大学物理_物理学_课件_动量守恒定律和能量守恒定律
合集下载
动量守恒定律与能量守恒定律
环境保护
在环境保护和污染治理中,利用动量守恒定律和能量守恒定律来 分析和解决环境问题。
05 深入理解动量守恒定律与 能量守恒定律的意义
对物理学发展的影响
奠定物理学基础
动量守恒定律和能量守恒定律是物理学中最基本、最重要 的原理之一,为整个物理学的发展提供了坚实的理论基础。
推动物理学进步
这两个定律的发现和证明推动了物理学的发展,引发了多 次科学革命,不断推动着物理学理论的完善和创新。
物体运动
01
动量守恒定律可以解释和理解物体运动的现象,如碰撞、火箭
发射等。
声学原理
02
声音传播过程中,声波的动量守恒,能量守恒定律则解释了声
音的传播速度和强度变化。
电磁波传播
03
电磁波的传播过程中,能量守恒定律解释了电磁波的能量分布
和传播速度。
工程领域的运用
01
02
03
机械工程
在机械设计中,动量守恒 定律和能量守恒定律被广 泛应用于分析机械系统的 运动和能量传递。
动量守恒定律与能量守恒定律
contents
目录
• 动量守恒定律 • 能量守恒定律 • 动量守恒与能量守恒的关系 • 动量守恒定律与能量守恒定律在现实生
活中的应用 • 深入理解动量守恒定律与能量守恒定律
的意义
01 动量守恒定律
定义与公式
定义
动量守恒定律是物理学中的基本定律之一,它指出在没有外 力作用的情况下,一个封闭系统的总动量保持不变。
动量守恒定律要求系统是封闭的,即 系统中的物质不能离开或进入系统。
系统内力的矢量和为零
系统内力的矢量和为零意味着系统内 部相互作用力的总和为零,不会改变 系统的总动量。
动量守恒定律的应用实例
在环境保护和污染治理中,利用动量守恒定律和能量守恒定律来 分析和解决环境问题。
05 深入理解动量守恒定律与 能量守恒定律的意义
对物理学发展的影响
奠定物理学基础
动量守恒定律和能量守恒定律是物理学中最基本、最重要 的原理之一,为整个物理学的发展提供了坚实的理论基础。
推动物理学进步
这两个定律的发现和证明推动了物理学的发展,引发了多 次科学革命,不断推动着物理学理论的完善和创新。
物体运动
01
动量守恒定律可以解释和理解物体运动的现象,如碰撞、火箭
发射等。
声学原理
02
声音传播过程中,声波的动量守恒,能量守恒定律则解释了声
音的传播速度和强度变化。
电磁波传播
03
电磁波的传播过程中,能量守恒定律解释了电磁波的能量分布
和传播速度。
工程领域的运用
01
02
03
机械工程
在机械设计中,动量守恒 定律和能量守恒定律被广 泛应用于分析机械系统的 运动和能量传递。
动量守恒定律与能量守恒定律
contents
目录
• 动量守恒定律 • 能量守恒定律 • 动量守恒与能量守恒的关系 • 动量守恒定律与能量守恒定律在现实生
活中的应用 • 深入理解动量守恒定律与能量守恒定律
的意义
01 动量守恒定律
定义与公式
定义
动量守恒定律是物理学中的基本定律之一,它指出在没有外 力作用的情况下,一个封闭系统的总动量保持不变。
动量守恒定律要求系统是封闭的,即 系统中的物质不能离开或进入系统。
系统内力的矢量和为零
系统内力的矢量和为零意味着系统内 部相互作用力的总和为零,不会改变 系统的总动量。
动量守恒定律的应用实例
大学物理动量守恒定律和能量守恒定律
04
动量守恒定律和能量守恒定 律的意义与影响
在物理学中的地位
基础定律
动量守恒定律和能量守恒定律是物理学中的两个基础定律,它们 在理论物理学和实验物理学中都占据着重要的地位。
理论基石
这两个定律为物理学理论体系提供了基石,许多物理理论和公式都 是基于这两个定律推导出来的。
验证实验
许多实验通过验证动量守恒定律和能量守恒定律的正确性,来检验 实验的准确性和可靠性。
适用条件
系统不受外力或外力合力为零
动量守恒定律只有在系统不受外力或外力合力为零的情况下才成立。如果系统受到外力作 用,则总动量将发生变化。
系统内力的作用相互抵消
系统内力的作用只会改变系统内各物体的速度,而不会改变系统的总动量。如果系统内力 的作用相互抵消,则总动量保持不变。
理想气体和刚体的动量守恒
未来能源利用的发展需要解决环 境问题和能源短缺问题,动量守 恒定律和能量守恒定律将在新能 源技术、节能技术等领域发挥关
键作用。
感谢您的观看
THANKS
在理想气体和刚体的研究中,由于气体分子之间的相互作用力和刚体之间的碰撞力都可以 忽略不计,因此它们的动量守恒。
实例分析
弹性碰撞
当两个小球发生弹性碰撞时,根据动量守恒定律,它们碰撞后 的速度满足m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'。由于弹性碰撞中能 量没有损失,因此碰撞前后两小球的速度变化量相等。
动量与能量的关系
动量是质量与速度的乘积,表 示物体的运动状态;能量是物 体运动状态的度量,包括动能
和势能。
动量和能量都是矢量,具有 方向性,遵循矢量合成法则。
动量和能量可以相互转化,但 总量保持不变,这是动量守恒 和能量守恒定律的内在联系。
第三章动量守恒定律和能量守恒定律
t2
t1
t1
( F1 F12 )dt m1v1 m1v10
F12
F21
F2
m2
m1
质点系
上式表明:作用于两个质点所组成的系统的合 外力的冲量,等于系统动量的增量。 上述结论可以推广到由n个质点组成的系统, n 对质点系,内力的矢量和 Fi in 0 ,合外力为 ex i 1 F ,则有 n n t2 ex F dt mi vi mi vi 0 p p0
t1 i 1 i 1
t2
t1
( F1 F2 )dt (m1v1 m2 v2 ) (m1v10 m2 v20 )
上式表明:作用于系统的合外力的冲量,等于 系统动量的增量。—质点系动量定理
注意 1)质点系的动量定理同样有分量形式 ex 2) F F1 F2 FN 3)质点系的动量定理有微分形式:
o s1
ds
s2
s
讨论 (1)功是力作用于物体的空间积累效应的物 理量,是过程量; (2)功是标量,但有正、负 0o 90o,dW 0 o o 90 180 ,dW 0 o 90 F dr dW 0 正功表示某力对物体做功;负功表示物 体克服某力做功. (3) 功的单位: J(焦耳) 1 J 1 N m
推开后: v1与v2 方向相反,且
o
则 p m1v1 m2 v2 p 2m1v2 2m1v2 0
v1 2v2
推开前后系统动量不变
p p0
动量定理常应用于碰撞问题
t1 mv2 mv1 式中 F为平均冲力 F t2 t1 t2 t1 mv2 mv1 p mv F t2 t1 t mv2 mv1 当 p 一定时, t 越
t1
t1
( F1 F12 )dt m1v1 m1v10
F12
F21
F2
m2
m1
质点系
上式表明:作用于两个质点所组成的系统的合 外力的冲量,等于系统动量的增量。 上述结论可以推广到由n个质点组成的系统, n 对质点系,内力的矢量和 Fi in 0 ,合外力为 ex i 1 F ,则有 n n t2 ex F dt mi vi mi vi 0 p p0
t1 i 1 i 1
t2
t1
( F1 F2 )dt (m1v1 m2 v2 ) (m1v10 m2 v20 )
上式表明:作用于系统的合外力的冲量,等于 系统动量的增量。—质点系动量定理
注意 1)质点系的动量定理同样有分量形式 ex 2) F F1 F2 FN 3)质点系的动量定理有微分形式:
o s1
ds
s2
s
讨论 (1)功是力作用于物体的空间积累效应的物 理量,是过程量; (2)功是标量,但有正、负 0o 90o,dW 0 o o 90 180 ,dW 0 o 90 F dr dW 0 正功表示某力对物体做功;负功表示物 体克服某力做功. (3) 功的单位: J(焦耳) 1 J 1 N m
推开后: v1与v2 方向相反,且
o
则 p m1v1 m2 v2 p 2m1v2 2m1v2 0
v1 2v2
推开前后系统动量不变
p p0
动量定理常应用于碰撞问题
t1 mv2 mv1 式中 F为平均冲力 F t2 t1 t2 t1 mv2 mv1 p mv F t2 t1 t mv2 mv1 当 p 一定时, t 越
大学物理PPT完整全套教学课件pptx(2024)
2
匀速圆周运动的实例分析
3
2024/1/29
13
圆周运动
2024/1/29
01
变速圆周运动
02
变速圆周运动的特点和性质
03
变速圆周运动的实例分析
14
相对运动
2024/1/29
01 02 03
参考系与坐标系 参考系的选择和建立 坐标系的种类和应用
15
相对运动
2024/1/29
相对速度与牵连速度 相对速度的定义和计算
2024/1/29
简谐振动的动力学特征
分析简谐振动的动力学特征,包括回复力、加速度 、速度、位移等物理量的变化规律。
简谐振动的能量特征
讨论简谐振动的能量特征,包括动能、势能 、总能量等的变化规律,以及能量转换的过 程。
32
振动的合成与分解
2024/1/29
同方向同频率简谐振动的合成
分析两个同方向同频率简谐振动的合成规律,介绍合振动振幅、合 振动相位等概念。
5
大学物理的研究方法
03
观察和实验
建立理想模型
数学方法
物理学是一门以实验为基础的自然科学, 观察和实验是物理学的基本研究方法,通 过实验可以验证物理假说和理论,发现新 的物理现象和规律。
理想模型是物理学中经常采用的一种研究 方法,它忽略了次要因素,突出了主要因 素,使物理问题得到简化。
数学是物理学的重要工具,通过数学方法 可以精确地描述物理现象和规律,推导物 理公式和定理。
2024/1/29
适用范围
适用于一切自然现象,包括力学、热学、电磁学 、光学等各个领域。
应用举例
热力学第一定律、机械能守恒定律、爱因斯坦的 质能方程等。
匀速圆周运动的实例分析
3
2024/1/29
13
圆周运动
2024/1/29
01
变速圆周运动
02
变速圆周运动的特点和性质
03
变速圆周运动的实例分析
14
相对运动
2024/1/29
01 02 03
参考系与坐标系 参考系的选择和建立 坐标系的种类和应用
15
相对运动
2024/1/29
相对速度与牵连速度 相对速度的定义和计算
2024/1/29
简谐振动的动力学特征
分析简谐振动的动力学特征,包括回复力、加速度 、速度、位移等物理量的变化规律。
简谐振动的能量特征
讨论简谐振动的能量特征,包括动能、势能 、总能量等的变化规律,以及能量转换的过 程。
32
振动的合成与分解
2024/1/29
同方向同频率简谐振动的合成
分析两个同方向同频率简谐振动的合成规律,介绍合振动振幅、合 振动相位等概念。
5
大学物理的研究方法
03
观察和实验
建立理想模型
数学方法
物理学是一门以实验为基础的自然科学, 观察和实验是物理学的基本研究方法,通 过实验可以验证物理假说和理论,发现新 的物理现象和规律。
理想模型是物理学中经常采用的一种研究 方法,它忽略了次要因素,突出了主要因 素,使物理问题得到简化。
数学是物理学的重要工具,通过数学方法 可以精确地描述物理现象和规律,推导物 理公式和定理。
2024/1/29
适用范围
适用于一切自然现象,包括力学、热学、电磁学 、光学等各个领域。
应用举例
热力学第一定律、机械能守恒定律、爱因斯坦的 质能方程等。
大学物理第三章动量守恒定律和能量守恒定律
动量守恒定律的表述
总结词
动量守恒定律表述为系统不受外力或所 受外力之和为零时,系统总动量保持不 变。
VS
详细描述
动量守恒定律是自然界中最基本的定律之 一,它表述为在一个封闭系统中,如果没 有外力作用或者外力之和为零,则系统总 动量保持不变。也就是说,系统的初始动 量和最终动量是相等的。
动量守恒定律的适用条件
能量守恒定律可以通过电磁学 的基本公式推导出来。
能量守恒定律可以通过相对论 的质能方程推导出来。
能量守恒定律的应用实例
01
02
03
04
机械能守恒
在无外力作用的系统中,动能 和势能可以相互转化,但总和
保持不变。
热能守恒
在一个孤立系统中,热量只能 从高温物体传递到低温物体,
最终达到热平衡状态。
电磁能守恒
详细描述
根据牛顿第三定律,作用力和反作用力大小相等、方向相反。如果将一个物体施加一个力F,则该力会产生一个 加速度a,进而改变物体的速度v。由于力的作用是相互的,反作用力也会对另一个物体产生相同大小、相反方向 的加速度和速度变化。因此,在系统内力的相互作用下,系统总动量保持不变。
02
能量守恒定律
能量守恒定律的表述
感谢观看
01
能量守恒定律表述为:在一个封闭系统中,能量不能被创造或消灭, 只能从一种形式转化为另一种形式。
02
能量守恒定律是自然界的基本定律之一,适用于宇宙中的一切物理过 程。
03
能量守恒定律是定量的,可以用数学公式表示。
04
能量守恒定律是绝对的,不受任何物理定律的限制。
能量守恒定律的适用条件
能量守恒定律适用于孤立系统,即系统与外界没有能量 交换。
大学物理 第三章 动量守恒定律和能量守恒定律 3-9 质心 质心运动定律
物理学
第五版
3-9 质心 -
质心运动定律
一 质心
1 质心的概念
板上C点的运动轨迹是抛物线 板上 点的运动轨迹是抛物线 其余点的运动=随 点的平动+绕 点的 点的平动 点的转动 其余点的运动 随C点的平动 绕C点的转动
第三章 动量守恒和能量守恒
1
物理学
第五版
3-9 质心 -
质心运动定律
2 质心的位置 由n个质点组成 个质点组成 的质点系, 的质点系,其质心 的位置: 的位置:
13
物理学
第五版
3-9 质心 n n v v v m'vC = ∑ mi vi = ∑ pi = p i =1 i =1
质心运动定律
求一阶导数, 再对时间 t 求一阶导数,得
质心加速度
dp v m'aC = dt v v dp ex 根据质点系动量定理 = Fi dt
第三章 动量守恒和能量守恒
}⇒
x2 = 2 xC
17
第三章 动量守恒和能量守恒
物理学
第五版
3-9 质心 -
质心运动定律
例4 用质心运动定律 y F 来讨论以下问题. 来讨论以下问题. 一长为l 一长为 、密度均匀的 y 柔软链条, 柔软链条,其单位长度的质 c yC 量为 λ .将其卷成一堆放在 地面. 若手提链条的一端, 地面. 若手提链条的一端, o 以匀速v 将其上提.当一端 以匀速 将其上提. 被提离地面高度为 y 时,求手的提力. 求手的提力.
竖直方向作用于链条的合外力为 F − λyg
第三章 动量守恒和能量守恒
20
物理学
第五版
3-9 质心 -
质心运动定律
v 得到 F − yλg = lλ ⋅ l
第五版
3-9 质心 -
质心运动定律
一 质心
1 质心的概念
板上C点的运动轨迹是抛物线 板上 点的运动轨迹是抛物线 其余点的运动=随 点的平动+绕 点的 点的平动 点的转动 其余点的运动 随C点的平动 绕C点的转动
第三章 动量守恒和能量守恒
1
物理学
第五版
3-9 质心 -
质心运动定律
2 质心的位置 由n个质点组成 个质点组成 的质点系, 的质点系,其质心 的位置: 的位置:
13
物理学
第五版
3-9 质心 n n v v v m'vC = ∑ mi vi = ∑ pi = p i =1 i =1
质心运动定律
求一阶导数, 再对时间 t 求一阶导数,得
质心加速度
dp v m'aC = dt v v dp ex 根据质点系动量定理 = Fi dt
第三章 动量守恒和能量守恒
}⇒
x2 = 2 xC
17
第三章 动量守恒和能量守恒
物理学
第五版
3-9 质心 -
质心运动定律
例4 用质心运动定律 y F 来讨论以下问题. 来讨论以下问题. 一长为l 一长为 、密度均匀的 y 柔软链条, 柔软链条,其单位长度的质 c yC 量为 λ .将其卷成一堆放在 地面. 若手提链条的一端, 地面. 若手提链条的一端, o 以匀速v 将其上提.当一端 以匀速 将其上提. 被提离地面高度为 y 时,求手的提力. 求手的提力.
竖直方向作用于链条的合外力为 F − λyg
第三章 动量守恒和能量守恒
20
物理学
第五版
3-9 质心 -
质心运动定律
v 得到 F − yλg = lλ ⋅ l
大学物理第三章动量守恒定律和能量守恒定律
展望了未来在学习相对论和量子力学中,对动量守恒定律和能量守恒定律的更深入理解 和应用。
探索其他守恒定律
鼓励了对其他守恒定律的探索,如角动量守恒定律、电荷守恒定律等。
THANKS
感谢观看
探索性实验:动量与能量的关系研究
实验目的
研究动量与能量的关系,探索两者之间的联系和 区别。
实验步骤
选择合适的实验器材,如弹性碰撞器、非弹性碰 撞器等,设计不同的碰撞条件,记录实验数据。
实验原理
动量和能量是描述物体运动状态的物理量,两者 之间存在一定的关系。通过研究不同运动状态下 物体的动量和能量变化,可以深入理解两者之间 的关系。
05
实验验证与探索
动量守恒定律的实验验证
实验目的
通过实验验证动量守恒定律, 加深对动量守恒定律的理解。
实验原理
动量守恒定律指出,在没有外 力作用的情况下,系统的总动 量保持不变。
实验步骤
选择合适的实验器材,如滑轨、 滑块、碰撞器等,按照实验要求 进行操作,记录实验数据。
实验结果
通过分析实验数据,验证动量 守恒定律的正确性。
动量守恒定律的应用实例
总结词:举例说明
详细描述:应用动量守恒定律的实例包括行星运动、碰撞、火箭推进等。例如,在行星运动中,行星绕太阳旋转时动量守恒 ;在碰撞过程中,两物体相互作用时的动量变化遵循动量守恒定律;火箭推进则是通过燃料燃烧产生高速气体,利用反作用 力推动火箭升空,这一过程中动量守恒。
03
守恒定律的意义
强调了守恒定律在物理学中的重要地位,以及在解决实际问题中的应 用价值。
对动量守恒定律和能量守恒定律的思考
守恒的哲学思考
探讨了守恒定律在哲学上的意义,以及它们 对宇宙观的影响。
探索其他守恒定律
鼓励了对其他守恒定律的探索,如角动量守恒定律、电荷守恒定律等。
THANKS
感谢观看
探索性实验:动量与能量的关系研究
实验目的
研究动量与能量的关系,探索两者之间的联系和 区别。
实验步骤
选择合适的实验器材,如弹性碰撞器、非弹性碰 撞器等,设计不同的碰撞条件,记录实验数据。
实验原理
动量和能量是描述物体运动状态的物理量,两者 之间存在一定的关系。通过研究不同运动状态下 物体的动量和能量变化,可以深入理解两者之间 的关系。
05
实验验证与探索
动量守恒定律的实验验证
实验目的
通过实验验证动量守恒定律, 加深对动量守恒定律的理解。
实验原理
动量守恒定律指出,在没有外 力作用的情况下,系统的总动 量保持不变。
实验步骤
选择合适的实验器材,如滑轨、 滑块、碰撞器等,按照实验要求 进行操作,记录实验数据。
实验结果
通过分析实验数据,验证动量 守恒定律的正确性。
动量守恒定律的应用实例
总结词:举例说明
详细描述:应用动量守恒定律的实例包括行星运动、碰撞、火箭推进等。例如,在行星运动中,行星绕太阳旋转时动量守恒 ;在碰撞过程中,两物体相互作用时的动量变化遵循动量守恒定律;火箭推进则是通过燃料燃烧产生高速气体,利用反作用 力推动火箭升空,这一过程中动量守恒。
03
守恒定律的意义
强调了守恒定律在物理学中的重要地位,以及在解决实际问题中的应 用价值。
对动量守恒定律和能量守恒定律的思考
守恒的哲学思考
探讨了守恒定律在哲学上的意义,以及它们 对宇宙观的影响。
第3章-动量守恒定律和能量守恒定律
质点的位移在力方向的分量和力的大小的乘积。
dW
F
cos
dr
F cos
ds
dW F dr
B
*
0 90, dW 0 90 180 , dW 0
dr
*A
F
90 F dr dW 0
20
3-4 动能定理
• 变力的功
W
B F dr
B
F
cos
ds
A
A
dri
i
B
*
端 , 绳的上端固定在天花板上 . 起初把绳子放在与竖
直线成 30 角处, 然后放手使小球沿圆弧下落 . 试求
绳解与: 竖d直W线成F
10角时 小球 的速率 d s FT d s P d s
.
P d s mgl d cos
mgl sin d
W mgl sin d 0
mgl (cos cos0 )
I
t2 t1
Fdt
p2
p1
mv2
mv1
问:冲量是矢量,它的方向就是力的方向吗 ?
分量形 式 I Ixi Iy j Izk
单位和量纲 1N·s = 1kgm/s dimI = M·L-1·T-1
Ix
t2 t1
Fxdt
mv2 x
mv1x
I y
t2 t1
Fydt
mv2 y
mv1y
Iz
14
3-2 动量守恒定律
例 1 设有一静止的原子核, 衰变辐射出一个电子和一
个中微子后成为一个新的原子核. 已知电子和中微子的
运动方向互相垂直, 电子动量为1.210-22 kg·m·s-1,中微
子的动量为 6.410-23 kg·m·s-1 . 问新的原子核的动量的
动量守恒定律和能量守恒定律
过程为有限过程,必须用质点系的 O
x
动量定理的积分形式:
I外
t2
t1
Ndt
p
但积分形式只能算出该段时间内的平均力,不能算出
各个时刻的瞬时力。
t2
t1
Ndt
N t
p
N p t
3-1
3-2 动量守恒定律
一. 动量守恒定律
推导:由质点系的动量定理: F外dt dp 当外力为零时, F外 0 dp 0
3-1
五. 质点系的动量定理
推导(以只有两个质点的质 点系为例):由质点的动量 定理:
dI dp
dI
F1
dI F12
dp1
dI F2
dI F21
dp2
质点系
F1
F12
m1
F2
F21
m2
(dI F1
dI F2
)
(dI F12
dI ) F21
dp1
dp2
(dI F1
dI F2
)
dp1
dp2
3-4
F dl
d
1 2
mv
2
F
定义 1:(元)功:
dW F dl
定义
2:动能:
Ek
1 mv2 2
P dl
则有动能定理: dW dEk (微分形式)
dW dE 2
Ek 2
1
Ek 1
k
W Ek (积分形式)
3-4
一. 功
1. 元功:dW F dl
总功: W
2
1
F
dl
说明:当力为恒力,且质点做直线运动 时,
动量守恒定律和能量守恒定律
3-1 质点和质点系的动量定理
大学物理-第三章-动量守恒定律和能量守恒定律
20
★一对作用力与反作用力的功只与相对位移有关
f ji
ri
f ij
rij
rj
0
dW
jidWij
f
ji
dri
fij drj
f ji fij
fji f ji
(dd(rriidrrjj))
f ji
drij
S
S u
动量的相 对性和动量定 理的不变性
F(t)
t1 m
v1
光滑
v 2
m t2
参考系 t1 时刻 t2 时刻
动量定理
S系
S’系
mv1
mv2
m(v1 u) m(v2 u)
t2 t1
F (t )dt
mv2
mv1
5
例3-1: 作用在质量为1kg 的物体上的力 F=6t+3,如果物体在这
0=m1(v1+v2)+m2v2
v2
m1v1 m1 m2
x
t 0
v2dt
m1 m1 m2
t 0
v1dt
L
t
0 v1dt
x m1L 0.8m m1 m2
负号表示船移动的方向与人前进的方向相反。
17
3-4 动能定理
一、功的概念(work) 功率(power) 1、恒力的功
2、动能定理
2
1
或
F
dr
F
dr
1 2
mv22
大学物理第三章动量守恒定律和能量守恒定律
3、质点系动量定理的微分形式:
根据:
I
p
p0
在无限小的时间间隔内:
4、说明:F外dt
dp
1)只有外力对系统动量的增量有贡献;
2)系统内力不改变系统总动量,但可使 系统内各质点的动量变化。
12
第三章 教学基§本3要-1求.2 质第点三系章的动量动守量恒定定律理和能量守恒定律
注意
内力不改变质点系的动量
三 掌握动能定理 、功能原理和机械能守 恒定律, 掌握运用守恒定律分析问题的思想和方 法.
3
第三章§教3学.1基.1本冲要量求 ,动第三量章,动量质守点恒定动律量和能定量理守恒定律
定义: 力的冲量(impulse)
质点的动量(momentum)—
p
mv
F
d(mv )
d
p
dt dt
15
第三章 教学§基本3.要2 求动量第守三章恒动定量守律恒定律和能量守恒定律 (law of conservation of momentum)
初始速度 vg0 vb0 0 mb 2mg 则
推开后速度 vg 2vb
推开前后系统动量不变
且方向p相反p0则
p0 0 p 0
13
第三章 教学基§本3要-1求. 2质第点三系章的动量动守量恒定定律理和能量守恒定律
甲队
乙队
例如:两队运动员拔河,有的人说甲队力气大, 乙队力气小,所以甲队能获胜,这种说法是否正 确?
第三章 教学基本要求 第三章动量守恒定律和能量守恒定律
1
第三章§教3学.1基.1本冲要量求 ,动第三量章,动量质守点恒定动律量和能定量理守恒定律 前言
大学物理动量守恒定律和能量守恒定律
比 外力做正功等于相应动能的增加; 较 外力做负功等于相应动能的减少。
注意:
1、计算势能必须规定零势能参考点。势能是相对量, 其量值与零势能点的选取有关。
2、势能函数的形式与保守力的性质相关,对应于一种 保守力的函数就可以引进一种相关的势能函数。
3、势能是属于以保守力形式相互作用的物体系统所共 有的。
第三章 动量守恒定律和能量守恒定律
守恒定律
动量守恒定律 机械能守恒定律 能量守恒定律
物理学大厦 的基石
3-1 质点和质点系的动量定理
一、冲量 质点的动量定理
F dpd(mv) dt dt
牛顿第二定律 动量 pm v
F d td pd(m v)
I t 1 t2 F d t p p 1 2 d p p 2 p 1 m v 2 m v 1
vv 21 vv 2m m 1v 1 rvm r 23 .1 2 7 .1 71 0 1 3 0m 3m /s /s
3-4 动能定理
一、功、功率
1、功
r
i
F
B
i
恒力功: W F s c o s F s
变力功
A
元功:
d W Fd r
取得有限位移 W dW r2Fdr r1
冲量: I t2 Fdt t1
力对时间的累积效应
作用于物体上的合外力的冲量等于物体动量的增量
——质点的动量定理
分量表示式
t1t2FxdtIx mv2xmv1x t1 t2FydtIymv2ymv1y t1t2FzdtIz mv2zmv1z
问题:动量增量方向?
o v0
x
冲量的方向?动量增量的 方向,一般与力的方向不一致。
功的单位:焦耳(J)
注意:
1、计算势能必须规定零势能参考点。势能是相对量, 其量值与零势能点的选取有关。
2、势能函数的形式与保守力的性质相关,对应于一种 保守力的函数就可以引进一种相关的势能函数。
3、势能是属于以保守力形式相互作用的物体系统所共 有的。
第三章 动量守恒定律和能量守恒定律
守恒定律
动量守恒定律 机械能守恒定律 能量守恒定律
物理学大厦 的基石
3-1 质点和质点系的动量定理
一、冲量 质点的动量定理
F dpd(mv) dt dt
牛顿第二定律 动量 pm v
F d td pd(m v)
I t 1 t2 F d t p p 1 2 d p p 2 p 1 m v 2 m v 1
vv 21 vv 2m m 1v 1 rvm r 23 .1 2 7 .1 71 0 1 3 0m 3m /s /s
3-4 动能定理
一、功、功率
1、功
r
i
F
B
i
恒力功: W F s c o s F s
变力功
A
元功:
d W Fd r
取得有限位移 W dW r2Fdr r1
冲量: I t2 Fdt t1
力对时间的累积效应
作用于物体上的合外力的冲量等于物体动量的增量
——质点的动量定理
分量表示式
t1t2FxdtIx mv2xmv1x t1 t2FydtIymv2ymv1y t1t2FzdtIz mv2zmv1z
问题:动量增量方向?
o v0
x
冲量的方向?动量增量的 方向,一般与力的方向不一致。
功的单位:焦耳(J)
大学物理第五讲 动量、动量守恒、功、动能和动能定理
0.3t)dt
0
36.45 (J)
24
二、质点的动能和动能定理
动能定理的推导
dA
r F
drr
F ds
ma
ds
m
dv dt
ds
mvdv
质点由a到b,力做总功为
Ek
1 mv2 2
r
r Fn
a• r
r F
•dsr
r F
• vb
b
va
Aab
b
dA
a
vb mvdv
M
LL
所以:
vr人车
vr人
m M
vr人
M M
m
vr人
12
t
M m t
0 v人车dt M 0 v人dt
vr人车
M M
m
vr人
L M mx x M L
M
M m
vr车
m M
vr人
v车
v人
m
x
M
X v车dt M v人dt
o
m x m L
M
(mvr )
1
r mv1
x
1
mvr2
7
二、质点系的动量定理
rr 设质点系中第 i 个质点受内力和外力分别为 fi 和Fi ,
应用质点动量定理
r ( Fi
r fi )dt
d
(mi
r vi
)
对整个系统求和
r r (Fi fi )dt d
大学物理PPT完整全套教学课件
温标的选择
在热力学中,常用的温标有摄氏 温标、华氏温标和热力学温标。 其中,热力学温标以绝对零度为 起点,与热量传递的方向无关, 因此更为科学。
热力学第一定律
01
热力学第一定律的表述
热量可以从一个物体传递到另一个物体,也可以与机械能 或其他能量互相转换,但是在转换过程中,能量的总值保 持不变。
02
质点运动的描述
01 位置矢量与位移
02
位置矢量描述质点在空间中的位置,位移是质点位置
的变化量
03
位移是矢量,具有大小和方向,其方向与从初位置指
向末位置的有向线段一致
质点运动的描述
速度与加速度 速度是质点运动的快慢程度,加速度是速度变化的快慢程度 速度和加速度都是矢量,具有大小和方向
圆周运动
圆周运动的描述
能量守恒定律
能量守恒定律的表述
能量既不会凭空产生,也不会凭空消失,它只会从一种形式转化为另一种形式,或者从 一个物体转移到其它物体,而能量的总量保持不变。
能量守恒定律的适用范围
无论是宏观世界还是微观世界,无论是低速运动还是高速运动,能量守恒定律都适用。
能量守恒定律的数学表达式
ΔE = W + Q,其中ΔE表示系统内能的增量,W表示外界对系统做的功,Q表示系统吸 收的热量。
通过牛顿运动定律可以预测物体 在受力后的运动状态,为物理学 研究提供基础。
非惯性系中的力学问题
01
非惯性系定义
02
惯性力概念
相对于地面做加速或减速运动的参考 系称为非惯性系。
在非惯性系中,为了解释物体的运动 ,需要引入一种假想的力,即惯性力 。
03
非惯性系中牛顿运动 定律的应用
在非惯性系中,牛顿运动定律仍然适 用,但需要考虑惯性力的影响。例如 ,在旋转的参考系中,物体受到的惯 性力会导致其偏离原来的运动轨迹。
动量守恒定律和能量守恒定律
v I =
内力和外力问题
v F1
v v F21 F12
m1
v F2
m2
v v v v = (m1v1 + m2 v2 ) − (m1v10 + m2 v20 )
质点系动量定理 作用于系统的合外力的冲量等于 系统动量的增量. 系统动量的增量
∫t0
t
v ex ∑ Fi d t =
i
v v ∑ mi vi − ∑ mi vi 0
动量守恒定律和能量守恒定律 1/58
一、冲量 质点的动量定理
v 力对时间的积分(矢量) 冲量 力对时间的积分(矢量) I =
动量
∫
t2
t1
v Fdt
v v p = mv
v v v Fdt = dp = d (m v )
∫
t2
t1
v v v v v F d t = p 2 − p1 = m v 2 − m v 1
例题
F
= m1 g = λyg
1
由质点系动量定理得
F dt = dp
ex
动量守恒定律和能量守恒定律
y
14/58
λ ygdt = dp
又
dp = λ d( yv)
m1
m2
O
d ( yv ) yg = dt 两边同乘以 yd y 则
2
∴ λ yg d t = λ d( yv )
y
y
d( yv ) y gdy = ydy = yv d( yv ) dt
v p=
∑
i
v pi
i
保持不变 保持不变. 不变
1)系统的动量守恒是指系统的总动量不变,系 )系统的动量守恒是指系统的总动量不变, 动量守恒是指系统的总动量不变 统内任一物体的动量是可变的,各物体的动量必相对 统内任一物体的动量是可变的,各物体的动量必相对 同一惯性参考系. 于同一惯性参考系
内力和外力问题
v F1
v v F21 F12
m1
v F2
m2
v v v v = (m1v1 + m2 v2 ) − (m1v10 + m2 v20 )
质点系动量定理 作用于系统的合外力的冲量等于 系统动量的增量. 系统动量的增量
∫t0
t
v ex ∑ Fi d t =
i
v v ∑ mi vi − ∑ mi vi 0
动量守恒定律和能量守恒定律 1/58
一、冲量 质点的动量定理
v 力对时间的积分(矢量) 冲量 力对时间的积分(矢量) I =
动量
∫
t2
t1
v Fdt
v v p = mv
v v v Fdt = dp = d (m v )
∫
t2
t1
v v v v v F d t = p 2 − p1 = m v 2 − m v 1
例题
F
= m1 g = λyg
1
由质点系动量定理得
F dt = dp
ex
动量守恒定律和能量守恒定律
y
14/58
λ ygdt = dp
又
dp = λ d( yv)
m1
m2
O
d ( yv ) yg = dt 两边同乘以 yd y 则
2
∴ λ yg d t = λ d( yv )
y
y
d( yv ) y gdy = ydy = yv d( yv ) dt
v p=
∑
i
v pi
i
保持不变 保持不变. 不变
1)系统的动量守恒是指系统的总动量不变,系 )系统的动量守恒是指系统的总动量不变, 动量守恒是指系统的总动量不变 统内任一物体的动量是可变的,各物体的动量必相对 统内任一物体的动量是可变的,各物体的动量必相对 同一惯性参考系. 于同一惯性参考系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
解:取挡板和球为研究对象,由于作用 时间很短,忽略重力影响。设挡板对球 的冲力为F则有:
v2 Байду номын сангаас0o 45ox v1 n
I F dt mv2 mv1
I x Fx dt mv2 cos 30 (mv1 ) cos 45 Fx t
I y Fy dt mv2 sin 30 mv1 sin 45 Fy t
8
t 0.01s v1 10m/s v2 20m/s m 2.5g
Fx 6.1N Fy 0.7N F F F 6.14N
2 x 2 y
I x 0.061Ns
I y 0.007Ns
2 y 2
I
I I 6.14 10 Ns
2 x
tan
t t
I y Fy dt mv2 y mv1 y I z Fz dt mv2 z mv1z
t
•应用: 利用冲力:增大冲力,减小作用时间——冲床 6 避免冲力:减小冲力,增大作用时间——轮船靠岸时的缓冲
求作用力
I Fdt=P P F= t
n
Fi内 0
i 0
t2
n n F外力dt mi vi mi vi 0 t1 i 1 i 1
I=P-P0
I x=Px-Px 0 I y=Py-Py 0 I z=Pz-Pz 0
作用在系统的合外力的冲量 等于质点系动量的增量—— 质点系的动量定理
i 1 n
n
当 Fiy 0
i 1 n
如果质点系沿某坐 标方向所受的合外 力为零,则沿此坐 标方向的总动量守 恒。
当 Fiz 0
i 1
13
•守恒的意义:动量守恒是指系统的总动量的矢量和不变,
而不是指某一个质点的动量不变。 •守恒的条件:系统所受的合外力为零。 •内力的作用:不改变系统的总动量,但可以引起系统内动 量的变化 •动量是描述状态的物理量,而冲量是过程量 •动量守恒定律是物理学中最普遍、最基本的定律之一。 •动量定理和动量守恒定律只适用于惯性系。
7
例3-1、质量为2.5g的乒乓球以10m/s的
速率飞来,被板推挡后,又以20m/s的速 率飞出。设两速度在垂直于板面的同一平 面内,且它们与板面法线的夹角分别为 45o和30o,求:(1)乒乓球得到的冲量; (2)若撞击时间为0.01s,求板施于球的 平均冲力的大小和方向。
v2 30o
45o
v1 y O
4
三、动量定理
P2 P1
dP
dP F dt
dP Fdt
t2 P2 P1 I = Fdt
t1
t2
t1
Fdt
F为恒力时,可以得出I=F t F作用时间很短时,可用力的平均值来代替。
I Fdt=P I F t P
12
§3-3
动量守恒定律
当系统所受合外力为零时,即F外=0时,系统的动量的 增量为零,即系统的总动量保持不变——动量守恒定律
n P= mi v i 恒 矢 量
i 1
Px mi vix 恒量 Py mi viy 恒量 p z mi viz 恒量
当 Fix 0
在运动过程中,作用于质点的合力在一段时间内的冲量 等于质点动量的增量——动量定理
5
说明
•冲量的方向不是与动量的方向相同,而是与动量增 量的方向相同 •动量定理说明质点动量的改变是由外力和外力作用 时间两个因素,即冲量决定的 •动量定理的分量式
I x Fx dt mv2 x mv1x
Iy
Ix
0.1148
6.54
为 I 与x方向的夹角。
9
例 2 一枚返回式火箭以 2.5103 m· s-1 的速率相对惯性 系 S沿水平方向飞行。空气阻力不计。现使火箭分离为 两部分, 前方的仪器舱质量为100kg,后方的火箭容器质 量为200kg,仪器舱相对火箭容器的水平速率为 1.0103 m· s-1。求仪器舱和火箭容器相对惯性系的速度。
大学物理
1
第三章 动量守恒定律
• §3-1 动量和动量定理 • §3-2 质点系动量定理 • §3-3 动量守恒定律
2
§3-1 动量和动量定理
一、冲量(力的作用对时间的积累,矢量)
大小:
t2 I = Fdt
t1
F F
方向:速度变化的方向 单位:N· s
0
说明
t1
dt
t2
t
• •
冲量是表征力持续作用一段时间的累积效应; 矢量: 大小和方向; 过程量, 改变物体机械运动状态的原因。
3
二、动量
定义:物体的质量与速度的乘积叫做物体的动量
P mv
•动量是矢量,大小为 mv,方向就是速度的方向; • 表征了物体的运动状态
•单位: kg· m· s-1
牛顿第二定律的另外一种表示方法
dv d dP F ma m ( mv ) dt dt dt
t2 F1+F2 dt+ F12+F21 dt t1 t1
( m1v1 m 2 v 2 ) ( m1v10 m 2 v 20 )
t2
F1+F2 dt (m1v1 m2v2 ) (m1v10 m2v20 )
y
S
v
z'
y'
S
v'
m2
m1
z
o
o'
x x'
10
§3-2 质点系动量定理
一、两个质点的情况 t2 F1+F12 dt m1v1 m1v10
t1 t2
F2+F21 dt m2v2 m2v20
t1
t2
F12 F21
t1
作用在两质点组成的系统的合外力的冲量等于系统内两质 点动量之和的增量,即系统动量的增量。 11
二、多个质点的情况
t2 t2 n n n Fi外 dt+ Fi内 dt mi vi mi vi 0 i 1 i 1 t1 i 1 t1 i 1 n