠BDC=90°.在Rt△BDC中,E为斜边BC的中点,∴DE=BE.在△OBE和△ODE中,⎩⎨⎧OB =OD ,OE =OE ,BE =DE ,∴△OBE ≌△ODE (SSS ).∴∠ODE =∠OBE =90°.∴DE 为半圆O 的切线.(2)解:在Rt △ABC 中,∠BAC =30°,∴BC =12AC . ∵BC =2BE =2DE =4,∴AC =8.由题知∠C =60°,DE =BE =EC ,∴△DEC 为等边三角形.∴DC =DE =2.∴AD =AC -DC =8-2=6.25.解:(1)设经过B ,C 两点的直线对应的函数表达式为y =m x +n (m≠0且m ,n 为常数).由题易知B (0,3),C (1,0),分别将B (0,3),C (1,0)的坐标代入y =m x +n ,得⎩⎨⎧3=n ,0=m +n ,解得⎩⎨⎧m =-3,n =3.∴经过B ,C 两点的直线对应的函数表达式为y =-3x +3.(2)当BC 切⊙O ′于第二象限时,记切点为D ,易得DC = 5.∵BO =BD =b ,∴BC =5-b .在Rt △OBC 中,易得12+b 2=(5-b )2,解得b =255. 同理当BC 切⊙O ′于第三象限D 1点时,可求得b =-25 5. 故当b >255或b <-255时,直线BC 与⊙O ′相离; 当b =255或-255时,直线BC 与⊙O ′相切;当-255<b <255时,直线BC 与⊙O ′相交. 26.(1)证明:如图,连接AN .∵∠ABC =∠ACB ,∴AB =AC .∵AC 为直径,∴AN ⊥BC .∴∠CAN =∠BAN ,BN =CN .∵∠CAB =2∠BCP ,∴∠CAN =∠BCP .∵∠CAN +∠ACN =90°,∴∠BCP +∠ACN =90°,即∠ACP =90°.∴直线CP 是⊙O 的切线.(第26题)(2)解:如图,过点B 作BH ⊥AC 于点H ,由(1)得BN =CN =12BC = 5. ∵AN ⊥BC ,∴sin ∠CAN =CN AC. 又∵∠CAN =∠BCP ,sin ∠BCP =55, ∴CNAC =55,∴AC =5. ∴AN =AC 2-CN 2=2 5.∵∠ANC =∠BHC =90°,∠ACN =∠BCH ,∴△CAN ∽△CBH .∴AC BC =AN BH. ∴BH =4,即点B 到AC 的距离为4.(3)解:易知CH=BC2-BH2=2,则AH=AC-CH=3.∵BH∥CP,∴BHPC=AHAC.∴PC=20 3.∴AP=AC2+PC2=253.∴△ACP的周长是AC+AP+PC=5+253+203=20.。
2022-2023学年北师大版九年级数学下册《第3章圆》单元综合练习题(附答案)
2022-2023学年北师大版九年级数学下册《第3章圆》单元综合练习题(附答案)一.选择题1.已知扇形的半径为6,圆心角为120°,则它的面积是()A.B.3πC.5πD.12π2.如图,CD是⊙O的直径,A,B是⊙O上的两点,若∠ABD=15°,则∠ADC的度数为()A.55°B.65°C.75°D.85°3.如图,OA是⊙O的半径,弦BC⊥OA,垂足为D.连接AC.若BC=,AC=3,则⊙O的半径长为()A.9B.8C.D.34.如图,⊙O的半径为,AB与CD为⊙O的两条平行弦,∠CDE=30°,AD=2,则弦BE的长为()A.3B.3.5C.D.5.如图,在正方形网格中,点A,B,C,D,O都在格点上.下列说法正确的是()A.点O是△ABC的内心B.点O是△ABC的外心C.点O是△ABD的内心D.点O是△ABD的外心6.如图,在平面直角坐标系中,以M(2,4)为圆心,AB为直径的圆与x轴相切,与y 轴交于A,C两点,则点B的坐标是()A.(4﹣2,4)B.(4,4﹣)C.(4,4﹣2)D.(4,2﹣3)7.我国古代数学家刘徽利用圆内接正多边形创立了“割圆术”,现将半径为2的圆十二等分构造出2个矩形和1个正方形(如图),则阴影部分的面积是()A.1B.C.D.8.正六边形的周长为6,则它的面积为()A.B.C.D.9.如图,⊙O的直径AB为10cm,弦BC为8cm,∠ACB的平分线交⊙O于点D,△ADB 的内切圆半径是()A.B.5(﹣1)C.5(+1)D.10.如图,AB是⊙O的直径,∠ACB的平分线交⊙O于点D,连接AD,BD,给出下列四个结论:①∠ACB=90°;②△ABD是等腰直角三角形;③AD2=DE•CD;④AC+BC=CD,其中正确的结论个数是()A.4个B.3个C.2个D.1个二.填空题11.点P为⊙O外一点,直线PO与⊙O的两个公共点为A、B,过点P作⊙O的切线,点C为切点,连接AC.若∠CPO=50°,则∠CAB为°.12.已知⊙O的半径是4,点P到圆心O的距离d为方程x2﹣4x﹣5=0的一个根,则点P 在⊙O的.(填“内部”、“外部”、“上”)13.如图,矩形ABCD中,E,F分别是边AB,BC上的两个动点,将△BEF沿着直线EF 作轴对称变换,得到△B′EF,点B′恰好在边AD上,过点D,F,B′作⊙O,连结OF.若OF⊥BC,AB′=CF=3时,则AE=.14.李老师制作了如图1所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题.操作学具时,点Q在轨道槽AM上运A动,点P既能在以A为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN上运动.图2是操作学具时,所对应某个位置的图形的示意图.有以下结论:①当∠P AQ=30°,PQ=6时,可得到形状唯一确定的△P AQ;②当∠P AQ=90°,PQ=10时,可得到形状唯一确定的△P AQ;③当∠P AQ=150°,PQ=12时,可得到形状唯一确定的△P AQ;其中所有正确结论的序号是.15.如图,点A,B,C,D在⊙O上,弧CB=弧CD,∠CAD=28°,∠ACD=50°,则∠ADB=.16.如图,在⊙B中,弧AC所对的圆心角∠ABC=50°,点E是弧AC上的动点,以BC、CE为邻边构造平行四边形BCED.当∠A=°时,线段AD最短.三.解答题17.如图,在Rt△ABC中,∠ACB=90°,点E是BC的中点,以AC为直径的⊙O与AB 边交于点D,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若CD=6,DE=5,求⊙O的直径.18.如图,线段AB=10,AC=8,点D,E在以AB为直径的半圆O上,且四边形ACDE 是平行四边形,过点O作OF⊥DE于点F,求AE的长.19.如图,半圆O的直径是AB,AD、BC是两条切线,切点分别为A、B,CO平分∠BCD.(1)求证:CD是半圆O的切线.(2)若AD=20,CD=50,求BC和AB的长.20.如图,BD是⊙O的直径,点A,C在⊙O上,=,AC交BD于点G.若∠COD =126°,求∠AGB的度数.21.如图,在△ABC中,∠C=90°,AD是△ABC的角平分线,以BD为直径的⊙O交AB 于点E,交AD的延长线于点F,连结EF,BF.(1)求证:EF=BF.(2)若CD:BD=1:3,AC=2,求EF的长.22.如图,有一个直径MN=4的半圆形纸片,其圆心为点P,从初始阶段Ⅰ位置开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中位置Ⅰ中的MN平行于数轴,且半⊙P 与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴;位置Ⅲ中的MN在数轴上;位置Ⅴ中的点N到数轴的距离为3,且半⊙P与数轴相切于点A.解答下列问题:(1)位置Ⅰ中的MN与数轴之间的距离为;位置Ⅱ中的半⊙P与数轴位置关系是;(2)求位置Ⅲ中的圆心P在数轴上表示的数;(3)纸片半⊙P从位置Ⅲ翻滚到位置Ⅳ时,求点N所经过路径长及该纸片所扫过的图形的面积;(4)求OA的长.(结果保留π)23.如图,AB是⊙O的直径,CA与⊙O相切于点A,且CA=BA.连接OC,过点A作AD ⊥OC于点E,交⊙O于点D,连接DB.(1)求证:△ACE≌△BAD;(2)连接CB交⊙O于点M,交AD于点N.若AD=12,求MN的长.参考答案一.选择题1.解:S扇形==12π,故选:D.2.解:∵CD是直径,∴∠CAD=90°,∵∠ACD=∠ABD=15°,∴∠ADC=90°﹣15°=75°,故选:C.3.解:连接AC,OC,∵CD⊥OA,垂足为D,BC=,∴∠ADC=∠ODC=90°,CD=BC=,∵AC=3,∴AD=,∵OA=OC,∴OD=OC﹣AD=OC﹣1,在Rt△OCD中,OC2=CD2+OD2,即OC2=()2+(OC﹣1)2,解得OC=,即⊙O的半径长为,故选:C.4.解:∵AB∥CD,连接OC,OE,BC、CE,∵∠CDE=30°,∴∠COE=60°,∠CBE=∠CDE=30°,∴△OCE是等边三角形,∴CE=,过点C作CH⊥BE交BE于点H,在Rt△BCH中,CH==1,BH=,在Rt△CEH中,,∴.故选:D.5.解:根据点A,B,C,D,O都在正方形网格的格点上.可知:点O到点A,B,D的三点的距离相等,所以点O是△ABD的外心,故选:D.6.解:设以AB为直径的圆与x轴相切于点D,连接MD,BC,则MD⊥x轴,∵点M的坐标为(2,4),∴CE=BE=2,BM=DM=4,∵AB为圆的直径,∴AC⊥BC,∴BC∥x轴,∴BC=2CE=4,在Rt△BME中,由勾股定理得:ME===,∴DE=MD﹣ME=4﹣,∴点B的坐标为(4,4﹣),故选:C.7.解:如图,连接OA、OB、OC、OD,过点O作OM⊥AD,垂足为M,由圆的对称性可知,点A、点D是⊙O的三等分点,四边形BCFE是正方形,∴∠AOD=×360°=120°,∠BOC=×360°=90°,在Rt△AOM中,OA=2,∠AOM=60°,∴OM=OA=1,AM=OA=,在Rt△BOM中,∠BOM=45°,OM=1,∴BM=OM=1,∴AB=AM﹣BM=﹣1,∴8个阴影三角形的面积和为:×(﹣1)(﹣1)×8=16﹣8,故选:C.8.解:如图,连接OB,OC,过O作OM⊥BC于M,∴∠BOC=×360°=60°,∵OB=OC,∴△OBC是等边三角形,∵正六边形ABCDEF的周长为6,∴BC=6÷6=1,∴OB=BC=1,∴BM=BC=,在Rt△BOM中,OM===,∴S△OBC=BC•OM=×1×=,∴该六边形的面积为:×6=.故选:D.9.解:∵AB是直径,∴∠ACB=90°,∠ADB=90°,∵AB=10cm,AC=6cm,∴BC==8(cm),∵∠ACB的平分线交⊙O于D,∴∠ACD=∠BCD,∴AD=BD,∵∠ADB=90°,∴AD2+BD2=AD2,∴AD2+AD2=102,∴AD=5cm,∴AD=BD=5cm;∴△ABD等腰直角三角形,设△ABD内切圆的圆心为I,与AD,BD,AB切于点E,G,F,半径为rcm,得正方形DGIE,∴AE=AF=BG=BF=AD﹣DE=5﹣r,∴5﹣r+5﹣r=10,解得r=5(﹣1)cm,∴△ADB的内切圆半径是5(﹣1)cm.故选:B.10.解:如图,延长CA到点F,使AF=BC,连接DF,∵AB是⊙O的直径,∴∠ACB=90°,故①正确;∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD,∴=,∴AD=BD,∵AB是⊙O的直径,∴∠ADB=90°,∴△ABD是等腰直角三角形,故②正确;∴=,∴∠ACD=∠EAD,∵∠ADC=∠EDA,∴△ADC∽△EDA,∴=,∴AD2=DE•CD,故③正确;∵四边形ADBC是⊙O的内接四边形,∴∠F AD=∠DBC,在△F AD和△DBC中,,∴△F AD≌△DBC(SAS),∴FD=CD,∠ADF=∠BDC,∵∠ADC+∠BDC=90°,∴∠ADC+∠ADF=90°,∴∠FDC=90°,∴△CDF是等腰直角三角形,∴CF=CD,∴AC+AF=AC+BC=CD,故④正确.∴正确的结论是①②③④.故选:A.二.填空题11.解:如图1,∵PC是⊙O的切线,∴OC⊥PC,∴∠OCP=90°,∵∠CPO=50°,∴∠OCP=40°,∵OC=OA,∴∠A=∠ACO=∠OCP=20°;如图2,∠CBA=20°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=70°.综合以上可得∠CAB为20°或70°.故答案为:20或70.12.解:解方程x2﹣4x﹣5=0,得x=5或﹣1,∵d>0,∴d=5,∵⊙O的半径为4,∴d>r,∴点P在⊙O外.故答案为:外部.13.解:延长FO交AD于点J,设AE=x.∵四边形ABCD是矩形,∴∠D=∠C=∠A=∠B=90°,AD∥CB,AD=BC,∵OF⊥BC,∴FJ⊥AD,∴∠AJF=∠FJD=90°,∴四边形ABFJ是矩形,四边形CDJF是矩形,∴AB=FJ=CD,CF=DJ=3,∵OJ⊥DB′,∴DJ=JB′=3,∴AD=BC=3+3+3=9,∴BF=BC﹣CF=6,由翻折的性质可知,FB=FB′=6,∴FJ===3,∴AB=JF=3,在Rt△AEB′中,则有x2+32=(3﹣x)2,∴x=,∴AE=.故答案为:.14.解:①当∠P AQ=30°,PQ=6时,以P为圆心,6为半径画弧,与射线AM有两个交点,则△P AQ的形状不能唯一确定,故①错误;②当∠P AQ=90°,PQ=10时,以P为圆心,10为半径画弧,与射线AM有一个交点,Q点位置唯一确定,则可得到形状唯一确定的△P AQ,故②正确;③当∠P AQ=150°,PQ=12时,以P为圆心,12为半径画弧,与射线AM有一个交点,Q点位置唯一确定,则可得到形状唯一确定的△P AQ,故③正确;故答案为:②③.15.解:∵=,∠CAD=28°,∴∠CAD=∠CAB=28°,∴∠DBC=∠DAC=28°,∵∠ACD=50°,∴∠ABD=∠ACD=50°,∴∠ADB=180°﹣∠DAB﹣∠ABD=180°﹣50°﹣28°﹣28°=74°.故答案为:74°.16.解:如图,延长CB交⊙B于点F,连接BE,AF,DF.∵四边形BCED是矩形,∴BC=DE,BC∥DE,∴BF=BC=DE,BF∥DE,∴四边形BEDFF是平行四边形,∴FD=BE=定值,∴点的运动轨迹是以F为圆心,FB长为半径的圆,∵AD≥AF﹣DF,AF,DF是定值,∴当A,D,F共线时,AD最短,此时∠BAD=∠AFB=∠ABC=25°,故答案为:25.三.解答题17.解:(1)直线DE与⊙O相切,理由:连接DO,如图,∵∠BDC=90°,E为BC的中点,∴DE=CE=BE,∴∠EDC=∠ECD,又∵OD=OC,∴∠ODC=∠OCD,而∠OCD+∠DCE=∠ACB=90°,∴∠EDC+∠ODC=90°,即∠EDO=90°,∴DE⊥OD,∵OD是⊙O的半径,∴DE与⊙O相切;(2)由(1)得,∠CDB=90°,∵CE=EB,∴DE=BC,∴BC=10,∴BD===8,∵∠BCA=∠BDC=90°,∠B=∠B,∴△BCA∽△BDC,∴=,∴,∴,∴⊙O直径的长为.18.解:过点E作EG⊥AB于点G,连接OE,则OE=OA=,∠EGO=90°,∵四边形ABCD是平行四边形,∴DE=AC=8,DE∥AB,∵OF⊥DE,即∠OFE=90°,∴EF==4,∠FOG=∠OFE=90°,∴四边形OFEG是矩形,∴OG=EF=4,∴AG=5﹣4=1,在Rt△OEG中,EG=,在Rt△AGE中,AE=.19.(1)证明:过点O作OE⊥CD,垂足为点E,∵BC是半圆O的切线,B为切点,∴OB⊥BC,∵CO平分∠BCD,∴OE=OB,∵OB是半圆O的半径,∴CD是半圆O的切线;(2)解:过点D作DF⊥BC,垂足为点F,∴∠DFB=90°,∵AD是半圆O的切线,切点为A,∴∠DAO=90°,∵OB⊥BC,∴∠OBC=90°,∴四边形ADFB是矩形,∴AD=BF=20,DF=AB,∵AD,CD,BC是半圆O的切线,切点分别为A、E、B,∴DE=AD=20,EC=BC,∵CD=50,∴EC=CD﹣DE=50﹣20=30,∴BC=30,∴CF=BC﹣BF=10,在Rt△CDF中,由勾股定理得:DF===20,∴AB=DF=20,∴BC的长为30,AB的长为20.20.解:∵BD是⊙O的直径,∴∠BAD=90°,∵,∴∠B=∠D=45°,∵∠DAC=∠COD=×126°=63°,∴∠AGB=∠DAC+∠D=63°+45°=108°.所以∠AGB的度数为108°.21.(1)证明:连接DE,如图,∵BD为直径,∴∠DBF=∠DEB=90°,∵AD是△ABC的角平分线,∴∠1=∠2,∵∠1+∠4=90°,∠2+∠ABF=90°,∴∠4=∠ABF,∵∠4=∠5,∠5=∠6,∴∠6=∠ABF,∴EF=BF;(2)解:∵AD平分∠CAB,DC⊥AC,DE⊥AB,∴DE=DC,∵CD:BD=1:3,∴DE:BD=1:3,∵∠DEB=∠C,∠DBE=∠ABC,∴△BDE∽△BAC,∴=,∴==3,∴AB=3AC=3×2=6,∴BC===8,∴CD=BC=2,∴AD==2,∵∠1=∠2,∠C=∠AFB,∴△ACD∽△AFB,∴=,即=,∴BF=2,∴EF=2.22.解:(1)∵⊙P的直径MN=4,∴⊙P的半径=2,∵⊙P与直线有一个交点,∴位置Ⅰ中的MN与数轴之间的距离为2;位置Ⅱ中的半⊙P与数轴的位置关系是相切;故答案为:2,相切;(2)位置Ⅲ中的长与数轴上线段ON相等,∵的长为=π,NP=2,∴位置Ⅲ中的圆心P在数轴上表示的数为π+2;(3)由弧长公式可得,点N所经过路径长为=2π,∵S半圆==2π,S扇形==4π,∴半⊙P所扫过图形的面积为2π+4π=6π;(4)如图,作NC垂直数轴于点C,作PH⊥NC于点H,连接P A,则四边形PHCA为矩形.在Rt△NPH中,PN=2,NH=NC﹣HC=NC﹣P A=1,于是sin∠NPH==,∴∠NPH=30°.∴∠MP A=60°.从而的长为=,∴OA的长为:π+4+π=π+4.23.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AD⊥OC,∴∠AEC=90°,∴∠ADB=∠AEC,∵CA是⊙O的切线,∴∠CAO=90°,∴∠ACE=∠BAD,在△ACE和△BAD中,,∴△ACE≌△BAD(AAS);(2)解:连接AM,如图,∵AD⊥OC,AD=12,∴AE=DE=AD=6,∵△ACE≌△BAD,∴BD=AE=6,CE=AD=12,在Rr△ABD中,AB==6,在Rt△ABC中,BC==6,∵∠CEN=∠BDN=90°,∠CNE=∠BND,∴△CEN∽△BDN,∴==2,∴BN=BC=2,∵AB是⊙O的直径,∴∠AMB=90°,即AM⊥CB,∵CA=BA,∠CAB=90°,∴BM=BC=3,∴MN=BM﹣BN=.。
北师大版九年级下册数学全册同步练习
北师大版九年级下册数学全册同步练习1.1锐角三角函数第1课时正切与坡度1.在△ABC中,∠C=90°,AC=4,BC=3,则tanA的值是()A.B.C.D.2.如图,在3×3的正方形的网格中标出了∠1,则tan∠1的值为()A.B.C.D.3.如图,河坝横断面迎水坡AB的坡比(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是()A.9mB.6mC.mD.m4.如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1∶2,则斜坡AB的长为()A.米B.米C.米D.24米5.如图,在直角坐标系中,点A的坐标是(2,3),则tanα的值是()A.B.C.D.6.如图,△ABC中,∠C=90°,AC=5,BC=12,则tanA=______.7.在Rt△ABC中,∠C=90°,若AC=5,tanA=2,则BC=.8.如图,已知梯形ABCD中,AB∥CD,AB⊥BC,且AD⊥BD,若CD=1,BC=3,那么∠A的正切值为.9.在△ABC中,∠C=90°,BC=8cm,tanA=,求AC的长.10.如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为600.沿坡面AB向上走到B处测得广告牌顶部C的仰角为450,已知山坡AB的坡度,AB=10米,AE=15米.(是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.1.1锐角三角函数第2课时正弦与余弦1.在Rt△ABC中,∠C=90°,∠A=30°,则的值是A.B.C.D.2.在Rt△ABC中,∠C=90°,AC=4,BC=3,则是A.B.C.D.3.在Rt△ABC 中,∠C=90°,AB=5,BC=3,则∠A的余弦值是()A. B. C. D.4.在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为()A.4B.2C.D.5.如图所示,△ABC的顶点是正方形网格的格点,则cosA 的值为______第5题图第6题图6.如图,角α的顶点为O,它的一边在x轴的正半轴上,另一边上有一点P(3,4),则sinα的值是_____________7.Rt△ABC中,若∠C=90°,a=15,b=8,求sinA+cosA的值.8.如图所示,△ABC中,∠C=90°,sinA=,AC=2,求AB,BC的长.1.230°,45°,60°角的三角函数值1.3tan30°的值等于()A.B.3C.D.2.计算6tan45°-2cos60°的结果是()A.4B.4C.5D.53.如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.B.C.D.1第3题图第5题图4.如果在△ABC中,sinA=cosB=,则下列最确切的结论是()A.△ABC是直角三角形B.△ABC是等腰三角形C.△ABC是等腰直角三角形D.△ABC是锐角三角形5.如图,当太阳光线与水平地面成30°角时,一棵树的影长为24m,则该树高为()A.8mB.12mC.12mD.12m6.(1)cos30°的值是____.(2)计算:sin30°·cos30°-tan30°=____(结果保留根号).(3)cos245°+tan30°·sin60°=____.7.根据下列条件,求出锐角A的度数.(1)sinA=,则∠A=____;(2)cosA=,则∠A=____;(3)cosA=,则∠A=____;(4)cosA=,则∠A=____.8.如图是引拉线固定电线杆的示意图,已知CD⊥AB,CD=3m,∠CAD=∠CBD=60°,求拉线AC的长.9.计算:(1)+2sin60°tan60°-+tan45°;(2)-s in60°(1-sin30°).10.已知α是锐角,且sin(α+15°)=,计算-4cosα-(π-3.14)0+tanα+的值.1.3三角函数的计算1.利用计算器求下列各式的值:(1);(2);(3);(4).2.利用计算器求下列各式的值:(1);(2);(3);(4).3.利用计算器求下列各式的值:(1);(2);(3);(4).4.如图,甲、乙两建筑物之间的水平距离为100m,∠α=32°,∠β=50°,求乙建筑物的高度(结果精确到0.1m).1.4解直角三角形1.如图,在△ABC中,∠C=900,AB=5,BC=3,则sinA的值是()A.B.C.D.第1题图第3题图第4题图2.在Rt△ACB中,∠C=900,AB=10,sinA=,cosA=,tanA=,则BC的长为() A.6B.7.5C.8D.12.53.如图,在△ABC中,∠C=900,AD是BC边上的中线,BD=4,,则tan∠CAD的值是()A.2B.C.D.4.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为()A.B.C.D.5.在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=6.△ABC中,∠C=900,AB=8,cosA=,则BC的长7.如图,在△ABC中,∠A=300,∠B=450,AC=,则AB的长为.第7题图第8题图8.如图,在Rt△ABC中,∠ACB=900,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE=.9.如图,在△ABC中,AD是BC边上的高,AE是BC 边上的中线,∠C=450,sinB=,AD=1.(1)求BC的长;(2)求tan∠DAE的值.10.如图,在Rt△ABC中,∠C=900,∠A的平分线交BC于点E,EF⊥AB于点F,点F恰好是AB的一个三等分点(AF>BF).(1)求证:△ACE≌△AFE;(2)求tan∠CAE的值.1.5三角函数的应用1.某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要().A.450a元B.225a元C.150a元D.300a元第1题图第2题图2.某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,中柱CD=1米,∠A=27°,则跨度AB的长为(精确到0.01米).3.如图,从A地到B地的公路需经过C地,图中AC=10km,∠CAB=250,∠CBA=370,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin250≈0.42,cos250≈0.91,sin370≈0.60,tan370≈0.75)4.中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=300,∠CBD=600.(1)求AB的长;(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A 到B用时2秒,这辆校车是否超速?说明理由.5.如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成300角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离.6.图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为120,支架AC长为0.8m,∠ACD为800,求跑步机手柄的一端A的高度h(精确到0.1m).(参考数据:sin120=cos780≈0.21,sin680=cos220≈0.93,tan680≈2.48)1.6利用三角函数测高1.如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为300,看这栋高楼底部C的俯角为600,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为A.40m B.80mC.120m D.160m2.如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为()(结果精确到0.1m,≈1.73).A.3.5mB.3.6mC.4.3mD.5.1m3.如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为米(用含α的代数式表示).4.如图,AC是操场上直立的一个旗杆,从旗杆上的B点到地面C涂着红色的油漆,用测角仪测得地面上的D点到B点的仰角是∠BDC=45°,到A点的仰角是∠ADC=60°(测角仪的高度忽略不计)如果BC=3米,那么旗杆的高度AC=米.第4题图第5题图第6题图5.如图,在高度是21米的小山A处测得建筑物CD顶部C处的仰角为300,底部D处的俯角为何450,则这个建筑物的高度CD=米(结果可保留根号)6.某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为600,在教学楼三楼D处测得旗杆顶部的仰角为300,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB 的高度为米.7.如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为300,然后沿AD方向前行10m,到达B点,在B 处测得树顶C的仰角高度为600(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度.8.如图,一只猫头鹰蹲在一棵树AC的B(点B在AC上)处,发现一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住,为了寻找这只老鼠,它又飞至树顶C处,已知短墙高DF=4米,短墙底部D与树的底部A的距离为2.7米,猫头鹰从C点观测F点的俯角为530,老鼠躲藏处M(点M在DE上)距D点3米.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)(1)猫头鹰飞至C处后,能否看到这只老鼠?为什么?(2)要捕捉到这只老鼠,猫头鹰至少要飞多少米?9.在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下的方案(如图1所示):(1)在测点A处安置测倾器,测得旗杆顶部M的仰角∠MCE=α;(2)量出测点A到旗杆底部N的水平距离AN=m;(3)量出测倾器的高度AC=h。
北师大版数学九年级下册第一章 直角三角形的边角关系 单元测试卷
第一章 直角三角形的边角关系 单元测试卷一、选择题(本大题共10小题,每小题3分,共30分) 1. sin45°的值等于( ) A.3 B.12C. 32D. 222. 在△ABC 中,∠C=90°,AC=12,AB=13,那么cosA 的值等于( )A .513B .1213C .512D .1253. 已知一斜坡的坡度i=1:3,用科学计算器求坡角的度数,并用“度、分、秒”为单位表示出这个度数,则下列按键顺序正确的是( )A. =3÷1tanB. °′′′=3÷1tanC. SHIFT )(=3÷1tanD. SHIFT)(°′′′=3÷1tan4. 在Rt △ABC 中,∠C=90°,∠B=α,若BC=m ,则AB 的长为( ) A.cos mB .m·cos αC .m·sin αD .m·tan α5.如果△ABC 中,∠C =90°,sin A =12,那么下列等式不正确的是( ) A .cos A =22B .tan A =33 C .sin B =32D .tan B =36. 如图,点A 为∠B 边上的任意一点,过点A 作AC ⊥BC 于点C ,过点C 作CD ⊥AB 于点D.下列选项用线段比表示sin ∠BCD 的值,其中错误的是( ) A .BDBCB .BCABC .ADACD .CDAC第6题图 第7题图 第8题图7.河堤横断面如图所示,AB =10米,tan ∠BAC =33,则AC 的长是( ) A .53米B .10米C .15米D .103米8. 如图,在每个小正方形边长均为1的方格图中,点A,C,M,N均在格点上,AN与CM 相交于点P,则tan∠CPN的值为()A. 3B. 1C.33D.229. 如图,钓鱼竿AC长为6 m,露在水面上的鱼线BC长为32m,钓者想看看鱼钩上的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'的长度是()A.3 m B.33m C.23m D.4 m第9题图第10题图10. 如图,某班数学兴趣小组利用数学知识测量建筑物CD的高度.他们从点A出发沿着坡度i=1:2.4的斜坡AB步行26米到达点B处,此时测得建筑物顶端C的仰角α=35°,建筑物底端D的俯角β=30°.若AD为水平地面,则此建筑物的高度约为(参考数据:3≈1.7,sin35°≈0.6,cos35°≈0.8,tan35°≈0.75)()A.20.2米B.22.75米C.23.6米D.30米二、填空题(本大题共6小题,每小题4分,共24分)11. 若2cosα=1,则锐角α的度数为.12. 已知α为锐角,tanα=34,则sinα等于.13.如图,在△ABC中,∠ACB=90°,CD⊥AB于D点,若AC=23,tan∠BCD=22,则BC=.第13题图第14题图14. 如图,在△ABC中,BC=12,tanA=34,∠B=30°,则AB的长为.15. 在一次综合实践活动中,小东同学从A地出发,要到A地北偏东60°方向的C地.如图,他先沿正东方向行走了2千米到达B地,再沿北偏东15°方向行走,恰能到达目的地C,则A,C两地相距千米.(结果保留根号)第15题图第16题图16. 如图,要在宽为22米的公路两边安装路灯,路灯的灯臂CD长为2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直.当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC的高度应设计为米.(结果保留根号)三、解答题(本大题共8小题,共66分)17.(8分)已知α为锐角,sin(α+15°)=32,计算8﹣4cosα+tanα+(13)﹣1的值.18.(8分)在Rt△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,请根据下面的条件解直角三角形的其他元素:(1)∠A=45°,a=10;(2)a=23,c=4.19.(8分)如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是边BC上一点,过点D作DE⊥AB于点E,连接AD.若tan∠DAE=15,求△ADE的三边长.EDCBA第19题图20.(8分)如图,上午9:00时,甲、乙两船分别在A,B两处,乙船在甲船的正东方向,且两船之间的距离为33海里.甲船以30海里/时的速度沿北偏东45°方向匀速航行,乙船同时沿北偏东30°方向匀速航行.上午11:00时,甲船航行到C处,乙船航行到D处,此时乙船仍在甲船的正东方向,求此时两船之间的距离.(结果精确到1海里;参考数据:2 1.41≈,3 1.73≈,6 2.45)≈第20题图21.(8分)如图,某居民小区广场上树立着一个“扫黑除恶,共创和谐”的矩形电子灯牌,现施工人员要在两侧增加钢丝绳来加固灯牌.已知钢丝绳底端G距灯牌立柱FD的距离GD=4米,从G点测得灯牌顶端F和底端E的仰角分别是60°和45°.(1)若AF的长为5米,求灯牌的面积;(结果保留根号)(2)若灯牌两侧增加的钢丝绳一样长,求钢丝绳的总用料.(结果保留根号)第21题图22.(10分)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别交CD,BC于点H,E,且AH=2CH.(1)求sinB的值;(2)如果CD=5,求BE的值.第22题图23.(10分)如图,电工李师傅借助梯子安装天花板上距地面2.90 m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1 m,矩形面与地面所成的角α为78°,李师傅的身高为1.75 m.当他攀升到头顶距天花板0.05∼0.20 m时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否方便?(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70)第23题图24. (12分)对于钝角α,定义它的三角函数值如下:sinα=sin(180°-α),cosα=-cos(180°-α),tanα=-tan(180°-α).(1)求sin150°,cos135°,tan120°的值;(2)若△ABC三个内角的比为1:1:4,sinA,cosB是一元二次方程4x2-mx-1=0的两个不相等的实数根,求m的值及∠A和∠B的大小.第一章 直角三角形的边角关系 单元测试卷 参考答案答案详解三、17.4.18. (1)∠B =45°,b =10,c =10.(2)∠A =60°,∠B =30°,b=2.19. 解:因为△ABC 是等腰直角三角形,所以∠B=45°.所以AB=sin ACB=62因为DE ⊥AB ,所以△DEB 是等腰直角三角形.所以DE=BE. 因为tan ∠DAE=15DE AE =,所以AE=5DE. 因为AB=AE+BE=6DE=622,AE=2在Rt △ADE 中,由勾股定理,得22AE DE +213. 20. 解:过点C 作CE ⊥AB 于点E ,过点D 作DF ⊥AB 于点F. 根据题意,得AC=30×2=60. 在Rt △CAE 中,因为∠CAE=45°,所以AE=CE=AC·cos ∠CAE=302在Rt △DBF 中,因为DF=CE=302∠DBF=60°,所以BF=106tan DBFDF=∠因为BE=AE-AB=30233≈9.3,所以EF=BF-BE=69.3≈15.2. 所以CD=EF=15.2≈15(海里).答:此时两船之间的距离约为15海里.21. 解:(1)在Rt △FDG 中,因为∠FGD=60°,GD=4,所以FD=GD·tan ∠FGD=3在Rt △EDG 中,因为∠EGD=45°,GD=4,所以ED=GD·tan ∠EGD=4. 所以EF=FD-ED=43所以S 矩形ABEF =AF·EF=5×(3)=(203)平方米. 答:灯牌的面积为(203-20)平方米. (2)在Rt △FDG 中,FG=8cos GDFGD=∠.答案速览一、1. D 2. B 3. D 4. A 5. A 6. C 7. A 8. B 9. B 10. B 二、11. 60° 12.3513. 6 14. 863+ 15.(1+3) 16. (1134)- 三、解答题见“答案详解”在Rt △EDG 中, EG=cos GDEGD=∠所以2(FG+EG )=2×(8+=(16+.答:钢丝绳的总用料为(16+.22. 解:(1)因为CD 是Rt △ABC 斜边AB 上的中线,所以CD=12AB=BD.所以∠BCD=∠B. 因为AE ⊥CD ,∠ACB=90°,所以∠CAH+∠ACH=90°,∠BCD+∠ACH=90°.所以∠BCD=∠CAH.所以∠B=∠CAH.在Rt △ACH 中,AH=2CH ,由勾股定理,得CH.所以sin ∠CAH=CH AC =.所以(2)因为CD 是Rt △ABC 斜边AB 上的中线,所以AB=2CD=因为sinB=AC AB =AC=2.在Rt △ABC 中,由勾股定理,得因为sin ∠CAH=CE AE =,所以CE.在Rt △ACE 中,由勾股定理,得CE 2+AC 2=AE 2,即CE 2+22=CE )2.解得CE=1. 所以BE=BC-CE=3.23. 解:如图,过点A 作AE ⊥BC 于点E ,过点D 作DF ⊥BC 于点F. 因为AB=AC ,所以BE=EC=12BC=12. 在Rt △AEC 中,因为α=78°,所以AE=EC·tanα=12×tan78°≈2.35. 因为李师傅站立在梯子的第三级踏板上,所以37DC AC =.因为sinα=AE DF AC DC =,所以DF=37AE DC AE AC ⋅=≈1.007.所以李师傅头顶距离地面的高度约为1.007+1.75=2.757(m ),头顶距离天花板的高度约为2.90-2.757=0.143(m ).因为0.05<0.143<0.20,所以他方便安装.第23题图24. 解:(1)根据题意,得sin150°=sin(180°-150°)=sin30°=12;cos135°=-cos(180°-135°)=-cos45°=-22;tan120°=-tan(180°-120°)=-tan60°3.(2)因为△ABC三个内角的比是1:1:4,所以三个内角分别为30°,30°,120°.①当∠A=30°,∠B=120°时,sinA=12,cosB=-12,即一元二次方程的两个根为12,-12.将x=12代入方程,得4×212⎛⎫⎪⎝⎭-12m-1=0.解得m=0.经检验,x=-12是方程4x2-1=0的根.所以m=0符合题意.②当∠A=120°,∠B=30°时,33因为sinA,cosB是一元二次方程的两个不相等的实数根,所以这种情况不符合题意.③当∠A=30°,∠B=30°时,sinA=12,cosB=32,即一元二次方程的两个根为12,32.将x=12代入方程,得4×212⎛⎫⎪⎝⎭-12m-1=0.解得m=0.经检验,3是方程4x2-1=0的根.所以这种情况不符合题意.综上,m=0,∠A=30°,∠B=120°.。
北师大版九年级数学下册第二章《二次函数》专题训练(含答案)
北师大版九年级下册第二章二次函数专题训练一.选择题(共10小题)1.下列函数关系中,是二次函数的是()A.在弹性限度内,弹簧的长度y与所挂物体质量x之间的关系B.当距离一定时,火车行驶的时间t与速度v之间的关系C.等边三角形的周长C与边长a之间的关系D.圆的面积S与半径R之间的关系2.抛物线y=2(x+3)2+5的对称轴是()A.x=3 B.x=﹣5 C.x=5 D.x=﹣33.抛物线向左平移1个单位,再向下平移1个单位后的抛物线解析式是()A.B.C.D.4.二次函数y=ax2+bx+c,当x=2时,y取得最大值为﹣4,且二次函数图象还经过点(1,﹣7),则二次函数的表达式为()A.y=﹣3x2+12x﹣16 B.y=﹣3x2+12x﹣8C.y=3x2+12x﹣16 D.y=3x2+12x﹣85.如果正三角形的边长为x,那么它的面积y与x之间的函数关系是()A.B.C.D.6.二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A.t>﹣5 B.﹣5<t<3 C.3<t≤4 D.﹣5<t≤4 7.某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:由于粗心,他算错了其中一个y值,则这个错误的数值是()x…﹣2 ﹣1 0 1 2 …y…﹣11 ﹣2 1 ﹣2 ﹣5 …A.﹣11 B.﹣2 C.1 D.﹣58.如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a>﹣1.其中正确的有()A.4个B.3个C.2个D.1个9.抛物线y=ax2+bx+c(a≠0)对称轴为直线x=﹣1,其部分图象如图所示,则下列结论:①b2﹣4ac>0;②2a=b;③t(at+b)≤a﹣b(t为任意实数);④3b+2c<0;⑤点(﹣,y1),(,y2),(,y3)是该抛物线上的点,且y1<y3<y2,其中正确结论的个数是()A.5 B.4 C.3 D.210.关于x的二次函数+,其中a为锐角,则:①当a为30°时,函数有最小值﹣;②函数图象与坐标轴可能有三个交点,并且当a为45°时,连接这三个交点所围成的三角形面积小于1;③当a<60°时,函数在x>1时,y随x的增大而增大;④无论锐角a怎么变化,函数图象必过定点.其中正确的结论有()A.①②B.①②③C.①②④D.②③④二.填空题(共8小题)11.抛物线y=﹣x2﹣6x+2的对称轴为直线.12.如果函数是关于x的二次函数,那么k的值是.13.如图,在△ABC中,BC=12,BC上的高AH=8,矩形DEFG的边EF在边BC 上,顶点D、G分别在边AB、AC上.设DE=x,矩形DEFG的面积为y,那么y 关于x的函数关系式是.(不需写出x的取值范围).14.在实际问题中往往需要求得方程的近似解,这个时候,我们通常利用函数的图象来完成.如,求方程x2﹣2x﹣2=0的实数根的近似解,观察函数y=x2﹣2x﹣2的图象,发现,当自变量为2时,函数值小于0(点(2,﹣2)在x 轴下方),当自变量为3时,函数值大于0(点(3,1)在x轴上方).因为抛物线y=x2﹣2x﹣2是一条连续不断的曲线,所以抛物线y=x2﹣2x﹣2在2<x<3这一段经过x轴,也就是说,当x取2、3之间的某个值时,函数值为0,即方程x2﹣2x﹣2=0在2、3之间有根.进一步,我们取2和3的平均数2.5,计算可知,对应的数值为﹣0.75,与自变量为3的函数值异号,所以这个根在2.5与3之间任意一个数作为近似解,该近似解与真实值的差都不会大于3﹣2.5=0.5.重复以上操作,随着操作次数增加,根的近似值越来越接近真实值.用以上方法求得方程x2﹣2x﹣2=0的小于0的解,并且使得所求的近似解与真实值的差不超过0.3,该近似解为15.将二次函数y=x2﹣2x化为y=(x﹣h)2+k的形式,结果为.16.二次函数y=﹣3(x+2)2﹣1的最大值是.17.已知A(m,n),B(m+8,n)是抛物线y=﹣(x﹣h)2+2036上两点,则n =.18.已知抛物线y=ax2﹣2ax+c(a<0)的图象过点A(3,m).(1)当a=﹣1,m=0时,求抛物线的顶点坐标;(2)如图,直线l:y=kx+c(k<0)交抛物线于B,C两点,点Q(x,y)是抛物线上点B,C之间的一个动点,作QD⊥x轴交直线l于点D,作QE⊥y 轴于点E,连接DE.设∠QED=β,当2≤x≤4时,β恰好满足30°≤β≤60°,a=.三.解答题(共8小题)19.已知函数y=3x2﹣2x﹣1,求出此抛物线与坐标轴的交点坐标.20.已知函数y=(m2﹣m)x2+(m﹣1)x﹣2(m为常数).(1)若这个函数是关于x的一次函数,求m的值;(2)若这个函数是关于x的二次函数,求m的值.21.已知二次函数y=﹣x2﹣x+4回答下列问题:(1)用配方法将其化成y=a(x﹣h)2+k的形式(2)指出抛物线的顶点坐标和对称轴(3)当x取何值时,y随x增大而增大;当x取何值时,y随x增大而减小?22.如图,二次函数y=(x﹣3)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)抛物线上是否存在一点P,使S△ABP=S△ABC?若存在,请求出点P的坐标,若不存在,请说明理由.23.如图,在平面直角坐标系中,已知某个二次函数的图象经过点A(1,2),B (2,﹣1),C(4,﹣1),且该二次函数的最小值是﹣2.(Ⅰ)请在图中描出该函数图象上另外的两个点,并画出图象;(Ⅱ)求出该二次函数的解析.24.抛物线y=a(x+h)2的顶点为(2,0),它的形状与y=3x2相同,但开口方向与之相反.(1)直接写出抛物线的解析式;(2)求抛物线与y轴的交点坐标.25.双十一期间,某百货商场打算对某商品进行一次促销活动,该商品的进价为每件20元.在之前的销售过程中发现,当每件售价定为30元时,每月销售量为500件,若售价每提高1元,每月的销售量将减少10件.(1)设该商品售价提高x元时,每月获得的利润为y元,求y关于x的函数解析式;(2)如果商场想要获得的月利润为8000元,则该商品的销售单价应定为每件多少元?(3)若有关物价部门规定,该商品的销售单价不得高于其进价的两倍,则此时商场获得的最大月利润是多少?26.已知二次函数y=ax2+bx+c(a≠0)自变量x的值和它对应的函数值y如表所示:x…0 1 2 3 4 …y… 3 0 ﹣1 0 m…(1)请写出该二次函数图象的开口方向、对称轴、顶点坐标和m的值;(2)设该二次函数图象与x轴的左交点为B,它的顶点为A,该图象上点C 的横坐标为4,求△ABC的面积.北师大版九年级下册第2章《二次函数》单元练习题参考答案与试题解析一.选择题(共10小题)1.下列函数关系中,是二次函数的是()A.在弹性限度内,弹簧的长度y与所挂物体质量x之间的关系B.当距离一定时,火车行驶的时间t与速度v之间的关系C.等边三角形的周长C与边长a之间的关系D.圆的面积S与半径R之间的关系【分析】根据二次函数的定义,分别列出关系式,进行选择即可.【解答】解:A、关系式为:y=kx+b,故A错误;B、关系式为t=,故错误;C、关系式为:C=3a,故C错误;D、S=πR2,故D正确.故选:D.2.抛物线y=2(x+3)2+5的对称轴是()A.x=3B.x=﹣5C.x=5D.x=﹣3【分析】根据题目中的函数解析式,可以得到该抛物线的对称轴,从而可以解答本题.【解答】解:∵抛物线y=2(x+3)2+5,∴该抛物线的对称轴是直线x=﹣3,故选:D.3.抛物线向左平移1个单位,再向下平移1个单位后的抛物线解析式是()A.B.C.D.【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:由“左加右减、上加下减”的原则可知,把抛物线向左平移1个单位,再向下平移1个单位,则平移后的抛物线的表达式为y=﹣(x+1)2﹣1.故选:B.4.二次函数y=ax2+bx+c,当x=2时,y取得最大值为﹣4,且二次函数图象还经过点(1,﹣7),则二次函数的表达式为()A.y=﹣3x2+12x﹣16B.y=﹣3x2+12x﹣8C.y=3x2+12x﹣16D.y=3x2+12x﹣8【分析】根据题意得出顶点坐标(2,﹣4),再由抛物线的顶点坐标设出,抛物线的解析式为:y=a(x﹣2)2﹣4,再把(1,﹣7)代入,求出a,b,c的值,即可得出二次函数的解析式.【解答】解:由题意得抛物线的顶点坐标(2,﹣4),∵图象的顶点为(2,﹣4),且经过点(1,﹣7),设抛物线的解析式为:y=a(x﹣2)2﹣4,再把(1,﹣7)代入,可得a(1﹣2)2﹣4=﹣7,∴a=﹣3,∴抛物线的解析式为:y=﹣3(x﹣2)2﹣4,即y=﹣3x2+12x﹣8;故选:B.5.如果正三角形的边长为x,那么它的面积y与x之间的函数关系是()A.B.C.D.【分析】首先画出图形,再利用三角函数值计算出三角形BC边上的高,然后再利用三角形面积公式算出面积即可.【解答】解:如图:∵△ABC为正三角形,AD为BC边上的高,且AB=AC=BC=x;∴AD=x.∴它的面积y与x之间的函数关系是:y=x×x=x2.故选:D.6.二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx ﹣t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A.t>﹣5B.﹣5<t<3C.3<t≤4D.﹣5<t≤4【分析】如图,关于x的一元二次方程﹣x2+mx﹣t=0的解就是抛物线y=﹣x2+mx与直线y=t的交点的横坐标,利用图象法即可解决问题.【解答】解:如图,关于x的一元二次方程﹣x2+mx﹣t=0的解就是抛物线y=﹣x2+mx 与直线y=t的交点的横坐标,当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,直线y=t在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4.故选:D.7.某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:由于粗心,他算错了其中一个y值,则这个错误的数值是()x…﹣2﹣1012…y…﹣11﹣21﹣2﹣5…A.﹣11B.﹣2C.1D.﹣5【分析】根据关于对称轴对称的自变量对应的函数值相等,可得答案.【解答】解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,﹣2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得,函数解析式为y=﹣3x2+1x=2时y=﹣11,故选:D.8.如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a>﹣1.其中正确的有()A.4个B.3个C.2个D.1个【分析】利用抛物线与y轴的交点位置得到c>0,利用对称轴方程得到b=﹣2a,则2a+b+c =c>0,于是可对①进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣1,0)右侧,则当x=﹣1时,y<0,于是可对②进行判断;根据二次函数的性质得到x=1时,二次函数有最大值,则ax2+bx+c≤a+b+c,于是可对③进行判断;由于直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,利用函数图象得x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,然后把b=﹣2a代入解a的不等式,则可对④进行判断.【解答】解:∵抛物线与y轴的交点在x轴上方,∴c>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,∴2a+b+c=2a﹣2a+c=c>0,所以①正确;∵抛物线与x轴的一个交点在点(3,0)左侧,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣1,0)右侧,∴当x=﹣1时,y<0,∴a﹣b+c<0,所以②正确;∵x=1时,二次函数有最大值,∴ax2+bx+c≤a+b+c,∴x(ax+b)≤a+b,所以③正确;∵直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,∴x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,而b=﹣2a,∴9a﹣6a<﹣3,解得a<﹣1,所以④错误.故选:B.9.抛物线y=ax2+bx+c(a≠0)对称轴为直线x=﹣1,其部分图象如图所示,则下列结论:①b2﹣4ac>0;②2a=b;③t(at+b)≤a﹣b(t为任意实数);④3b+2c<0;⑤点(﹣,y1),(,y2),(,y3)是该抛物线上的点,且y1<y3<y2,其中正确结论的个数是()A.5B.4C.3D.2【分析】利用抛物线的开口方向、对称轴、顶点坐标、最大值(最小值),增减性逐个进行判断,得出答案.【解答】解:抛物线与x轴有两个不同交点,因此b2﹣4ac>0,故①正确;对称轴为x=﹣1,即:﹣=﹣1,也就是2a=b,故②正确;当x=﹣1时,y最大=a﹣b+c,当x=t时,y=at2+bt+c,∴at2+bt+c≤a﹣b+c,即:t(at+b)≤a﹣b,故③正确;由抛物线的对称性可知与x轴另一个交点0<x<1,当x=1时,y=a+b+c<0,又2a=b,即a=b,代入得:b+b+c<0,也就是3b+2c<0;因此④正确;点A(﹣,y1),B(,y2),C(,y3)到对称轴x=﹣1的距离分别为L A、L B、L C,则有L A>L C>L B,且A、B在对称轴左侧,C在对称轴的右侧,故y1<y3<y2,因此⑤正确,综上所述,正确的结论有5个,故选:A.10.关于x的二次函数+,其中a为锐角,则:①当a为30°时,函数有最小值﹣;②函数图象与坐标轴可能有三个交点,并且当a为45°时,连接这三个交点所围成的三角形面积小于1;③当a<60°时,函数在x>1时,y随x的增大而增大;④无论锐角a怎么变化,函数图象必过定点.其中正确的结论有()A.①②B.①②③C.①②④D.②③④【分析】①由于2sin a>0,所以函数一定有最小值,将a的值代入抛物线的解析式中,将解析式写成顶点式可得函数的最小值.②令y=0,在所得方程中若根的判别式大于0,那么抛物线的图象与坐标轴的交点可能有三个:与x轴有两个交点,与y轴有一个交点;当抛物线经过原点时,抛物线的图象与坐标轴只有两个交点.首先将a的值代入解析式,先设抛物线与x轴的两个交点横坐标为x1、x2,那么这两点间的距离可表示为|x1﹣x2|=,以这条线段为底,抛物线与y轴交点纵坐标的绝对值为高即可得到三交点围成的三角形的面积值,然后判断是否小于1即可.③由①知,抛物线的开口向上,所以一定有最小值;首先求出抛物线的对称轴方程,若x=1在抛物线对称轴右侧,那么y随x的增大而增大;若x=1在抛物线对称轴的左侧,那么随x的增大,y值先减小后增大.④图象若过定点,那么函数值就不能受到变量sin a的影响,所以先将所有含sin a的项拿出来,然后令sin a的系数为0,可据此求出x的值,将x的值代入抛物线的解析式中,即可得到这个定点的坐标.【解答】解:①当a=30°时,sin a=,二次函数解析式可写作:y=x2﹣x=(x﹣)2﹣;所以当a为30°时,函数的最小值为﹣;故①正确.②令y=0,则有:2sin ax2﹣(4sin a+)x﹣sin a+=0,△=(4sin a+)2﹣4×2sin a×(﹣sin a+)=24sin2a+>0,所以抛物线与x轴一定有两个交点,再加上抛物线与y轴的交点,即与坐标轴可能有三个交点(当图象过原点时,只有两个交点);设抛物线与x轴的交点为(x1,0)、(x2,0);当a=45°时,sin a=,得:y=x2﹣(2+)x﹣,则:三角形的面积S=|x1﹣x2|×=×=×≈0.3<1故②正确.③∵2sin a>0,且对称轴x=﹣=1+>1,∴x=1在抛物线对称轴的左侧,因此x>1时,y随x的增大先减小后增大;故③错误.④y=2sin ax2﹣(4sin a+)x﹣sin a+=sin a(2x2﹣4x﹣1)﹣x+;当2x2﹣4x﹣1=0,即x=1±时,抛物线经过定点,且坐标为:(1+,﹣)、(1﹣,);故④正确.综上,正确的选项是①②④,故选C.二.填空题(共8小题)11.抛物线y=﹣x2﹣6x+2的对称轴为直线x=﹣3.【分析】将题目中的函数解析式化为顶点式,即可写出该抛物线的对称轴.【解答】解:∵抛物线y=﹣x2﹣6x+2=﹣(x+3)2+11,∴该抛物线的对称轴是直线x=﹣3,故答案为:x=﹣3.12.如果函数是关于x的二次函数,那么k的值是0.【分析】根据二次函数的定义,列出方程与不等式求解即可.【解答】解:由题意得:k2﹣3k+2=2,解得k=0或k=3;又∵k﹣3≠0,∴k≠3.∴k的值是0时.故答案为:0.13.如图,在△ABC中,BC=12,BC上的高AH=8,矩形DEFG的边EF在边BC上,顶点D、G分别在边AB、AC上.设DE=x,矩形DEFG的面积为y,那么y关于x的函数关系式是y=﹣+12x.(不需写出x的取值范围).【分析】根据题意和三角形相似,可以用含x的代数式表示出DG,然后根据矩形面积公式,即可得到y与x的函数关系式.【解答】解:∵四边形DEFG是矩形,BC=12,BC上的高AH=8,DE=x,矩形DEFG 的面积为y,∴DG∥EF,∴△ADG∽△ABC,∴,得DG=,∴y=x=+12x,故答案为:y=+12x.14.在实际问题中往往需要求得方程的近似解,这个时候,我们通常利用函数的图象来完成.如,求方程x2﹣2x﹣2=0的实数根的近似解,观察函数y=x2﹣2x﹣2的图象,发现,当自变量为2时,函数值小于0(点(2,﹣2)在x轴下方),当自变量为3时,函数值大于0(点(3,1)在x轴上方).因为抛物线y=x2﹣2x﹣2是一条连续不断的曲线,所以抛物线y=x2﹣2x﹣2在2<x<3这一段经过x轴,也就是说,当x取2、3之间的某个值时,函数值为0,即方程x2﹣2x﹣2=0在2、3之间有根.进一步,我们取2和3的平均数2.5,计算可知,对应的数值为﹣0.75,与自变量为3的函数值异号,所以这个根在2.5与3之间任意一个数作为近似解,该近似解与真实值的差都不会大于3﹣2.5=0.5.重复以上操作,随着操作次数增加,根的近似值越来越接近真实值.用以上方法求得方程x2﹣2x﹣2=0的小于0的解,并且使得所求的近似解与真实值的差不超过0.3,该近似解为﹣0.75【分析】观察函数y=x2﹣2x﹣2的图象,发现,当自变量为0时,函数值小于0,当自变量为﹣1时,函数值大于0,求得﹣1和0的平均数﹣0.5,对应的数值为﹣0.75,与自变量为﹣1的函数值异号,再求﹣1和﹣0.5的平均数﹣0.75,对应的数值为0.0625,即可求得这个根在﹣0.75与﹣0.5之间任意一个数作为近似解,由﹣0.5﹣(﹣0.75)=0.25<0.3,即可求得近似值.【解答】解:观察函数y=x2﹣2x﹣2的图象,发现,当自变量为0时,函数值小于0,当自变量为﹣1时,函数值大于0,因为抛物线y=x2﹣2x﹣2是一条连续不断的曲线,所以抛物线y=x2﹣2x﹣2在﹣1<x<0这一段经过x轴,也就是说,当x取﹣1、0之间的某个值时,函数值为0,即方程x2﹣2x﹣2=0在﹣1、0之间有根.我们取﹣1和0的平均数﹣0.5,计算可知,对应的数值为﹣0.75,与自变量为﹣1的函数值异号,所以这个根在﹣1与﹣0.5之间,取﹣1和﹣0.5的平均数﹣0.75,计算可知,对应的数值为0.0625,与自变量为﹣0.5的函数值异号,所以这个根在﹣0.75与﹣0.5之间任意一个数作为近似解,该近似解与真实值的差都不会大于﹣0.5﹣(﹣0.75)=0.25<0.3,该近似解为﹣0.75,故答案为﹣0.75.15.将二次函数y=x2﹣2x化为y=(x﹣h)2+k的形式,结果为y=(x﹣1)2﹣1.【分析】加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:y=x2﹣2x=x2﹣2x+1﹣1=(x﹣1)2﹣1.故答案是:y=(x﹣1)2﹣1.16.二次函数y=﹣3(x+2)2﹣1的最大值是﹣1.【分析】因为此题中解析式为顶点式的形式,所以根据其解析式即可求解.【解答】解:∵二次函数y=﹣3(x+2)2﹣1,∴当x=﹣2时,二次函数y=﹣3(x+2)2﹣1的最大值为﹣1,故答案为﹣1.17.已知A(m,n),B(m+8,n)是抛物线y=﹣(x﹣h)2+2036上两点,则n=2020.【分析】由A(m,n)、B(m+8,n)是抛物线y=﹣(x﹣h)2+2018上两点,可得A(h ﹣4,0),B(h+4,0),当x=h+4时,n=﹣(h+4﹣h)2+2018=2002【解答】解:∵A(m,n)、B(m+8,n)是抛物线y=﹣(x﹣h)2+2036上两点,∴A(h﹣4,n),B(h+4,n),当x=h+4时,n=﹣(h+4﹣h)2+2036=2020,故答案为2020.18.已知抛物线y=ax2﹣2ax+c(a<0)的图象过点A(3,m).(1)当a=﹣1,m=0时,求抛物线的顶点坐标(1,4);(2)如图,直线l:y=kx+c(k<0)交抛物线于B,C两点,点Q(x,y)是抛物线上点B,C之间的一个动点,作QD⊥x轴交直线l于点D,作QE⊥y轴于点E,连接DE.设∠QED=β,当2≤x≤4时,β恰好满足30°≤β≤60°,a=﹣.【分析】(1)利用待定系数法求得抛物线解析式,然后利用配方法将抛物线解析式转化为顶点式,可以直接得到答案;(2)将点Q(x,y)代入抛物线解析式得到:y=ax2﹣2ax+c.结合一次函数解析式推知:D(x,kx+c).则由两点间的距离公式知QD=ax2﹣2ax+c﹣(kx+c)=ax2﹣(2a+k)x.在Rt△QED中,由锐角三角函数的定义推知tanβ===ax﹣2a﹣k.所以tanβ随着x的增大而减小.结合已知条件列出方程组,解该方程组即可求得a的值.【解答】解:(1)当a=﹣1,m=0时,y=﹣x2+2x+c,A点的坐标为(3,0),∴﹣9+6+c=0.解得c=3.∴抛物线的表达式为y=﹣x2+2x+3.即y=﹣(x﹣1)2+4.∴抛物线的顶点坐标为(1,4),故答案为:(1,4).(2)∵点Q(x,y)在抛物线上,∴y=ax2﹣2ax+c.又∵QD⊥x轴交直线l:y=kx+c(k<0)于点D,∴D点的坐标为(x,kx+c).又∵点Q是抛物线上点B,C之间的一个动点,∴QD=ax2﹣2ax+c﹣(kx+c)=ax2﹣(2a+k)x.∵QE=x,∴在Rt△QED中,tanβ===ax﹣2a﹣k.∴tanβ是关于x的一次函数,∵a<0,∴tanβ随着x的增大而减小.又∵当2≤x≤4时,β恰好满足30°≤β≤60°,且tanβ随着β的增大而增大,∴当x=2时,β=60°;当x=4时,β=30°.∴,解得,故答案为:﹣.三.解答题(共8小题)19.已知函数y=3x2﹣2x﹣1,求出此抛物线与坐标轴的交点坐标.【分析】根据函数y=3x2﹣2x﹣1,可以求得该函数与x轴和y轴的交点坐标,本题得以解决.【解答】解:∵函数y=3x2﹣2x﹣1,∴当y=0时,0=3x2﹣2x﹣1=(3x+1)(x﹣1),解得,x1=﹣,x2=1,当x=0时,y=﹣1,∴此抛物线与坐标轴的交点坐标是(﹣,0),(1,0),(0,﹣1).20.已知函数y=(m2﹣m)x2+(m﹣1)x﹣2(m为常数).(1)若这个函数是关于x的一次函数,求m的值;(2)若这个函数是关于x的二次函数,求m的值.【分析】(1)根据一次函数的定义即可解决问题;(2)根据二次函数的定义即可解决问题.【解答】解:(1)依题意m2﹣m=0且m﹣1≠0,所以m=0;(2)依题意m2﹣m≠0,所以m≠1且m≠0.21.已知二次函数y=﹣x2﹣x+4回答下列问题:(1)用配方法将其化成y=a(x﹣h)2+k的形式(2)指出抛物线的顶点坐标和对称轴(3)当x取何值时,y随x增大而增大;当x取何值时,y随x增大而减小?【分析】(1)利用配方法先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.(2)二次函数的一般形式中的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).(3)结合对称轴及开口方向可确定抛物线的增减性.【解答】解:(1)y=﹣x2﹣x+4=﹣(x+1)2+;(2)由(1)可得顶点为(﹣1,);对称轴x=﹣1;(3)图象开口向下,x<﹣1时,函数为增函数,此时y随x增大而增大;当x>﹣1时,函数为减函数,此时y随x增大而减小.22.如图,二次函数y=(x﹣3)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)抛物线上是否存在一点P,使S△ABP=S△ABC?若存在,请求出点P的坐标,若不存在,请说明理由.【分析】(1)先将点A(1,0)代入y=(x﹣3)2+m求出m的值,根据点的对称性确定B点坐标,然后根据待定系数法求出一次函数解析式;(2)假设存在点P,设点P(a,a2﹣6a+5),求出三角形ABC的面积,分两种情况画出图形,如图1,当点P在直线AB的下方时,过点P作PE∥y轴交直线AB于点E,如图2,当点P在直线AB的上方时,过点P作PF∥y轴交直线AB于F,根据三角形ABP面积为三角形ABC面积,表示出三角形ABP的面积,列出关于a的方程,求出方程的解得到a的值,即可确定出满足题意P的坐标.【解答】解:(1)将点A(1,0)代入y=(x﹣3)2+m得(1﹣3)2+m=0,解得m=﹣4.所以二次函数解析式为y=(x﹣3)2﹣4,即y=x2﹣6x+5;当x=0时,y=9﹣4=5,所以C点坐标为(0,5),由于C和B关于对称轴对称,而抛物线的对称轴为直线x=3,所以B点坐标为(6,5),将A(1,0)、B(6,5)代入y=kx+b得,,解得:.所以一次函数解析式为y=x﹣1;(2)假设存在点P,设点P(a,a2﹣6a+5),∵S△ABP=S△ABC,∵,如图1,当点P在直线AB的下方时,过点P作PE∥y轴交直线AB于点E,∴=15,∴E(a,a﹣1)∴PE=﹣a2+7a﹣6,∴,∴a2﹣7a+12=0解得:a1=4,a2=3,∴P1(3,﹣4),P2(4,﹣3),如图2,当点P在直线AB的上方时,过点P作PF∥y轴交直线AB于F,同理可得=15,∴,解得a=0(舍去),a=7,∴P3(7,12).综合以上可得P点坐标为(3,﹣4)或(4,﹣3)或(7,12).23.如图,在平面直角坐标系中,已知某个二次函数的图象经过点A(1,2),B(2,﹣1),C(4,﹣1),且该二次函数的最小值是﹣2.(Ⅰ)请在图中描出该函数图象上另外的两个点,并画出图象;(Ⅱ)求出该二次函数的解析.【分析】(Ⅰ)利用抛物线的对称性可过A、C分别作平行x轴的线段,且分别被对称轴平分,即可求得另外的两个点,利用描点法可画出函数图象;(Ⅱ)设出顶点式,代入A的坐标,即可求得解析式.【解答】解:(Ⅰ)∵B(2,﹣1),C(4,﹣1),且该二次函数的最小值是﹣2.∴该二次函数图象的顶点为(3,﹣2),∵点A(1,2),∴A关于对称轴对称的点为(5,2),利用描点法可画出函数图象,如图;(Ⅱ)设抛物线的解析式为y=a(x﹣3)2﹣2,代入A(1,2)得2=4a﹣2,解得a=1,∴该二次函数的解析式为y=x2﹣6x+7.24.抛物线y=a(x+h)2的顶点为(2,0),它的形状与y=3x2相同,但开口方向与之相反.(1)直接写出抛物线的解析式;(2)求抛物线与y轴的交点坐标.【分析】(1)由抛物线y=a(x+h)2的顶点为(2,0),得出h=﹣2,抛物线y=a(x+h)2的形状与y=3x2的相同,开口方向相反,得出a=﹣3,从而确定该抛物线的函数表达式;(2)根据图象上点的坐标特征求得即可.【解答】解:(1)∵抛物线y=a(x+h)2的顶点为(2,0),∴﹣h=2,∴h=﹣2,抛物线y=a(x+h)2的形状与y=3x2的相同,开口方向相反∴a=﹣3,则该抛物线的函数表达式是y=﹣3(x﹣2)2.(2)在函数y=﹣3(x﹣2)2中,令x=0,则y=﹣12,∴抛物线与y轴的交点坐标为(0,﹣12).25.双十一期间,某百货商场打算对某商品进行一次促销活动,该商品的进价为每件20元.在之前的销售过程中发现,当每件售价定为30元时,每月销售量为500件,若售价每提高1元,每月的销售量将减少10件.(1)设该商品售价提高x元时,每月获得的利润为y元,求y关于x的函数解析式;(2)如果商场想要获得的月利润为8000元,则该商品的销售单价应定为每件多少元?(3)若有关物价部门规定,该商品的销售单价不得高于其进价的两倍,则此时商场获得的最大月利润是多少?【分析】(1)根据销售问题的数量关系单件利润乘以销售量等于月利润即可求解;(2)根据(1)中求得的函数解析式,代入8000,利用一元二次方程即可求解;(3)根据销售单价不得高于其进价的两倍确定自变量的取值进而求得最大值.【解答】解:(1)根据题意,得y=(30﹣20+x)(500﹣10x)=﹣10x2+400x+5000.答:y关于x的函数解析式为y=﹣10x2+400x+5000.(2)当y=8000时,8000=﹣10x2+400x+5000.解得x1=10,x2=30.则30+x=40或60.答:该商品的销售单价应定为每件40元或60元.(3)y=﹣10x2+400x+5000.=﹣10(x﹣20)2+9000,因为商品的销售单价不得高于其进价的两倍,所以当x=10,即售价为40元时,月利润最大,最大月利润为8000元.答:最大月利润为8000元.26.已知二次函数y=ax2+bx+c(a≠0)自变量x的值和它对应的函数值y如表所示:x…01234…y…30﹣10m…(1)请写出该二次函数图象的开口方向、对称轴、顶点坐标和m的值;(2)设该二次函数图象与x轴的左交点为B,它的顶点为A,该图象上点C的横坐标为4,求△ABC的面积.【分析】(1)根据表格中的数据和二次函数的性质,可以得到该二次函数图象的开口方向、对称轴、顶点坐标和m的值;(2)根据表格中的数据和题意,可以写出点B、点A和点C的坐标,再求出直线AC和x轴的交点,即可得到△ABC的面积.【解答】解:(1)由表格可知,该函数有最小值,当x=2时,y=﹣1,当x=4和x=0时的函数值相等,则m=3,即该二次函数图象的开口方向向上,对称轴是直线x=2,顶点坐标为(2,﹣1),m的值是3;(2)由题意可得,点B的坐标为(1,0),点A的坐标为(2,﹣1),点C的坐标为(4,3),设直线AC的函数解析式为y=kx+b,,得,所以直线AC的函数解析式为y=2x﹣5,当y=0时,0=2x﹣5,得x=2.5,则直线AC与x轴的交点为(2.5,0),故△ABC的面积是:=3.。
北师大版数学九年级下册 第二章 全章测试题 含答案
北师大版数学九年级下册 第二章 全章测试题一、选择题(3分×10=30分)1.(2013,益阳)抛物线y =2(x -3)2+1的顶点坐标是( )A .(3,1)B .(3,-1)C .(-3,1)D .(-3,-1)2.若二次函数y =x 2+bx +4配方后为y =(x -2)2+k ,则b 、k 的值分别为( )A .0,5B .0,1C .-4,5D .-4,03.(2013,衢州)抛物线y =x 2+bx +c 的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为y =(x -1)2-4,则b ,c 的值分别为( )A .b =2,c =-6B .b =2,c =0C .b =-6,c =8D .b =-6,c =24.已知二次函数y =-12x 2-7x +152,若自变量x 分别取x 1、x 2、x 3,且0<x 1<x 2<x 3,则对应的函数值y 1、y 2、y 3的大小关系正确的是( )A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 2>y 3>y 1D .y 2<y 3<y 15.已知抛物线y =x 2-2x +m +1与x 轴有两个不同的交点,则函数y =m x 的大致图象是( )6.某市烟花厂为该市4.18烟花三月经贸旅游特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h =-52t 2+20t +1.若这种礼炮点火开空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3sB .4sC .5sD .6s7.如图,在平面直角坐标系中,抛物线y =12x 2经过平移得到抛物线y =12x 2-2x ,其对称轴与两段抛物线所围成的阴影部分的面积为( )A .2B .4C .8D .168.已知二次函数y =ax 2+bx +c 的图象如图,则下列叙述正确的是( )A .abc <0B .-3a +c <0C .b 2-4ac≥0D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是( )A.k<-3 B.k>-3 C.k<3 D.k>310.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间的函数关系可以用图象表示为( )二、填空题(3分×10=30分)11.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为____________12.如图,对称轴平行于y轴的抛物线与x轴交于(1,0)、(3,0)两点,则它的对称轴为____________________.13.已知下列函数:①y=x2;②y=-x2;③y=(x-1)2+2.其中图象通过平移可以得到函数y=x2+2x-3的图象的有_____________(填写所有正确选项的序号).14.二次函数y=x2-(m-4)x-m的图象与x轴的两个交点关于y轴对称,则其顶点坐标为___________.15.小汽车刹车距离s(m)与速度v(km/h)之间的函数关系式为s=1100v2,一辆小汽车速度为100km/h,在前方80m处停放一辆故障车,此时刹车_______(填“会”或“不会”)有危险.16.已知二次函数y=-x2+4,当-2≤x≤3时,函数的最小值是_____,最大值是____.17.开口向下的抛物线y=(m2-2)x2+2mx+1的对称轴经过点(-1,3),则m=_____.18.请选择一组你喜欢的a、b、c的值,使二次函数y=ax2+bx+c(a≠0)的图象同时满足下列条件:(1)开口向下;(2)当x<2时,y随x的增大而增大;当x>2时,y随x的增大而减小,这样的二次函数的解析式可以是__________________________________________.19.2013年5月26日,中国羽毛球队蝉联苏迪曼杯团体赛冠军,成就了首个五连冠霸业.比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图),若不考虑外力因素,羽毛球行进高度y(米)与水平距离x(米)之间满足关系y=-29x2+89x+109,则羽毛球飞出的水平距离为__________米.20.如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1、A2、A3…A n,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1、M2、M3、…M n,…都在直线L:y=x上;②抛物线依次经过点A1、A2、A3…A n、….则顶点M2014的坐标为______________.三、解答题(共60分)21.(7分)二次函数y=x2+bx+c的图象经过点(4,3),(3,0).(1)求b、c的值;(2)求出该二次函数图象的顶点坐标和对称轴;(3)画出二次函数y=x2+bx+c的图象.22.(8分)已知函数y=mx2-6x+1(m是常数).(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;(2)若该函数的图象与x轴只有一个交点,求m的值.23.(8分)如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A 作AB⊥y轴,垂足为B,连接OA.(1)求△OAB的面积;(2)若抛物线y=-x2-2x+c经过点A.①求c的值;②将抛物线向下平移m个单位长度,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),求m的取值范围(直接写出答案即可).24.(8分)某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?25.(8分)如图,矩形ABCD的两边长AB=18cm,AD=4cm.点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动,设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.26.(9分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种工具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元.请比较哪种方案的最大利润更高,并说明理由.27.(12分)如图,已知抛物线y=38x2-34x-3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.答案:一、1---10 ADBAA BBBDB二、11. y=a(1+x)212. 直线x=213. ①③14. (0,-4)15. 会16. -5 417. -118. 答案不唯一,只要满足b=-4a,a<0即可,如y=-x2+4x+3,y=-2x2+8x -3等.19. 520. (4027,4027)三21. 解:(1)b=-4,c=3(2) (2,-1),x=2(3)画图略22. 解:(1)当x=0时,y=1.所以不论m为何值,函数y=mx2-6x+1的图象都经过y轴上的一个定点(0,1)(2)①当m=0时,函数y=-6x+1的图象与x轴只有一个交点;②当m≠0时,若函数y=mx2-6x+1的图象与x轴只有一个交点,则方程mx2-6x+1=0有两个相等的实数根,所以(-6)2-4m=0,m=9.综上可知,若函数y=mx2-6x+1的图象与x轴只有一个交点,则m的值为0或9.23. 解:(1)4(2)①c=4;②∵y=-x2-2x+4=-(x+1)2+5,∴抛物线顶点D的坐标是(-1,5),AB的中点E的坐标是(-1,4),OA的中点F的坐标是(-1,2),∴m的取值范围为1<m<324. 解:(1)y=-x+180(2)W=(x-100)y=(x-100)(-x+180)=-x2+280x-18000=-(x-140)2+1600;当x=140,W最大=1600,∴售价定为140元/件时,每天最大利润W=1600元.25. 解:(1)y=-x2+9x(0<x≤4)(2)y=-(x-92)2+814,∵当0<x≤92时,y随x的增大而增大,而0<x≤4,∴当x=4时,y最大值=20,即△PBQ的面积的最大值是20cm2.26. 解:(1)w=(x-20)[250-10(x-25)]=-10(x-20)(x-50)=-10x2+700x-10000 (2)∵w=-10x2+700x-10000=-10(x-35)2+2250,∴当x=35时,w取到最大值2250.即销售单价为35元时,每天销售利润最大,最大利润为2250元 (3)∵w =-10(x -35)2+2250,∴函数图象是以x =35为对称轴且开口向下的抛物线.∴对于方案A ,20<x ≤30,此时w 随x 的增大而增大,∴x =30时,w 取到最大值2000.∴当采用方案A 时,销售单价为30元可获得最大利润为2000元;对于方案B ,则有⎩⎨⎧250-10(x -25)≥10,x -20≥25.解得45≤x ≤49.此时w 随x 的增大而减小.故当x =45时,w 取到最大值1250,∴当采用方案B 时,销售单价为45元可获得最大利润为1250元.两者比较,还是方案A 的最大利润更高.27. 解:(1)∵y =38x 2-34x -3,∴当y =0时,38x 2-34x -3=0,解得x 1=-2,x 2=4.当x =0,y =-3.∴A 点坐标为(4,0),D 点坐标为(-2,0),C 点坐标为(0,-3) (2)∵y=38x 2-34x -3,∴对称轴为直线x =342×38=1.∵AD 在x 轴上,点M 在抛物线上,∴当△MAD 的面积与△CAD 的面积相等时,分两种情况:①点M 在x 轴下方时,根据抛物线的对称性,可知点M 与点C 关于直线x =1对称,∵C 点坐标为(0,-3),∴M 点坐标为(2,-3);②点M 在x 轴上方时,根据三角形的等面积法,可知M 点到x 轴的距离等于点C 到x 轴的距离3.当y =3时,38x 2-34x -3=3,解得x 1=1+17,x 2=1-17,∴M 点坐标为(1+17,3)或(1-17,3).综上所述,所求M 点坐标为(2,-3)或(1+17,3)或(1-17,3)(3)结论:存在.如图所示,在抛物线上有两个点P 满足题意:①若BC ∥AP 1,此时梯形为ABCP 1.由点C 关于抛物线对称轴的对称点为B ,可知BC ∥x 轴,则P 1与D 点重合,∴P 1(-2,0).∵P 1A =6,BC =2,∴P 1A≠BC ,∴四边形ABCP 1为梯形;②若AB ∥CP 2,此时梯形为ABCP 2.∵A 点坐标为(4,0),B 点坐标为(2,-3),∴直线AB 的解析式为y =32x -6,∴可设直线CP 2的解析式为y =32x +n ,将C 点坐标(0,-3)代入,得n =-3,∴直线CP 2的解析式为y =32x -3.∵点P 2在抛物线y =38x 2-34x -3上,∴38x 2-34x -3=32x -3,化简得:x 2-6x =0,解得x 1=0(舍去),x 2=6,∴点P 2横坐标为6,代入直线CP 2解析式求得纵坐标为6,∴P 2(6,6).∵AB ∥CP 2,AB≠CP 2,∴四边形ABCP 2为梯形.综上所述,在抛物线上存在一点P ,使得以点A 、B 、C 、P 四点为顶点所构成的四边形为梯形;点P 的坐标为(-2,0)或(6,6).。
北师大版九年级下册数学单元测试题全套及答案
北师大版九年级下册数学单元测试题全套及答案(含期中期末试题)第一章检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.如图,在Rt △ABC 中,CD 是斜边AB 上的高线,∠ACD 的正弦值是23,则ACAB 的值是( B )A.255B.23C.355D.522.在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm ,则BC 的长度为( C )A .6 cmB .7 cmC .8 cmD .9 cm3.在△ABC 中,sin B =cos(90°-∠C )=12,那么△ABC 是( A )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形4.如图,过点C (-2,5)的直线AB 分别交坐标轴于A (0,2),B 两点,则tan ∠OAB =( B ) A.25B.23C.52D.325.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图所示的图形,其中AB ⊥BE ,EF ⊥BE ,AF 交BE 于点D ,点C 在BD 上,有四位同学分别测量出以下四组数据:①BC ,∠ACB ;②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有( C )A .1组B .2组C .3组D .4组6.如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为线段AB 上一点,且AE ∶EB =4∶1,EF ⊥AC 于F ,连接FB ,则tan ∠CFB 的值等于( C )A.33B.233C.533D .53二、填空题(本大题共6小题,每小题3分,共18分) 7.在Rt △ABC 中 ,∠C =90°,BC =5,AB =12,则tan A =512. 8.(2019·赤峰)如图,一根竖直的木杆在离地面3.1 m 处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为__8.1__m __.(参考数据:sin 38°≈0.62,cos 38°≈0.79,tan 38°≈0.78)9.(2019·咸宁) 如图,某校九(1)班数学课外活动小组在河边测量河宽AB (这段河流的两岸平行),他们在点C 测得∠ACB =30°,点D 处测得∠ADB =60°,CD =80 m ,则河宽AB 约为 __69__ m .(结果保留整数,3≈1.73)10.(2019·柳州)在△ABC 中,sin B =13,tan C =22,AB =3,则AC 的长为 3 .11.如图,小明将一张矩形纸片ABCD 沿CE 折叠,B 点恰好落在AD 边上,设此点为F ,若AB ∶BC =4∶5,则sin ∠DCF 的值为 35.12.如图,在边长为1的小正方形网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点O ,则tan ∠AOD = 2 .三、(本大题共5小题,每小题6分,共30分)13.计算:sin 30°-(cos 45°-1)0+32tan 2 30°.解:原式=12-1+32×⎝⎛⎭⎫332=12-1+12=0.14.已知Rt △ABC 中,∠C =90°,∠B =60°,a =4,解这个直角三角形.解:∠A =90°-∠B =90°-60°=30°.由tan B =ba,得b =a tan B =4tan 60°=4 3.由cos B=a c ,得c =a cos B =4cos 60°=8.所以∠A =30°,b =43,c =8. 15.已知α为锐角,且tan α是方程x 2+2x -3=0的一个根,求2sin 2α+cos 2α- 3 tan (α+15°)的值.解:解方程x 2+2x -3=0, 得x 1=1,x 2=-3.∵tan α>0,∴tan α=1,∴α=45°,∴2sin 2α+cos 2α-3tan (α+15°)=2sin 245°+cos 245°-3tan 60°=2×⎝⎛⎭⎫222+⎝⎛⎭⎫222-3×3=1+12-3=-32.16.数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°角的三角板的斜边与含30°角的三角板的长直角边相等.于是,小路同学提出一个问题:如图,将一副三角板直角顶点重合后拼放在一起,点B ,C ,E 在同一直线上.若BC =2,求AF 的长.(请你运用所学的数学知识解决这个问题)解:在Rt △ABC 中,BC =2,∠A =30°, ∴AC =BC tan A =2tan 30°=2 3. 由题意,得EF =AC =2 3. 在Rt △EFC 中,∠E =45°, ∴CF =EF·sin 45°=23×22=6, ∴AF =AC -CF =23- 6.17.(2019·通辽)两栋居民楼之间的距离CD =30 m ,楼AC 和BD 均为10层,每层楼高为3 m .上午某时刻,太阳光线GB 与水平面的夹角为30°,此刻楼BD 的影子会遮挡到AC 的第几层?(参考数据:3≈1.7,2≈1.4)解:设太阳光线GB 交AC 于点F ,过F 作FH ⊥BD 于H ,AC =BD =3×10=30 m ,FH =CD =30 m ,∠BFH =∠α=30°,在RtBFH 中,tan ∠BFH =BH FH =BH 30=33,∴BH =30×33=103≈10×1.7=17,∴FC =HD =BD -BH ≈30-17=13,∵133≈4.3,所以在四层的上面,即第五层.答:此刻楼BD 的影子会遮挡到楼AC 的5层.四、(本大题共3小题,每小题8分,共24分)18.(2019·深圳)如图所示,某施工队要测量隧道长度BC ,AD =600米,AD ⊥BC ,施工队站在点D 处看向B ,测得仰角为45°,再由D 走到E 处测量,DE ∥AC ,ED =500米,测得仰角为53°,求隧道BC 的长.(sin 53°≈45,cos 53°≈ 35,tan 53°≈43)解:在RtABD 中,AB =AD =600(米),作EM ⊥AC 于M ,则AM =DE =500(米),∴BM =100米,在Rt △CEM 中,tan 53°=CM EM =CM 600=43,∴CM =800(米),∴BC =CM -BM =800-100=700(米).答:隧道BC 长为700米.19.(2019·广元)如图,某海监船以60海里/小时的速度从A 处出发沿正西方向巡逻,一可疑船只在A 的西北方向的C 处,海监船航行1.5小时到达B 处时接到报警,需巡查此可疑船只,此时可疑船只仍在B 的北偏西30°方向的C 处,然后,可疑船只以一定速度向正西方向逃离,海监船立刻加速以90海里/小时的速度追击,在D 处海监船追到可疑船只,D 在B 的北偏西60°方向.(以下结果保留根号)(1)求B ,C 两处之间的距离;(2)求海监船追到可疑船只所用的时间.解:(1)过点C 作CE ⊥AB 于点E ,在Rt △BCE 中,∵∠BCE =30°,∴BE =BC ×sin ∠BCE =12BC ,CE =BC ×cos ∠BCE =32BC ,在Rt △ACE 中, ∵∠A =45°.∴AE =CE =32BC ,∵AB =60×1.5=90,∴AE -BE =32BC -12BC =90,解得BC =90(3+1).故B ,C 相距(903+90)海里.(2)过点D 作DF ⊥AB 于F ,由(1),得DF =CE =32BC ,∴DF =135+453,在Rt △BDF 中,∠DBF =30°,∴BD =2DF =270+903,∴海监船追到可疑船只所用的时间为(270+903)÷90=(3+3)h.20.已知:如图,在四边形ABCD 中,∠ABC =∠ADC =90°,DE ⊥BC 于E ,连接BD.若tan C =2,BE =3,CE =2,求点B 到CD 的距离.解:过点B 作BF ⊥CD ,垂足为F ,则∠BFC =90°.∵DE ⊥BC ,∴∠DEC =∠DEB =90°,在Rt △DEC 中,∵tan C =2,EC =2,∴DE =4.在Rt △BFC 中,∵tan C =2,∴BF =2FC ,设BF =x ,则FC =12x ,∵BF 2+FC 2=BC 2,∴x 2+(12x)2=(3+2)2,解得x =25,即BF =2 5.答:点B 到CD 的距离是2 5.五、(本大题共2小题,每小题9分,共18分)21.如图,点E 是矩形ABCD 中CD 边上一点,△BCE 沿BE 折叠为△BFE ,点F 落在AD 上. (1)求证:△ABF ∽△DFE ;(2)若sin ∠DFE =13,求tan ∠EBC 的值.(1)证明:∵∠A =∠D =90°,∠ABF 与∠DFE 都与∠AFB 互余,∴∠ABF =∠DFE ,∴△ABF ∽△DFE ;(2)解:∵sin ∠DFE =DE EF =13,∴设DE =k .则EF =CE =3k ,AB =CD =4k ,∴DF =EF 2-DE 2=22k ,由△ABF ∽△DFE ,得AF DE =AB DF ,即AF k =4k22k ,∴AF =2k ,∴BC =AD =2k +22k =32k ,∴tan ∠EBC =CE BC =3k 32k =22. 22.小明坐于堤边垂钓,如图,河堤AC 的坡角为30°,AC 长332米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离.解:如图,延长OA 交直线BC 于点D ,∵AO 的倾斜角是60°,∴∠ODB =60°.∵∠ACD =30°,∴∠CAD =180°-∠ODB -∠ACD =90°.在Rt △ACD 中,AD =AC·tan ∠ACD =332·33=32(米).∴CD =2AD =3(米). 又∵∠O =60°,∴△BOD 为等边三角形.∴BD=OD=OA+AD=3+32=4.5(米).∴BC=BD-CD=4.5-3=1.5米.答:浮漂B与河堤下端C之间的距离为1.5米.六、(本大题共12分)23.在一次科技活动中,小明进行了模拟雷达扫描实验.表盘是△ABC,其中AB=AC,∠BAC =120°,在点A处有一束红外光线AP,从AB开始,绕点A逆时针匀速旋转,每秒钟旋转15°,到达AC后立即以相同旋转速度返回AB,到达后立即重复上述旋转过程.小明通过实验发现,光线从AB 处旋转开始计时,旋转1秒,此时光线AP交BC边于点M,BM的长为(203-20) cm.(1)求AB的长;(2)从AB处旋转开始计时,若旋转6秒,此时光线AP与BC边的交点在什么位置?若旋转2 030秒,交点又在什么位置?请说明理由.解:(1)如图①,过A点作AD⊥BC,垂足为D.∵∠BAC=120°,AB=AC,∴∠ABC=∠C=30°.令AB=2t cm.在Rt△ABD中,AD=12AB=t,BD=32AB=3t.在Rt AMD中,∵∠AMD=∠ABC+∠BAM=45°,∴MD=AD=t.∵BM=BD-MD.即3t-t=203-20.解得t=20.∴AB=2×20=40 cm.答:AB的长为40 cm.(2)如图②,当光线旋转6秒,设AP交BC于点N,此时∠BAN=15°×6=90°.在Rt△ABN中,BN=ABcos 30°=4032=8033cm.∴光线AP旋转6秒,与BC的交点N距点B8033cm处.如图③,设光线AP旋转2 030秒后光线与BC的交点为Q.由题意可知,光线从边AB开始到第一次回到AB处需8×2=16秒,而2 030=126×16+14,即AP旋转2 030秒与旋转14秒时和BC的交点是同一个点Q.旋转14s的过程是B→C:8s,C→Q:6s,因此CQ=BN=8033cm,∵AB=AC,∠BAC=120°,∴BC=2ABcos 30°=2×40×32=40 3 cm,∴BQ=BC-CQ=403-8033=4033cm.答:光线AP旋转2 030秒后,与BC的交点Q在距点B的4033cm处.第二章检测题(BSD)(考试时间:120分钟满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.已知抛物线y=x2+ax+b与x轴的交点坐标为(-1,0)和(-3,0),则方程x2+ax+b=0的解是( B )A.x1=1,x2=-3 B.x1=-1,x2=-3C.x=-3 D.x=32.如图,在Rt△ABC中,∠C=90°,AC=4 cm,BC=6 cm,动点P从点C开始沿CA以1 cm/s 的速度向A点运动,同时动点Q从点C开始沿CB以2 cm/s的速度向B点运动,其中一个动点到达终点时,另一个动点也停止运动,则运动过程中所构成的△CPQ的面积y(cm2)与运动时间x(s)之间的函数图象大致是( C )3.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t +1.则下列说法中正确的是( D )A.点火后9 s和点火后13 s的升空高度相同B.点火后24 s火箭落于地面C.点火后10 s的升空高度为139 mD.火箭升空的最大高度为145 m4.若二次函数y=ax2+bx+c(a≠0)经过原点和第一、二、三象限,则(A)A.a>0,b>0,c=0 B.a>0,b<0,c=0C.a<0,b>0,c=0 D.a<0,b<0,c=05.(2019·烟台)已知二次函数y=ax2+bx+c(a≠0)的y与x的部分对应值如下表,下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2; ③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(B)A.2 B.36.(2019·巴中)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①b2>4ac,②abc<0,③2a+b -c >0,④a +b +c <0.其中正确的是( A )A .①④B .②④C .②③D .①②③④二、填空题(本大题共6小题,每小题3分,共18分)7.已知一条抛物线的开口大小与y =x 2相同但方向相反,且顶点坐标是(2,3),则该抛物线的表达式是 y =-x 2+4x -1 .8.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数表达式是y =60t -32t 2,在飞机着陆滑行中,最后4 s 滑行的距离是 24 m.9.若二次函数y =2x 2-4x -1的图象与x 轴交于A (x 1,0),B (x 2,0)两点,则1x 1+1x 2的值为 -4 .10.如图,已知△OBC 是等腰直角三角形,∠OCB =90°,若点B 的坐标为(4,0),点C 在第一象限,则经过O ,B ,C 三点的抛物线的表达式是 y =-12x 2+2x .11.已知二次函数y =ax 2+2ax +3a 2+3(a ≠0)(其中x 是自变量),当x ≥2时,y 随x 的增大而增大,且-2≤x ≤1时,y 的最大值为9,则a 的值是__1__.12.如图,在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx(a>0)的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线y =ax 2(a>0)交于点B.若四边形ABOC 是正方形,则b 的值是 -2 .三、(本大题共5小题,每小题6分,共30分)13.已知当x =2时,抛物线y =a(x -h)2有最大值,此抛物线过点(1,-3),求抛物线的表达式,并指出当x 为何值时,y 随x 的增大而减小.解:当x =2时,有最大值,所以h =2.此抛物线过(1,-3),所以-3=a(1-2)2,解得a =-3.此抛物线的表达式为y =-3(x -2)2.当x >2时,y 随x 的增大而减小.14.已知抛物线y =-3x 2经过平移经过点(0,0)和(1,9),求出平移后抛物线的表达式,并写出它的对称轴和顶点坐标.解:设平移后抛物线的表达式为y =-3x 2+bx +c ,将点(0,0)和(1,9)的坐标代入,得⎩⎨⎧c =0,-3+b +c =9,解得⎩⎪⎨⎪⎧b =12,c =0.∴平移后抛物线的表达式为y =-3x 2+12x.∵y =-3x 2+12x =-3(x -2)2+12,∴对称轴为直线x=2,顶点坐标为(2,12).15.已知抛物线y =-a(x -2)2+3经过点(1,2).(1)求a 的值;(2)若点A(m ,y 1),B(n ,y 2)(m >n >2)都在该抛物线上,试比较y 1与y 2的大小. 解:(1)把(1,2)代入y =-a(x -2)2+3,得2=-a(1-2)2+3,解得a =1;(2)由(1)知原抛物线的表达式为y =-(x -2)2+3,其开口向下,对称轴为直线x =2, ∴当x >2时,y 随x 的增大而减小. ∵m >n >2,∴y 1<y 2.16.如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A ,C 分别在x 轴、y 轴的正半轴上,二次函数y =-23x 2+bx +c 的图象经过B ,C 两点.(1)求该二次函数的表达式;(2)结合函数的图象探索,当y >0时,x 的取值范围.解:(1)由题意可得B(2,2),C(0,2),将B ,C 坐标代入y =-23x 2+bx +c ,解得c =2,b =43,所以二次函数的表达式是y =-23x 2+43x +2.(2)令y =0,解-23x 2+43x +2=0,得x 1=3,x 2=-1,由图象可知:y >0时,x 的取值范围是-1<x <3.17.如图,抛物线y =ax 2+bx -5(a ≠0)与x 轴交于点A(-5,0)和点B(3,0),与y 轴交于点C.(1)求该抛物线的表达式;(2)若点E 为x 轴下方抛物线上的一动点,当S △ABE =S △ABC 时,求点E 的坐标.解:(1)∵抛物线经过A ,B 两点,∴把A(-5,0),B(3,0)代入y =ax 2+bx -5,得⎩⎨⎧25a -5b -5=0,9a +3b -5=0,解得⎩⎨⎧a =13,b =23,∴该抛物线的表达式为y =13x 2+23x -5.(2)∵y =13x 2+23x -5,∴令x =0,则y =-5.∴C 点的坐标为(0,-5),∵S △ABE =S △ABC ,∴点E的纵坐标与点C 的纵坐标相等,即点E 的纵坐标为-5,令13x 2+23x -5=-5,解得x 1=-2,x 2=0(舍去),∴点E 的坐标为(-2,-5).四、(本大题共3小题,每小题8分,共24分) 18.已知二次函数y =x 2-(2m -1)x +m 2-m.(1)求证:此二次函数图象与x 轴必有两个不同的交点;(2)若此二次函数图象与直线y =x -3m +4的一个交点在y 轴上,求m 的值.(1)证明:令y =0,有x 2-(2m -1)x +m 2-m =0,Δ=b 2-4ac =(2m -1)2-4(m 2-m)=1>0,∴结论成立;(2)解:令x =0,代入y =x 2-(2m -1)x +m 2-m 与y =x -3m +4,得m 2-m =-3m +4,∴m =-1+5或-1- 5.19.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看作一点)的路线是抛物线y =-35x 2+3x +1的一部分,如图.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4 m ,在一次表演中人梯到起点A 的水平距离为4 m ,问这次表演是否成功?请说明理由.解:(1)∵y =-35x 2+3x +1=-35⎝⎛⎭⎫x -522+194,∴该演员弹跳高度的最大值为194m ; (2)当x =4时,y =-35×42+3×4+1=3.4,∴这次表演是成功的.20.如图,已知抛物线y =ax 2-4x +c 经过点A(0,-6)和B(3,-9).(1)求出抛物线的表达式;(2)写出抛物线的对称轴及顶点坐标;(3)点P(m ,m)(其中m >0)与点Q 均在抛物线上,且这两点关于抛物线的对称轴对称,求m 的值及点Q 的坐标.解:(1)依题意有⎩⎨⎧a ×02-4×0+c =-6,a ×32-4×3+c =-9,即⎩⎨⎧c =-6,9a -12+c =-3,∴⎩⎪⎨⎪⎧a =1,c =-6.∴抛物线的表达式为y =x 2-4x -6.(2)把y =x 2-4x -6配方得y =(x -2)2-10,∴对称轴为直线x =2,顶点坐标(2,-10).(3)由点P(m ,m)在抛物线上,有m =m 2-4m -6,即m 2-5m -6=0.∴m 1=6或m 2=-1(舍去),∴m =6,∴P 点的坐标为(6,6).∵点P ,Q 均在抛物线上,且关于对称轴x =2对称,∴Q 点的坐标为(-2,6). 五、(本大题共2小题,每小题9分,共18分)21.把抛物线y =12x 2平移得到抛物线m ,抛物线m 经过点A(-6,0)和原点O(0,0),它的顶点为P ,它的对称轴与抛物线y =12x 2交于点Q.(1)求顶点P 的坐标; (2)写出平移过程;(3)求图中阴影部分的面积.解:(1)设抛物线m 的表达式为y =12x 2+bx +c ,把点A(-6,0),原点O(0,0)代入,得b =3,c=0,∴抛物线m 的表达式为y =12x 2+3x =12(x +3)2-92,所以顶点P 的坐标为⎝⎛⎭⎫-3,-92. (2)把抛物线y =12x 2先向左平移3个单位长度,再向下平移92个单位长度即可得到抛物线y =12(x +3)2-92.(3)Q 点横坐标为-3,代入y =12x 2,可得Q ⎝⎛⎭⎫-3,92,图中阴影部分的面积=S △OPQ =12×3×9=272. 22.(2019·南充)在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖的学生分别奖励一支钢笔、一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元. (1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?解:(1)设钢笔、笔记本的单价分别为x ,y 元,根据题意得,⎩⎨⎧2x +3y =38,4x +5y =70,解得:⎩⎪⎨⎪⎧x =10,y =6.答:钢笔、笔记本的单价分别为10元,6元;(2)设钢笔的单价为a 元,购买数量为b 支,支付钢笔和笔记本的总金额为w 元, ①当30≤b ≤50时,a =10-0.1(b -30)=-0.1b +13,w =b(-0.1b +13)+6(100-b)=-0.1b 2+7b +600=-0.1(b -35)2+722.5,∵当b =30时,w =720,当b =50时,w =700, ∴当30≤b ≤50时,700≤w ≤722.5;②当50<b ≤60时,a =8,w =8b +6(100-b)=2b +600,700<w ≤720,∴当30≤b ≤60时,w 的最小值为700元.答:这次奖励一等奖学生50人时,购买的奖品总金额最少,最少为700元.六、(本大题共12分)23.(2019·新疆)如图,抛物线y =ax 2+bx +c 经过A (-1,0),B (4,0),C (0,4)三点. (1)求抛物线的表达式及顶点D 的坐标; (2)将(1)中的抛物线向下平移154个单位长度,再向左平移h (h >0)个单位长度,得到新抛物线.若新抛物线的顶点D ′在△ABC 内,求h 的取值范围;(3)点P 为线段BC 上一动点(点P 不与点B ,C 重合),过点P 作x 轴的垂线交(1)中的抛物线于点Q ,当△PQC 与△ABC 相似时,求△PQC 的面积.题图 答图解:(1)函数表达式为y =a(x +1)(x -4)=a(x 2-3x -4),即-4a =4,解得a =-1,故抛物线的表达式为y =-x 2+3x +4,顶点D(32,254);(2)抛物线向下平移154个单位长度,再向左平移h(h>0)个单位长度,得到新抛物线的顶点D' (32-h ,52),将点A ,C 的坐标代入一次函数表达式并解得直线AC 的表达式为y =4x +4,将点D' 坐标代入直线AC 的表达式得:52=4(32-h)+4,解得h =158,故0<h<158;(3)过点P 作y 轴的平行线交抛物线和x 轴于点Q ,H ,∵OB =OC =4,∴∠PBA =∠OCB =45°=∠QPC ,直线BC 的表达式为y =-x +4,则AB =5,BC =42,AC =17,S ABC =12×5×4=10,设点Q(m ,-m 2+3m +4),点P(m ,-m +4),CP =2m ,PQ =-m 2+3m +4+m -4=-m 2+4m ,①当△CPQ ∽△CBA ,PC BC =PQ AB ,即2m42=-m 2+4m 5,解得m =114,相似比为PC BC =1116,②当△CPQ ∽△ACB ,同理可得相似比为PC AB =12225,利用面积比等于相似比的平方可得S PQC=10×(1116)2=605128或SPQC =10×(12225)2=576125. 第三章检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.已知⊙P 的半径为4,圆心P 的坐标为(1,2),点Q 的坐标为(0,5),则点Q 与⊙P 位置关系是( C )A .点Q 在⊙P 外B .点Q 在⊙P 上C .点Q 在⊙P 内D .不能确定2.如图,在⊙O 中,弦AB ∥CD ,若∠ABC =40°,则∠BOD 等于( D ) A .20° B .40° C .50° D.80°3.如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连接OB ,OD ,若∠BOD =∠BCD ,则BD ︵的长为( C )A .πB.32πC .2πD .3π4.同一个圆的内接正六边形和外切正六边形的周长之比为( B )A .3∶4B .3∶2C .2∶ 3D .1∶25.如图,AC 是⊙O 的直径,弦BD ⊥AO 于点E ,连接BC ,过点O 作OF ⊥BC 于点F ,若BD =8 cm ,AE =2 cm ,则OF 的长度是( D )A .3 cmB . 6 cmC .2.5 cmD . 5 cm 6.如图,将正方形ABCD 绕点A 按逆时针方向旋转30°,得正方形AB 1C 1D 1,B 1C 1交CD 于点E ,AB =3,则四边形AB 1ED 的内切圆半径为( B )A .3+12B .3-32C .3+13D .3-33二、填空题(本大题共6小题,每小题3分,共18分)7.如图,四边形ABCD 内接于⊙O ,若∠BOD =138°,则它的一个外角∠DCE 等于69° . 8.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得AD =10 cm ,点D 在量角器上的读数为60°,则该直尺的宽度为533 cm . 9.如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的切线与BA 的延长线交于点D ,点E 在BC ︵上(不与点B ,C 重合),连接BE ,CE.若∠D =40°,则∠BEC =115度.10.(2019·内江)如图,在平行四边形ABCD 中,AB<AD ,∠A =150°,CD =4,以CD 为直径的⊙O 交AD 于点E ,则图中阴影部分的面积为2π3+ 3 . 11.如图,P 是反比例函数y =4x (x >0)的图象上一点,以点P 为圆心、1个单位长度为半径作⊙P ,当⊙P 与直线y =3相切时,点P 的坐标为 (1,4)或(2,2) .12.(2019·包头)如图,BD 是⊙O 的直径,A 是⊙O 外一点,点C 在⊙O 上,AC 与⊙O 相切于点C ,∠CAB =90°,若BD =6,AB =4,∠ABC =∠CBD ,则弦BC 的长为.三、(本大题共5小题,每小题6分,共30分)13.如图,⊙O 是△ABC 的外接圆,∠A =45°,BD 是直径,BD =2,连接CD ,求BC 的长.解:在⊙O 中,∵∠A =45°,∴∠D =45°. ∵BD 为⊙O 的直径, ∴∠BCD =90°, ∴BC =BD·sin 45°=2×22= 2. 14.如图,已知CD 平分∠ACB ,DE ∥AC.求证:DE =BC.证明:∵CD 平分∠ACB ,∴∠ACD =∠BCD ,∴BD ︵=AD ︵,∵DE ∥AC ,∴∠ACD =∠CDE ,∴AD ︵=CE ︵,∴BD ︵=CE ︵,∴DE ︵=BC ︵,∴DE =BC.15.如图,两个同心圆中,大圆的弦AB ,AC 分别切小圆于点D ,E ,△ABC 的周长为12 cm ,求△ADE 的周长.解:连接OD ,OE.∵AB ,AC 分别切小圆于点D ,E , ∴OD ⊥AB ,OE ⊥AC , ∴AD =DB ,AE =EC , ∴DE 是△ABC 的中位线,∴DE =12BC ,∴C △ADE =12C △ABC =12×12=6 cm .16.如图所示,⊙O 的直径AB 长为6,弦AC 的长为2,∠ACB 的平分线交⊙O 于点D ,求四边形ADBC 的面积.解:∵AB 是⊙O 的直径, ∴∠ACB =∠ADB =90°.在Rt △ABC 中,由勾股定理,得 BC =AB 2-AC 2=62-22=4 2. 又∵CD 平分∠ACB , ∴AD ︵=BD ︵,∴AD =BD.在Rt △ABD 中,由勾股定理,得AD =BD =22AB =22×6=3 2. ∴S 四边形ADBC =S △ABC +S △ABD =42+9,∴四边形ADBC 的面积为42+9.17.如图,点I 是△ABC 的内心,AI 的延长线交BC 于点D ,交△ABC 的外接圆于点E.求证:IE 2=AE·DE.证明:连接BE ,BI.∵I 为△ABC 的内心,∴∠1=∠2,∠3=∠4. 又∵∠6=∠1+∠3,∠IBE =∠4+∠5, ∠5=∠2=∠1,∴∠IBE =∠6,∴IE =BE. ∵∠5=∠1,∠E =∠E ,∴△BED∽△AEB,∴BEDE=AEBE,∴BE2=AE·DE,∴IE2=AE·DE.四、(本大题共3小题,每小题8分,共24分)18.如图,在直角坐标系中,点O′的坐标为(-2,0),⊙O′与x轴相交于原点O和点A,B,C 两点的坐标分别为(0,b),(1,0).(1)当b=3时,求经过B,C两点的直线的表达式;(2)当B点在y轴上运动时,直线BC与⊙O′有哪几种位置关系?并求出每种位置关系时b的取值范围.解:(1)直线BC表达式为y=-3x+3.(2)当BC切⊙O′于第二象限时,记切点为点D.易得DC= 5.∵BO=BD=b,∴BC=5-b.12+b2=(5-b)2,得b=25 5.同理当BC切⊙O′于第三象限D1点时,可求得b=-25 5.故当b>255或b<-255时,直线BC与⊙O′相离;当b=255或-255时,直线BC与⊙O′相切;当-255<b<255时,直线BC与⊙O′相交.19.(2018·南充)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=4.(1)求证:PC是⊙O的切线.(2)求tan∠CAB的值.(1)证明:连接OC,BC,∵⊙O的半径为3,PB=2,∴OC=OB=3,OP=OB+PB=5.∵PC=4,∴OC2+PC2=OP2,∴△OCP是直角三角形,∴OC⊥PC,∴PC是⊙O的切线.(2)解:∵AB是直径,∴∠ACB=90° ,∴∠ACO+∠OCB=90°,∵OC⊥PC,∴∠BCP+∠OCB =90°,∴∠BCP=∠ACO.∵OA=OC,∴∠A=∠ACO,∴∠A=∠BCP,在△PBC和△PCA中,∠BCP=∠A,∠P=∠P,∴△PBC∽△PCA,∴BCAC=PBPC=24=12,∴tan∠CAB=BC AC=12.20.(齐齐哈尔中考)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.又∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∴∠DBC+∠ABD=90°,即∠ABC=90°∴BC是⊙O的切线.(2)解:∵BF=BC=2且∠ADB=90°,∴∠CBD=∠FBD,又∵OE∥BD,∴∠FBD=∠OEB.∵OE=OB,∴∠OEB=∠OBE,∴∠CBD=∠DBE=∠OBE=13∠ABC=13×90°=30°,∴∠C=60°,∴AB=3BC=23,∴⊙O的半径为3,连接OD,∴阴影部分面积为S扇形OBD-S△OBD=16π×3-34×3=π2-334.五、(本大题共2小题,每小题9分,共18分)21.(2019·安顺)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E 两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:点H为CE的中点;(3)若BC=10,cos C=55,求AE的长.(1)解:DH与⊙O相切.理由:连接OD,AD,∵AB为直径,∴∠ADB=90°,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH为⊙O的切线.(2)证明:连接DE,∵A,B,D,E四点共圆,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∴CD=ED,∵DH⊥CE,∴点H为CE的中点.(3)解:CD=12BC=5,∵cos C=CDAC=55,∴AC=55,∵cos C=CHCD=55,∴CH=5,∴CE=2CH =25,∴AE =AC -CE =3 5.22.如图,在Rt △ABC 与Rt △OCD 中,∠ACB =∠DCO =90°,点O 为AB 的中点.(1)求证:∠B =∠ACD ;(2)已知点E 在AB 上,且BC 2=AB ·BE . ①若tan ∠ACD =34,BC =10,求CE 的长;②试判断CD 与以A 为圆心,AE 为半径的⊙A 的位置关系,并请说明理由.(1)证明:∵∠ACB =∠DCO =90°,∴∠ACB -∠ACO =∠DCO -∠ACO ,即∠ACD =∠OCB ; 又∵点O 是AB 的中点,∴OC =OB , ∴∠OCB =∠B , ∴∠B =∠ACD .(2)解:①∵BC 2=AB ·BE ,∴BC AB =BEBC.∵∠B =∠B ,∴△ABC ∽△CBE ,∴∠ACB =∠CEB =90°. ∵∠ACD =∠B ,∴tan ∠ACD =tan B =34,设BE =4x ,则CE =3x .由勾股定理,可知BE 2+CE 2=BC 2, ∴(4x )2+(3x )2=100,∴解得x =2,∴CE =6.②CD 与⊙A 相切.理由如下: 过点A 作AF ⊥CD 于点F .∵∠CEB =90°,∴∠B +∠ECB =90°. ∵∠ACE +∠ECB =90°,∴∠B =∠ACE .∵∠ACD =∠B ,∴∠ACD =∠ACE ,∴CA 平分∠DCE .∵AF ⊥CD ,AE ⊥CE ,∴AF =AE ,∴直线CD 与⊙A 相切.六、(本大题共12分)23.(2019·荆州)如图AB 是⊙O 的直径,点C 为⊙O 上一点,点P 是半径OB 上一动点(不与O ,B 重合),过点P 作射线l ⊥AB ,分别交弦BC ,BC ︵于D ,E 两点,在射线l 上取点F ,使FC =FD .(1)求证:FC 是⊙O 的切线; (2)当点E 是BC ︵的中点时,①若∠BAC =60°,判断O ,B ,E ,C 为顶点的四边形是什么特殊四边形,并说明理由; ②若tan ∠ABC =34,且AB =20,求DE 的长.(1)证明:连接OC ,∵OB =OC ,∴∠OBC =∠OCB ,∵PF ⊥AB ,∴∠BPD =90°,∴∠OBC +∠BDP =90°,∵FC =FD, ∴∠FCD =∠FDC ,∵∠FDC =∠BDP ,∴∠FCD =∠BDP ,∴∠OCB +∠FCD =90°,∴OC ⊥FC ,FC 是⊙O 的切线.(2)解:连接OC ,OE ,BE ,CE ,OE 与BC 交于H. ①以O ,B ,E ,C 为顶点的四边形是菱形.理由:∵AB 是直径,∴∠ACB =90°,∵∠BAC =60°,∴∠BOC =120°,∵点E 是BC ︵的中点,∴∠BOE =∠COE =60°,∵OB =OE =OC ,∴△BOE ,△COE 均为等边三角形,∴OB =BE =CE =OC ,∴四边形BOCE 是菱形.②∵AC BC =tan ∠ABC =34,设AC =3k ,BC =4k ,k>0.由AC 2+BC 2=AB 2,即(3k)2+(4k)2=202,解得k =4,∴AC =12,BC =16,∵点E 是BC ︵的中心,∴OE ⊥BC ,BH =CH =8,∵S △BOE =12OE·BH =12OB·PE ,即12×10×8=12×10×PE ,∴PE =8,又OP =OE 2-PE 2=6,∴BP =OB -OP =4,∵DP BP =tan ∠ABC =34,∴DP =34BP =3,∴DE =PE -DP =8-3=5.期中检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.对于函数y =-2(x -m)2的图象,下列说法不正确的是( D ) A .开口向下 B .对称轴是x =m C .最大值为0 D .与y 轴不相交 2.在Rt △ABC 中,∠C =90°,AB =6,tan B =33,则Rt △ABC 的面积为( B ) A .9 3B .923C .9D .183.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为( D )A .40海里B .60海里C .203海里D .403海里4.若抛物线y =x 2+ax +b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x =1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点 ( B )A .(-3,-6)B .(-3,0)C .(-3,-5)D .(-3,-1)5.如图,在Rt △ABC 中,∠ACB =90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tan A 的值为( A )A .33B . 3C .12D .136.已知抛物线y =ax 2+bx +c 的图象如图所示,则|a -b +c|+|2a +b|等于( D ) A .a +b B .a -2b C .a -b D .3a 二、填空题(本大题共6小题,每小题3分,共18分)7.某种型号的迫击炮发射炮弹时的飞行高度h(m )与飞行时间t(s )的关系满足h =-13t 2+10t ,则经过 30 s ,发射的炮弹落地爆炸.8.在△ABC 中,∠A ,∠B 都是锐角,若⎪⎪⎪⎪sin A -12+⎝⎛⎭⎫cos B -122=0,则∠C = 90° . 9.若函数y =mx 2+(m +2)x +12m +1的图象与x 轴只有一个交点,那么m 的值为 0,2或-2 .10.(2019·盐城)在△ABC 中,BC =6+2,∠C =45°,AB =2AC ,则AC 的长为__2__. 11.(2019·宿迁)若∠MAN =60°,△ABC 的顶点B 在射线AM 上,且AB =2,点C 在射线AN 上运动,当△ABC 是锐角三角形时,BC12.已知抛物线y =23x 2+43x -2与x 轴交于A ,B 两点,与y 轴交于点C .点P 在对称轴上,当△PBC的周长最小时,点P 的坐标是⎝⎛⎭⎫-1,-43. 三、(本大题共5小题,每小题6分,共30分)13.计算:cos 60°-sin 45°+14tan 230°+cos 30°-sin 30°.解:原式=12-22+14×⎝⎛⎭⎫332+32-12=32-22+112. 14.由于保管不慎,小明把一道数学题染上了污渍,变成了“如图,在△ABC 中,∠A =30°,tan B =,AC =43,求AB 的长”.这时小明去翻看了标准答案,显示AB =10.你能否帮助小明通过计算说明污渍部分的内容是什么?解:过点C 作CH ⊥AB 于点H ,在Rt △ACH 中,CH =AC ·sin A =43×sin 30°=23,AH =AC ·cos A =43×cos 30°=6, ∴BH =AB -AH =4, ∴tan B =CH BH =32,∴污渍部分的内容是32. 15.(2019·凉山州)已知二次函数y =x 2+x +a 的图象与x 轴交于A (x 1,0),B (x 2,0)两点,且1x 21+1x 22=1,求a 的值.解:函数y =x 2+x +a 的图象与x 轴交于A(x 1,0),B(x 2,0)两点,∴x 1+x 2=-1,x 1·x 2 =a ,∵1x 21+1x 22=x 21+x 22x 21x 22=(x 1+x 2)2-2x 1x 2(x 1x 2)2=1-2a a 2=1,∴a =-1+ 2 或a =-1- 2. 16.在同一平面直角坐标系中,一次函数y =x -4与二次函数y =-x 2+2x +c 图象交于点A (-1,m ).(1)求m ,c 的值;(2)求二次函数图象的对称轴和顶点坐标. 解:(1)∵A 点在一次函数的图象上,∴m =-1-4=-5.∴点A 的坐标为(-1,-5),∵A 点在二次函数图象上,∴-5=-1-2+c ,解得c =-2. (2)由①可知二次函数表达式为y =-x 2+2x -2=-(x -1)2-1,∴二次函数的图象的对称轴为直线x =1,顶点坐标为(1,-1).17.如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B 处的求救者后,又发现点B 正上方点C 处还有一名求救者,在消防车上点A 处测得点B 和点C 的仰角分别为45°和65°,点A 距地面2.5米,点B 距地面10.5米,为救出点C 处的求救者,云梯需要继续上升的高度BC 约为多少米?(结果保留整数,参考数据:tan 65°≈2.1,sin 65°≈0.9,cos 65°≈0.4,2≈1.4)解:作AH ⊥CN 于点H .在Rt △ABH 中,∵∠BAH =45°,BH =10.5-2.5=8(m), ∴AH =BH =8(m), 在Rt △AHC 中,tan 65°=CH AH, ∴CH =8×2.1≈17(m),∴BC =CH -BH =17-8=9(m).四、(本大题共3小题,每小题8分,共24分)18.如图,直线y =x +2与x 轴交于点A ,与y 轴交于点B ,AB ⊥BC ,且点C 在x 轴上,若抛物线y =ax 2+bx +c 以C 为顶点,且经过点B ,求这条抛物线对应的函数表达式.解:∵直线y =x +2与x 轴交于点A ,与y 轴交于点B , ∴A (-2,0),B (0,2),∴△ABO 为等腰直角三角形.又∵AB ⊥BC ,∴△BCO 也为等腰直角三角形, ∴OC =OB =OA .∴C (2,0),设抛物线对应的函数表达式为y =a (x -2)2, 将点B (0,2)的坐标代入得2=a (0-2)2,解得a =12,∴此抛物线对应的函数表达式为y =12(x -2)2,即y =12x 2-2x +2.19.如图,一座钢结构桥梁的框架是△ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D 是BC 的中点,且AD ⊥BC.(1)求sin B 的值;(2)现需要加装支架DE ,EF ,其中点E 在AB 上,BE =2AE ,且EF ⊥BC ,垂足为点F ,求支架DE 的长.解:(1)∵BD =DC =9,AD =6, ∴AB =92+62=313.∴sin B =AD AB =6313=21313.(2)∵EF ∥AD ,BE =2AE ,∴△BEF ∽△BAD. ∴EF AD =BF BD =BE BA =23,∴EF 6=BF 9=23, ∴EF =4,BF =6,∴DF =3,∴在Rt △DEF 中,DE =42+32=5米.20.为美化校园,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m 长的篱笆围成一个矩形花园ABCD(只围AB ,BC 两边),设AB =x m .(1)若花园的面积为192 m 2,求x 的值;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15 m 和6 m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值.解:(1)∵AB =x m ,则BC =(28-x)m ,∴x(28-x)=192,解得x 1=12,x 2=16,∴当花园的面积为192 m 2时,x 的值为12 m 或16 m .(2)由题意可得S=x(28-x)=-x2+28x=-(x-14)2+196,∵在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,28-15=13,∴6≤x≤13,∴当x=13时,S最大=-(13-14)2+196=195,∴花园面积S的最大值为195 m2.五、(本大题共2小题,每小题9分,共18分)21.如图,小河上有一拱桥,拱桥及河道的截面轮廓由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的表达式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=-1128(t-19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?解:(1)抛物线的表达式为y=-364x2+11(-8≤x≤8).(2)令-1128(t-19)2+8=11-5.解得t1=35,t2=3.∴当3≤t≤35时,水面到顶点C的距离不大于5米,需禁止船只通行,禁止船只通行时间为35-3=32小时.答:禁止船只通行时间为32小时.22.(2019·岳阳)慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶的仰角∠AEH为62.3°.(点D,B,F在同一水平线上,参考数据:sin 62.3°≈0.89,cos 62.3°≈0.46,tan 62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.解:(1)四边形CDBG,HBFE为矩形,∴GB=CD=1.7,HB=EF=1.5,∴GH=0.2,在Rt AHE中,tan∠AEH=AHHE,则AH=HE·tan∠AEH≈1.9a,∴AG=AH-GH=1.9a-0.2,在Rt ACG中,∠ACG=45°,∴CG=AG=1.9a-0.2,∴BD=1.9a-0.2,答:小亮与塔底中心。
北师大版九年级下册数学1-3章单元测试卷(Word最新版)
北师大版九年级下册数学1-3章单元测试卷通过整理的北师大版九年级下册数学1-3章单元测试卷相关文档,渴望对大家有所扶植,感谢观看!第一章检测卷时间:120分钟满分:150分班级:__________姓名:__________得分:__________一、选择题(每小题3分,共45分) 1.sin30°的值为()A.B.C.D. 2.如图,Rt△ABC中,∠C=90°,AC=8,BC=15,则tanA 的值为()A.B.C.D. 第2题图第3题图3.如图,在Rt△ABC中,∠C=90°,sinA =,AC=6cm,则BC的长度为()A.6cmB.7cmC.8cmD.9cm 4.在Rt△ABC中,已知∠ACB=90°,BC=1,AB=2,那么下列结论正确的是()A.sinA=B.tanA=C.cosB=D.tanB=5.若tan(α+10°)=1,则锐角α的度数是A()A.20°B.30°C.40°D.50° 6.在Rt△ABC中,∠C=90°,tanA=3,AC=10,则S△ABC 等于()A.3B.300C.D.150 7.如图,沿AC方向修山路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=145°,BD=500米,∠D=55°,使A,C,E在一条直线上,那么开挖点E与D的距离是()A.500sin55°米B.500cos35°米C.500cos55°米D.500tan55°米第7题图第8题图第9题图8.如图,点P在其次象限,OP与x轴负半轴的夹角是α,且OP=5,cosα=,则点P的坐标是()A.(3,4)B.(-3,4)C.(-4,3)D.(-3,5) 9.如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1∶2,则斜坡AB的长为()A.4米B.6米C.12米D.24米10.如图,直线y=x+3与x,y轴分别交于A,B两点,则cos∠BAO的值是()A.B.C.D. 第10题图第11题图11.如图,在△ABC中,AD⊥BC,垂足为点D,若AC=6,∠C=45°,tan∠B=3,则BD等于()A.2B.3C.3D.2 12.若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45°B.45°<α<60° C.60°<α<90°D.30°<α<60° 13.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC 的长是()A.4cmB.6cmC.8cmD.10cm 第13题图14.如图,某人站在楼顶观测对面的笔直的旗杆AB.已知观测点C到旗杆的距离CE=8m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,那么,旗杆AB的高度是()A.(+8)mB.(8+8)m C.mD.m 第14题图第15题图15.如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68°方向上,航行2小时后到达N处,观测到灯塔P在西偏南46°方向上,若该船接着向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68°≈0.9272,sin46°≈0.7193,sin22°≈0.3746,sin44°≈0.6947)()A.22.48海里B.41.68海里C.43.16海里D.55.63海里二、填空题(每小题5分,共25分) 16.在Rt△ABC中,∠C=90°,∠A=60°.若AB=2,则cosB=,BC=. 17.如图,将∠AOB放在边长为1的小正方形组成的网格中,则tan∠AOB=. 第17题图第18题图18.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为m(结果保留根号).19.齐河路路通电动车厂新开发的一种电动车如图,它的大灯A射出的光线AB,AC与地面MN所夹的锐角分别为8°和10°,大灯A与地面的距离为1m,则该车大灯照亮地面的宽度BC是m(不考虑其他因素,参考数据:sin8°≈,tan8°≈,sin10°≈,tan10°≈).第19题图第20题图20.如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=. 三、解答题(共80分) 21.(8分)计算:(1)3tan30°+cos245°-2sin60°;(2)tan260°-2sin45°+cos60°.22.(8分)如图,在△ABC中,∠C=90°,AB=13,BC=5,求sinB 和tanB的值.23.(10分)如图,某校数学爱好小组为测得校内里旗杆AB的高度,在操场的平地上选择一点C,测得旗杆顶端A的仰角为30°,再向旗杆的方向前进16米,到达点D处(C,D,B三点在同始终线上),又测得旗杆顶端A的仰角为45°,请计算旗杆AB的高度(结果保留根号).24.(12分)在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,∠C=90°.若定义cotA==,则称它为锐角A的余切,依据这个定义解答下列问题:(1)cot30°=;(2)已知tanA=,其中∠A为锐角,求cotA的值.25.(12分)在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B两个凉亭之间的距离.如图,现测得∠ABC=30°,∠BAC =15°,AC=200米,请计算A,B两个凉亭之间的距离(结果精确到1米,参考数据:≈1.414,≈1.732).26.(14分)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.27.(16分)南海是我国的南大门,某天我国一艘海监执法船在南海海疆正在进行常态化巡航,如图所示,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便快速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我国海监执法船在前往监视巡查的过程中行驶了多少海里(最终结果保留整数,参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)?下册第一章检测卷1.A2.D3.C4.D5.A6.D7.C8.B9.B10.A11.A12.B13.A14.D 15.B解析:如图,过点P作PA⊥MN于点A.由题意,得MN=30×2=60(海里).∵∠MNC=90°,∠CNP=46°,∴∠MNP=∠MNC+∠CNP=136°.∵∠BMP=68°,∴∠PMN =90°-∠BMP=22°,∴∠MPN=180°-∠PMN-∠PNM=22°,∴∠PMN=∠MPN,∴MN=PN=60海里.∵∠CNP=46°,∴∠PNA =44°,∴PA=PN·sin∠PNA≈60×0.6947≈41.68(海里).故选B. 16.17.18.(10+1)19.1.4 20.解析:过点E作EF⊥BC于点F.设DE=CE=a.∵△CDE为等腰直角三角形,∴CD=CE=a,∠DCE=45°.∵四边形ABCD为正方形,∴CB=CD=a,∠BCD=90°,∴∠ECF=45°,∴△CE F为等腰直角三角形,∴CF=EF=CE=a.∴BF=BC+CF=a+a =a.在Rt△BEF中,tan∠EBF==,即tan∠EBC=. 21.解:(1)原式=3×+-2×=+-=;(4分) (2)原式=()2-2×+=3-+=-.(8分) 22.解:∵在△ABC中,∠C=90°,∴AC===12.(4分)∴sinB==,(6分)tanB==.(8分) 23.解:由题意可得CD=16米.∵AB=CB·tan30°,AB=BD·tan45°,∴CB·tan30°=BD·tan45°,(4分)∴(CD +DB)×=BD×1,∴BD=(8+8)米.(7分)∴AB=BD·tan45°=(8+8)米.(9分) 答:旗杆AB的高度是(8+8)米.(10分) 24.解:(1)(4分) (2)在Rt△ABC中,∠C=90°,∵tanA==,∴可设BC=3k,则AC =4k,(8分)∴cotA===.(12分) 25.解:如图,过点A作AD⊥BC,交BC延长线于点D.(2分)∵∠B=30°,∴∠BAD=60°.又∵∠BAC=15°,∴∠CAD=45°.(5分)在Rt△ACD中,∵AC=200米,∴AD=AC·cos∠CAD=200×=100(米),(8分)∴AB===200≈283(米).(11分) 答:A,B两个凉亭之间的距离约为283米.(12分)26.解:(1)如图,过点A作AE⊥BC于点E.∵cosC=,∴∠C=45°.(2分)在Rt△ACE中,∵CE=AC·cosC=×=1,∴AE=CE=1.(4分)在Rt△ABE中,∵tanB=,∴=,∴BE=3AE=3,∴BC=BE+CE=4;(7分)(2)由(1)可知BC=4,CE=1.∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD-CE=1.(9分)∵AE⊥B C,DE=AE=1,∴∠ADC=45°,(12分)∴sin∠ADC=.(14分) 27.解:如图,过点B作BD⊥AC,垂足为D.由题意得∠BAC=75°-30°=45°,AB=20海里.(3分)在Rt△ABD 中,∵∠BAD=∠ABD=45°,∴BD=AD=AB=×20=10(海里).(7分)在Rt△BCD中,∵∠C=90°-75°=15°,∠CBD=90°-∠C=75°,tan∠CBD=,∴CD=BD·tan75°≈10×3.732≈52.8(海里),(11分)∴AC =AD+DC=10+52.8≈67(海里).(15分) 答:我国海监执法船在前往监视巡查点的过程中约行驶了约67海里.(16分)其次章单元检测卷一、选择题(每小题3分;共33分)1.二次函数,当y<0时,自变量x的取值范围是()A. -1<x<3B. x<-1C. x>3 D. x<-1或x>3 2.如图,双曲线y= 经过抛物线y=ax2+bx(a≠0)的顶点(﹣1,m)(m>0),则下列结论中,正确的是()A. a+b=kB. 2a+b=0C. b<k<0 D. k<a<0 3.将抛物线y=(x﹣1)2+4先向右平移4个单位长度,再向下平移3个单位长度,得到的抛物线的顶点坐标为()A. (5,4)B. (1,4)C. (1,1)D. (5,1)4.已知二次函数y=x2﹣x+a(a>0),当自变量x取m时,其相应的函数值y<0,那么下列结论中正确的是()A. m﹣1的函数值小于0B. m﹣1的函数值大于0C. m﹣1的函数值等于0D. m ﹣1的函数值与0的大小关系不确定5.抛物线y=x2+bx+c图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣2x ﹣3,则b、c的值为()A. b=2,c=2B. b=2,c=0C. b=﹣2,c=﹣1D. b=﹣3,c=2 6.抛物线y=(x+2)2+3的顶点坐标是( )A. (-2,3)B. (2,3)C. (-2,-3)D. (2,-3)7.在平面直角坐标系中,将抛物线y=x2-4先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为()A. y=(x+2)2+2B. y=(x-2)2-2C. y=(x-2)2+2 D. y=(x+2)2-2 8.二次函数y=ax2+bx+c(a≠0)的部分图象如图③所示,图象过点(﹣1,0),对称轴为直线x=2,则下列结论中正确的个数有()①4a+b=0;②9a+3b+c<0;③若点A(﹣3,y1),点B(﹣,y2),点C(5,y3)在该函数图象上,则y1<y3<y2;④若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2 .A. 1个B. 2个C. 3个D. 4个9.生产季节性产品的企业,当它的产品无利润时就会刚好停产,现有一生产季节性产品的企业,一年中获得利润y与月份n之间的函数关系式是y=-n2+15n-36,那么该企业一年中应停产的月份是()A. 1月,2月B. 1月,2月,3月C. 3月,12月D. 1月,2月,3月,12月10.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A. y=(x+1)2﹣13B. y=(x﹣5)2﹣3C. y=(x﹣5)2﹣13D. y=(x+1)2﹣3 11.如图所示,抛物线的对称轴是直线,且图像经过点(3,0),则的值为()A. 0B. -1 C. 1 D.2 二、填空题(共10题;共30分)12.已知二次函数y=﹣x2﹣2x+1,当x________时,y随x的增大而增大.13.(2021•扬州)如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为________.14.农机厂第一个月水泵的产量为50(台),第三个月的产量y(台)与月平均增长率x之间的关系表示为________ .15.假如抛物线y=ax2﹣2ax+1经过点A(﹣1,7)、B(x,7),那么x=________.16.依据下表推断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的取值范围是________ x 0.4 0.5 0.6 0.7 ax2+bx+c ﹣0.64 ﹣0.25 0.16 0.59 17.如图是一次函数y=kx+b的图象的大致位置,试推断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△________ 0(填:“>”或“=”或“<”).18.如图,抛物线与轴的一个交点A在点(-2,0)和(1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边界和内部)的一个动点,则的取值范围是________.19.形态与抛物线y=2x2﹣3x+1的图象形态相同,但开口方向不同,顶点坐标是(0,﹣5)的抛物线的关系式为________.20.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:则当2<y<5时,x的取值范围是________ x … ﹣1 0 1 2 3 … y … 10 5 2 1 2 … 21.若二次函数y=2x2﹣x﹣m与x轴有两个交点,则m的取值范围是________ .三、解答题(共4题;共37分)22.使得函数值为0的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0可得x=1,我们说1是函数y=x﹣1的零点.已知函数y=x2﹣2mx﹣2(m+3)(m 为常数)(1)当m=0时,求该函数的零点.(2)证明:无论m 取何值,该函数总有两个零点.23.如图,王强在一次高尔夫球的练习中,在某处击球,其飞行路途满足抛物线y=﹣x2+x,其中y(m)是球飞行的高度,x(m)是球飞行的水平距离.(1)飞行的水平距离是多少时,球最高?(2)球从飞出到落地的水平距离是多少?24.已知二次函数图象顶点坐标(﹣3,)且图象过点(2,),求二次函数解析式及图象与y轴的交点坐标.25.如图,在平面直角坐标系中,O为坐标原点,直线y=﹣x﹣3与x轴交于点A,与y轴交于点C,抛物线y=x2+bx+c经过A、C两点,与x轴交于另一点B(1)求抛物线的解析式;(2)点D是其次象限抛物线上的一个动点,连接AD、BD、CD,当S△ACD= S四边形ACBD时,求D点坐标;(3)在(2)的条件下,连接BC,过点D作DE⊥BC,交CB的延长线于点E,点P是第三象限抛物线上的一个动点,点P关于点B 的对称点为点Q,连接QE,延长QE与抛物线在A、D之间的部分交于一点F,当∠DEF+∠BPC=∠DBE时,求EF的长.参考答案一、选择题ACDBBABCDDB二、填空题12.<﹣213. 014.15. 316. 0.5<x<0.617.>18. - ≤a≤-19. y=﹣2x2﹣520. 0<x<1或3<x<421. m≥﹣三、解答题22. 1)解:当m=0时,令y=0,则x2﹣6=0,解得x=±,所以,m=0时,该函数的零点为±;(2)证明:令y=0,则x2﹣2mx﹣2(m+3)=0,△=b2﹣4ac=(﹣2m)2﹣4×1×2(m+3),=4m2+8m+24,=4(m+1)2+20,∵无论m为何值时,4(m+1)2≥0,∴△=4(m+1)2+20>0,∴关于x的方程总有不相等的两个实数根,即,无论m取何值,该函数总有两个零点.23.解:(1)∵y=﹣x2+x =﹣(x﹣4)2+,∴当x=4时,y有最大值为.所以当球水平飞行距离为4米时,球的高度达到最大,最大高度为米;(2)令y=0,则﹣x2+x=0,解得x1=0,x2=8.所以这次击球,球飞行的最大水平距离是8米.24.解:设二次函数的解析式为y=a(x﹣h)2+k,把h=﹣3,k= ,和点(2,)代入y=a(x﹣h)2+k,得a(2+3)2+ = ,解得a= ,所以二次函数的解析式为y= (x+3)2+ ,当x=0时,y= ×9+ = ,所以函数图象与y轴的交点坐标(0,)25.(1)解:∵令x=0得:y=﹣3,∴C(0,﹣3).令y=0得:﹣x﹣3=0,解得x=﹣3,∴A(﹣3,0).将A、C两点的坐标代入抛物线的解析式的:,解得:.∴抛物线的解析式为y=x2+2x﹣3 (2)解:如图1所示:令y=0得:x2+2x﹣3=0,解得x=﹣3或x=1.∴AB=4.∵S△ACD= S四边形ACBD,∴S△ADC:S△DCB=3:5.∴AE:EB=3:5.∴AE=4× = .∴点E的坐标为(﹣,0).设EC的解析式为y=kx+b,将点C和点E 的坐标代入得:,解得:k=﹣2,b=﹣3.∴直线CE的解析式为y=﹣2x﹣3.将y=﹣2x﹣3与y=x2+2x﹣3联立,解得:x=﹣4或x=0(舍去),将x=﹣4代入y=﹣2x﹣3得:y=5.∴点D的坐标为(﹣4,5)(3)解:如图2所示:过点D作DN⊥x轴,垂足为N,过点P作PM⊥x 轴,垂足为M.设直线BC的解析式为y=kx+b,将点C和点B的坐标代入得:,解得:k=3,b=﹣3.∴直线BC的解析式为y=3x﹣3.设直线DE的解析式为y=﹣x+n,将点D的坐标代入得:﹣×(﹣4)+n=5,解得n=5﹣= .∴直线DE的解析式为y=﹣x+ .将y=3x ﹣3与y=﹣x+ 联立解得:x=2,y=3.∴点E坐标为(2,3).依据两点间的距离公式可知:BC=CE= .∵点P与点Q关于点B对称,∴PB=BQ.在△PCB和△QEB中,∴△PCB≌△QEB.∴∠BPC=∠Q.又∵∠DEF+∠BPC=∠DBE,∠DEF=∠QEG,∠EGB=∠Q+∠QEG ∴∠DBE=∠DGB.又∵∠DBE+∠BDE=90°,∴∠DGB+∠BDG=90°,即∠PBD=90°.∵D (﹣4,5),B(1,0),∴DM=NB.∴∠DBN=45°.∴∠PBM=45°.∴PM=MB 设点P 的坐标为(a,a2+2a﹣3),则BM=1﹣a,PM=﹣a2﹣2a+3.∴1﹣a=﹣a2﹣2a+3,解得:a=﹣2或a=1(舍去).∴点P的坐标为(﹣2,3).∴PC∥x轴.∵∠Q=∠BPC,∴EQ∥PC.∴点E与点F的纵坐标相同.将y=3代入抛物线的解析式得:x2+2x﹣3=3,解得:x=﹣1﹣或x=﹣1+ (舍去).∴点F的坐标为(﹣1 ,3).∴EF=2﹣(﹣1﹣)=3+第三章单元检测卷满分:120分时间:90分钟一、选择题(每题3分,共30分) 1.下列命题为真命题的是() A.两点确定一个圆B.度数相等的弧相等C.垂直于弦的直径平分弦D.相等的圆周角所对的弧相等,所对的弦也相等2.已知⊙O的半径为5,点P到圆心O的距离为6,那么点P与⊙O的位置关系是() A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.无法确定3.如图,⊙O是△ABC的外接圆,∠BOC=120°,则∠BAC的度数是() A.70°B.60°C.50°D.30° 4.如图,AB,AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.假如∠DAC=78°,那么∠ADO等于() A.70°B.64°C.62°D.51°5.秋千拉绳长3 m,静止时踩板离地面0.5 m,某小挚友荡秋千时,秋千在最高处踩板离地面2 m(左右对称),如图,则该秋千所荡过的圆弧长为() A.π mB.2π mC.π mD. m6.如图,在直角坐标系中,一个圆经过坐标原点O,交坐标轴于点E,F,OE=8,OF=6,则圆的直径长为() A.12B.10C.14D.15 (第6题)(第7题)7.如图,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1)四点,则该圆圆心的坐标为() A.(2,-1)B.(2,2)C.(2,1)D.(3,1) 8.如图,CA为⊙O的切线,切点为A,点B在⊙O上,若∠CAB=55°,则∠AOB等于() A.55°B.90°C.110°D.120° 9.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a >3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为4,则a 的值是() A.4B.3+C.3D.3+(第8题)(第9题)(第10题) 10.如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切……按这样的规律进行下去,正六边形A10B10C10D10E10F10的边长为() A.B.C.D.二、填空题(每题3分,共24分) 11.如图,△ABC内接于⊙O,要使过点A的直线EF与⊙O相切于A点,则图中的角应满足的条件是________(只填一个即可).(第11题)(第12题)(第13题) 12.如图,EB,EC是⊙O的两条切线,B,C是切点,A,D是⊙O上两点,假如∠E=46°,∠DCF=32°,那么∠A=________.13.如图,DB切⊙O 于点A,∠AOM=66°,则∠DAM=________.14.如图,在⊙O的内接四边形ABCD中,AB=CD,则图中与∠1相等的角有__________________.(第14题) (第15题) (第16题) 15.如图,水平放置的圆柱形油槽的截面直径是52 cm,装入油后,油深CD为16 cm,那么油面宽度AB=________. 16.如图,在扇形OAB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为________.17.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E,F分别是AC,BC的中点,直线EF与⊙O交于G,H两点,若⊙O 的半径是7,则GE+FH的最大值是________.(第17题)(第18题) 18.如图,在⊙O中,C,D分别是OA,OB的中点,MC⊥AB,ND⊥AB,M,N在⊙O上.下列结论:①MC=ND;②==;③四边形MCDN 是正方形;④MN=AB,其中正确的结论是________(填序号).三、解答题(19题6分,20~24题每题12分,共66分) 19.如图,AB 是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC 于点C,使∠BED=∠C.试推断直线AC与半圆O的位置关系,并说明理由.(第19题)20.在直径为20 cm的圆中,有一条弦长为16 cm,求它所对的弓形的高.21.如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于点C,过点C的直线y=2x+b交x轴于点D,且⊙P的半径为,AB=4. (1)求点B,P,C的坐标;(2)求证:CD是⊙P的切线.(第21题)22.如图,一拱形马路桥,圆弧形桥拱的水面跨度AB=80 m,桥拱到水面的最大高度为20 m. (1)求桥拱的半径.(2)现有一艘宽60 m,顶部截面为长方形且高出水面9 m的轮船要经过这座拱桥,这艘轮船能顺当通过吗?请说明理由.(第22题)23.如图,已知在△ABP中,C是BP边上一点,∠P AC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E. (1)求证:PA是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG·AB=12,求AC的长;(3)在满足(2)的条件下,若AF∶FD=1∶2,GF=1,求⊙O的半径及sin∠ACE的值.(第23题) 24.如图①,AB是⊙O的直径,且AB=10,C是⊙O上的动点,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D.(1)求证:∠DAC=∠BAC;(2)若AD和⊙O相切于点A,求AD的长;(3)若把直线EF向上平行移动,如图②,EF交⊙O于G,C两点,题中的其他条件不变,试问这时与∠DAC相等的角是否存在,并说明理由.(第24题)答案一、1.C2.A3.B4.B5.B6.B 7.C8.C9.B 10.D点拨:∵正六边形A1B1C1D1E1F1的边长为2=,∴正六边形A2B2C2D2E2F2的外接圆的半径为,则正六边形A2B2C2D2E2F2的边长为=,同理,正六边形A3B3C3D3E3F3的边长为=,…,正六边形AnBnCnDnEnFn的边长为,则当n=10时,正六边形A10B10C10D10E10F10的边长为===,故选D. 二、11.∠BAE=∠C或∠CAF=∠B12.99°点拨:易知EB=EC.又∠E=46°,所以∠ECB=67°.从而∠BCD =180°-67°-32°=81°.在⊙O中,∠BCD与∠A互补,所以∠A=180°-81°=99°. 13.147°点拨:因为DB是⊙O的切线,所以OA⊥DB.由∠AOM=66°,得∠OAM=(180°-66°)=57°.所以∠DAM=90°+57°=147°. 14.∠6,∠2,∠5点拨:本题中由弦AB=CD可知=,因为同弧或等弧所对的圆周角相等,所以∠1=∠6=∠2=∠5.16.+点拨:连接OE.∵点C是OA的中点,∴OC=OA=1.∵OE=OA=2,∴OC=OE.∵CE⊥OA,∴∠OEC=30°.∴∠COE=60°.在Rt△OCE中,CE==,∴S△OCE=OC·CE=.∵∠AOB=90°,∴∠BOE =∠AOB-∠COE=30°.∴S扇形BOE==.又S扇形COD==.因此S 阴影=S扇形BOE+S△OCE-S扇形COD=+-=+. 17.10.5 18.①②④点拨:连接OM,ON,易证Rt△OMC≌Rt△OND,可得MC=ND,故①正确.在Rt△MOC中,CO=MO.得∠CMO=30°,所以∠MOC=60°.易得∠MOC=∠NOD=∠MON=60°,所以==,故②正确.易得CD=AB=OA=OM,∵MC<OM,∴四边形MCDN 是矩形,故③错误.易得MN=CD=AB,故④正确.三、19.解:AC与半圆O相切.理由如下:∵是∠BED与∠BAD所对的弧,∴∠BAD=∠BED. ∵OC⊥AD,∴∠AOC+∠BAD=90°. ∴∠BED+∠AOC=90°. 即∠C+∠AOC=90°. ∴∠OAC=90°. ∴AB⊥AC,即AC与半圆O相切.20.解:∵这条小于直径的弦所对的弧有两条:劣弧与优弧,∴对应的弓形也有两个.如图,HG为⊙O的直径,且HG⊥AB,AB=16 cm,HG=20 cm,连接BO. ∴OB=OH=OG=10 cm,BC=AB=8 cm. ∴OC===6(cm).∴CH=OH-OC=10-6=4(cm),CG=OC+OG=6+10=16(cm).故所求弓形的高为4 cm 或16 cm. (第20题)21.(1)解:如图,连接CA. (第21题)∵OP⊥AB,∴OB=OA=2. ∵OP2+BO2=BP2,∴OP2=5-4=1,OP=1. ∵BC是⊙P的直径,∴∠CAB=90°. ∵CP=BP,OB=OA,∴AC=2OP=2. ∴B(2,0),P(0,1),C(-2,2).(2)证明:∵直线y=2x+b过C点,∴b=6.∴y=2x+6. ∵当y=0时,x=-3,∴D(-3,0).∴AD=1. ∵OB=AC=2,AD=OP=1,∠CAD =∠POB=90°,∴△DAC≌△POB. ∴∠DCA=∠ABC. ∵∠ACB+∠CBA=90°,∴∠DC A+∠ACB=90°,即CD⊥BC. ∴CD是⊙P的切线.22.解:(1)如图,点E是桥拱所在圆的圆心.(第22题) 过点E作EF⊥AB于点F,延长EF交于点C,连接AE,则CF=20 m.由垂径定理知,F是AB的中点,∴AF=FB=AB=40 m. 设半径是r m,由勾股定理,得AE2=AF2+EF2=AF2+(CE-CF)2,即r2=402+(r-20)2.解得r=50. ∴桥拱的半径为50 m. (2)这艘轮船能顺当通过.理由如下:当宽60 m的轮船刚好可通过拱桥时,如图,MN为轮船顶部的位置.连接EM,设EC与MN的交点为D,则DE⊥MN,∴DM=30 m,∴DE===40(m).∵EF=EC-CF=50-20=30(m),∴DF=DE-EF=40-30=10(m).∵10 m>9 m,∴这艘轮船能顺当通过.23.(1)证明:如图,连接CD,∵AD是⊙O的直径.∴∠ACD =90°. ∴∠CAD+∠ADC=90°. 又∵∠PAC=∠PBA,∠ADC=∠PBA,∴∠PAC=∠ADC. ∴∠CAD+∠PAC=90°. ∴PA⊥DA.而AD 是⊙O的直径,∴PA是⊙O的切线.(2)解:由(1)知,PA⊥AD,又∵CF⊥AD,∴CF∥PA.∴∠GCA=∠PAC. 又∵∠PAC=∠PBA,∴∠GCA=∠PBA. 而∠CAG=∠BAC,∴△CAG∽△BAC. ∴=,即AC2=AG·AB. ∵AG·AB=12,∴AC2=12.∴AC=2. (3)解:设AF=x,∵AF∶FD=1∶2,∴FD=2x.∴AD=AF+FD=3x. 在Rt△ACD中,∵CF⊥AD,∴AC2=AF·AD,即3x2=12,解得x=2或x=-2(舍去).∴AF=2,AD=6.∴⊙O的半径为3. 在Rt△AFG中,AF=2,GF=1,依据勾股定理得AG===,由(2)知AG·AB=12,∴AB==.连接BD,如图.∵AD是⊙O的直径,∴∠ABD=90°. 在Rt△ABD 中,∵sin∠ADB=,AD=6,AB=,∴sin∠ADB=. ∵∠ACE=∠ADB,∴sin∠ACE=. (第23题)24.(1)证明:如图①,连接OC. ∵直线EF和⊙O相切于点C,∴OC⊥EF.∵AD⊥EF,∴OC∥AD.∴∠DAC=∠OCA. ∵OA=OC,∴∠BAC=∠OCA. ∴∠D AC=∠BAC. (2)解:∵AD和⊙O相切于点A,∴OA⊥AD. ∵AD⊥EF,OC⊥EF,∴∠OAD=∠ADC=∠OCD =90°. ∴四边形OADC是矩形.∵OA=OC,∴矩形OADC是正方形.∴AD=OA. ∵AB=2OA=10,∴AD=OA=5. (第24题)(3)解:存在,∠BAG=∠DAC.理由如下:如图②,连接BC.∵AB 是⊙O的直径,∴∠BCA=90°. ∴∠ACD+∠BCG=90°. ∵∠ADC=90°,∴∠ACD+∠DAC=90°. ∴∠DAC=∠BCG. ∵∠BCG=∠BAG,∴∠BAG=∠DAC.。
新版北师大初三数学九年级(下册)第三章圆练习题(分节练习)【含答案】
新版北师大初中数学九〔下〕第三章圆分节练习第1节圆01、【基础题】已知⊙O的面积为25 . 〔1〕假设PO=5.5,则点P在_____;〔2〕假设PO=4,则点P在_____;〔3〕假设PO=_____,则点P在⊙O上.01.1【综合Ⅰ】如左以下图,△ABC中,∠ACB=90°,AC=2 cm,BC=4 cm,CM是AB边上的中线,以点C为圆心,5cm为半径作圆,则A、B、C、M四点在圆外的有_______,在圆上的有_______,在圆内的有_______.01.2、【综合Ⅲ】如右上图,菱形ABCD的对角线AC和BD相交于点O,点E、F、G、H分别为AB、BC、CD、DA的中点,那么E、F、G、H是否在同一个圆上?说明理由.01.3、【综合Ⅲ】假设⊙A的半径为5,圆心A的坐标是(3,4),点P的坐标是(5,8),则点P的位置是〔〕A、在⊙A内B、在⊙A上C、在⊙A外D、不能确定02、【综合Ⅰ】设AB=3 cm,作图说明满足以下要求的图形:〔1〕到点A和点B的距离都等于2 cm的所有点组成的图形;〔2〕到点A和点B的距离都小于2 cm的所有点组成的图形;〔3〕到点A的距离小于2 cm,且到点B的距离大于2 cm的所有点组成的图形.03、【提高】海军部队在某灯塔A的周围进行爆破作业,A的周围3 km的水域为危险水域,有一渔船误入离灯塔A有2 km远的B处,为了尽快驶离危险区域,该船应往哪个方向航行?请给予证明.03.1【提高】已知点P不在⊙O上,且点P到⊙O上的点的最小距离是5,最大距离是7,求⊙O的半径.第2节圆的对称性04、【基础题】如左以下图,在⊙O中,⌒AC =⌒BD ,∠1=30°,那么∠2=_____.04.1、【基础题】如右上图,在⊙O中,弧AB等于弧AC,∠A=30°,则∠B=_____.05、【综合Ⅰ】如左以下图,点A、B、C、D是⊙O上的四点,AB=DC,那么△ABC与△DCB全等吗?为什么?05.2【基础】如左以下图,AB 、DE 是⊙O 的直径,C 是⊙O 上的一点,且⌒AD =⌒CE,那么BE 和CE 的大小有什么关系?为什么?05.3【综合Ⅰ】 如右上图,AB 是⊙O 的直径,OD ∥AC ,那么⌒CD 与⌒BD的大小有什么关系?为什么? 06、【综合Ⅰ】如左以下图,A 、B 是⊙O 上两点,∠AOB =120°,C 是⌒AB的中点,试确定四边形OACB 的形状.06.1、【综合Ⅱ】如图,AB 是⊙O 的直径,BC 、CD 、DA 是⊙O 的弦,且BC =CD =DA ,则∠BCD =______.* 第3节 垂径定理07、【基础题】如左以下图,已知⊙O 中,OC ⊥弦AB 于C ,AB =8,OC =3,则⊙O 的半径等于______.07.1、【基础题】如右上图,已知⊙O 的半径为30 mm ,弦AB =36 mm ,求点O 到AB 的距离及∠OAB 的余弦值.08、【综合Ⅱ】如左以下图,有一圆弧形拱桥,拱的跨度AB=16 m ,拱高CD=4 m ,那么拱形的半径是____m.08.1、【综合Ⅱ】“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材埋在壁中,不知大小,以D C BA09、【综合Ⅰ】如右图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为E 、F.〔1〕如果∠AOB =∠COD ,那么OE 与OF 的大小有什么关系?为什么?〔2〕如果OE =OF ,那么AB 与CD 的大小有什么关系?为什么?10、【综合Ⅰ】 已知⊙O 的半径为5 cm ,弦AB ∥弦CD ,AB =6 cm ,CD =8 cm ,试求AB 与CD 间的距离.10.1、【综合Ⅱ】 如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么?11、【综合Ⅲ】如右图,在⊙O 中,AB 、AC 为互相垂直且相等的两条弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E ,假设AC =2 cm ,则⊙O 的半径为______ cm .第4节 圆周角和圆心角的关系〔包括圆内接四边形〕12、【基础题】如左以下图,在⊙O 中,已知∠BOC =100°,则∠BAC 的度数是_____°12.1、【基础题】如右上图,在⊙O 中,∠BAC =25°,则∠BOC =_____°12.2、【综合Ⅰ】 如图,∠A 是⊙O 的圆周角,∠A =40°,求∠OBC 的度数.13、【基础题】如图,A 、B 、C 、D 是⊙O 上的四点,且∠BCD =100°,求∠BOD 〔弧BCD 所对的圆心角〕和∠BAD 的大小.C B A OD C B A O 13.1、【基础题】左以下图,A 、B 、C 三点都在⊙O 上,点D 是AB 延长线上一点,∠AOC=140°, ∠CBD 的度数是_____.13.2【基础题】如右上图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,假设∠BAD =105°,则∠DCE 是_____°.13.3【综合Ⅰ】在圆内接四边形ABCD 中,对角∠A 与∠C 的度数之比是4:5,求∠C 的度数.13.4、【综合Ⅱ】如左以下图,圆内接四边形ABCD 两组对边的延长线分别相交于点E 、F ,且∠E =40°,∠F =60°,求∠A 的度数.14、【基础题】如右上图,⊙O 的直径AB =10 cm ,C 为⊙O 上的一点,∠B =30°,求AC 的长.14.1、【基础题】如左以下图,AB 是⊙O 的直径,∠C =15°,求∠BAD 的度数.14.2、【综合Ⅰ】如右上图,⊙O 的弦AB =16,点C 在⊙O 上,且sin C =54,求⊙O 的半径的长.14.3、【中考题】A 、B 是⊙O 上的两个定点,P 是⊙O 上的动点〔P 不与A 、B 重合〕,我们称∠APB 是⊙O 上关于点A 、B 的滑动角.〔1〕假设AB 是⊙O 的直径,则∠APB 是多少度?〔2〕假设⊙O 的半径是1,AB =2,则∠APB 是多少度?15、【基础题】平行四边形的四个顶点在同一圆上,则该平行四边形一定是〔 〕16、【提高题】如右图,AB 是半圆O 的直径,弦AD 、BC 相交于点P ,且CD 、AB 的长是一元二次方程01272=+-x x 的两根,求tan ∠DPB.第5节 确定圆的条件17、【基础题】分别作出下面三个三角形的外接圆,并指出它们外心的位置有什么特点17.1、【基础题】如左以下图,MN 所在的直线垂直平分线段AB ,利用这样的工具,最少使用多少次,就可以找到圆形工件的圆心?为什么?17.2、【基础题】如右上图,A 、B 、C 三点表示三个工厂,要建立一个供水站,使它到这三个工厂的距离相等,求作供水站的位置〔尺规作图,不写作法,保留作图痕迹〕.18、【综合Ⅰ】 在△ABC 中,AC =10,BC =8,AB =6,求△ABC 外接圆的半径18.1、【综合Ⅰ】 等边三角形的边长为a ,求这个三角形外接圆的面积.第6节 直线和圆的位置关系19、【基础题】 如右图,已知Rt △ABC 的斜边AB =8 cm ,AC =4 cm.〔1〕以点C 为圆心作圆,当半径为多长时,AB 与⊙C 相切?〔2〕以点C 为圆心,分别以2 cm 和4 cm 的长为半径作两个圆,这两个圆与AB 分别有怎样的位置关系?19.1【基础题】直线l 与半径为r 的⊙O 相交,且点O 到直线l 的距离为5,求r 的取值范围.19.2、【综合Ⅰ】在Rt △ABC 中,∠C =90°,∠B =30°,O 是AB 上一点,OA =m ,⊙O 的半径为r ,当r 与m 满足怎样的关系时, 〔1〕AC 与⊙O 相交? 〔2〕AC 与⊙O 相切? 〔3〕AC 与⊙O 相离?20、【基础题】如左以下图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,假设∠A=25°,则∠D=______.20.1【基础题】如右上图,PA切⊙O于点A,该圆的半径为3,PO=5,则PA的长等于_____.20.2、【综合Ⅰ】如左以下图,P A、PB分别与⊙O相切于点A、B,∠P=70°,则∠C=( )A.70°B.55°C.110°D.140°20.3、【综合Ⅱ】如右上图,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB的延长线于点D,∠ACD=120°,BD=10.〔1〕求证:CA=CD;〔2〕求⊙O的半径.20.4【综合Ⅱ】如右图,AB是⊙O的直径,BC是⊙O的切线,切点为点B,点D是⊙O上的一点,且AD∥OC,求证:AD·BC=OB·BD.21、【中考题,2014陕西23题】〔此题总分值8分〕如右以下图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6.过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.(1) 求证:AD平分∠BAC(2) 求AC的长22、【基础题】如左以下图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB,那么直线AB是⊙O的切线吗?为什么?22.1、【中考题,2013年孝感市23题,10分】如右上图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.〔1〕求证:PA是⊙O的切线;〔2〕假设PD=,求⊙O的直径.23、【基础题】如图,已知锐角三角形、直角三角形和钝角三角形,分别作出它们的内切圆. 请问,三角形的内心是否都在三角形的内部?23.1、【基础题】等边三角形的边长为a,求这个三角形内切圆的面积.23.2、【综合Ⅰ】已知在Rt△ABC中,∠C=90°,AC=6,BC=8,则△ABC的内切圆半径r=__ _ .24、【综合Ⅰ】如左以下图,在△ABC中,∠A=68°,点I是内心,求∠I的度数.24.1、【综合Ⅰ】如右上图,在四边形ABCD中,∠B=60°,∠DCB=80°,∠D=100°,假设P、Q两点分别为三角形ABC和三角形ACD的内心,那么∠PAQ的度数是多少?24.2、【综合Ⅲ】在Rt△ABC中,∠C=90°,AC=8 cm,BC=6 cm,求其内心和外心之间的距离.*第7节切线长定理25、【基础题】如图,PA、PB是⊙O的两条切线,A、B是切点. 求证:PA=PB25.1、【基础题】已知⊙O的半径为3 cm,点P和圆心O的距离为6 cm,过点P画⊙O的两条切线,求这两条切线的切线长.25.2、【综合Ⅰ】如左以下图,PA和PB是⊙O的两条切线,A、B是切点,C是弧AB上任意一点,过点C画⊙O的切线,分别交PA和PB于D、E两点. 已知PA=PB=5 cm,求△PDE的周长.25.3、【综合Ⅲ】如右上图,PA和PB是⊙O的两条切线,A、B为切点,∠P=40°,点D在AB上,点E和点F分别在PB和PA上,且AD=BE,BD=AF,求∠EDF的度数.26、【综合Ⅰ】如左以下图,在Rt△ABC中,∠C=90°,AC=10,BC=24,⊙O是△ABC的内切圆,切点分别为D、E、F,求⊙O的半径. 〔利用切线长定理来解题〕26.1、【综合Ⅲ】如右上图,⊙O是△ABC的内切圆,D、E、F为切点,且AB=9 cm,BC=14 cm,CA=13 cm,求AF、BD、CE的长.26.2、【综合Ⅲ】如图,在四边形ABCD中,AB=AD=6 cm,CB=CD=8 cm,且∠B=90°,该四边形存在内切圆吗?如果存在,请计算内切圆的半径.第8节圆内接正多边形27、【基础题】如图,在圆内接正六边形ABCDEF中,半径OC=4,OG⊥BC,垂足为G,求这个正六边形的中心角、边长和边心距.27.1、【综合Ⅱ】有一边长为4的正n边形,它的一个内角为120°,则其外接圆的半径为______.27.2、【综合Ⅱ】如右图,把边长为6的正三角形剪去三个三角形得到一个正六边形DFHKGE,求这个正六边形的面积.27.3、【基础题】请求出半径为6的圆内接正三角形的边长和边心距.28、【基础题】已知正方形的边长是a,其内切圆的半径为r,外接圆的半径为R,则r∶R∶a=______. 28.1、【基础题】请利用尺规作一个已知圆的内接正四边形.28.2、【综合Ⅰ】请利用尺规作一个已知圆的内接正八边形.29、【综合Ⅲ】如图,点M、N分别是⊙O的内接正三角形ABC、内接正方形ABCD、内接正五边形ABCDE、……、内接正n边形的边AB、BC上的点,且BM=CN,连接OM、ON.〔1〕求图1中的∠MON的度数;〔2〕在图2中,∠MON的大小是______,在图3中,∠MON的大小是______;〔3〕根据图n,请说明∠MON的度数与正n边形的边数n之间的关系〔直接写出答案〕.第9节弧长及扇形的面积〔含圆锥侧面积题目〕30、【中考题,2014年云南省第7题3分】已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为〔〕A、B.2πC.3πD.12π30.1、【中考题,2014四川自贡第8题4分】一个扇形的半径为8cm,弧长为cm,则扇形的圆心角为〔〕30.2、【基础题】已知圆上一段弧长为4 cm,它所对的圆心角为100°,则该圆的半径是_____.cm.31、【中考题,2014成都,3分】在圆心角为120°的扇形AOB中,半径OA=6 cm,则扇形AOB的面积是________2 31.1、【中考题,2014山东东营第5题3分】如左以下图,已知扇形的圆心角为60°,半径为3,则图中弓形〔阴影〕面积是_________.31.2、【中考题,2014·浙江金华第10题4分】如右上图,一张圆心角为45°的扇形纸板和圆形纸板按如图方式各剪得一个正方形,两个正方形的边长都为1,则扇形纸板和圆形纸板的面积比是〔〕A.5:4B.5:2C.5:2D.5:2cm.32、【中考题,2014杭州第2题3分】左以下图,已知一个圆锥体的三视图如下图,则这个圆锥的侧面积为______233、【综合Ⅲ】如右上图,⊙A与⊙B外切于⊙O的圆心O,⊙O的半径为1,则阴影部分的面积是________. 33.1、【中考题,2014山东泰安第19题3分】如图,半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OBcm.为直径作半圆,则图中阴影部分的面积为________233.2、【中考题,2014福建泉州第17题4分】如右图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:〔1〕AB的长为_____ 米;〔2〕用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为______ 米.新版北师大初中数学九〔下〕第三章圆分节练习答案第1节答案01、【答案】〔1〕圆外;〔2〕圆内;〔3〕501.1、【答案】在圆外的有点B,在圆上的有点M,在圆内的有点A和点C.01.2【答案】E、F、G、H四个点共圆.证明:连接OE、OF、OG、OH∵四边形ABCD是菱形∴AB=BC=CD=DA,DB⊥AC∵E、F、G、H分别是各边的中点∴1111,,,2222OE AB OF BC OG CD OH AD====〔直角三角形斜边上的中线等于斜边的一半〕∴OE OF OG OH===∴E、F、G、H四个点都在以O为圆心、OE长为半径的圆上.01.3【答案】选A02、【答案】〔1〕如图1,所求图形即P、Q两点;〔2〕如图2,所求图形为阴影部分〔不包括阴影的边界〕;〔3〕如图3,所求图形为阴影部分〔不包括阴影的边界〕.03、【答案】往射线AB方向航行【证明】如图,设航线AB交⊙A于点C,在⊙A上任取一点D〔不包括C关于A的对称点〕连接AD、BD;在△ABD中,∵AB+BD>AD,AD=AC=AB+BC,∴AB+BD>AB+BC,∴BD>BC.答:应沿AB的方向航行.03.1【答案】当点P在圆外时,半径是1;当点P在圆内时,半径是6.第2节答案04、【答案】30°04.1【答案】75°05、【答案】全等,可先证AC=DB.05.1、【提示】证弧CD和弧AB相等.05.2【答案】相等.【提示】先证弧BE和弧AD相等.05.3、【答案】相等【提示】连接OC06、【答案】四边形OACB是菱形【证明】连接OC∵C是弧AB的中点,∠AOB=120°∴∠AOC=60°∴△AOC是等边三角形∴OA=AC同理可得BC=OB∴OA=OB=BC=AC∴四边形OACB是菱形06.1、【答案】120°【提示】连接OC、OD,可证△BOC和△COD都是等边三角形.* 第3节答案07、【答案】半径等于5.【提示】如右图,利用垂径定理和勾股定理来算半径.07.1、【答案】点O到AB的距离是24 mm,∠OAB的余弦值是0.608、【答案】10 m.【提示】 在如图的圆弧形中,CD 是拱高,根据圆的对称性可知CD 垂直平分AB ,则CD 所在直线过圆心,延长CD ,作圆心O ,并且连接OB.设拱形的半径OB 为r ,则OD 为〔r -4〕,根据勾股定理可得24)-(r +28=2r ,解得r =10 m. 【总结】求圆的直径或半径常常过圆心作弦的垂线或连接圆心和弦的端点构造直角三角形,再根据勾股定理来求出半径. 有些题目不能直接求出半径则需列方程来解决.08.1【答案】 直径CD 是26寸.【解析】09、【提示】〔1〕用HL 证明Rt △AOE 与Rt △COF 全等;〔2〕用HL 证明Rt △AOE 与Rt △COF 全等.10、【答案】 AB 与CD 间的距离为7 cm 或1 cm.【提示】 如图,假设AB 和CD 在圆心两侧,则可求出OE =3,OF =4,则AB 、CD 距离是7 cm ;假设AB 和CD 在圆心同侧,则距离是1 cm.10.1、【答案】 相等.【解析】如图示,过圆心O 作垂直于弦的直径EF ,由垂径定理得:弧AF=弧BF ,弧CF=弧DF ,用等量减等量差相等原理,弧AF-弧CF=弧BF-弧DF ,即弧AC=弧BD ,故结论成立.符合条件的图形有三种情况:(1)圆心在平行弦外,(2)在其中一条线弦上,(3)在平行弦内,但理由相同.11、【答案】2【解析】第4节答案12、【答案】∠BAC的度数是50°.12.1、【答案】∠BOC=50°12.2、【答案】∠OBC=50°13、【答案】∠BOD=160°,∠BAD=80°13.1【答案】∠CBD 的度数是70°13.2【答案】∠DCE=105°13.3【答案】∠C=100°13.4【答案】∠A=40°14、【答案】AC=5 cm14.1、【答案】∠BAD的度数是75°14.2【答案】半径的长为10.【提示】连接AO,延长AO交⊙O于D,连接BD.14.3、【答案与解析】15、【答案】选C716、【答案】tan∠DPB=3【解析】第5节答案17、【答案】锐角三角形的外心在内部;直角三角形的外心在斜边中点;钝角三角形的外心在外部.17.1、【答案】最少使用两次17.2、【提示】连接AB、AC,分别作线段AB和AC的垂直平分线,两条垂直平分线的交点即为供水站的位置.18、【答案】 △ABC 外接圆的半径是5.18.1、【答案】 π312a 第6节 答案19、【答案】 〔1〕当半径长为32 cm 时,AB 与⊙C 相切.〔2〕当半径为2 cm 时,⊙C 与AB 相离;当半径为4 cm 时,⊙C 与AB 相交.19.1【答案】 5>r19.2【答案】 〔1〕m r 23> 〔2〕m r 23= 〔3〕m r 23<20、【答案】 40°20.1【答案】 PA =420.2、【答案】 选B20.3【答案】 〔1〕提示:证∠A =∠D =30°〔2〕半径是10.20.4【提示】 证明Rt △CBO ∽ Rt △BDA21、【答案】证明:〔1〕连接OD∵BD 是⊙O 的切线,D 为切点∴BC OD ⊥∵BD AC ⊥∴OD ∥AC∴∠ODA=∠CAD又∵OD=OA∴∠BAD=∠CAD∴AD 平分∠ABC(2)解:∵OD ∥AC , ∴ΔBOD ∽ΔBAC , ∴=, ∴=, ∴ AC =320 22、【提示】 连接OC ,证明OC ⊥AB22.1、【答案与解析】〔1〕证明:连接OA ,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC ,∴∠OAC=∠OCA=30°,又∵AP=AC ,∴∠P=∠ACP=30°,∴∠OAP=∠AOC ﹣∠P=90°,∴OA ⊥PA , ∴PA 是⊙O 的切线.〔2〕在Rt △OAP 中,∵∠P=30°,∴PO=2OA=OD+PD ,又∵OA=OD ,∴PD=OA ,∵, ∴. ∴⊙O 的直径为.23、【答案】 都在内部23.1、【答案】 1212a23.2、【答案】 r =2.24、【答案】 ∠I =124°24.1、【答案】 ∠PAQ 的度数是60°24.2、【答案】 5 cm【解析】*第7节 答案25、【解析】3cm25.1、【答案】325.2、【答案】△PDE的周长是10 cm.25.3、【答案】∠EDF=70°26、【答案】⊙O的半径是426.1、【答案】AF=4 cm,BD=5 cm,CE=9 cm.【提示】设AE=AF=x,BF=BD=y,CE=CD=z2426.2、【答案】存在内切圆,内切圆半径是7第8节答案2.27、【答案】中心角是60°,边长是4,边心距是327.1、【答案】外接圆的半径为4627.2、【答案】正六边形的面积是36,边心距是3.27.3、【答案】边长是328、【答案】1∶2∶228.1、【提示】用直尺和圆规作两条互相垂直的直径,在圆周上得到四个点,依次连接这四个点,就得到圆的内接正四边形.28.2、【提示】如图,先作出两条互相垂直的直径,再作出两条直径所形成的直角的角平分线,即可在圆周上得到圆内接正八边形的顶点29、【答案】第9节答案30、【答案】根据弧长公式:l==3π,故选C.30.1、【答案】选B30.2、【答案】7.2 cm.31、【答案】12π2cm31.1、【答案】4332-π31.2【答案】选A 【解析】32、【答案】 π15 2cm33、【答案】 33π-【解析】33.1、【答案】 〔﹣1〕 cm 2 【解析】分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P ,Q 面积相等.连接AB ,OD ,根据两半圆的直径相等可知∠AOD =∠BOD =45°,故可得出绿色部分的面积=S △AOD ,利用阴影部分Q 的面积为:S 扇形AOB ﹣S 半圆﹣S 绿色,故可得出结论.解:∵扇形OAB 的圆心角为90°,假设扇形半径为2,∴扇形面积为:=π〔cm 2〕,半圆面积为:×π×12=〔cm 2〕,∴S Q +S M =S M +S P =〔cm 2〕, ∴S Q =S P ,连接AB ,OD ,∵两半圆的直径相等,∴∠AOD =∠BOD =45°,∴S 绿色=S △AOD =×2×1=1〔cm 2〕,∴阴影部分Q 的面积为:S 扇形AOB ﹣S 半圆﹣S 绿色=π﹣﹣1=﹣1〔cm 2〕.33.2、【答案】 〔1〕1 米; 〔2〕41 米. 【解析】分析: 〔1〕根据圆周角定理由∠BAC =90°得BC 为⊙O 的直径,即BC =,根据等腰直角三角形的性质得AB =1;〔2〕由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,则2πr =,然后解方程即可.解答: 解:〔1〕∵∠BAC =90°,∴BC 为⊙O 的直径,即BC =,∴AB =BC =1; 〔2〕设所得圆锥的底面圆的半径为r ,根据题意得2πr =, 解得r =.故答案为1,.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直角三角形的边角关系基础性测试卷班级 姓名 学号 成绩一、选择题(每小题3分,满分24分)1.如图,在ABC ∆中,AC =3,BC =4,AB =5,则tan B 的值是( )A .34B .43C .35D .452.在Rt ABC ∆中,90C ∠=,13AC AB =, 则cos A 等于( ) A .223 B .13 C .22 D .243.如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的点D '处,那么tan BAD '∠等于( )A .1B .2C .22D .224.如图.一个小球由地面沿着坡度i =1∶2的坡面向上前进了10m ,此时小球距离地面的高度为( )A .5mB .25mC .45mD .103m 5.如图,在某海岛的观察所A 测得船只B 的俯角是30°.若观察所的标高(当水位为0m 时的高度)是53m ,当时的水位是+3m ,则观察所A 和船只B 的水平距离BC 是( )A .50 mB .350 mC .53 mD .353m6.如图,两条宽度均为40 m 的国际公路相交成α角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是( )A .αsin 1600(m 2) B .αcos 1600(m 2) C .1600sin α(m 2) D .1600cos α(m 2)7.某市为了美化环境,计划在如图所示的三角形空地上种植草皮,已知这种草皮每平方米售价为a 元,则购买这种草皮至少需要 ( )(第5题图) (第6题图) (第7题图)A .450a 元B .225a 元C .150a 元D .300a 元8.身高相同的甲、乙、丙三人放风筝,各人放出线长分别为300米、350米、280米,线与地面的夹角分别为30°、45°、60°(假设风筝线是拉直的),三人所放风筝( )A .甲的最高B .乙的最高C .丙的最高D .一样高二、填空题(每小题3分,满分21分)1.在ABC ∆中,90C ∠=若tan B =2,1a =,则b = .2.在Rt ABC ∆中,3BC =,3AC =,90C ∠=,则A ∠= .3.在ABC ∆中,90C ∠=,tan 2A =,则sin cos A A += .4.在Rt ABC ∆中,90C ∠=,4sin 5A =,20BC =,则ABC ∆的面积为 . 5.如图所示,在高2 m ,坡角为30°的楼梯表面铺地毯,地毯的长度至少需要 m .6.如图所示,从位于O 处的某哨所发现在它的北偏东60°的方向,相距600 m 的A 处有一艘快艇正在向正南方向航行,经过若干时间,快艇到达哨所东南方向的B 处,则A ,B 的距离为 m .7.如图,在高为h 的山顶上,测得一建筑物顶端与底部的俯角分别为30°和60°,用h 表示这个建筑物的高为 .三、解答题(满分55分)1.在等腰直角三角形ABC 中,90C ∠=,10AC =,D 是AC 上一点,若1tan 5DBC ∠=,求AD 的长.(9分)2.如图,学校的保管室里,有一架5米长的梯子斜靠在墙上,此时梯子与地面所成的角为45,如果梯子的底端O 固定不动,顶端靠在对面墙上,此时梯子与地面所成的角为60,求此保管室的宽度AB 的长.(10分)3.如图,在ABC ∆中,15AB =,BC =14,84ABC S ∆=.求tan C ∠的值。
(12分)4.一人由山底爬到山顶,他先爬了29的山坡200米,接着又爬了43的山坡100米,到达山顶,求从山底到山顶的高度。
(精确到1m )(12分)5.如图,沿AC 方向开山修渠,为了加快施工速度,要在小山的另一边同进施工,从AC 上的点B 取∠ABD =135°,BD =1200米,∠BDE =45°,那么开挖点E 离D 多远(精确到0.1米)正好能使A 、C 、E 成一条直线?(12分)第一章 直角三角形的边角关系基础性测试卷答案一、选择题(每小题3分,满分24分)1.A 2.B 3.B 4.B 5.A 6.A 7.C 8.B二、填空题(每小题3分,满分21分).1.22.60 4.150 5.322+ 6.300(31+) 7.32h三、解答题(满分55分)1.8AD =2. )512AB =米3. 12tan 5C ∠= 4.165米5.开挖点E 离D 应为848.4米直角三角形的边角关系提高性测试卷班级 姓名 学号 成绩一、选择题1.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,D 为垂足.若AC =4,BC =3,则sin ∠ACD 的值为( )A .34 B .43 C .54 D .53 2.已知∠A +∠B =90°且cos A =51,则cos B 的值为( ) A .51 B .54 C .562 D .52 3.已知tan a =32,则锐角a 满足( ) A .0°<a <30° B .30°<a <45° C .45°<a <60° D .60°<a <90°4.如图所示,在△ABC 中,AB =AC =5,BC =8,则tan C =( )A .53B .54C .34D .43 5.如图,从山顶A 望到地面C ,D 两点,测得它们的俯角分别是45°和30°,已知CD =100m ,点C 在BD 上,则山高AB 等于 ( ) A .100 m B .350m C .250m D .50(13+)m6.已知楼房AB 高50 m ,如图,铁塔塔基距楼房房基间的水平距离BD =50 m ,塔高DC为31(350150+)m ,下列结论中,正确的是 ( ) A .由楼顶望塔顶仰角为60° B .由楼顶望塔基俯角为60°C .由楼顶望塔顶仰角为30°D .由楼顶望塔基俯角为30°7.如图,水库大坝的横断面积为梯形,坝顶宽6米、坝高24米、斜坡AB 的坡角为45°,斜坡CD 的坡度i =1∶2,则坝底AD 的长为 ( )A .42米B .(32430+)米C .78米D .(3830+)米二、填空题1.在△ABC 中,∠C =90°,AC =135AB ,则cos B = . 2.将cos21°、cos37°、sin41°、cos46°的值按由小到大的顺序排列是 . 3.在Rt △ABC 中,∠C =90°,sin A =23,则方程tan A ·x 2+2x +tan B =0的根为 . 4.已知等腰梯形下底长4厘米,高是2厘米,下底的内角的正弦值是54,则上底长为 厘米. 5.水库的横断面是梯形,如图,坝高23m ,斜坡的坡度为1:3,则斜坡的长为 。
(精确到1m ),坡角a .6.如图,太阳光线与地面成60角,一棵倾斜的大树与地面成30角,这时测得大树在地面上的影长为10m ,则大树的长约为m.(保留2位有效数字)三、解答题1.如图,在坡度为1∶2的山坡上种树,如果株距(相邻两树间的水平距离)是6米,求斜坡上相邻两树的坡面距离.2.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D , tan ∠B =31,且BC =9 cm ,求AC ,AB 及CD 的长.3.a、b、c分别是△ABC中∠A、∠B、∠C的对边,a、b、c满足(2b)2=4(c+a)(c -a),且有5a-3c=0,求sinA+sinB的值.4.如图,在△ABC中,∠B=45°,AC=5,BC=3,求sinA和AB.m的速度向正北方向航行,行驶到A处测得一灯塔C在5.如图,一艘油轮以240/min它的北偏西30的小岛上,油轮继续向北航行,5min后到达B点,又测得灯塔C在它的北偏西45方向,根据有关资料记载,在距灯塔C为中心1500m范围内有暗礁.试问:这艘油轮不改变前进方向继续行驶是否有触礁的危险?为什么?参考答案一、选择题1.C 2.C 3.B 4.D 5.D 6.C 7. C二、填空题1.13122.sin41°<cos46°<cos37°<cos21° 3.33- 4.15. 46m 306. 17三、解答题1.53 2.AC =3,AB =103,CD =10109 3.574.sin A =2103;AB =22382+.5.过点C 作CD AB ⊥交AB 的延长线于D ,可求得)60011500CD =>,这艘油轮无触礁的危险第二章《二次函数》基础性测试卷班级 姓名 学号 成绩一、选择题(每小题3分,满分24分)1.下列函数:y =x (8-x ),y =1-221x ,y =42-x ,y =x x 62-,其中以x 为自变量的二次函数有( )A .1个B .2个C .3个D .4个 2.在函数2y x=,5y x =+,2y x =的图象中,关于y 轴对称的图形有( ) A .0个 B .1个 C .2个 D .3个3.点A (2,3)在函数21y ax x =-+的图象上,则a 等于( )A .1B .-1C .2D .-24.下列四个函数中,图象经过原点且对称轴在y 轴左侧的二次函数是( )A .x x y 22+=B .x x y 22-=C .y =2(1+x )2D .y =2(1-x )25.在同一坐标系中,图象与22x y =的图象关于x 轴对称的函数为( )A .221x y =B .221x y -= C .22x y -= D .2x y -= 6.二次函数y=ax 2+bx +c 的图象如图所示,则下列结论正确是( )A .a >0,b >0,c >0B .a <0,b <0,c <0C .a <0,b >0,c <0D .a >0,b <0,c >0 7.将抛物线22x y =经过平移得到抛物线2=y (4-x )21-是( )A .向左平移4个单位,再向下平移1个单位B .向左平移4个单位,再向上平移1个单位C .向右平移4个单位,再向下平移1个单位D .向右平移4个单位,再向上平移1个单位8.已知抛物线2(0)y x bx c a =++≠的部分图象如图所示,若y <0,则x 的取值范围是 ( )A .1-<x <4B .1-<x <3C .x <1-或x >4D .x <1-或x >3二、填空题(每小题3分,满分21分)1.抛物线2241y x x =--的开口向 ;顶点坐标是 ;对称轴方程为 . 2.抛物线232y x x =-+不经过第 象限.3.若点),1(1y P 、Q 2(1,)y -都在抛物线21y x =+上,则线段P Q 的长为 .4.如图所示,二次函数26y x x =--的图象交x 轴于A 、B 两点,交y 轴于C 点,则ABC ∆的面积ABC S ∆= .5.一条抛物线,顶点坐标为(4,2)-,且形状与抛物线22y x =+相同,则它的函数表达式是 .6.函数2412x x y -+=的图象与x 轴有 个交点;当 时,y 值随x 值增大而增大;当=x 时, y 有最 值.7.函数c bx ax y ++=2的图象如图所示,则c b a ++ 0,c b a ++24 0.(用“=”、“>”或“<”填空)三、解答题:1.(9分)如图所示的是一个二次函数的图象,试求其解析式解:2.(10分)已知一抛物线经过点()2,6-,它与x 轴的两交点间的距离为4,对称轴为直线1x =-,求此抛物线的解析式.解:3.(12分)抛物线2y x bx c =++(0)a ≠与x 轴交于(1,0)A -,(3,0)B 两点.(1)求该抛物线的解析式.(2)一动点P 在(1)中抛物线上滑动且满足10ABP S ∆=,求此时P 点的坐标. 4.(12分)某商场销售一批名牌衬衫,平均每天售出20件,每件可盈利40元.为了扩大销售增加盈利,尽快减少库存,商场决定采取适当降价措施。