关于求解行列式的几种特殊的方法
行列式的计算技巧与方法总结
行列式的几种常见计算技巧和方法2.1 定义法适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性.例1 计算行列式004003002001000.解析:这是一个四级行列式,在展开式中应该有244=!项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有41322314a a a a ,而()64321=τ,所以此项取正号.故004003002001000=()()241413223144321=-a a a a τ.2.2 利用行列式的性质即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法上、下三角形行列式的形式及其值分别如下:nn n nn a a a a a a a a a a a a a2211nn333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 例2 计算行列式nn n n b a a a a a b a a a a ++=+21211211n 111D .解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形.解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得121n 11210000D 0n n na a ab b b b b +==.2.2.2 连加法这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.例3 计算行列式mx x x x m x x x x mx D n n n n ---=212121.解: mx x mxx m x m xx x mxn ni in ni in ni i-----=∑∑∑===212121n Dmx x x m x x x m x n n nn i i --⎪⎭⎫ ⎝⎛-=∑=2221111mm x x m x nn i i --⎪⎭⎫ ⎝⎛-=∑=0000121()⎪⎭⎫ ⎝⎛--=∑=-m x m ni i n 11.2.2.3 滚动消去法当行列式每两行的值比较接近时,可采用让邻行中的某一行减或者加上另一行的若干倍,这种方法叫滚动消去法.例4 计算行列式()2122123123122121321D n ≥-------=n n n n n n n n nn.解:从最后一行开始每行减去上一行,有1111111111111111321D n ---------=n n 1111120022200021321----=n n 0111100011000011132122+-=-n n n ()()21211-++-=n n n .2.2.4 逐行相加减对于有些行列式,虽然前n 行的和全相同,但却为零.用连加法明显不行,这是我们可以尝试用逐行相加减的方法.例5 计算行列式111110000000000000D 32211n na a a a a a a ----=. 解:将第一列加到第二列,新的第二列加到第三列,以此类推,得:13210000000000000000D 321+----=n na a a a n()()()()()n n n a a a n a a a n 21n 21n 2211111+-=+--=+.2.3 降阶法将高阶行列式化为低阶行列式再求解. 2.3.1 按某一行(或列)展开例6 解行列式1221n 1000000000100001D a a a a a xx x x n n n-----=.解:按最后一行展开,得n n n n n a x a x a x a D ++++=---12211 .2.3.2 按拉普拉斯公式展开拉普拉斯定理如下:设在行列式D 中任意选定了()1-n k 1k ≤≤个行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式D.即n n 2211A M A M A M D +++= ,其中i A 是子式i M 对应的代数余子式.即nn nn nn nn nnB A BC A •=0, nn nn nnnn nn B A B C A •=0.例7 解行列式γβββββγββββγλbbbaa a a n =D .解:从第三行开始,每行都减去上一行;再从第三列开始,每列都加到第二列,得βγβγγββββγλ---=0000D n b aa a a()()βγβγββββγλ---+-=0000021n b aa a a n ()()βγβγβγλ--•-+-=000021n ba n ()()[]()21n 2-----+=n ab n βγβλλγ.2.4 升阶法就是把n 阶行列式增加一行一列变成n+1阶行列式,再通过性质化简算出结果,这种计算行列式的方法叫做升阶法或加边法.升阶法的最大特点就是要找每行或每列相同的因子,那么升阶之后,就可以利用行列式的性质把绝大多数元素化为0,这样就达到简化计算的效果.其中,添加行与列的方式一般有五种:首行首列,首行末列,末行首列,末行末列以及一般行列的位置.例8 解行列式D=111110111110111110111110 .解:使行列式D 变成1+n 阶行列式,即111010110110101110011111D =.再将第一行的()1-倍加到其他各行,得:D=1101001001010001111111--------. 从第二列开始,每列乘以()1-加到第一列,得:100100000100000101111)1n D ------=( ()()1n 11n --=+.2.5数学归纳法有些行列式,可通过计算低阶行列式的值发现其规律,然后提出假设,再利用数学归纳法去证明.对于高阶行列式的证明问题,数学归纳法是常用的方法.例9 计算行列式βββββcos 211cos 200000cos 210001cos 210001cos=n D .解:用数学归纳法证明. 当1=n 时,βcos 1=D . 当2=n 时,ββββ2cos 1cos 2cos 211cos 22=-==D .猜想,βn D n cos =.由上可知,当1=n ,2=n 时,结论成立.假设当k n =时,结论成立.即:βk D k cos =.现证当1+=k n 时,结论也成立.当1+=k n 时,βββββcos 211cos 200000cos 210001cos 210001cos 1=+k D .将1+k D 按最后一行展开,得()βββββcos 20cos 21001cos 21001cos cos 21D 111k •-=++++k k()10cos 21001cos 21001cos 11 βββkk ++-+ 1cos 2--=k k D D β.因为βk D k cos =,()()βββββββsin sin cos cos cos 1cos 1k k k k D k +=-=-=-,所以1+k D 1cos 2--=k k D D βββββββsin sin cos cos cos cos 2k k k --= ββββsin sin cos cos k k -= ()β1cos +=k .这就证明了当1+=k n 时也成立,从而由数学归纳法可知,对一切的自然数,结论都成立. 即:βn D n cos =.2.6 递推法技巧分析:若n 阶行列式D 满足关系式021=++--n n n cD bD aD .则作特征方程02=++c bx ax .① 若0≠∆,则特征方程有两个不等根,则1211--+=n n n Bx Ax D .② 若0=∆,则特征方程有重根21x x =,则()11-+=n n x nB A D . 在①②中, A ,B 均为待定系数,可令2,1==n n 求出.例10 计算行列式94000005940000000594000005940000059D n=.解:按第一列展开,得21209---=n n n D D D .即020921=+---n n n D D D .作特征方程02092=+-x x .解得5,421==x x .则1154--•+•=n n n B A D .当1=n 时,B A +=9; 当2=n 时,B A 5461+=. 解得25,16=-=B A ,所以1145++-=n n n D .3、行列式的几种特殊计算技巧和方法3.1 拆行(列)法3.1.1 概念及计算方法拆行(列)法(或称分裂行列式法),就是将所给的行列式拆成两个或若干个行列式之和,然后再求行列式的值.拆行(列)法有两种情况,一是行列式中有某行(列)是两项之和,可直接利用性质拆项;二是所给行列式中行(列)没有两项之和,这时需保持行列式之值不变,使其化为两项和. 3.1.2 例题解析例11 计算行列式nn n n a a a a a a a a --------=-1110000011000110001D 133221.解:把第一列的元素看成两项的和进行拆列,得nn n n a a a a a a a a --+-+--+-+--=-11010000001100001010001D 133221.1101000001100010000110001000001100011000113322113322nn n nnn a a a a a a a a a a a a a a a -------+-------=--上面第一个行列式的值为1,所以nn n n a a a a a a a ------=-1101000010011D 13321111--=n D a .这个式子在对于任何()2≥n n 都成立,因此有111--=n n D a D()()n n n a a a a a a D a a 2112112211111---+++-==--=()∏∑==-+=ij j ii a 1n111.3.2 构造法3.2.1 概念及计算方法有些行列式通过直接求解比较麻烦,这时可同时构造一个容易求解的行列式,从而求出原行列式的值. 3.2.2 例题解析例12 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是德蒙德行列式,但可以考虑构造1+n 阶的德蒙德行列式来间接求出n D 的值. 构造1+n 阶的德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x的系数为()()n n n n n n D D A -=-=+++11,1.又根据德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .3.3 特征值法3.3.1 概念及计算方法设n λλλ ,,21是n 级矩阵A 的全部特征值,则有公式 n A λλλ 21=.故只要能求出矩阵A 的全部特征值,那么就可以计算出A 的行列式.3.3.2 例题解析例13 若n λλλ ,,21是n 级矩阵A 的全部特征值,证明:A 可逆当且仅当它的特征值全不为零. 证明:因为n A λλλ 21=,则A 可逆()n i i n 2,1000A 21=≠⇔≠⇔≠⇔λλλλ. 即A 可逆当且仅当它的特征值全不为零.4、几类特殊的行列式的巧妙计算技巧和方法4.1 三角形行列式4.1.1 概念形如nn n n n a a a a a a a a a a 333223221131211,nnn n n a a a a a a a a a a321333231222111这样的行列式,形状像个三角形,故称为“三角形”行列式.4.1.2 计算方法 由行列式的定义可知,nn nnn nn a a a a a a a a a a a a a2211333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 4.2 “爪”字型行列式4.2.1 概念形如nn na c a c a cb b b a2211210,nn n c a c a c a a b b b2211012,n nn b b b a a c a c a c 211122,121122a b b b c a c a c a n n n这样的行列式,形状像个“爪”字,故称它们为“爪”字型行列式. 4.2.2 计算方法利用对角线消去行列式中的“横线”或“竖线”,均可把行列式化成“三角形”行列式.此方法可归纳为:“爪”字对角消竖横. 4.2.3 例题解析例14 计算行列式na a a a 111111321,其中.,2,1,0n i a i =≠分析:这是一个典型的“爪”字型行列式,计算时可将行列式的第.),3,2(n i i =列元素乘以ia 1-后都加到第一列上,原行列式可化为三角形行列式.解:na a a a 111111321nni ia a a a a 00011113221∑=-=⎪⎪⎭⎫⎝⎛-=∑=ni i n a a a a a 21321. 4.3 “么”字型行列式4.3.1 概念形如n n n b b b a a c a c a c 211122,nn na b c a b c a b c a2221110,n n nc a c a c a a b b b 2211012,0111222a cb ac b a c b a nn n ,121122c a c a b a b c a b nnn,n n n a c a c a c b b b a2211210,0121122a b b b c a c a c a nnn,nnn b a b c b a b a c a c 12211201这样的行列式,形状像个“么”字,因此常称它们为“么”字型行列式. 4.3.2 计算方法利用“么”字的一个撇消去另一个撇,就可以把行列式化为三角形行列式.此方法可以归纳为:“么”字两撇相互消.注意:消第一撇的方向是沿着“么”的方向,从后向前,利用n a 消去n c ,然后再用1-n a 消去1-n c ,依次类推. 4.3.3 例题解析例15 计算1+n 阶行列式nn n b b b D 1111111111----=-+ .解:从最后一行开始后一行加到前一行(即消去第一撇),得nnn ni ini in b b b bb D 11111111-+--+-=-==+∑∑()()()⎪⎭⎫ ⎝⎛+--•-=∑=+ni i nn n b 121111()()⎪⎭⎫ ⎝⎛+--=∑=+ni i n n b 12311.4.4 “两线”型行列式4.4.1 概念形如nnn a b b b a b a0000000012211-这样的行列式叫做“两线型”行列式. 4.4.2 计算方法对于这样的行列式,可通过直接展开法求解. 4.4.3 例题解析例16 求行列式nn n n a b b b a b a00000000D 12211-=. 解:按第一列展开,得()1221112211000010000-+-+-+=n n n nn n b b a b b a b b a a D()n n n b b b a a a 211211+-+=.4.5 “三对角”型行列式4.5.1 概念形如ba ab ba ab b a abb a ab b a +++++10000000000100000100000这样的行列式,叫做“三对角型”行列式. 4.5.2 计算方法对于这样的行列式,可直接展开得到两项递推关系式,然后变形进行两次递推或利用数学归纳法证明. 4.5.3 例题解析例17 求行列式ba ab ba ab b a abb a ab b a n +++++=10000000000100000100000D.解:按第一列展开,得()ba ab ba b a ab b a abb a ab D b a n n +++++-+=-100000010000100000D 1()21---+=n n abD D b a .变形,得()211D ----=-n n n n aD D b aD .由于2221,b ab a D b a D ++=+=, 从而利用上述递推公式得()211D ----=-n n n n aD D b aD ()()n n n n b aD D b aD D b =-==-=---122322 .故()nn n n n n n n n n b ab b a D a b b aD a b aD D ++++==++=+=------12211121 n n n n b ab b a a ++++=--11 .4.6 Vandermonde 行列式4.6.1 概念形如113121122322213211111----n nn n n nna a a a a a a a a a a a这样的行列式,成为n 级的德蒙德行列式.4.6.2 计算方法通过数学归纳法证明,可得()∏≤<≤-----=11113121122322213211111i j j i n nn n n nna a a a a a a a a a a a a a. 4.6.3 例题解析例18 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是德蒙德行列式,但可以考虑构造1+n 阶的德蒙德行列式来间接求出n D 的值. 构造1+n 阶的德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= , 其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 ,故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .5、行列式的计算方法的综合运用有些行列式如果只使用一种计算方法不易计算,这时就需要结合多种计算方法,使计算简便易行.下面就列举几种行列式计算方法的综合应用.5.1 降阶法和递推法例19 计算行列式2100012000002100012100012D=n .分析:乍一看该行列式,并没有什么规律.但仔细观察便会发现,按第一行展开便可得到1-n 阶的形式.解:将行列式按第一行展开,得212D ---=n n n D D . 即211D ----=-n n n n D D D .∴12312211=-=-==-=----D D D D D D n n n n . ∴()()111111---++++==+=n n n n D D D()121+=+-=n n .5.2 逐行相加减和套用德蒙德行列式例20 计算行列式43423332232213124243232221214321sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1sin 1sin 1sin 11111D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++++++++++=解:从第一行开始,依次用上一行的()1-倍加到下一行,进行逐行相加,得43332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin 1111ϕϕϕϕϕϕϕϕϕϕϕϕ=D .再由德蒙德行列式,得()∏≤<≤-==4143332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1111i j j i D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ.5.3 构造法和套用德蒙德行列式例21 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是德蒙德行列式,但可以考虑构造1+n 阶的德蒙德行列式来间接求出n D 的值. 构造1+n 阶的德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .。
计算行列式常用的7种方法
行列式的计算方法介绍7种常用方法1 三角化方法:通过行列初等变换将行列式化为三角型行列式.例1 计算n+1阶行列式xa a a a a x a a a a x D nnn32121211=+2 把某一行(列)尽可能化为零 例2 计算:yy x x D -+-+=222222222222222243 递归法(数学归纳法):设法找出D n 和低级行列式间的关系,然后进行递归.例4 证明:βαβαβαβααββααββα--=++++=++1110000010001000n n n D例5 证明范德蒙行列式(n ≥2)∏≤<≤-----==nj i jin nn n n n nn x x x x x x x x x x x x x x V 111312112232221321)(11114 加边法:对行列式D n 添上一适当行和列,构成行列式D n+1,且D n+1=D n 例6 证明:)11(11111111111111111111121321∑=+=++++=ni in nn a a a a a a a a D5 拆分法:将行列式表为行列式的和的方法.即如果行列式的某行(或列)元素均为两项和,则可拆分为两个行列式之和 例7 设abcd=1,求证:011111111111122222222=++++ddd d c c c c b b b ba a a a6 利用行列式的乘积:为求一个行列式D 的值,有时可再乘上一个适当的行列式∆;或把D 拆分为两个行列式的积. 例8(1)1)cos()cos()cos()cos(1)cos()cos()cos()cos(1)cos()cos()cos()cos(1121332312322113121n n n n n n D αααααααααααααααααααααααα------------=(2)设S k =λ1k +λ2k +⋯+λn k (k=1,2…),求证:∏≤<≤-+-+--=nj i j in n nn n nn s s s s s s s s s s s s s s s n 1222111432321121)(λλ7 利用拉普拉斯定理求行列式的值.拉普拉斯定理是行列式按某一行(或列)展开定理的推广.定义(1) 在n 阶行列式D 中,任取k 行k 列 (1≤k ≤n),位于这k 行k 列交叉处的k 2个元素按原来的相对位置组成的k 阶行列式S ,称为D 的一个k 阶子式.如:D=3751485210744621则D 的一个2阶子式为:S=8261 在一个n 阶行列式中,任取k 行,由此产生的k 阶子式有C kn 个.(2) 设S 为D 的一个k 阶子式,划去S 所在的k 行k 列,余下的元素按原来的相对位置组成的n-k 阶行列式M 称为S 的余子式.又设S 的各行位于D 中的第i 1,i 2…i k 行,S 的各列位于D 中的第j 1,j 2…j k 列,称A=(-1)(i1+i2+…+ik)+(j1+j2+…+jk)M.如:3751485210744621则D 的一个2阶子式为:S=8261M=3517为S 的2阶子式 M=(-1)(1+3)+(1+3)3517为S 的代数余子式.拉普拉斯定理:若在行列式D 中任取k 行 (1≤k ≤n-1),则由这k 行所对应的所有k 阶子式与它们的代数余子式的乘积等于D. 例9 计算2112100012100012100012=D 例10 块三角行列式的计算 设:⎪⎪⎭⎫ ⎝⎛=⨯⨯n n m m C B A *0或 ⎪⎪⎭⎫⎝⎛=⨯⨯n n m m C B A 0* 则:detA=(detB)(detC).特别地:若A=diag(A 1,A 2,…,A t ),则DetA=(detA 1)(detA 2)…(detA t ).例11 设分块矩阵⎪⎪⎭⎫⎝⎛=D C B A 0,其中0为零阵,B和D可逆,求A-1.例12 计算nn b b b a a a D 1001000102121 =例13 设:⎪⎪⎭⎫ ⎝⎛=C B A , BC T =0.证明:|AA T |=|BB T ||CC T |.(注:可编辑下载,若有不当之处,请指正,谢谢!)。
行列式计算技巧
行列式计算技巧行列式计算技巧行列式是线性代数中的重要概念,它是由矩阵中的元素组成的一种数值。
行列式的计算是线性代数中的基本操作,也是求解线性方程组、矩阵的逆等问题的重要工具。
行列式的计算方法有很多种,以下将介绍几种行列式计算的技巧。
1. 按行(列)展开法按行(列)展开法是行列式计算中的基本方法之一。
该方法的原理是利用行列式的定义式,将行列式按其中一行(列)展开成若干个代数余子式与它们对应的代数余子式所组成的和式,从而得到行列式的值。
这种方法通常适用于行列式的规模比较小的情况。
2. 范德蒙德行列式范德蒙德行列式是一种特殊的行列式形式,它在概率论、数值计算等领域中有广泛的应用。
范德蒙德行列式的定义式是一个$n\times n$的行列式,其中第$i$行第$j$列的元素为$x_i^{j-1}$。
范德蒙德行列式的值是一个关于$x_1,x_2,\cdots,x_n$的多项式,其系数和指数分别与行列式中的代数余子式有关。
3. 对角行列式对角行列式是一种特殊的行列式形式,它的所有非零元素都在对角线上,其余元素都为零。
对角行列式的值等于对角线上元素的积。
对角行列式在计算矩阵的特征值和特征向量等问题中有广泛的应用。
4. 分块矩阵行列式分块矩阵行列式是一种将大型矩阵拆分成若干小矩阵的行列式形式,通过计算每个小矩阵的行列式以及它们的代数余子式之间的运算,最终得到整个大矩阵的行列式值。
这种方法通常适用于行列式的规模比较大、结构比较复杂的情况。
以上是几种行列式计算的技巧,每种方法都有其适用范围和注意事项。
在实际应用中,需要根据具体问题选择合适的计算方法,以提高计算效率和准确度。
行列式的计算技巧
行列式的计算技巧行列式的计算技巧很多,在这里,我们介绍常见的一些行列式的计算技巧,主要包括 行和或列和相等,爪型(歪爪型)、范德蒙(伪范德蒙)、加边法、递推降阶法、层层递加(减)法等等。
方法1 行(列)和相等这类行列式的计算一般把行列式的行全部加到第一行,或者把所有的列全部加到第一列,习惯上,我们可以全部加到第一列,提取公因子后,第一列全部变成1,从而方便我们植1造0,或者在此时观察行列式的特点, 进一步化成上三角或者下三角来进行计算。
例1 .兰州大学2004招收攻读硕士研究生考试工试题第四大题第(1)小题。
求如下行列式的值。
12121123123n nn n x a a a a x a a D a a a a a a a x+=[分析] 我们再仔细看一下,每行的元素的和数都是一样的,那么我们从第2列开始到第n+1列都加到第1列,现提出公因式,这样行列式的次数就降了一次。
解:1211221211232312323111()11ni n i nn i ni nn n i i nn i n i ni i a xa a a a a a a xxa a xa a D a x a a a a x a a a a a xa xa a x==+===++==+++∑∑∑∑∑对行列式xa a a a a a a x a a a n nn 32322211111 进行观察,此时一般有两种途径,一种是在第一列造0,把第二行开始后的每一行都减去第一行,或者利用第一列的1,把第一列的倍数加到其他列来造0,具体采用哪个看具体问题,在本题中,可以考虑把第一列的1a -倍加到第2列, 第一列的2a -倍加到第3列,,第一列的n a -倍加到最后一列,。
从而有)())()((1010010001)(1111)(2112312231211323222111n n i i nni i n n n ni i n a x a x a x x a a x a a a a a a a a a x x a xa a a a a a a xa a a x a D ---+=------+=+=∑∑∑===+方法2 爪(歪爪)型行列式此类行列式有三条线构成,类似一个爪子,或者歪爪,可以采用去爪的方法来做,特别注意歪爪只能去掉歪了的爪子,在去爪的过程中,利用主对角线上的元素来去爪子,层层递进即可。
关于求解行列式的几种特殊的方法
关于求解行列式的几种特殊的方法行列式是线性代数中一个重要的概念,它在计算机科学、物理学和工程学等领域都有广泛的应用。
在求解行列式的过程中,存在一些特殊的方法,可以帮助我们简化计算和提高效率。
本文将介绍几种常见的特殊方法,包括拉普拉斯展开、三角形展开和行列式性质的运用等。
1.拉普拉斯展开法拉普拉斯展开法是求解行列式的一种基本方法,适用于任意阶的矩阵。
其核心思想是通过分解矩阵,将复杂的行列式转化为多个较小规模的行列式的代数和。
具体步骤如下:1)选择一个行(列)展开,将行(列)按照一些特定的顺序展开。
2)对每一个元素a[i][j],构造一个以该元素为顶点的代数余子式M[i][j],即划去第i行和第j列后剩下的矩阵所构成的行列式。
3)计算每一个代数余子式的值M[i][j],并与对应的元素a[i][j]相乘,得到M[i][j]*a[i][j]。
4)将所有得到的乘积相加,该结果即为原行列式的值。
>例如,对于一个3阶矩阵A,可以选择按照第一行展开,则拉普拉斯展开为:>,A,=a11*M11-a12*M12+a13*M13>其中,M11,M12,M13分别是以元素a11,a12,a13为顶点的代数余子式。
拉普拉斯展开法的优点是适用于任意规模的矩阵,但是对于高阶矩阵来说,计算量较大,效率较低。
2.三角形展开法三角形展开法是求解上三角行列式的一种特殊方法,适用于上三角矩阵,即矩阵的主对角线以下的元素都为0。
该方法通过逐步消元来简化计算,减少了矩阵的规模。
具体步骤如下:1)将上三角矩阵A拆分为一个上三角矩阵B和下三角矩阵C的乘积,即A=BC。
2) 计算上三角矩阵B的主对角线上的元素的乘积,即B =b11*b22*...*bnn。
3)将下三角矩阵C的主对角线上的元素分别除以上一步得到的乘积,得到新的下三角矩阵C'。
4) 计算新的下三角矩阵C'的主对角线上的元素的乘积,即C' =c'11*c'22*...*c'nn。
行列式的求解方法
行列式的求解方法
行列式是线性代数中的一种非常重要的概念,它是由一个方阵所组成的一个数值。
计算行列式的主要方法有数学归纳法、按行(列)展开法、初等变换法等。
数学归纳法是一种基于数学归纳的方法,适用于递归定义的行列式计算。
具体做法是先将一些小规模的行列式的值求出,再利用这些小规模行列式的值求出更大规模的行列式。
按行(列)展开法也是求解行列式的一种主要方法。
该方法将一个行列式按照其中的某一行或某一列展开成一些小的行列式,通过递归地计算这些小行列式,最终计算出原始行列式的值。
初等变换法是一种求解行列式的简便方法。
该方法将一个矩阵通过一系列基本初等变换(交换行、交换列、加减倍数行、加减倍数列)转化为一个上(下)三角矩阵,从而求出行列式的值。
利用初等变换法求得的行列式的值,可以相对较快地得到行列式的一些性质,如行列式的奇偶性。
除了以上三种方法,还有伴随矩阵法、克莱姆法、Schur补等
方法来求解行列式。
其中,伴随矩阵法和Schur补法是求解高
维行列式时的常用方法,克莱姆法则适用于方程组解法中的行列式求解。
总而言之,行列式在线性代数中具有重要的地位,也是各种求解方法的一个基础,通过不同的方法可以求解不同大小、不同
类型的行列式,对于学习和应用线性代数都具有十分重要的意义。
(完整版)行列式的计算方法总结
行列式的计算方法总结:1. 利用行列式性质把行列式化为上、下三角形行列式.2. 行列式按一行(一列)展开,或按多行(多列)展开(Laplace 定理). 几个特别的行列式:B A BC A BC A ==0021,B A BA D DB Amn )1(0021-==,其中B A ,分别是n m ,阶的方阵. 例子: nn abab ab b a b abaD 22=,利用Laplace 定理,按第1,+n n 行展开,除2级子式ab ba 外其余由第1,+n n 行所得的2级子式均为零. 故222222112)()1(--+++++-=-=n n n n n n n D b a D ab b a D ,此为递推公式,应用可得n n n n b a D b a D b a D )()()(224222222222-==-=-=-- .3. 箭头形行列式或者可以化为箭头形的行列式.例:nn n n n n n a x x a a x x a a x x a a a a x x a a a a x a a a a x a a a a x ------=0001133112211321321321321321 -----(倍加到其余各行第一行的1-) 100101010011)(3332221111-------⋅-=∏=nn n n i i i a x a a x a a x a a x x a x --------(每一列提出相应的公因子i i a x -) 1001000010)(33322221111nn n ni ii i n i i i a x a a x a a x a a x a a x x a x ----+-⋅-=∑∏== --------(将第n ,,3,2 列加到第一列)其它的例子:特点是除了主对角线,其余位置上的元素各行或各列都相同.n x a aa a a x a a a a a x a a a aa x a ++++ 321,nn n n a x a a a a a x a a a a a x a a a a a x ++++ 321321321321. 4. 逐行逐列相减法.行列式特点是每相邻两行(列)之间有许多元素相同.用逐行(列)相减可以化出零. 5. 升阶法(或加边法, 添加一行一列,利于计算,但同时保持行列式不变).例子:nn n n nnn n nn n n nn b a b a b a a b a b a b a a b a b a b a a b b b b a b a b a b a b a b a b a b a b a ++++-++++-++++----=++++++++++++10101010000011112122212212111121212221212111∑∑∑∑∑∑======+--+=---+--+=------=ni in i i i ni in ni i n i i i ni in n b b a na b b b b b a na a a ab b b 1112111121211110100000101111111010100111011101∑∑∑∑∑∑∑=≠======-+++=-++=nj nji i j i j ni i ni i ni i i ni i ni i a a b b a b a n b a 1111111)(1)1)(1(.例子:nnx a aaaa x a a a a a x a a a a a x a a a a a x a aaaa x a a a a a x a aa a a x a ++++=++++0001321321).1(00000000000010100010001000111213211321∑∑==+=+=----=ni in nni inx a x x x x x x x a a a a x a x x x x a a a a6. 利用范德蒙德行列式.计算行列式: n nn n nn nn n n nnx x x x x x x x x x x x x x x x D321223222122322213211111----=解: 令: nnnn nn n nn n n n nn n n ny x x x y x x x y x x x y x x x y x x x D211112112222212222212111111--------=,这是一个1+n 级范德蒙德行列式. 一方面,由范德蒙德行列式得)())(()(2111n ni j j ix y x y x y x xD ---⋅-=∏≤<≤ .可看做是关于y 的一个n 次多项式.另一方面,将1D 按最后一列展开,可得一个关于y 的多项式01111p y p y p y p D n n n n ++++=-- ,其中1-n y 的系数1-n p 与所求行列式D 的关系为1--=n p D .由)())(()(2111n ni j j ix y x y x y x xD ---⋅-=∏≤<≤ 来计算1-n y的系数1-n p 得:∑∏=≤<≤-⋅--=ni i ni j j in x x xp 111)(,故有∑∏=≤<≤-⋅-=-=ni i ni j j in x x xp D 111)(其它的例子:=+-+++-++-++------n n n n n n n n n n n n n n n n n n nn n n nb b a b a b a a b b a b a b a a b b a b a b a a 111121211111212222222122111121211111……每一行提公因子n i a ,nn n n n n n n n n n n n n nn n n a b a b a b a b a ba b a b a b a b a b a ba b a a a )()()()(1)()()()(1)()()()(1111112111122122222221111121111121++-++++++--+=).(1121∏≤<≤+-=n i j j j ii nn n n a b a b a a a7.利用数学归纳法证明行列式.(对行列式的级数归纳)证明当βα≠时,,1000001000100011βαβαβααββαβααββααββα--=+++++=++n n n D证明时,将n D 按第一行(或第一列)展开得21)(---+=n n n D D D αββα,利用归纳假设可得. 8. 利用递推公式.例子: 计算行列式,10000010001000βααββαβααββααββα+++++=n D 解: 按第一行展开得: 21)(---+=n n n D D D αββα,将此式化为:(1) )(211----=-n n n n D D D D αβα或 (2) )(211----=-n n n n D D D D βαβ 利用递推公式(1)得:n n n n n n n n D D D D D D D D βαβαβαβα=-==-=-=-------)()()(122322211 ,即n n n D D βα+=-1. (3)利用递推公式(2)得:n n n n n n n n D D D D D D D D αβαβαβαβ=-==-=-=-------)()()(122322211 ,即n n n D D αβ+=-1. (4)由(3)(4) 解得: ,,)1(,11⎪⎩⎪⎨⎧=+≠--=++βααβαβαβαn n n n n D其它的例子nn acb a ac b a c b a D00000000000=,按第一行展开可得21---=n n n bcD aD D ,此时令,,bc a ==+αββα则21)(---+=n n n D D D αββα,变形为211)(----=-n n n n D D D D αβα,此为递推公式.利用刚才的例子可求得结果. 这里,,bc a ==+αββα即βα,是方程02=+-bc ax x 的两个根.9. 分拆法.将行列式的其中一行或者一列拆成两个数的和,将行列式分解成两个容易求的行列式的和.例子:accccb ac c c bb ac c bbbac b b b b c a c accccb ac c c bb ac c bbbacb b b b a D n-+==210000V V acccb ac c b b a c b b b a b b b b c a accccb ac c c b b a c c b b b a c b b b b c +=-+=1V : 除第一行外,其余各行加上第一行的1-倍,所得行列式按第一列展开,2V 按第一列展开.11)(0000000--=----------=n b a c ba b c b c bc ba b c b c b b b a b c ba b b b b c V12)(--=n D c a V , 故11)()(---+-=n n n D c a b a c D ,由c b ,的对称性质,亦可得11)()(---+-=n n n D b a c a b D ,这两个式子中削去1-n D ,可得结论,bc c a b b a c D nn n ----=)()(.注: (1) 同一个行列式,可有多种计算方法.要利用行列式自身元素的特点,选择合适的计算方法. (2) 以上的各种方法并不是互相独立的,计算一个行列式时,有时需要综合运用以上方法,。
行列式的几种计算方法7篇
行列式的几种计算方法7篇第1篇示例:行列式是线性代数中的一个重要概念,它是一个方阵中的一个数值,可以帮助我们判断矩阵的性质,计算行列式的值是线性代数中的基础技能之一。
下面我们将介绍几种行列式的计算方法以及其应用。
一、直接展开法计算行列式最基本的方法就是直接展开法。
以3阶行列式为例,一个3阶方阵的行列式可以表示为:\[\begin{vmatrix}a &b &c \\d &e &f \\g & h & i\end{vmatrix}\]通过公式展开,可以得到:\[\begin{aligned}\begin{vmatrix}a &b &c \\d &e &f \\g & h & i\end{vmatrix} & = aei + bfg + cdh - ceg - bdi - afh \\& = a(ei - fh) - b(di - fg) + c(dh - eg)\end{aligned}\]这样就可以直接计算出行列式的值。
但是这种方法比较繁琐,不适用于高阶行列式的计算。
二、拉普拉斯展开法\[\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn} \\\end{vmatrix}\]以第一行为例,可以按照以下公式展开:\[ \text{det}(A) = a_{11}C_{11} + a_{12}C_{12} + \cdots +a_{1n}C_{1n} \]C_{ij}表示元素a_{ij}的代数余子式,通过递归计算代数余子式,最终可以得到行列式的值。
线性代数行列式求解的技巧
线性代数行列式求解的技巧行列式是线性代数中的一个重要概念,它可以用于求解线性方程组的解、判断矩阵是否可逆等问题。
行列式的计算通常使用展开法、性质法等多种方法,以下是一些行列式求解的技巧。
1. 展开法展开法是求解行列式的一种常用方法,其基本思想是通过将行列式展开为一系列子行列式的和来计算。
行列式的展开可以按照某一行或某一列进行展开,通常选择具有最多零元素的行或列进行展开可以减少计算的复杂度。
例如,对于一个3阶行列式:A = |a11 a12 a13||a21 a22 a23||a31 a32 a33|我们可以选择第一行或者第一列进行展开,以第一列为例:A = a11|a22 a23| - a21|a12 a13| + a31|a12 a13||a32 a33| |a32 a33| |a22 a23|展开后的每一项都是一个2阶子行列式,可以通过直接计算或继续展开来求解。
展开法的优点是较为直观,但当行列式阶数较高时计算量巨大,不适合大规模行列式的计算。
2. 元素对应法则行列式的元素对应法则指的是对于一个n阶行列式,其每一项的元素都来自于不同行不同列的n个元素的乘积。
在计算中,可以通过指定元素的位置来构造行列式。
例如,对于一个3阶行列式:A = |a11 a12 a13||a21 a22 a23||a31 a32 a33|其中,a11来自于A的第一行第一列,a22来自于A 的第二行第二列,a33来自于A的第三行第三列。
通过这种方法,可以方便地构造行列式并进行计算。
3. 行变换法行变换法是求解行列式的一种简化计算的方法,通过对行进行一系列变换,将行列式化为三角形式或对角形式,从而简化计算。
常用的行变换包括行列式的行交换、行乘法、行加法等。
行交换可以通过直接交换行的位置得到,行乘法可以将某一行的元素乘以一个常数,行加法可以将某一行的元素乘以一个常数后加到另一行,行变换不改变行列式的值。
通过行变换后,可以使行列式的某些元素为零,使得计算行列式的展开或使用性质更加方便。
几种特殊类型行列式及其计算
几种特殊类型行列式及其计算特殊类型行列式是指其中元素满足一定的特殊规律或形式的行列式。
下面将介绍几种常见的特殊类型行列式及其计算方法。
1.对角行列式:对角行列式是指除了主对角线上的元素外,其余元素都为0的行列式。
对角行列式的计算非常简单,只需将主对角线上的元素相乘即可。
例如,行列式a00b00的值为a*b*c。
2.上三角行列式:上三角行列式是指除了主对角线及其上方的元素外,其余元素都为0的行列式。
上三角行列式的计算方法是将主对角线上的元素相乘。
例如,行列式120400的值为1*4*6=243.下三角行列式:下三角行列式是指除了主对角线及其下方的元素外,其余元素都为0的行列式。
下三角行列式的计算方法与上三角行列式相同,将主对角线上的元素相乘。
例如行列式708910111的值为7*9*12=7564.三角行列式:三角行列式是指一个矩阵的主对角线两侧的元素相同。
例如,行列式122334的值可以通过利用矩阵的对称性进行计算。
首先,将第二行减去第一行得到121134然后,再将第三行减去第一行的三倍得到12110-2-然后,再将第三行减去第二行的两倍得到121100-最后,将主对角线上的元素相乘,即1*1*(-2)=-2,即该行列式的值为-25.雅可比行列式:雅可比行列式是指一种特殊的三阶行列式形式。
∂(f1,f2,f3)---------∂(x,y,z)表示函数f1,f2,f3关于x,y,z的偏导数。
以上介绍了几种特殊类型的行列式及其计算方法。
了解不同类型的行列式有助于我们更好地理解和应用线性代数的相关理论和方法。
行列式的计算方法-计算行列式的格式
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载行列式的计算方法-计算行列式的格式地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容行列式的计算方法摘要:线性代数主要内容就是求解多元线性方程组,行列式产生于解线性方程组, 行列式的计算是一个重要的问题。
本文依据行列式的繁杂程度,以及行列式中字母和数字的特征,给出了计算行列式的几种常用方法:利用行列式的定义直接计算、化为三角形法、降阶法、镶边法、递推法,并总结了几种较为简便的特殊方法:矩阵法、分离线性因子法、借用“第三者”法、利用范德蒙德行列式法、利用拉普拉斯定理法,而且对这些方法进行了详细的分析,并辅以例题。
关键词:行列式矩阵降阶The Methods of Determinant CalculationAbstract:Solving multiple linear equations is the main content of the linear algebra, determinants produced in solving linear equations, determinant calculation is an important issue.This article is based on the complexity degree of the determinant, and the characteristics of letters and numbers of the determinant ,and then gives several commonly used methods to calculate the determinant: direct calculation using the definition of determinant, into the triangle, reduction method, edging method , recursion, and summarizes several relatively simple and specific methods: matrix, linear separation factor method, to borrow "the third party" method, using Vandermonde determinant method, using Laplace theorem,also analyze these methods in detail,and supported by examples.Keywords: determinant matrix reduction.1.引言线性代数主要内容就是求解多元线性方程组,行列式产生于解线性方程组,然而它除了用于研究线性方程组、矩阵、特征多项式等代数问题外,还在各种工程领域有着广泛的应用,是一种不可缺少的运算工具,所以说行列式的计算是一个重要的问题。
关于求解行列式的几种特殊的方法
)* 递推法 通过降阶等途径, 建立所求 ’ 阶行列式 " # " 和比 它低阶的但是结构相同的行列式之间的关系, 并求得 # 的方法叫递推法* 例如课本上的范得蒙行列式的计算就是应用了递 推法* 例: 计算范得蒙行列式 & ,& +’ $ ,% & …
’ (& ,&
& ,% ,% % …
’ (& ,%
;, ] ’ 4[ 2
’ ) ) 2
5 3 4 3 ]
! (・
( ) ( )( )( ) ( ) ( )
* , + ’ ( . / 0 ! 0 0 0 0 !) # %
’(
! ’2 [ ’ 2/ 5 4. 2 5 3. 2 ]5 3 [ ’ 2 . 3 5 4. 2 5 3. 2]’ 4 [ 2. 4 5 43. ’ 4/ ]! 20 ’ 4. 2. ’ 3. 2. 5 30 ’ 2. 3. ’ 3. 4. 5 40 ’ 2. 4. ’ 3. 4. ! 20 5 30 5 40 ’ .2. 3. ’ .3. 4. ’ .2. 4. 虽然可以得出结果, 但是过程过于复杂。如果用 分离线性因子法把第 . 、 /、 0 列都加到第 ( 列上, 由多 项式整除的概念, 有 ( 2 5 3 5 4) & #, 如果第 ( 列加上 第 . 列再减去第 / 列和第 0 列 ( 2 5 4 ’ 2 )& #, 同样 有, 如果第 ( 列加上第 / 列再减去第 . 列和第 0 列有 ( 2 5 3 ’ 4) & #, 若第 ( 列加上第 0 列减去第 . 列和第 / 列有 ( 2 5 3 ’ 4) & #, 因为以上这些整式互素所以有 ( 2 5 3 5 4) ( 3 5 4 ’ 2) ( 2 5 4 ’ 3) ( 2 5 3 ’ 4) & #, 因为这四个因子的乘积包括带有的系数为 ’ ( , 而行列 式本身包含同一项的系数为 5 ( , 所以得出 # ! ’ (2 ( 3 5 4 ’ 2) ( 2 5 4 ’ 3) ( 2 5 3 ’ 4 )! 20 5 5 3 5 4) 30 5 40 ’ .2. 3. ’ .3. 4. ’ .2. 4. 1 /) 代数方程组法 当所求行列式是由几个元素组成的, 若用曾经求 解过的行列式作系数行列式, 构造一个 6 元线性方程 组, 所求行列式中可作为线性方程组解的组成部分1 ( 7( 例: 求 #6 ! 7. ( … 7
求解行列式的几种特殊方法
求解行列式的几种特殊方法
1.滚动消去法当行列式每两行的之比较接近时,可采用让临近的某一行减或者加上另一行的若干倍,这种方法可称之为滚动消去法。
例1:
2.加边法将n阶行列式补上一行和一列变为n+1阶行列式,再利用有关性质求取结果。
例2:
3.递推降级法 如果一个行列式在元素分布上比较有规律,可设法找出n 阶行列式n D 与与较低阶行列式的关系。
a )如果n 阶行列式满足关系式:10n n aD bD c -++=,一般通过寻找n D 与1n D -的关系,形成以n D 、1n D -为未知量的二元一次方程组,求得n D 。
b )如果n 阶行列式满足关系式:120n n n aD bD cD --++=,则作特征方程20ax bx
c ++=。
i )若特征方程的判别式∆≠0,则特征方程有两个不相等的根: 1x ,2x ,则
1
1
1
2
n n n D A x B x --=+。
其中A ,B 为待定系数,令n=1,2,求出A,B 。
ii )若特征方程的判别式∆=0,则特征方程有两个相等的根1x ,2x ,则1
1
()n n D A nB x -=+其中A ,B 为待定系数,令n=1,2,求出A,B 。
例3:。
行列式的计算方法和技巧大总结
行列式的计算方法和技巧大总结行列式是线性代数中的一个重要概念,用于表示线性方程组的性质和解的情况。
在计算行列式时,有许多方法和技巧可以帮助我们简化计算过程。
以下是行列式计算方法和技巧的大总结。
1. 二阶矩阵行列式:对于一个2x2的矩阵A,行列式的计算方法是ad-bc,其中a、b、c和d分别为矩阵A的元素。
2. 三阶矩阵行列式:对于一个3x3的矩阵A,行列式的计算方法是a(ei-fh) - b(di-fg) + c(dh-eg),其中a、b、c、d、e、f、g和h分别为矩阵A的元素。
3.行变换法:行变换是一种常用的简化计算行列式的方法。
行变换可以通过交换行、倍乘行和行加减法三种操作来实现。
当进行行变换时,行列式的值保持不变。
4.行列式的性质:行列式有以下性质:a)交换行,行列式的值相反;b)两行交换位置,行列式的值相反;c)同行相等,行列式的值为0;d)其中一行乘以一个数k,行列式的值变为原来的k倍;e)两行相加(减),行列式的值保持不变。
5.定义展开法:行列式的定义展开法可以通过选取任意一行或一列对行列式进行展开。
展开定理是一种递归的方法,它将一个复杂的行列式分解成若干个简单的行列式,从而简化计算过程。
6.三角矩阵行列式:对于一个上(下)三角矩阵,它的行列式等于对角线上的元素相乘。
这是因为在上(下)三角矩阵中,除了对角线上的元素外,其他元素都为0,因此它们的乘积为0。
7.克拉默法则:克拉默法则适用于解线性方程组时的行列式计算。
克拉默法则使用行列式来计算方程组的解。
具体来说,对于n个方程n个未知数的线性方程组,如果系数矩阵的行列式不为零,那么该方程组有唯一解,可以通过求解该方程组的克拉默行列式来得到方程组的解。
8.外积法则:在向量代数中,我们可以使用外积法则计算向量的叉乘。
对于两个三维向量a和b,它们的叉乘可以表示为a×b,它的模就是行列式的值。
具体计算方法是:ijka1a2a3b1b2b3其中,i、j和k是单位向量,a1、a2、a3和b1、b2、b3分别为向量a和向量b的坐标。
行列式的几种计算方法
行列式的几种计算方法行列式是线性代数中的一个重要概念,它在矩阵和向量运算中起着关键作用。
行列式的计算方法有多种,接下来将介绍几种常用的计算方法。
1. 代数余子式法代数余子式法是最基本的行列式计算方法之一。
对于一个n阶行列式A,我们可以通过以下公式进行计算:Det(A) = a11A11 + a12A12 + ... + a1nA1na11是矩阵A的元素,A11是a11的代数余子式。
代数余子式的计算方法是对矩阵A的每个元素求其代数余子式,然后再按照公式相加,得到最终的行列式值。
代数余子式法的优点是直观易懂,适用于任意阶数的行列式。
但是当阶数比较大时,计算量较大,需要进行大量的矩阵代数运算,因此效率较低。
2. 初等变换法初等变换法是另一种常用的行列式计算方法。
该方法通过对矩阵进行一系列的初等变换,将矩阵化简为上三角矩阵或对角矩阵,然后再通过对角线元素的乘积得到行列式的值。
初等变换包括三种操作:互换两行(列)、某一行(列)乘以一个非零数、某一行(列)加上另一行(列)的若干倍。
通过这三种操作,我们可以将矩阵变换为三角形式,从而更容易计算行列式的值。
初等变换法的优点是可以有效地简化矩阵,使得行列式的计算更加简单。
但是这种方法对于高阶矩阵来说,计算量仍然较大,且需要一定的技巧和经验。
3. 克拉默法则克拉默法则是一种利用矩阵的逆矩阵来计算行列式的方法。
对于一个n阶行列式A,其公式如下:Det(A) = (A^-1) * Adj(A)A^-1表示矩阵A的逆矩阵,Adj(A)表示矩阵A的伴随矩阵。
利用克拉默法则进行行列式的计算,首先需要求出矩阵A的逆矩阵,然后再求出伴随矩阵,最后通过矩阵相乘得到行列式的值。
克拉黫法则的优点是适用于任意阶数的行列式,且对于n阶行列式的计算只需要进行一次逆矩阵的运算和一次矩阵相乘,计算量较小。
4. 三角阵法三角阵法是通过将矩阵化成上三角形式或下三角形式,来简化行列式的计算。
对于一个n阶行列式A,我们可以通过初等变换将矩阵A化为上(下)三角矩阵T:然后再通过上(下)三角矩阵T的对角线元素的乘积得到行列式的值。
几类特殊N阶行列式的计算
几类特殊N阶行列式的计算在线性代数中,N阶行列式是一个非常重要的概念。
行列式可以看作是一个矩阵的一种特殊性质,它在很多数学和应用问题中都有广泛的应用。
在这篇文章中,我们将讨论一些特殊的N阶行列式的计算方法。
一、对称行列式对称行列式是指行列式中的每个元素都关于主对角线镜像对称。
例如,一个3阶对称行列式可以写成如下形式:$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{vmatrix}$$对称行列式的计算方法有很多,以下是其中几种常用的方法。
1.代数余子式法代数余子式法是一种常用的计算对称行列式的方法。
首先,我们可以按照主对角线元素展开行列式,得到:$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{vmatrix}=a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{33}\end{vmatrix} - a_{12}\begin{vmatrix} a_{12} & a_{23} \\ a_{13}& a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{12} & a_{22}\\ a_{13} & a_{23} \end{vmatrix}$$然后,继续按照代数余子式展开行列式,直到得到一个2阶行列式。
最后,根据2阶行列式的计算公式计算出最终的结果。
2.克拉默法则克拉默法则是一种利用行列式计算方程组的方法。
行列式的特殊解法
行列式的特殊解法【摘要】行列式在高等数学中占有非常重要的地位,在高等代数、解析几何等很多数学分支中都有广泛的应用。
本文列举了行列式的几种特殊计算方法:如数学归纳法,递推法等等,通过代表性的例题,阐述了不同类型的行列式的计算方法。
【关键词】行列式三角形行列式范德蒙行列式教材上介绍了一些行列式的基本计算方法,但基本方法只能处理一些较为简单的行列式,不能满足实际应用的需要.下面将在基本方法的基础上介绍一些特殊解法。
1数学归纳法当Dn与Dn+1是同型的行列式时,可考虑用数学归纳法求之。
一般是利用不完全归纳法寻找出行列式的猜想值,再用数学归纳法给出猜想的证明。
因此,数学归纳法一般是用来证明行列式等式。
例1计算行列式D=x-10…000x-1…00……………000…x-1anan-2an-3…a2a1+x解:结合行列式的性质与次行列式本身的规律,可以采用数学归纳法对此行列式进行求解。
当n=2,D=x-1a2x+a1=x(x+a1)+a2=x2+a1x+a2,假设n=k时,有Dk=xk+a1xk-1+a2xk-2+…+ak-1x+ax当n=k+1时,把Dk+1按第一列展开,得Dk+1=xDk+ak+1=x(xk+a1xk-1+a2xk-2+…+ak-1x+ak)+ak+1=xk+1+a1xk+…+ak-1x2+akx+ak+1由此,对任意的正整数n,有Dn=xn+a1xn-1+…+an-2x2+an-1x+an。
2递推法2.1基本概念。
定义1:形为dn+k1dn-1+k2dn-2+…+krdn-r=0(2-1)的关系式称为阶齐次线性递推关系式,其中,均为常数,并且kr≠0,对应的方程kr+k1xr-1+k2xr-2+…+kn=0(2-2)称为(2-1)的特征方程。
定义2:对于序列a0,a1,a2,…定义G(x)=a0+a1x+a2x2+…,为序列a0,a1,a2,…的母函数。
2.2二阶常系数齐次递推表达式的解。
各种行列式的计算方法
各种行列式的计算方法宝子们,今天咱们来唠唠行列式的计算方法呀。
一、定义法。
这就像是最基础的招式啦。
按照行列式的定义,把所有可能的排列组合算出来。
不过呢,这个方法可有点费时间,就像你要一个一个数小珠子一样,要是行列式的阶数大一点,那可就累得够呛。
比如说二阶行列式,按照定义算起来还比较轻松,就是主对角线元素相乘减去副对角线元素相乘。
但是三阶或者更高阶的,那可就复杂得多喽。
二、三角形行列式法。
这个方法可就比较巧妙啦。
我们想办法把行列式通过行变换或者列变换变成上三角或者下三角行列式。
为啥呢?因为三角形行列式的值就等于主对角线元素的乘积呀,多方便。
就像把一堆乱乱的东西整理得整整齐齐的,然后一下子就能算出结果。
比如说给你一个行列式,你就观察一下,哪行或者哪列加上或者减去其他行或者列的倍数,能让它慢慢变成三角形的样子。
三、按行(列)展开法。
这个方法就像是拆积木一样。
你可以按照行列式的某一行或者某一列展开。
比如说按第一行展开,那这个行列式的值就等于这一行的每个元素乘以它对应的代数余子式然后相加。
代数余子式呢,就像是这个元素的小跟班,有自己的计算方法。
这个方法在行列式里有很多零元素的时候特别好用,就像走捷径一样,直接找那些简单的部分来计算。
四、行列式的性质法。
行列式有好多有趣的性质呢。
比如说两行(列)交换,行列式的值就变成原来的相反数;某一行(列)乘以一个数加到另一行(列),行列式的值不变。
我们就可以利用这些性质,把行列式变得简单一些再去计算。
就像给行列式做个小整容,让它变得更可爱(好计算)。
宝子们,行列式的计算方法就这么些啦,多做做练习,就会发现其实也没有那么难啦。
加油哦!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007 年 2 月
过分 块 若 能 转 化 为 对 角 矩 阵 或 下 ( 上 ) 三 角 矩 阵 A = - 2( n- 2) ! C 0 B , 那么行列式 A 0 0 B = A C 0 B = |A | & | B |,
|A | =
n- 2 3 . 递推法 通过降阶等途径 , 建立所求 n 阶行列式 |A |和比 它低阶的但是结构相同的行列式之间的关系, 并求得 A 的方法叫递推法. 例如课本上的范得蒙行列式的计算就是应用了递 推法. 例 : 计算范得蒙行列式 1 a1 Dn = a a1
上式仍然不是上 ( 下 ) 三角行列式, 这时我们可以 用降阶法, 注意第二行除了第一项是 1 , 后面的项都是
* 收稿日期 :
2006- 06- 12 作者简介 : 陈黎钦 ( 1973 -
), 女 , 福建商业高等专科学校讲师
96 0 , 我们按第二行展开 , 得 2 2 1 ! ! 2
福建商业高等专科学校学报
1%
0 1 7 8 这道题的常规解法是将其化为上三角行列式进行 计算 1 解法 1 : 原式 = 0 1 0 0 1 1 3 0 5 1 7 2 4 6 8 = 1 0 0 1 0 0 0 0 1 3 4 4 2 4 4 4 = 0
1 an
= an - an- 1
则 Dn- 1 =
∃ ( a j - a i ) , 其中 ∃是连乘号. i% j % n
2 1 4 4 2 2 2 2 2 2 4
|AB- ACA D |. 当 A= C 时 , |AB - ACA D B
D | = |AB-
D | = | AB - CD |. 所 以 当 A = C 时, 我 们 有 = |AB- CD |, 这样例题就可以直接写出答案 1 0 0 1 , B= 5 6 7 8 , C= 1 0 0 1 ,
2 1
Z Y X Y Z Y 0 0 0 X X +Y Y X 0
1 a2 a a
2 2
! ! ! !
1 an an ! an
n- 1 2
Z X - Z Y
Z X
Z Y
Z Y +Y
=
1∗ i> j∗ n
∃
( aj - ai )
!
n- 1 1
!
n- 1 2
= - X[X
- Z
98 于 是 当 a i ( aj 时, 比 值 x1 + a1 x2 + ! + a ! ! !
解法 3 :令 A= D= 1 3 2 4 .
因为 A = C, 所以原行列式 = |AB - CD | = 1 0 0 1 = 5 6 7 8 5 6 7 8 1 0 0 1 = 0 1 2 3 4
1 2 3 4
2) 分离线性因子法 这种方法是把行列式看成含有其中的一个或一些 字母的多项式, 经过变换后 , 发现它可被一些线性因子 整除, 这意味着它也可被这些因子的积所整除 , 利用这 一特性 , 可求得行列式的值 . 0 计算行列式 D= X Y X Y 0 Z 0 Z X 0 Z Y
2007年 2月第 1 期 原行列 式 = 1 0 0 1 = 1& & 5 7 6 8 A C D B 1 0
关于求解行列式的几种特殊的方法 = | A | & | B - CA 0 1 = 1 0 4 4 0 1 4 4 1 2 3 4 = 0
- 1
97 - 0 0
3
D |=
Y[X Z 0
Z X Y - 0 0 Y
n 2n- 3 2n- 1 n- 1
解 : 本题可 以用三角化的方法, 将 的第一行乘以 ( - 1)加到第 2 , 3 , !, n 行, 再将其第 n, n- 1 , !, 2 , 1 列通过相邻两列互换依次调为第 1 , 2 , !, n 列 , 则得 n 0 |A | = 0 ! 0 n- 1 n- 1 0 0 ! n- 2 0 ! ! ! ! ! ! 3 0 2 ! 0 0 2 1 0 ! 0 0 1 0 0 ! 0 0
Y X Z + Z
2
0 Y
+ Y Z
2
Y
Z
Z Y
] - Z [X
Y X
2 2
Z X2Βιβλιοθήκη Z Y3 4]
2 2
5 6 7 8
1 2 3 4
= - X[ - X + Z X+ Y X] + Y[ - X Y+ Z X+ Y X] - Z [ X Z + ZY - Z ] = X - Z X - Y X + Y X Y - Y Z + Z - X Z - Y Z = X + Y + Z - 2X Y - 2Y Z - 2X Z
2 2 2 2 2 2 2 4 2 2 2 2 4 4 4 2 2 2 2 2 2 2 4
这道题还有个特点, 那就是 A = C, 如果我们把公 式变形 , 即 A C CAA A C
- 1
D B
- 1
= |A |& |B- CA D | = |A( B - CA D) | =
- 1 -1 - 1
虽然可以得出结果, 但是过程过于复杂。如果用 分离线性因子法把第 2 、 3 、 4 列都加到第 1 列上, 由多 项式整除的概念 , 有 ( X + Y + Z ) |D, 如果第 1 列加上 第 2 列再减去第 3 列和 第 4 列 ( X + Z - X ) | D, 同样 有 , 如果第 1 列加上第 3 列再减去第 2 列和第 4 列有 ( X+ Y - Z) |D, 若第 1列加上第 4列减去第 2 列和第 3 列有 ( X + Y- Z ) |D, 因为以上这些整式互素所以有 ( X+ Y + Z) ( Y + Z - X) ( X + Z - Y ) ( X + Y - Z ) |D, 因为这四个因子的乘积包括带有的系数为 - 1 , 而行列 式本身包含同一项的系数为 + 1 , 所以得出 D= - ( X + Y+ Z ) ( Y + Z - X ) ( X + Z - Y) ( X + Y - Z ) = X + Y + Z - 2X Y - 2Y Z - 2X Z . 3) 代数方程组法 当所求行列式是由几个元素组成的 , 若用曾经求 解过的行列式作系数行列式 , 构造一个 n 元线性方程 组 , 所求行列式中可作为线性方程组解的组成部分 . 1 a1 例: 求 D n = a a
以上几种方法是我们平常 计算行列式时 所常用 的 , 也是课本介绍过的常规方法 , 下面介绍几种非常规 的解法 . 1) 分块矩阵法 我们学习了矩阵的分块 , 知道一个矩阵 A 0 0 B 通 D=
若用前面的介绍的公式则可以直接得出结果. 1 0 5 6 1 0 解法 2 :令 A= , B= , C= , 0 1 7 8 0 1 1 2 3 4 1 0 0 1 , 由公式 ( 1)知 则有 A )=
2007年 2月第 1 期
关于求解行列式的几种特殊的方法
95
关于求解行列式的几种特殊的方法
陈黎钦
( 福建商业高等专科学校
摘 要
*
基础部, 福建 福州
350012)
行列式的求解是高等代数中的非常重要的内容 , 常规作法是用行列式的性质和相关定理来求
解 , 本人给出了几种特殊的求解方法 . 关 键 词 矩阵; 行列式 ; 函数 ; 方程 中图分类号 : O151 . 22 文献标识码 : A 文章编号 : 1008- 4940( 2007) 01- 0095- 004 行列式的计算方法有好几种, 通常都是用性质、 展 开式等方法进行计算的 , 在进行四阶以上的行列式的 计算时 , 这些方法过于繁琐 , 本文通过研究了几种特殊 的方法 , 通过对比的方式, 说明在数学学习中拓宽思路 的重要性. 一、 行列式计算的一般方法 1 . 三角化法 利用行列式的性质把原来的行列式化为 上 ( 下 ) 三角行列式 . 根本性质 . 上 ( 下 ) 三角行列式的值就是 对角线各项的积 . 例 : 计算行列式 n n |A | = n ! n- 1 n- 1 n- 1 ! ! ! ! ! ! ! 3 3 5 ! 3 3 2 3 2 ! 2 2 1 1 1 ! 1 1 |A | = = ( - 1)
2 1
其中 A, B 分别是 s, r阶可逆矩阵, C 是 r ∋ s 阶矩阵 , 0 是 s ∋ r阶矩阵 . 可以看出 , 这样可以把 s+ r阶行列式 的计算问题 , 通过矩阵分块转化为较低阶的 s 阶和 r 阶行列式计算问题, 下面先根据上面的途径给出计算 公式. a11 ! 设矩阵 G= as1 c11 ! cr1 ! ! ! ! ! ! a1s ! as s c1s ! crs d11 ! ds1 d11 ! dr1 d1r ! ! ! ! ! ! dsr d1r ! drr = A C D B
1 a2 a a
2 2
! ! ! ! !
1 an an ! an
n- 2 n 2
!
n- 2 1
!
n- 2 2
Z Y X 本题用常规方法解如下: 0 X D = X Y 0 Z X Y Z = 0 Z Y 0 X X 0 0 Y 0 Y Z X 0 X
a1
n
a2
n
an
如果使用常规的方法 , 解这道题是非常复杂的 , 而 且困难的是因为 Dn 不是范得蒙行列式 , 若我们用刚 0 Z Y 0 Z Y Z Z Y 0 Y X Z 0 X 0 X ]+ D= 0 X 刚介绍的代数方程组法求解这道题就变得十 分容易 了 , 因为 Dn 类似于范得蒙行列式, 我们构造一个 n 阶 的范得蒙行列式 1 a1 a a