(整理)常见数学思想方法应用举例
常见数学思想方法应用举例
常见数学思想方法应用举例1.归纳法:归纳法是一种从特殊到一般的推理方法,通常应用于证明一些性质在所有情况下成立。
例如,我们可以使用归纳法来证明1+2+3+...+n的总和公式为n(n+1)/2、首先,当n=1时,左侧为1,右侧为1(1+1)/2,成立。
接下来,假设对于一些k成立,即1+2+3+...+k=k(k+1)/2、那么当n=k+1时,左侧为1+2+3+...+k+(k+1),右侧为(k+1)((k+1)+1)/2、我们可以将左侧拆分为k(k+1)/2+(k+1),然后代入归纳假设得到右侧,因此可以推断1+2+3+...+n=n(n+1)/2对于所有自然数n成立。
2.递推法:递推法是一种逐步推进的思想方法,在每一步中根据前一步的结果得到下一步的结论。
递推法常常应用于数列和数列的性质推导。
例如,斐波那契数列就是一个典型的应用递推法得到的数列。
斐波那契数列的定义是:第一个和第二个数都是1,从第三项开始,每一项都等于前两项的和。
即,F(1)=1,F(2)=1,F(n)=F(n-1)+F(n-2)(n≥3)。
通过递推法,我们可以计算任意给定项的斐波那契数列。
3.反证法:反证法是一种通过假设命题的否定形式为真,再通过推导推出与已知事实矛盾的结论,从而推断原命题为真的思想方法。
例如,我们想要证明根号2是无理数。
假设根号2是有理数,可以表示为p/q,其中p和q是互质的。
如果我们将这个假设代入p^2/q^2=2,可以得到p^2=2q^2、这意味着p的平方是一个偶数,因此p也是一个偶数(偶数的平方是偶数)。
我们可以将p表示为2k,其中k是一个整数,那么我们得到(2k)^2=2q^2,即4k^2=2q^2,化简为2k^2=q^2、这表明q的平方也是偶数,进一步可以推断q也是偶数。
但这与p和q是互质的假设相矛盾,因此根号2不可能是有理数,即它是无理数。
4.数学归纳法:数学归纳法是一种证明自然数性质的方法,适用于证明具有递推性质的命题。
初中数学思想方法举例
初中数学思想方法举例数学思想方法是指在解决数学问题时所采用的思维方式和方法。
以下是初中阶段常见的数学思想方法的举例:1.抽象思维方法:根据具体问题提取出关键信息,将问题进行抽象,转化为数学语言。
例如,在解决几何题时,可以将实际图形抽象成坐标系中的几何图形,通过数学方法求解。
2.归纳思维方法:通过观察问题的特征规律,从具体情况中总结并推广出一般性的结论。
例如,在解决数列问题时,可以通过观察数列的前几项,推断出数列的通项公式。
3.反证法:假设问题的逆否命题成立,通过推理论证能推出矛盾的结论,从而得出问题的真正解答。
例如,在证明一个数是质数时,可以假设该数是合数,通过反证法排除其他可能性,证明该数是质数。
4.分类讨论法:将问题按照不同情况分类进行详细讨论,找出每种情况的解决方法,并通过分析问题的条件进行选择。
例如,在解决“甲,乙,丙三个人一起干活,甲乙两人干活是的速度比丙高1/3”的问题时,可以将丙的速度设为1,讨论其他情况下的解法。
5.数学建模:将实际问题转化为数学问题,并利用数学知识进行建模和求解。
例如,在解决一些城市出租车调度问题时,可以将车辆和乘客抽象为数学模型,并利用最优化算法来计算最佳的调度方案。
6. 迭代逼近法:通过不断逼近数值的方法来求解方程或函数的解,直至满足预设条件。
例如,在求解方程x^2 = 2的正根时,可以通过迭代公式xn+1 = (xn + 2/xn)/2来不断逼近根的值。
7. 反函数法:通过求解问题的反函数,可以将原问题转化为已知的问题求解。
例如,在解决函数y = ax + b的问题时,可以考虑函数的反函数来转化为已知的问题。
8.数量关系方法:通过数学关系式或图形关系来求解问题。
例如,在解决平行线与交叉线之间的角度关系时,可以利用平行线之间的对应角相等的性质来求解。
9.图形变换方法:通过对图形进行平移、旋转、翻折等变换操作,观察变换后图形的性质和关系,并利用这些性质求解问题。
常用的小学数学思想方法及举例5
常用的小学数学思想方法及举例1、举例说明“一一对应思想”在小学数学中是如何体现的?对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
例如让学生数数时,拨一个珠子数一个数,这就是一一对应的思想。
一个珠子就对应一个数。
2、举例说明“数形结合思想”在小学数学中是如何体现的?数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。
另一方面复杂的形体可以用简单的数量关系表示。
在解应用题中常常借助线段图的直观帮助分析数量关系。
例如在学生学习10个十是100,10个百是1000时,让学生看课件把10个小正方体放成一排,摆10排,变成一个面,是100,再放10个这样的面就是1000了,变成一个大正方体。
这里就充分反映了数形结合的思想。
3、举例说明“假设思想”在小学数学中是如何体现的?假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
例如:四(2)班学生在校办工厂糊纸盒,原计划糊制1200个,实际每时糊的纸盒是原计划的1.2倍,结果提前4时完成任务,问原计划糊纸盒几时?分析与解假设没有提前,而是按原计划时间劳动,则糊成的纸盒是(1200×1.2=)1440(个),比原计划多做(1440-1200=)240(个),因为多糊的240个是在4时内做成的,因此实际每时糊纸盒(240÷4=)60(个),原计划每时糊(60÷1.2=)50(个)。
4、举例说明“比较思想”在小学数学中是如何体现的?比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
基本数学思想的应用
基本数学思想的应用数学思想是数学基础知识,基本技能的本质体现,是形成数学能力,数学意思的桥梁,是灵活应用数学知识,技能的灵魂。
因此,在中考数学中能取得好成绩的关机是正确的运用数学思想方法。
1、整体的思想整体思想是将问题堪称一个完整的整体,吧注意力和着眼点放在问题的整体结构改造上,从整体上把握问题的内容和解题的方向和策略。
例:已知代数式6y 2y 32++的值为8,那么代数式1y y 232++的值为2、分类的思想分类思想是按周一定的标准,把研究对象分成为数不多的举个部分或几种情况,然后逐个加以解决,最后予以总结作出结论的思想方法,其实质是化整体为零,各个击破的转化策略。
例:某中学为筹备校庆活动,准备印制一批校庆纪念册,该纪念册每册需要10张8K 大小的纸,其中4张为彩页,6张为黑白页。
印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印刷费无关,价格为:彩页300元/张,黑白页50元/张;印刷费与印数的关系如下表: 印数a (千册) 2≤a<5 5≤a<10 彩色 (元/张) 2.2 2 黑白 (元/张) 0.70.6(1)印制这批纪念册的制版费为:(2)若印制2千册,则共需多少费用?(3)如果该校希望印数至少为4千册,总费用至多为60000元,求印数的取值范围。
(精确到0.01千册)例:如图所示,在平面直角坐标系中,点O1的坐标为(-4,0),以点O1为圆心,8为半径的圆与x轴x轴交于A、B两点,过点A作直线l与x轴负方向相交成60°角,以点O2(13,5)为圆心的圆与x轴相切于点D。
(1)求直线l的解析式。
(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,同时直线l沿x轴向右平移,⊙O2第一次与⊙O1相切时,直线l恰好与⊙O2第一次相切,求直线l平移的速度。
(3)将⊙O2沿x轴向右平移,在平移的过程中与x轴相切于点E,EG为⊙O2的直径,过点A作⊙O2的切线,切⊙O2于另一点F,连结A O2,FG,那么FG﹒A O2的值是否会发生变化?如果不变,说明理由并求其值;如果不变化,求其变化范围。
数学思想方法介绍
◆数学方法具有三个基本特征:
(1)高度的抽象性和概括性; (2)精确性,即逻辑的严密性及结论的确定性; (3)应用的普遍性和可操作性。
◆数学方法在科学技术研究中具有举足轻重的地位和作用:
(1)提供简洁精确的形式化语言; (2)提供数量分析及计算的方法; (3)提供逻辑推理的工具。
二. 中学数学中常用的数学方法
一种方法,数学中许多方法都属于RMI方法,例如,分割法、
函数法、坐标法、换元法、复数法、向量法、参数法等。
☆RMI方法不仅是数学中应用广泛的方法,而且可以拓展到人
文社会科学中去。例如,哲学家处理现实问题的思想方法,就 可以看作RMI方法的拓展 (客观物质世界---哲学家的思维---哲
学理论体系---解决客观世界的现实问题)。
3)同态与同构 4)数的概念的扩充 5)多项式理论与整数理论的类比 整数
+、- 、×
带余除法 算术基本定理
多项式
+、- 、× 带余除法 代数基本定理
3. 归纳法(逻辑学中的方法)
与数学归纳法(数学中的一般方法)
☆归纳就是从特殊的、具体的认识推进到一般的认识的 一种思维方法。归纳法是实验科学最基本的方法。 归纳法的特点:1)立足于观察和实验;2)结论具有猜 测的性质;3)结论超越了前提所包含的内容。 归纳法用于猜测和推断。 例子:1) Fermat数(1640年,Fn=22 +1, Fermat素数:3,5, 17,257,65537); 2)Goldbach猜想(1742年)。
《数学思想与数学文化》
数学思想方法介绍
内 容
一.前言
二.中学数学中常用的数学方法
三.几类常用的数学思想方法介绍
1.演绎法或公理化方法 2.类比法 3.归纳法与数学归纳法 4.数学构造法
小学数学思想方法
小学数学思想方法数学思想方法是解决数学问题的灵魂和精髓,是数学创造活动的基本方法。
学习数学思想方法有利于增强小学生的数学观念和数学意识,有利于小学生建立数学体系,丰富数学知识,这对其未来的生活和工作都有着深远的影响。
小学数学思想方法的重要性在于,它能够帮助学生理解和掌握数学知识的本质,促进学生的思维能力和解决问题的能力。
数学思想方法是一种普遍存在于现实生活中的思想方法,它不仅能够帮助学生解决数学问题,还能够帮助学生解决实际问题。
抽象概括法。
这种方法是通过对具体事例的分析和比较,概括出一般规律,然后用字母、符号等来表示,从而抽象出一般规律。
归纳法。
这种方法是通过观察和研究一系列具体事实,发现其中的共同规律,然后归纳总结出一般规律。
化归法。
这种方法是将复杂的问题转化为简单的问题,将未知的问题转化为已知的问题,将实际问题转化为数学问题。
类比法。
这种方法是通过比较两个或多个事物的相似之处,推断它们在其他方面也可能相似。
演绎法。
这种方法是从一般规律出发,通过推理证明特殊情况下的结论是否正确。
在小学数学教学中,应该注重数学思想方法的培养,通过具体的问题和实践来引导学生掌握数学思想方法。
例如,在讲解加法交换律时,可以通过举例和归纳法来引导学生发现加法交换律的规律;在讲解平行四边形的面积时,可以通过化归法和演绎法来引导学生推导出平行四边形面积的计算公式;在讲解三角形的内角和时,可以通过类比法和归纳法来引导学生发现三角形内角和的规律。
注重实例的积累和总结。
教师应该引导学生多观察、多思考、多实践,发现生活中的数学问题,并尝试用所学知识去解决。
同时,教师也应该注重课堂上的实例积累和总结,帮助学生更好地掌握数学知识。
注重思维能力和创新能力的培养。
教师应该引导学生多角度思考问题,发现问题的本质和规律,同时注重培养学生的创新能力和实践能力。
注重数学语言的使用。
教师应该引导学生正确使用数学语言来表达自己的想法和思路,帮助学生更好地理解和掌握数学知识。
(完整版)数学思想方法在中学教学中的应用
数学思想方法在中学教学中的应用数学与统计学院张春月全日制普通高级中学数学教学大纲中规定:“高中数学的基础知识主要是高中数学中的概念、性质、法则、公式、公理、定理以及由其内容反映出来的数学思想和方法。
”义务教育数学新大纲指出:“初中数学的基础知识主要是代数、几何中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法。
”把数学知识中的数学思想和方法纳入基础知识范畴,这充分体现了我国数学教育工作者对于数学课程发展的一个共识。
这不仅是加强数学素养培养的一项举措,也是数学基础教育现代化进程的必然要求。
一、中学数学思想方法的主要内容中学数学中的基本数学思想如下。
两大“基石”思想:符号化与变元表示思想(换元思想、方程思想、参数思想) 与集合思想(分类思想、交集思想、补集思想) 。
两大“支柱”思想:对应思想(函数思想、变换思想、递归思想、数形结合思想) 与公理化与结构思想(公理化思想、结构思想、极限思想) 。
两大“主梁”思想:系统与统计思想(整体思想、分解组合思想、运动变化思想、最优化思想;随机思想、统计调查思想、假设检验思想、量化思想) 与化归与辩证思想(纵向化归、横向化归、同向化归、逆向化归思想, 对立统一、互变、一分为二思想) 。
中学数学中的基本数学方法如下。
五种科学认识方法:观察与实验,比较与分类,归纳与类比,想象、直觉与顿悟。
四种推理方法:综合法与分析法,完全归纳法与数学归纳法,演绎法,反证法与同一法。
三种求解方法:数学模型法,关系映射反演方法,构造法。
二、提高数学思想方法教学的意识性对数学思想方法教学缺乏意识性是一个较普遍的问题。
主要表现在:制定教学目的时,对具体知识、技能训练的教学要求比较明确,而忽视数学思想方法的教学要求;教学时,往往注重知识的结论,而削弱知识形成过程中思想方法的训练;知识应用时,又偏重于就题论题,忽视数学思想方法的揭示与提炼;小结复习时,只注意知识的系统整理,忽视思想方法的归纳提高等等,致使数学教学停留在较低的层次上。
小学常用数学思想及其教学举例
小学常用数学思想及其教学举例我们的教学实践表明,小学数学教育的现代化,不光是内容的现代化,更是数学思想及教育手段的现代化,加强数学思想的教学是数学教育现代化的关键。
现结合我的工作经验,谈谈小学数学中常用的数学思想方法,不当之处敬请斧正。
一、转化思想把新的知识或未解决的问题,通过转变归结为一类较易求解的问题,以求得到解决。
将认知中的“顺应”转变为“同化”。
这就是转化的思想。
举例:五上《多边形的面积》二、化繁为简思想化繁为简,就是把复杂的问题简单化,再把得到的结论应用于复杂的问题。
举例①:六上《植树问题》三数学建模思想所谓数学模型,是指针对或参照某种事物的特征或数量间的相依关系,采用形式化的数学语言,概括地或近似地表述出来的一种数学结构。
如自然数“1”是“1个人”、“一件玩具”等抽象的结果,是反映这些事物共性的一个数学模型;方程是刻画现实世界数量关系的数学模型等。
而建立数学模型的过程就是“数学建模”。
四、数形结合思想就是把问题的数量关系和空间形式结合起来加以考察的思想。
所谓“数无形,少直观;形无数,难入微”(华罗庚语)。
其实质就是将抽象的数学语言与直观的图形结合起来,将抽象思维和形象思维结合起来。
举例:六上第八单元五、对应思想对应指的是一个系统中的某一项在性质、作用、位置上跟另一系统中的某一项相当。
对应思想可以理解为在两个集合的元素之间构建联系的一种思想方法。
举例:二上《表内乘法》()×8=8()×8=16()×8=24()×8=()()×8=()()×8=()┇┇六、极限思想事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。
举例:六上《圆的面积计算》。
在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发无限逼近的极限思想。
初中数学思想方法大全
初中数学思想方法大全教学的本质到底是什么很显然,教学最本质的东西就是传授知识,提高素质,培养能力。
那么,数学教学的本质又是什么呢众所周知:“数学是思维的体操。
”数学思想方法是数学的精髓,它是数学中最本质最有价值的东西。
它是知识转化为能力的桥梁。
所以从某种意义上说,数学教学的本质就是数学思想方法的教学,在数学教学中,教师除了基础知识和基本技能的教学外,更应重视数学思想方法的参透,注意对学生进行数学思想方法的培养。
一、数学思想方法是什么数学思想方法是什么呢其实它包换两个方面,即思想和方法。
所谓数学思想,是指人们对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中提练上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是用数学解决问题的指导思想,它直接支配着数学的实践活动。
所谓数学方法,则是在数学提出问题、解决问题(包括数学内部问题和实际问题)过程中,所采用的各种方式、手段、途径等。
它具有过程性、层次性和可操作性等特点。
数学思想是数学方法的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,人们把它们合称为数学思想方法。
因此,在数学教学中,教师除了基础知识和基本技能的教学外,还应重视数学思想方法的渗透,注重对学生进行数学思想方法的培养,这对学生今后的数学学习和数学知识的应用将产生深远的影响,使学生终生受益。
正如波利亚强调:在数学教学中“有益的思考方式、应有的思维习惯”应放在教学的首位。
加强数学思想方法教学,必然对提高数学教学的质量起到至关重要的作用。
二、初中阶段主要的数学思想方法有哪些纵观初中新课标教材,涉及到的数学思想方法大体可分为三种类型。
第一类是技巧型思想方法(也称低层次数学思想方法),包括消元、降次、换元、配方、待定系数法等,这类方法具有一定的操作步骤。
比较容易为学生所接受。
第二类是逻辑型的思想方法(也称较高层次数学思想方法),包括类比、抽象、概括、归纳、分析、综合、演绎、特殊化方法、反证法等,这类方法都具有确定的逻辑结构,是普通适用的逻辑推理论证模型。
高中数学常见数学思想应用举例
高中数学常见数学思想应用举例河北涉县第一中学(056400)张建军随着新课标的不断深入,数学思想在中学数学教学中的体现和功能引起了广大师生的普遍关注。
本文试从高中数学中常见的六种数学思想应用举例入手,阐述数学思想的重要性,希望引起师生对数学思想的高度重视。
1.函数思想:函数是高中数学的重要内容之一,其理论和应用涉及各个方面,是贯穿整个高中数学的一条主线,函数思想,系最重要的,最基础的数学思想方法之一,是进一步学习数学的重要基础,与代数式、方程、不等式等内容联系非常密切。
我们这里所说的函数思想,是指运用函数的概念和性质去分析问题、转化问题和解决问题。
【应用举例】:建造一个容积为8立方米深为2米的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为 元。
分析:粗看此题,感觉无从下手,没有思想,无突破口,但如果我们心中有函数这一思想, 构造出变量之间的函数关系式,问题得到解决。
解:设池底的长为x 米,则宽为4x米,总造价为y 元 那么: y =848022)80x x++⨯( =81602x+)480x+( 当且仅当82=x x即x=2时,y min=1760(元) ∴最低造价为1760元。
2.方程思想:方程思想是最基本,也是最重要的数学思想方法之一。
它从对问题的数量关系分析入手,运用数学语言将问题转化为数学模型,通过解方程或方程组使问题获解。
【应用举例】:已知二次函数2y ax bx c =++的图象的顶点为 (-1,2),且图像过点(0,-1),求这个函数的解析式。
分析:见到本题,多数同学都能说出用待定系数法,殊不知待定系数法体现的数学思想就是方程思想,本题中找到三个独立的条件,列出三个方程组成方程组,问题得到解决。
解:根据题意,列方程得:2112424c b aac b a ⎧⎪=-⎪⎪-=-⎨⎪⎪-=⎪⎩3 61a b c =-⎧⎪⇒=-⎨⎪=-⎩ 所以:解析式为2361y x x =---.3.整体思想:解数学问题时,人们习惯于化整为零,各个击破,有时,研究问题若能有意识地放大考察问题的“视角”,将需要解决的问题看作一个整体,通过对整体结构的调节和转化使问题获解。
几种常见的数学思想在小学数学中的应用
几种常见的数学思想在小学数学中的应用Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT数学几种常见的数学思想在小学数学中的应用怀化市湖天桥小学黄才克通过在教学中发现,其实很多初中高中的一些比较常见的数学思想其实在小学数学中早已经有所体现,并且运用到解题中,这对于从小培养学生的思维能力,数学素养都有重要的作用。
小学数学中常见的数学思想方法有转化思想、数形结合思想、分类讨论的思想、整体代入的思想、特殊值的思想、极限思想、符号化思想等。
学生要形成这些基本思想,我觉得一要靠自身的感悟、体验,本身要有一定的数学素养,二要靠教师平时教学过程中慢慢的渗透、指导。
以上一些数学思想方法其实在小学数学中都有体现,下面我就结合教学中发现的一些典型的例子做一一介绍和分析。
1.转化思想转化思想随着继续深造学习,就有另外一个名字,就是化归思想,所谓“化归”,就是转化和归结的意思.但小学阶段主要是体现转化的思想。
其实这种数学思想可以说一直贯穿整个数学学习过程中,无所不在。
转化是将有待解决或未解决的问题,转化为一类已经解决或较易解决的问题,在来解决。
其实质就是通过对问题的转化来解决问题的一种方法。
任何数学问题的解决过程,都是一个未知向已知转化的过程,一切新问题总是转化为旧问题来解决。
转化思想是数学中最普遍使用的一种基本而典型的数学思想,教学时经常用到它,如化未知为已知、化难为易、化繁为简、化曲为直等。
例如小数六年级在教学分数除法时候,就是将除法转发为已经学过的乘法。
在求圆柱体积时候就是通过转化的思想把圆柱转化为已经学过的长方体的来计算,在求圆的面积时候,把圆转化为已经学过的长方形面积,以及三角形转化为平行四边形,梯形面积转化为平行四边形面积,在求圆柱的侧面积的时候,侧面是一个曲面,通过转化思想把曲面转化成平面图形,在推导圆的周长的将曲线变成直线。
都体现的是一种转化的思想。
以及五年级异分母分数的加减法化归为同分母分数加减法;异分母分数比较大小通过“通分”化归为同分母分数比较大小。
小学数学常用的16种解题思想方法
数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
初中数学思想方法举例
“初中数学思想方法举例”是网络学习作业,这里收录了三位优秀作业初中数学思想与方法技巧举例文希初中数学思想和解题方法有很多,归纳起来常用的有以下几种:数形结合思想;整体代入思想;转化思想;分类讨论思想;方程与不等式思想;数形结合思想;函数思想;配方法;换元法; 待定系数法; 判别式法; 面积法; 构造法;归纳法;反证法等在解题时常常是几种思想方法相互渗透交织并用。
下面我略举几例讲讲:一、 整体代入和转化思想例1:已知x – 3y = -3 ,则 5 – x +3y 的值是 ( )A 、 0B 、2C 、5D 、8解:5 – x + 3y = 5 – (x-3y )= 5-(-3)= 5+3=8 .本题思想是“整体代换”和“转化”这里变换出x-3y 整体用-3代换。
体现了整体思想。
“5 – x + 3y = 5 – (x-3y )”体现了转化思想。
二、 转化思想和换元法例2:解方程:0624=--x x解::设2x = y (y ≥0),则原方程变为062=--y y 可解得2,321-==y y (不合题设,舍去),再由31=y 得32=x ,则3±=x 。
本题的思想是“转化”,技巧是换元降次。
式子“设2x = y (y ≥0)”换元后降次了,于是四次方程“0624=--x x ”转化成了关于y 的二次方程“062=--y y ”,化难为易,顺利将问题解决。
三、 分类讨论思想例3:解关于x 的方程:x ax -=-52解:移项整理得 ()512=+x a① 当012≠+a 即21-≠a 时,方程解为125+=a x ② 当012=+a 即21-=a 时,方程无解。
练习题:若关于x 的方程0432=+--+b a b a x x 是一元二次方程,求a 、b 的值。
当方程含有字母系数又没确定范围时,解题常常要进行分类讨论。
四、 方程与不等式思想例4:某服装老板到厂家选购A 、B 两种型号的服装,若购A 型号9件,B 型号10件则要1810元。
(完整word)数形结合思想在解题中的应用(包含30例子)汇总,推荐文档
数形结合思想在解题中的应用(包含30例子)一、知识整合1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。
如等式()()x y -+-=214223.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。
这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。
二、例题分析例1.的取值范围。
之间,求和的两根都在的方程若关于k k kx x x 310322-=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >,()()02bf f k a-=-<10(10)k k -<<∈-同时成立,解得,故,例2. 解不等式x x +>2 解:法一、常规解法:“数形结合”在解题中的应用原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩02020202 解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222 法二、数形结合解法: 令,,则不等式的解,就是使的图象y x y x x x y x 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。
数学思想方法
数学资料第 1 页 共 3 页1一、数学思想方法的运用数学思想包括:分类讨论的思想、数形结合的思想、方程与函数的思想、转化的思想。
常用数学方法包括:换元法、消元法(整体消元、加减消元、降幂消元)、递推归纳、构造(建模)、特殊值、排除法、等量代换等等。
举例∶一瓶汽水1.5元,三个空瓶可以换一瓶汽水,问30元钱可以换几瓶汽水。
( 一 )方程与函数的思想应用举例∶1、ABC ∆中,AC AB =,O BAD 20=∠,且AD AE =,则=∠CDE2、矩形()CB AB ABCG <与矩形CDEF 全等,点D C B ,,在同一直线上,APE ∠的顶点P 在线段BD 上移动,使APE ∠为直角的点P 的个数为( )个。
3、某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费10元时,床位可全部租出.若每张床位每天收费提高2元,则相应的减少了10张床位租出.如果每张床位每天以2元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是( ) (A) 14元 (B) 15元 (C) 16元 (D) 18元 4、如图,点C 线段A B 上的一个动点,1A B =,分别以A C 和C B为一边作正方形,用S 表示这两个正方形的面积之和,下列判断正确的是( )A .当C 是AB 的中点时,S 最小 B .当C 是A B 的中点时,S最大C .当C 为AB 的三等分点时,S 最小D .当C 为A B 的三等分点时,S最大5、直角三角形ABC中,∠ABC=90O,AB=AD ,CB=CF ,求∠DBF 的值。
6、甲、乙两人分别从两地同时出发,若相向而行,则a 小时相遇,若同向而行,则b 小时甲追上乙,那么甲的速度是乙的速度的( )倍。
7、在3×3字和都等于S ,先填在图中三格中的数字如图所示,若要填成,则 A 24 B 30 C 31 D 39 8、 如图,矩形ABCD ,AD=a ,AB=b ,要使BC 边上至少存在一点P ,使△ABP 、△APD 、△CDP 两两相似,则a,b 间的关系一定满足( ) A.a ≥21 b .a ≥b C. a ≥23b D .a ≥2b9、每个人心里都想好一个数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报3的人心里想的数是多少?10、 如图是生活中常用的一种卫生纸,从这种卫生纸的包装纸上得到资料:“两层300格,每格11.4×11cm(长×宽)。
初中数学解题常用的数学思想方法
初中数学解题常用的数学思想方法数学学习分为好多个环节,比如预习、上课、作业、复习、考试等等,而上课的部分是非常关键的环节。
小编整理了初中数学解题常用的数学思想方法,欢迎参考借鉴。
初中数学解题常用的数学思想方法1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。
配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。
数学思想
1、抽象方法的应用举例:分数概念的形成。
教学分数的意义时,通过演示教具和操作学具,让学生把一个圆,一个正方形,八根彩色小棒,一条线段等,各自分成若干等份,标出其中的一份或几份;撇开各种实物的不同颜色、形状,而仅仅注意它们等份的份数以及所取的几份。
多次操作后,结合直观图示概括:把单位1(可以是一个物体),平均分成几份,表示其中的一份或几份的数叫分数。
然后介绍分数的表示方法及分数各部分名称,最后让学生举出几个不同的分数并说明它们表示的意义。
通过动作思维——建立表象——抽象思维——具体实例,分数的概念在学生头脑中就初步形成了。
2、猜想方法的应用举例:例1两个边长相等的正六边形,一个顶点在另一个的中心上,且绕着这个中心转动,求重合部分的面积是这个正六边形面积的几分之几?分析:首先联想,两个半径相等的圆,一圆经过另一个圆的圆心,现将一圆绕另一个圆的圆心转动,显然它们重合部分的面积是不变的。
其次比较,它们相同之处都有两个完全相等的图形,且一个绕另一个的中心旋转,而不同之处:前者是圆后者是正六边形,然而如果我们视正六边形是一个正()边形,又此正边形的边数无限多时,则又可近似地看作是圆。
最后猜想,当一个正六边形绕另一个正六边形中心旋转时,其重合部分的面积是不变的。
根据这一猜想,将一正六边形绕到另一个正六边形特殊位置,则容易求出其重合面积是正六边形面积的三分之一。
3、反驳方法的应用举例:(1)假定命题成立,推出荒谬结果,从而证明了该命题是虚假的。
例如证明“零可以作除数”是错误的。
证明:因为2—2=3—3即2(1—1)=3(1—1)若零可以作除数,则推出2=3这一结果,显然荒谬。
“零可以作除数”是错误的。
4、化归方法的应用举例:例1在假定我们已经会求矩形面积的前提下,去求解:(1)平行四边形面积;(2)三角形面积;(3)多边形面积。
解(1)由于我们已经会求矩形面积,因而我们会很自然地想到用割补法把平行四边形化为与之等积的矩形。
常见的数学思想.docx
冃录两数与方程思想数形结合思想分类讨论思想方程思想整体思想转化思想隐含条件思想类比思想I求I数与方程思想数形结合思想分类讨论思想方程思想整体思想转化思想隐含条件思想类比思想•建模思想•化归思想•归纳推理思想展开编牡段函数与方程思想函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。
方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。
有时,还实现函数与方程的互和转化、接轨,达到解决问题的忖的。
笛卡尔的方程思想是:实际问题一数学问题一代数问题f方程问题。
宇宙世界,充斥着等式和不等式。
我们知道,哪里有等式,哪里就有方程; 哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。
列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。
函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。
它体现了“联系和变化”的辩证唯物主义观点。
一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f(X)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,耍求我们熟练掌握的是一次函数、二次函数、幕函数、指数函数、对数函数、三角函数的具体特性。
在解题屮,善于挖掘题tl屮的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。
对所给的问题观察、分析、判断比较深入、充分、全而时,才能产生由此及彼的联系,构造出函数原型。
另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考小考查的重点。
我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值Z类的问题,利用函数观点加以分析;含有多个变量的数学问题屮,选定合适的主变量,从而揭示其屮的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见数学思想方法应用举例所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识.所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映.数学思想是数学的灵魂,数学方法是数学的行为.运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想.其实,在初中数学中,许多数学思想和方法是一致的,两者之间很难分割.它们既相辅相成,又相互蕴含.因此,在初中数学教学中,加强学生对数学方法的理解和应用,以达到对数学思想的了解,是使数学思想与方法得到交融的有效方法.比如化归思想,可以说是贯穿于整个初中阶段的数学,具体表现为从未知到已知的转化、一般到特殊的转化、局部与整体的转化,课本引入了许多数学方法,比如换元法,消元降次法、图象法、待定系数法、配方法等。
在教学中,通过对具体数学方法的学习,使学生逐步领略内含于方法的数学思想;同时,数学思想的指导,又深化了数学方法的运用.初中阶段《数学大纲》要求我们了解的常用的基本数学思想有:整体思想与分类的思想、数形结合的思想、化归的思想、函数与方程的思想,抽样统计思想等.《数学大纲》中要求“了解”的方法有:分类法、类比法、反证法等。
要求“理解”或“会应用”的方法有:建模法、待定系数法、消元法、降次法、代入法、加减法、因式分解法、配方法、公式法、换元法、图象法(也称坐标法)以及平行移动法、翻折法等. 1、 整体思想整体思想是一种常见的数学方法,它把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的有机联系,从而在客观上寻求解决问题的新途径.往往能起到化繁为简,化难为易的效果.它在解方程的过程中往往以换元法的形式出现.例1、整体通分法计算112+--x x x解:原式1111)1)(1(1122--=----+=--+=x x x x x x x x x 评注:本题若把1,+x 单独通分,则运算较为复杂;一般情况下,把分母为1的整式看作一个整体进行通分,运算较为简便.例2、整体代入法:(绵阳市05)已知实数a 满足0822=-+a a ,求34121311222+++-⨯-+-+a a a a a a a 的值。
解:化简得原式2)1(2+=a ,由0822=-+a a 得9)1(2=+a ,∴ 原式92=.评注:本题通过整体变形代入,起到降次化简的显著效果.例3、换元法(温州市05)用换元法解方程(x 2+x)2+(x 2+x)=6时设x 2+x =y ,则原方程可变形为( )A 、y 2+y -6=0B 、y 2-y -6=0C 、y 2-y +6=0D 、y 2+y +6=0 解:选A例4、平移法(泸州05改编)如图,在宽为20m ,长为30m 的矩形地面上修建两条同样宽的道路,余下的耕地面积为551m 2,试求道路的宽x = m地合并为一个整体,而面积却没有改变,得方程551)30(20=--x x )(得=x 2、分类思想分类思考的方法是一种重要的数学思想,同时也是一种解题策略。
在数学中,我们常常需要根据研究对象性质的差异,按照一定的标准,把有关问题转化为几个部分或几种情况,从而使问题明朗化,然后逐个加以解决,最后予以总结得出结论的思想方法.例5、定义分类(潍坊市05)已知圆A 和圆B 相切,两圆的圆心距为8cm ,圆A 的半径为3cm ,则圆B 的半径是( ).A 、5cmB 、11cmC 、3cmD 、5cm 或11cm解:选D (按定义分内切与外切两种).例6、位置分类(资阳市05)若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a >b ),则此圆的半径为A 、 2a b + B 、 2a b - C 、 2a b +或2a b - D 、 a +b 或a -b ( )解析:需考虑点P 在圆内与圆外两中情况,选C.例7、系数分类:(淄博市04改编)若关于x 的0122=-+x kx 有实数根,则k 的取值范围是 (A)k >-1 (B)k ≥-1 (C)k >-1且k ≠0 (D)k ≥-1且k ≠0 解:分系数00≠=k k 与两种情况讨论,选B .例8、运算法则分类(衢州市04改编)根据下图所示的程 序计算函数值,若输出的γ值为2,则输入的χ值为( ) A 、-2 B 、0 C 、2、-2 D 、2、-2、0 解:选A 。
例9、取值分类:(日照05改编)已知a 、b 满足122=-a a ,122=-b b ,则abb a +值等于 . 解:(1)当b a =时,值为2;当b a ≠时,b a ,是0122=--x x 的两异根,值为6-. 3、方程思想方程是刻画现实世界的一个有效的数学模型,是研究数量关系的重要工具.我们把所要研究的问题中的已知与未知量之间的相等关系,通过建立方程或方程组,并求出未知量的值,从而使问题得解的思想方法称为方程思想.方程思想在实际问题、代数和几何中都有着广泛的应用.1) 用方程思想解实际问题 例10、国家为了加强对香烟产销的宏观管理,对销售香烟实行征收附加税政策.现在知道某种品牌的香烟每条的市场价格为70元,不加收附加税时,每年产销100万条,若国家征收附加税,每销售100元征税x 元(叫做税率x%),则每年的产销量将减少10x 万条.要使每年对此项经营所收取附加税金为168万元,并使香烟的产销量得到宏观控制,年产销量不超过50万条,问税率应确定为多少?解析:根据题意得70(100-10x).x%=168,x 2-10x+24=0,解得 x 1=6, x 2=4, 当x 2=4时,100-10×4=60>50,不符合题意,舍去, x 1=6时,100-10×6=40<50, ∴税率应确定为6%.评注:数学应贴近生活,关注生活,在近年中考中越来越得到重视,应用题不失为一个很好的载体. 2)用方程思想解有关函数题基本类型有:通过列方程或方程组求待定系数,进而求出函数解析式;研究函数图象的交点,解决函数图象与坐标轴交点等有关问题.例11、(镇江市05)已知反比例函数xky =的图像与一次函数y kx b =+的图像相交于点(2,1). 求:(1)k b ,的值;(2)两函数图像的另一个交点的坐标.第9题图解:(1)把点(2,1)代入xky =得2=k ,把2=k 和点(2,1)代入y kx b =+得3-=b . ∴2=k ,3-=b .(2)当2=k ,3-=b 时反比例函数为,2xy =一次函数32-=x y 联立得方程组⎪⎩⎪⎨⎧-==322x y xy 322-=∴x x 得⎩⎨⎧==1211y x ⎪⎩⎪⎨⎧-=-=42122y x ∴另一个交点为)4,21(--. 3)用方程思想解证几何题所谓用方程思想解证几何题,就是充分挖掘题设和结论中隐含的数量关系,借助图形的直观性质,寻求已知量与未知量之间的等量关系,借以建立方程或方程组,然后应用方程的理论和解方程的方法,求得几何题的解决.例12、(杭州市05)已知AC 切⊙O 于A ,CB 顺次交于⊙O 于D ,B 点,AC=6,BD=5,连接AD ,AB 。
(1) 证明△CAD ∽△CBA ; (2) 求线段DC 的长。
解:(1)略;(2)Θ△CAD ∽△CBA ∴BCACAC CD =∴BC CD AC ⋅=2 即:66)5(⨯=+⋅CD CD 解得4=CD ,9-=CD (不合题意). 4、化归思想所谓化归思想就是在研究和解决有关数学问题时采用某种手段将陌生的或不易解决的问题,转化为我们熟悉的,或已经解决的、容易解决的问题,从而最终把数学问题解决的思想方法.例13、未知向已知转化(日照市04)方程组{322=-+-=x y mx y 只有一个实数解,则实数m 的值是 . 解:0,21,61--(转化为一元一次方程或一元二次方程考虑有解) 例14、复杂向简单转化(武汉市05)如图,中,,AC =2,AB =4,分别以AC 、BC为直径作半圆,则图中阴影部分的面积为 .分析:图中阴影部分是一个不规则的图形,其结构较为复杂.解这类题时,我们可把不规则图形的面积转化为简单、规则图形的面积和或差来处理. 解:ABC S S S S ∆-+=小半圆大半圆阴影=322-π例15、(特殊化与一般化)(绵阳市2005年) 如图15①,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用S 1、S 2、S 3表示,则不难证明S 1=S 2+S 3 .(1) 如图15②,分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用S 1、S 2、S 3表示,第14题图BOD 第12题图那么S 1、S 2、S 3之间有什么关系?(不必证明)(2) 如图15③,分别以直角三角形ABC 三边为边向外作三个正三角形,其面积分别用S 1、S 2、S 3表示,请你确定S 1、S 2、S 3之间的关系并加以证明;(3) 若分别以直角三角形ABC 三边为边向外作三个一般三角形,其面积分别用S 1、S 2、S 3表示,为使S 1、S 2、S 3之间仍具有与(2)相同的关系,所作三角形应满足什么条件?证明你的结论;(4) 类比(1)、(2)、(3)的结论,请你总结出一个更具一般意义的结论 .分析:特殊化和一般化是我们数学解题的常用方法,而由特殊情况得出更为普遍和一般的结论,或由普遍和一般的结论得出特殊情况,这也是我们数学发现的重要策略和常用方法.解:设直角三角形ABC 的三边BC 、CA 、AB 的长分别为a 、b 、c ,则c 2=a 2+b 2. (1) S 1=S 2+S 3 .(2)S 1=S 2+S 3 .证明如下:显然,S 1=243c ,S 2=243a, S 3=243b , ∴S 2+S 3=()12224343S c b a ==+ . (也可用三角形相似证明)(3) 当所作的三个三角形相似时,S 1=S 2+S 3 . 证明如下:∵ 所作三个三角形相似, ∴2212c a S S =,2213cb S S = 321222132,1S S S cb a S S S +=∴=+=+∴.(4) 分别以直角三角形ABC 三边为一边向外作相似图形,其面积分别用S 1、S 2、S 3表示,则S 1=S 2+S 3 .5、数形结合思想所谓数形结合思想就是在研究问题时把数和形结合考虑或者把问题的数量关系转化为图形的性质,或者把图形的性质转化为数量关系,从而使复杂问题简单化,抽象问题具体化。
例16、(日照05)近年来市政府不断加大对城市绿化的经济投入,使全市绿地面积不断增加.从2002年底到2004年底城市绿地面积变化如图所示,那么绿地面积的年平均增长率是__________.解析:设绿地面积的年平均增长率是为x ,则可得363)1(3002=+x ,解得1.2,1.021-==x x (不合题意,舍去),故绿地面积的年平均增长率是10%.评注:数形结合是近年中考的热点,正确的读(识)图是本题的关键.注意:平均增长率并不是两年增长率的平均值.若原来的基数为a ,平均增长率为x ,则增长一次后达到)1(x a +,增长二次后达到2)1(x a +…增长n 次后达到n x a )1(+;若改为平均减少的百分率为x ,则减少一次后为)1(x a -,减少二次后为2)1(x a -…减少n 次后为nx a )1(-.7、抽样统计思想用样本的平均数、方差来估计总体的平均数、方差是一种抽样统计思想,这种思想是可靠的、科学的,在节约人力、物力、财力的同时,也提高了工作效率。