四年级鸡兔同笼
最新人教版四年级数学下册重点,鸡兔同笼问题讲解及习题(含答案)
鸡兔同笼问题讲解及习题例1:小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。
如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。
因此只要算出12里面有几个2,就可以求出兔的只数。
解:有兔(44-2×16)÷(4-2)=6(只)有鸡16-6=10(只)。
答:有6只兔,10只鸡。
当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。
我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。
因此只要算出20里面有几个2,就可以求出鸡的只数。
有鸡(4×16-44)÷(4-2)=10(只),有兔16-10=6(只)。
由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。
因此这类问题也叫置换问题。
例2:100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?分析与解:本题由中国古算名题“百僧分馍问题”演变而得。
如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。
现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3-1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100-80=20(人)。
同样,也可以假设100人都是小和尚,同学们不妨自己试试。
在下面的例题中,我们只给出一种假设方法。
例3:彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。
四年级下册鸡兔同笼问题练习题(附答案及解析)
四年级下册鸡兔同笼问题练习题(附答案及解析)嘿,大家好!今天我要给大家分享的是四年级下册的鸡兔同笼问题练习题,附上答案和解析。
这可是数学中的经典问题,不仅能锻炼我们的思维能力,还能让我们在解题过程中感受到数学的乐趣。
首先,我们先来回顾一下鸡兔同笼问题的基本概念。
鸡兔同笼问题是指在一个笼子里关着一些鸡和兔子,已知笼子里动物的总数和脚的总数,要求我们计算出鸡和兔子各有多少只。
举个例子,假设笼子里有10只动物,脚的总数是28只。
那么,我们要如何计算出鸡和兔子各有多少只呢?下面,我就给大家展示一个具体的解题过程。
【例题】一个笼子里有10只动物,脚的总数是28只。
请问笼子里有多少只鸡和多少只兔子?首先,我们设鸡的数量为x,兔子的数量为y。
那么,我们可以根据题目条件列出以下方程组:x + y = 10 (动物总数)2x + 4y = 28 (脚的总数)接下来,我们来解这个方程组。
从第一个方程中,我们可以得到 x = 10 y。
将x的表达式代入第二个方程中,得到:2(10 y) + 4y = 2820 2y + 4y = 282y = 8y = 4现在我们知道了兔子的数量是4只。
再将y的值代入x的表达式中,得到:x = 10 4x = 6所以,笼子里有6只鸡和4只兔子。
怎么样,这个解题过程是不是很简单呢?其实,只要我们掌握了鸡兔同笼问题的解题思路,类似的题目都可以迎刃而解。
下面,我给大家准备了几个类似的练习题,大家一起来试试吧!【练习题1】一个笼子里有8只动物,脚的总数是32只。
请问笼子里有多少只鸡和多少只兔子?【练习题2】一个笼子里有12只动物,脚的总数是48只。
请问笼子里有多少只鸡和多少只兔子?【练习题3】一个笼子里有15只动物,脚的总数是60只。
请问笼子里有多少只鸡和多少只兔子?好了,今天的分享就到这里。
希望大家通过这些练习题,能够更好地掌握鸡兔同笼问题的解题方法。
加油哦!。
小学四年级数学下册《鸡兔同笼》教学设计10篇
小学四年级数学下册《鸡兔同笼》教学设计10篇鸡兔同笼教学设计篇一教学目标:本活动的目的是通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。
在“鸡兔同笼〞的活动中,通过列表枚举方法,解决鸡与兔的数量问题。
教学重点:尝试用不同的方法解决鸡兔同笼问题,对尝试法有所了解和体验,并使学生体会假设方法解决此类问题的优越性。
教学难点:在解决问题的过程中培养学生的逻辑推理能力。
教具准备:电脑课件教学过程:一、创设问题情景师:同学们今天老师带来2幅动物的图片请你们欣赏一下,看这是什么?〔出示公鸡图片〕这幅呢?〔出示兔子图片〕师;这是两种同学们很熟悉的小动物。
师:一只鸡有几个头,几只脚?一只兔子有几个头?几只脚?一只兔子比一只鸡多几只脚,一只鸡比一只兔子多几只脚?师:看来这几个问题对于你们来说太简单了。
老师这儿还有一个有关于鸡兔的有趣问题我们一起来看看。
课件出示:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?〞师:这个有趣的问题出自于我国大约在1500年前唐代的一部算书《孙子算经》。
谁来读一读?师:你们明白这句话的`意思吗?〔如果学生说不出师可说,师:这句话的意思是,有假设干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。
问笼中鸡和兔各有几只?这就是我们通常所说的鸡兔同笼问题,“鸡兔同笼〞问题是我国古代数学名题之一。
这节课我们就一起来研究鸡兔同笼问题。
〔板书课题〕同学们一起来比一比看谁能把这个古代数学名题解决,有没有信心!如果生能说出这句话的意思。
师:看来你了解的知识可真多。
“鸡兔同笼〞问题是我国古代数学名题之一。
这节课我们就一起来研究鸡兔同笼问题。
〔板书课题〕同学们一起来比一比看谁能把这个古代数学名题解决,有没有信心!〕二、解决问题1、好!请看屏幕。
课件出示出示课件:鸡兔同笼,有20个头,54条腿,鸡、兔各有几只?师;谁来读一读题目中的数学信息和数学问题。
2、师:请同学们先想一想,如何解决这个问题?师:把你的想法,解决问题的过程写在本子上。
四年级下册数学鸡兔共笼题
四年级下册数学鸡兔共笼题一、鸡兔同笼题目。
1. 鸡兔同笼,共有头30个,脚86只,求鸡兔各有多少只?- 解析:假设全是鸡,那么脚的总数应该是2×30 = 60只,而实际有86只脚,多出来的脚是因为把兔子当成鸡了。
每只兔子比鸡多4 - 2=2只脚,总共多了86 - 60 = 26只脚,所以兔子的数量是26÷2 = 13只,鸡的数量就是30 - 13 = 17只。
2. 鸡兔同笼,有头25个,脚70只,鸡兔各多少只?- 解析:假设全是鸡,脚的总数为2×25 = 50只。
实际有70只脚,多了70 - 50 = 20只脚。
每只兔比鸡多2只脚,所以兔的数量为20÷2 = 10只,鸡的数量为25 - 10 = 15只。
3. 笼子里有鸡和兔共18只,脚共56只,鸡和兔各有几只?- 解析:假设全是鸡,脚有2×18 = 36只。
实际56只脚,多了56 - 36 = 20只脚。
每只兔比鸡多2只脚,兔的数量为20÷2 = 10只,鸡的数量为18 - 10 = 8只。
4. 鸡兔同笼,头共20个,脚共62只,鸡兔各几只?- 解析:假设全是鸡,脚数为2×20 = 40只。
实际62只脚,多了62 - 40 = 22只脚。
每只兔比鸡多2只脚,兔的数量为22÷2 = 11只,鸡的数量为20 - 11 = 9只。
5. 有鸡兔同笼,共有头16个,脚44只,鸡兔各多少只?- 解析:假设全是鸡,脚有2×16 = 32只。
实际44只脚,多了44 - 32 = 12只脚。
每只兔比鸡多2只脚,兔的数量为12÷2 = 6只,鸡的数量为16 - 6 = 10只。
6. 鸡兔同笼,头共15个,脚共40只,鸡兔各几只?- 解析:假设全是鸡,脚数为2×15 = 30只。
实际40只脚,多了40 - 30 = 10只脚。
每只兔比鸡多2只脚,兔的数量为10÷2 = 5只,鸡的数量为15 - 5 = 10只。
数学四年级下人教版9鸡兔同笼课件(26张)
列方程 笼子里有若干只鸡和兔,从上面数, 有8个头;从下面数,有26条腿。鸡和 兔各有几只?
鸡+兔=8只 鸡的腿+兔的腿=26条腿
列方程 笼子里有若干只鸡和兔,从上面数, 有8个头;从下面数,有26条腿。鸡和 兔各有几只?
鸡+=8只 鸡的腿+兔的腿=26条腿
列表法
鸡/只
8 7 6543210
兔/只
0 1 2 3 4 5 6 78
脚/只 16 18 20 22 24 26 28 30 32
答:鸡有5只,兔有3只.
笼子里有若干只鸡和兔.从上面数,有8个头, 从下面数,有22只脚.鸡和兔各有几只? 列表法:
鸡/只 兔/只
脚/只
1.画8个圆表示8只动物。
2.假设都是鸡。每个动物有几条腿?一
1、 鸡和兔共8只。 2、 鸡和兔共有22只脚。 3、 鸡有2只脚。 4、 兔有4只脚。
笼子里有若干只鸡和兔.从上面数,有8个头, 从下面数,有22只脚.鸡和兔各有几只? 列表法:
鸡/只 8 7 6 5
兔/只 0 1
脚/只 16 18
笼子里有若干只鸡和兔.从上面数,有8个头, 从下面数,有22只脚.鸡和兔各有几只?
全班42人去公园划船, 一共租了10只船。每只大船 坐5人,每只小船坐3人。大、 小船各租了几只?
你能用刚学过的假设的方法 来解决这个问题吗?
假设10只船都是大船:
1.一共坐多少人?多了多少人? 5×10=50(人) 50-42=8(人)
2.每只小船应该坐3人,几只小船多 坐了8人? 8÷(5-3) =4(只)
鸡+兔=8只 鸡的腿+兔的腿=26条腿
鸡兔同笼问题解法四年级全部方法
鸡兔同笼问题解法四年级全部方法鸡兔同笼问题是一道经典的数学问题,也是小学数学中的常见题目之一。
这个问题可以帮助学生提高逻辑思维能力和解决问题的能力。
在这篇文章中,我们将向您介绍四年级全部的鸡兔同笼问题解法。
鸡兔同笼问题是一个经典的数学问题,在小学数学中经常会遇到。
它的大致描述是:一个笼子里装有若干只鸡和兔,总共有n只脚,问这个笼子中有多少只鸡和兔?解法一:代数法我们将鸡的数量设为x,兔的数量设为y,由于鸡有两只脚,兔有四只脚,因此我们可以列出方程式:2x + 4y = n。
我们再加上一个限制条件:鸡和兔的总数为m,即x + y = m。
我们把x和y用m表示出来,得到x = m - y,y = m - x。
将x和y代入第一个方程中,得到2(m - y) + 4(m - x) = n,进行简化后得到y = (2m - n) / 2,x = (n - 2m) / 2。
这样我们就可以求出鸡和兔的数量了。
解法二:画图法我们可以使用画图法来解决鸡兔同笼问题。
我们可以将鸡和兔分别用两种不同的符号来表示,如A和B,然后用一个表格来表示它们的数量和脚数。
在表格中,我们可以用一行来表示它们的数量,另一行来表示它们的脚数。
这样,我们就可以通过观察表格来确定鸡和兔的数量了。
解法三:枚举法枚举法是一种比较简单的解法,它的思路是按照鸡和兔的数量进行枚举,然后计算它们的脚数是否等于给定的n。
在这个过程中,我们可以通过观察鸡和兔的脚数之间的差异来判断它们的数量。
解法四:逆向思维法逆向思维法是一种比较巧妙的解法,它的思路是从已知的信息中推导出未知的答案。
对于鸡兔同笼问题,我们可以先计算出所有可能的鸡和兔的数量和脚数,然后逐一排除不符合题意的情况,最终得到符合题意的鸡和兔的数量。
这种方法需要一定的数学推理能力和耐心。
以上就是四年级全部鸡兔同笼问题的解法。
在实际解题中,我们可以根据题目要求和自己的实际情况选择合适的解法。
希望通过这篇文章,能够帮助大家更好地理解和解决鸡兔同笼问题。
浅析四年级下册数学“鸡兔同笼”问题的四种解法
浅析四年级下册数学“鸡兔同笼”问题的四种解法注:脚的只数连续加2 ;鸡有3只,兔有5只。
方法二假设法1(假设笼子里全是鸡)笼子里脚的数量:2×8=16(只)与实际相差:26-16=10(只)每只兔少算了:4-2=2(只)兔的数量:10÷2=5(只)鸡的数量:8-5=3(只)综合算式:(26-2×8)÷(4-2)=10÷2=5(只)鸡的数量:8-5=3(只)方法二假设法2(假设笼子里全是兔)笼子里脚的数量:4×8=32(只)与实际相差:32-26=6(只)每只鸡多算了:4-2=2(只)鸡的数量:6÷2=3(只)兔的数量:8-3=5(只)综合算式:(4×8-26)÷(4-2)=6÷2=3(只)兔的数量:8-3=5(只)方法三抬脚法(1)假如鸡抬起一只脚,兔子抬起两只脚,还有( 13 )只脚。
脚的只数变为原来的一半:26÷2=13(只)(2)这时,每只鸡是一只脚,每只兔是两只脚。
笼子里只要有一只兔,则脚的总数就比头的总数多( 1 )。
(3)这时,脚的总数与头的总数只差是( 5 ),这就是(兔)的只数。
(4)鸡的只数就是( 3 )只。
8-5=3(只)方法四方程法解:设鸡有x只,则兔有8-x只。
2x+4(8-x)=262x+32-4x=2632-2x=262x=6x=3兔:8-3=5(只)等量关系:鸡的脚数+兔的脚数=26只脚鸡兔同笼问题的特点:鸡和兔的只数都是未知的,已知这两个量之间的关系,求这两个量。
【练习】1.笼子里有若干只鸡和兔。
从上面数,有35个头;从下面数,有94只脚。
鸡和兔各有多少只?【参考答案】兔:12只,鸡:23只2.笼子里有若干只鸡和兔。
从上面数,有100个头;从下面数,有274只脚。
鸡和兔各有多少只?【参考答案】兔:37只,鸡:63只。
人教版四年级数学下册第九单元鸡兔同笼问题
4.【杭州市·钱塘区】如图甲、乙两种模型都是由面积为1平 方厘米的小正方形构成的。现在用这两种模型共9块,拼 成了一个面积是30平方厘米的长方形。那么甲、乙两种 模型各用了多少块?
假设全用乙种模型。 4×9-30=6(平方厘米) 甲种模型块数:6÷(4-3)=6(块) 乙种模型块数:9-6=3(块) 答:甲种模型用了6块,乙种模型用了3块。
5.(新情境)德老师要为课后托管美食DIY准备材料。她带了 20元、50元和100元三种人民币共50张,共2400元,其中20 元和50元的张数相同,那么100元的有( 10 )张。
解析:假设全部是100元的,则面值是50×100=5000(元),比实际 多出5000-2400=2600(元),因为1张100元比1张50元多50元,1张 100元比1张20元多80元,所以2张100元比1张50元和1张20元多(100 -50+100-20)元,用2600元除以(100-50+100-20)元可求得20 元或50元的张数,从而求得100元的张数。
第9单元 数学广角——鸡兔同笼 鸡兔同笼问题
知 识 点 鸡兔同笼问题的解题方法
1.鸡兔同笼,共有9个头,24只脚,鸡和兔各有多少只? 解法一:列表法。
鸡
9
8
7
6
5
4
兔
0
1
2
320
22
24
26
28
鸡有( 6 )只,兔有( 3 )只。
解法二:假设法。 ①如果笼子里都是兔,那么就有( 36 )只脚,这样就少
了( 12 )只脚。 ②一只鸡比一只兔少( 2 )只脚,也就是有( 6 )只鸡。 ③所以鸡有( 6 )只,兔有( 3 )只。
列式解答: 4×9-24=12(只) 12÷(4-2)=6(只) 9-6=3(只) 答:鸡有6只,兔有3只。
四年级数学鸡兔同笼 解法
鸡兔同笼问题的解法集锦鸡兔同笼问题是中国古代著名的数学问题。
那是已知鸡兔的总头数和总足数,求鸡兔各有多少只的一类典型应用题。
它的题型虽然固定,但解题思路方法却多种多样,如假设法、削补法、转化法、分组法、盈亏法、倍比法、设零法、代数法等等,且解法还在不断创新。
下面举一例给出几种解法供参考。
例:鸡兔同笼,上有40个头,下有100只足。
鸡兔各有多少只?1、极端假设解法一:假设40个头都是鸡,那么应有足2×40=80(只),比实际少100-80=20(只)。
这是把兔看作鸡的缘故。
而把一只兔看成一只鸡,足数就会少4-2=2(只)。
因此兔有20÷2=10(只),鸡有40-10=30(只)。
解法二:假设40个头都是兔,那么应有足4×40=160(只),比实际多160-100=60(只)。
这是把鸡看作兔的缘故。
而把一只鸡看成一只兔,足数就会多4-2=2(只)。
因此鸡有60÷2=30(只),兔有40-30=10(只)。
解法三:假设100只足都是鸡足,那么应有头100÷2=50(个),比实际多50-40=10(个)。
把兔足看作鸡足,兔的只数(头数)就会扩大4÷2倍,即兔的只数增加(4÷2-1)倍。
因此兔有10÷(4÷2-1)=10(只),鸡有40-10=30(只)。
解法四:假设100只足都是兔足,那么应有头100÷4=25(个),比实际少40-25=15(个)。
把鸡足看作兔足,鸡的只数(头数)就会缩小4÷2倍,即鸡的只数减少1-1÷(2÷4)=1/2。
因此鸡有15÷1/2=30(只),兔有40-30=10(只)。
2、任意假设解法五:假设40个头中,鸡有12个(0至40中的任意整数),则兔有40-12=28(个),那么它们一共有足2×12+4×28=136(只),比实际多136-100=36(只)。
小学数学《鸡兔同笼》教案优秀7篇
小学数学《鸡兔同笼》教案优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!小学数学《鸡兔同笼》教案优秀7篇1、鸡兔同笼,共有头30个,足86只,求鸡兔各有多少只?这次本店铺为您整理了小学数学《鸡兔同笼》教案优秀7篇,在大家参照的同时,也可以分享一下本店铺给您最好的朋友。
四年级下册数学鸡兔共笼题目
四年级下册数学鸡兔共笼题目一、鸡兔同笼题目。
1. 鸡兔同笼,共有头30个,足86只,求鸡兔各有多少只?解析:假设全是鸡,那么足的数量是2×30 = 60只,比实际的86只少了8660=26只。
每把一只兔当成鸡就少算4 2 = 2只足,所以兔的数量是26÷2 = 13只,鸡的数量就是30 13 = 17只。
2. 笼子里有鸡和兔共25只,鸡脚和兔脚共70只,问鸡、兔各有多少只?解析:假设全是鸡,脚的总数为2×25 = 50只,比实际少70 50 = 20只。
每把一只兔当成鸡少算4 2 = 2只脚,所以兔的数量为20÷2 = 10只,鸡的数量为25 10 = 15只。
3. 鸡兔同笼,头共46,足共128,鸡兔各几只?解析:假设全是鸡,足的数量是2×46 = 92只,比实际少128 92 = 36只。
每把一只兔当成鸡少算4 2 = 2只足,兔的数量为36÷2 = 18只,鸡的数量为46 18 = 28只。
4. 有鸡兔同笼,共有35个头,94只脚,问鸡兔各多少只?解析:假设全是鸡,脚数为2×35 = 70只,比实际少94 70 = 24只。
每把一只兔当成鸡少算4 2 = 2只脚,兔的数量为24÷2 = 12只,鸡的数量为35 12 = 23只。
5. 鸡兔同笼,鸡比兔多15只,鸡兔共有脚132只,问鸡兔各多少只?解析:设兔有x只,则鸡有x + 15只。
根据脚的总数可列方程4x+2(x +15)=132,展开得4x + 2x+30 = 132,6x=102,解得x = 17只,鸡的数量为17 + 15 = 32只。
6. 鸡兔同笼,兔比鸡少10只,共有脚100只,问鸡兔各多少只?解析:设鸡有x只,则兔有x 10只。
根据脚的总数可列方程2x+4(x 10)=100,展开得2x+4x 40 = 100,6x = 140,解得x=(70)/(3)(这种情况不符合实际,说明假设错误)。
关于四年级下册数学鸡兔同笼教案6篇
关于四年级下册数学鸡兔同笼教案6篇编写教案可以对学生进行可视化教学,让学生更好地理解和掌握教学内容,提高学习效率。
这里给大家分享一些关于四年级下册数学鸡兔同笼教案,供大家参考学习。
四年级下册数学鸡兔同笼教案【篇1】第1课时鸡兔同笼教学内容:P116页的练习二十五的第20题。
教学目标知识与技能:通过复习“鸡兔同笼”问题,感受中国古代数学问题的趣味性。
过程与方法:能熟练用列表、假设等不同的方法解决“鸡兔同笼”问题,体验解决问题的方法的多样性,提高解决实际问题的能力。
情感态度价值观:通过复习,培养学生的合作意识和逻辑推理能力,在解决问题的过程中,提高迁移思维的能力,进而体会数学的价值。
教学重点:熟练理解和掌握解决问题的不同思路和方法,让学生再一次亲历列表法、假设法等解题的过程,深刻体会解决问题的一般性策略。
教学难点:建构解决“鸡兔同笼”问题的数学模型,运用学到的解题策略熟练解决生活中的实际问题。
教具学具:多媒体教学过程一、情境导入师:“鸡兔同笼”是一道有名的中国古算题。
最早出现在《孙子算经》中。
许多小数数学问题都可以转化成这类问题。
师:你知道解决“鸡兔同笼”问题有几种方法吗?通过比较发现它们有什么特点?生1:列表法,适合数据较小的问题。
生2:假设法,一般情况都适合,数量关系比较容易理解。
师:今天我们复习“鸡兔同笼”问题。
二、自主探究师:摆三角形和正方形一共用了19根小棒。
(任意两个图形之间没有公共边)你能算出分别摆了多少个三角形和多少个正方形吗?(学生回答)师:星期日,小英一家八口人到博物馆参观,博物馆的票价是成人每人30元,儿童每人15元,买门票共花去210元钱,其中儿童有几人?(学生回答)师:三年级(4)班48人去北海公园划船,租了大船和小船共10条,每6人克坐满一条大船,每4人可坐满一条小船,且每条船都没有空位,他们租大船和小船各几条?(学生回答)三、探究结果汇报师:通过复习“鸡兔同笼”问题,你有哪些收获?生1:借助列表的方法,解决简单的实际问题。
人教版数学四年级下册鸡兔同笼教案(推荐3篇)
人教版数学四年级下册鸡兔同笼教案(推荐3篇)人教版数学四年级下册鸡兔同笼教案【第1篇】教学目标:1、在解决鸡兔同笼的活动中,通过列表枚举解决鸡兔的数量问题。
2、在解决鸡兔同笼的活动中,通过列表尝试和不断调整的过程从中体会解决问题的一般策略——列表,让学生学会从不同角度分析,掌握解题的策略与方法。
3、运用学到的解题策略——列表解决生活中的实际问题。
4、培养学生分析问题的能力,渗透假设的数学思想。
教学重点让学生经历列表、尝试和不断调整的过程,体会解决问题的一般策略—列表。
教学难点运用学到的解题策略解决生活中的实际问题。
教学过程:一、情境引入,激发兴趣今天老师给同学们带来一本书《孙子算经》,其中有这样一道题目今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?谁来读一读,你见过这类题吗?今天我们就来研究这类问题(板书鸡兔同笼)二、探索问题1、课件出示:(教材中的情景图)鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?从图中你能知道哪些数学信息:(有鸡、有兔、20个头、54只腿,鸡有2条腿、兔有4条腿)现在同学们就来猜一猜鸡、兔各有多少只?把你猜想的结果跟你的同桌同学交流交流。
学生交流后:请学生汇报猜想的情况教师随机板书看到这么多种猜测,你知道哪种答案是正确的吗?你又想说什么生:可以按照一定的顺序把他们排列起来看就很清楚师:对,按照一定的顺序把他们排列在表格里那会看得更清楚那么列表先做什么生:(1)画表(2)填写第一行师:请你们把猜测的结果按一定的顺序填在表格中,并验证,哪种猜测正确。
出示学习要求1、先独立尝试猜测2、把尝试的数据在表格中表达出来3、在小组内交流自己的想法生:尝试列表展示学生的表格请学生说一说是怎样做的师:一共尝试了几次生:13次,尝试出了这道题的答案师:我发现刚才同学们在写腿的只数时特别快,观察这张表格,你发现了什么生:在头数相同的情况下,增加一只鸡,减少一只兔,腿就少2只。
师:给这种列表法起个名字生:起名字师:在数学上也有一个名字逐一列表师:观察这张表格,你有什么发现生:一一列出,肯定能找出答案,但有些麻烦师:那还有什么列表方法展示学生第二种列表方法出示表格生:说这种列表的方法师:观察这个表格,你又发现了什么生:这种列表,先几个几个的数,再逐渐调整师:先几个几个数,再往回调,在数学上也有个名字跳跃式列表展示学生第三种列表方法出示表格生:说这种列表的方法师:观察这个表格,你又发现了什么生:这种列表,先假设鸡兔各占一半,再调整师:这种列表有直接特点,我们称这种列表方法为取中列表想一想,为什么用列表法解决这个问题生:简单,能准确计算结果师:你更喜欢哪种列表方法,你们在不知不觉中找到解决问题策略,是什么生:列表师:首先根据信息尝试猜测,再计算验证,最后合理调整。
鸡兔同笼几年级的题
鸡兔同笼几年级的题
“鸡兔同笼”问题是小学奥数中的经典题型,主要考察学生的逻辑思维和推理能力,通常在四年级左右学习。
这个问题的原型是古代的“鸡兔同笼”问题,即“今有鸡兔同笼,头共三十五,足共九十只,问鸡兔各几何?”意思是:现在有一些鸡和兔子在同一个笼子里,它们一共有35个头,90只脚,我们需要找出鸡和兔子各有多少只。
虽然这个问题的数学难度较高,但通过适当的引导和启发,学生可以逐步理解和掌握解决此类问题的方法。
解决“鸡兔同笼”问题通常采用代数方程法、逻辑推理法、列表枚举法、假设法等策略。
例如,代数方程法是通过设立两个未知数(鸡的数量和兔的数量)并建立两个方程来解决问题。
逻辑推理法则需要学生根据常识和逻辑关系进行推理,例如鸡有2只脚,兔子有4只脚等。
列表枚举法则适用于较小规模的问题,可以通过一一列举所有可能的组合来找到答案。
假设法则则是先假设某种情况成立,然后根据题目条件推导出矛盾,从而否定假设。
综上所述,“鸡兔同笼”问题是小学奥数中的四年级左右的学习内容,主要考察学生的逻辑思维和推理能力。
学生可以通过不同的策略来解决这个问题,并从中锻炼自己的数学思维和解决问题的能力。
四年级下册第9单元鸡兔同笼知识点
鸡兔同笼知识点1、鸡兔同笼属于假设问题,假设的和最后结果相反。
2、“鸡兔同笼”问题的解题方法假设法:①假如都是兔②假如都是鸡③古人“抬脚法”:解答思路:假如每只鸡、每只兔各抬起一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。
这样,鸡和兔的脚的总数就少了一半。
这种思维方法叫化归法。
3、公式:鸡兔总脚数÷2-鸡兔总数=兔的只数;鸡兔总数-兔的只数=鸡的只数。
.(1)已知总头数和总脚数,求鸡、兔各多少;(总脚数-每只鸡的脚数总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数_总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数总头数+鸡兔脚数之差)÷(每只鸡的脚数+ 每只免的脚数)=鸡数; 总头数-鸡数=兔数。
(例略)(3)已知总数与鸡兔脚数的差数,当象的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数_总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数: 总头数-鸡数=兔数。
(例略)其他(1只合格品得分数产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数总产品数+实得总分数)一(每只合格品得分数+每只不合格品扣分数)=不合格品数。
鸡兔同笼问题解法四年级全部方法
鸡兔同笼问题解法四年级全部方法鸡兔同笼问题是一个经典的数学问题,常常用于培养学生的逻辑思维能力和数学推理能力。
这个问题的问题是:在一个笼子里,有若干只鸡和若干只兔子,他们的脚加起来一共有72只,而且,鸡的头数比兔子多。
问笼子里有多少只鸡和兔子?在四年级阶段,学生已经掌握了一些基本的数学概念和技能,可以通过一些简单的方法来解决这个问题。
下面是一些常用的解法:方法一:列方程法假设鸡的数量为x,兔子的数量为y,则我们可以列出一个方程式来表示鸡兔数量之间的关系:x + y = 总数量2x + 4y = 总脚数根据这两个方程式,我们可以解出x和y的值,从而得到鸡和兔子的数量。
这种方法需要学生具备一定的方程式解题能力。
方法二:试算法假设鸡的数量为x,兔子的数量为y,则我们可以通过试算的方法来得到鸡和兔子的数量。
首先,我们可以从鸡和兔子的脚数出发,假设有x只鸡和y只兔子,则:2x + 4y = 总脚数根据题目中给出的条件,我们知道总脚数是72,那么我们就可以列出方程:2x + 4y = 72然后,我们可以通过试算的方法来得到符合条件的鸡兔数量组合。
我们可以从x=1开始,一直试算到满足条件的组合为止。
这种方法比较直观,但需要学生有一定的计算能力和耐心。
方法三:图像法将题目的信息用图像表示出来,也是一种常用的解法。
我们可以画出一个由鸡和兔子组成的图形,用圆圈表示鸡,用三角形表示兔子,然后根据题目中给出的条件,计算出鸡和兔子的数量。
这种方法适合视觉能力强的学生。
通过以上三种方法,学生可以很好地解决鸡兔同笼问题,培养自己的数学思维能力和解题能力。
四年级数学下册鸡兔同笼教案大全6篇
四年级数学下册鸡兔同笼教案大全6篇四年级数学下册鸡兔同笼教案大全6篇教案可以增加教师的信心和教学热情,让教师更自信地面对教学工作。
可以帮助教师节省教学准备时间,提高自己的教学效率和工作效能。
这里给大家分享一些关于四年级数学下册鸡兔同笼教案,供大家参考学习。
四年级数学下册鸡兔同笼教案篇1教学目标:1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、尝试用不同的方法解决“鸡兔同笼”问题并使学生体会代数方法的一般性。
3、在解决问题的过程中培养学生的逻辑推理能力。
教学重点:理解并掌握用假设法和列方程法解决“鸡兔同笼”问题。
教学难点:理解用假设法的算理并能运用不同的方法解决实际问题。
教学方法:1、采取直观形象的方式,让学生探讨不同的方法。
2、适当把握教学要求。
一、历史激趣,导入新课今天老师想给同学们介绍一部1500年前的数学名著《孙子算经》,你们想了解吗?里面记载着许多有趣的数学名题,其中有这样一道题请看:(出示以下情境图)师:你能说说这道题是什么意思吗?(说明:雉指鸡)出示:笼子里有若干只鸡和兔。
从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?这就是我们今天要研究的历史趣题“鸡兔同笼”的问题。
(板书课题)结合谈话引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。
二、探究交流,尝试解决问题。
1.为了研究方便,我们把题目里的数字改小一点。
“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。
鸡和兔各有几只?”(说明:为了便于分析时叙述,把“26只脚”改成了“26条腿”出示)2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些数学信息?让学生理解:①鸡和兔共8只。
②鸡和兔共有26条腿。
③鸡有2条腿。
④兔有4条腿。
(出示)3、我们先来猜猜,笼子中可能会有几只鸡几只兔呢?学生猜测,在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?学生猜测,老师板书4、怎样才能确定你们猜测的结果对不对?(把鸡的腿和兔的腿加起来看等不等于26。
小学四年级数学下册鸡兔同笼问题详解
小学四年级数学下册鸡兔同笼问题详解解法一:假设40个头都是鸡,那么应有足2×40=80(只),比实际少100-80=20(只)。
这是把兔看作鸡的缘故。
而把一只兔看成一只鸡,足数就会少4-2=2(只)。
因此兔有20÷2=10(只),鸡有40-10=30(只)。
解法二:假设40个头都是兔,那么应有足4×40=160(只),比实际多160-100=60(只)。
这是把鸡看作兔的缘故。
而把一只鸡看成一只兔,足数就会多4-2=2(只)。
因此鸡有60÷2=30(只),兔有40-30=10(只)。
解法三:假设100只足都是鸡足,那么应有头100÷2=50(个),比实际多50-40=10(个)。
把兔足看作鸡足,兔的只数(头数)就会扩大4÷2倍,即兔的只数增加(4÷2-1)倍。
因此兔有10÷(4÷2-1)=10(只),鸡有40-10=30(只)。
解法四:假设100只足都是兔足,那么应有头100÷4=25(个),比实际少40-25=15(个)。
把鸡足看作兔足,鸡的只数(头数)就会缩小4÷2倍,即鸡的只数减少1-1÷(2÷4)=1/2。
因此鸡有15÷1/2=30(只),兔有40-30=10(只)。
0 2 任意假设解法五:假设40个头中,鸡有12个(0至40中的任意整数),则兔有40-12=28(个),那么它们一共有足2×12+4×28=136(只),比实际多136-100=36(只)。
这说明有一部分鸡看作兔了,而把一只鸡看成一只兔,足数就会多4-2=2(只),因此把鸡看成兔的只数是36÷2=18(只)。
那么鸡实际有12+18=30(只),兔实际有28-18=10(只)。
解法六:假设100只足中,有鸡足80只(0至100中的任意整数,最好是2的倍数),则兔足有100-80=20(只),那么它们一共有头80÷2+20÷4=45(个),比实际多45-40=5(个)。
三四年级奥数-鸡兔同笼问题-简单版讲义[推荐五篇]
三四年级奥数-鸡兔同笼问题-简单版讲义[推荐五篇]第一篇:三四年级奥数-鸡兔同笼问题-简单版讲义基本的鸡兔同笼A知识结构一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只).显然,鸡的只数就是35-12=23(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:(1)如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数(2)如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法例题精讲【例 1】动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问:鸵鸟和大象各有多少?【巩固】鸡和兔共56只眼睛和92只脚,问:鸡和兔各有几只?【例2】动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只?【巩固】一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只?【例3】鸡兔同笼,鸡、兔共有107只,兔的脚数比鸡的脚数多56只,问鸡、兔各多少只?【巩固】鸡、兔共100只,鸡脚比兔脚多20只.问:鸡、兔各多少只?【例4】鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?【巩固】鸡、兔共有27只,鸡的脚比兔的脚少18只。
2023年人教版数学四年级下册第42课鸡兔同笼教案与反思(精选3篇)
人教版数学四年级下册第42课鸡兔同笼教案与反思(精选3篇)〖人教版数学四年级下册第42课鸡兔同笼教案与反思第【1】篇〗教学目标:1、对日常生活中的现象进行观察和思考,引导学生从中发现特殊规律,使学生掌握用列表的方法来解决“鸡兔同笼”的问题。
2、从不同的角度分析问题,掌握解题的策略与方法,从而感受到数学思想的运用和解决实际问题的联系。
3、培养学生分析问题的能力,渗透假设的数学思想,在解题中数形结合,提高学生对数据的再认识,再分析,将列表的过程更优化。
教学重点:从不同的角度分析,掌握解题的策略与方法。
教学流程:一、创设情境,明确目标1、谈话:“同学们,自我介绍一下,我姓周,你们可以称呼我?今天需要我们共同配合,在这里上一节数学课,为了表达谢意,我为你们带来了一些礼物,快来猜一猜,有多少?(5…)太少了?(50…)多了,(40…)少了(45…)差不多了,(46…)恭喜你,答对了,下课就由你发给同学们。
2、喜欢数学吗?数学不但可以开阔我们的视野,增长我们的知识,还可以锻炼我们的思维。
在我国古代就有许多有趣的数学名题,你们了解吗?今天,。
老师就向你们推荐一种有趣的问题------鸡兔同笼。
二、自主探索,合作交流1、出示问题:“鸡兔同笼,有5个头,14条腿,鸡兔各有几只?”(1)你从中获取什么信息?……(2)请你们猜一猜将鸡、兔可能是几只?(……)(3)把你猜的过程给大家说一说(4)板书学生的过程鸡 1 2 3兔 4 3 2腿 18 16 14(4)评价:从尝试简单的开始,一个一个的试,最终找到了正确的答案,方法多么简单啊?如果我们再横竖加上几条线,就成了美观的表格。
看来,列表来解决这类问题还确实简单,如果现在将鸡兔的数量增加,还能解决吗?(重点引入列表)2、出示:“鸡兔同笼,有20个头,54条腿,鸡兔各几只?”(1)自己先想一想如何利用列表来解决?(2)小组内交流一下自己的想法。
(3)独立完成列表。
(4)汇报想法和过程小组1:逐一列表------假设鸡有1只,兔子有19只,那么就有78条腿,(腿多了,说明什么?兔子多了,怎么办?)鸡有2只,兔子有18只,那么就有76条腿,一只一只地试,学生把试的结果列成表格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸡兔问题同笼
例一:笼子里有若干只鸡和兔,从上面数,有35个头,从下面数,有94只脚,问鸡和兔各有多少只?
列表法
抬脚法(这是古人解题的方法,也就是《孙子算经》中采用的方法。
)
1、抬腿,即鸡“金鸡独立”,兔两个后腿着地,前腿抬起,腿的数量就为原来数量的一半。
94÷2=47只脚。
2、现在鸡有一只脚,兔有两只脚。
笼子里只要有一只兔子,脚数就比头数多1。
3、那么脚数与头数的差47-35=12就是兔子的只数。
4、最后用头数减去兔的只数35-12=23就得出鸡的只数。
所以,我们可以总结出这样的公式:兔子的只数=总腿数÷2-总只数。
砍脚法
1、我们首先砍去每只鸡、每只兔的两条腿,这样每只鸡就没有腿了,每只兔子就剩下了两条腿,腿的总数也就变
成了94-35×2=24(条)。
2、那么这24条腿都是砍掉两条腿后的兔子的腿,所以兔子的只数就是24÷2=12(只)。
3、鸡的只数就是35-12=23(只)。
假设法(假设法是鸡兔同笼类问题最常用的方法之一)
假设成兔先求鸡
1、(假设)假设这35个头都是兔子,那么腿数就应该是35×4=140(条)。
2、(比较)用假设的总腿数和实际的总腿数比较140-94=46(条),就多出46条腿,那么是哪里多的呢?
当然是我们把两条腿的鸡看成了四条腿的兔子了,4-2=2(条)我们都知道一只兔子比一只鸡多2条腿。
3、那么多的腿数当中有多少个2就有多少只鸡,46÷2=23(只),就求出鸡的只数。
4、再用总头数减去鸡的只数就等于兔的只数,35-23=12(只)。
总结公式为:鸡的只数=(兔的脚数×总只数-总腿数)÷(兔的腿数-鸡的腿数)。
假设成鸡先求兔
1、(假设)假设这35个头都是鸡,那么腿数就应该是35×2=70(条)。
2、(比较)用假设的总腿数和实际的总腿数比较94-70=24(条),就少了24条腿,那么是哪里少的呢?
当然是我们把四条腿的兔子看成了两条腿的鸡,4-2=2(条)我们都知道一只鸡比一只兔子少2条腿。
3、那么少的腿数当中有多少个2就有多少只兔,24÷2=12(只),就求出兔的只数。
4、再用总头数减去兔的只数就等于鸡的只数,35-12=23(只)。
总结公式为:兔的只数=(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)。
鸡兔问题同笼
1、鸡兔同笼,共有头30个,脚86只,求鸡兔各有多少只?
2、鸡兔同笼,共有头48个,脚132只,求鸡和兔各有多少只?
3、在一个停车场上,停了小轿车和摩托车一共32辆,这些车一共108个轮子。
求小轿车和摩托车各有多少辆?
4、30枚硬币由2分和5分组成,共值9角9分,两种硬币各多少枚?
5、小明用10元钱正好买了20分和50分的邮票共35张,求这两种邮票名买了多少张?
6、52名同学去划船,一共乘坐11只船,其中每只大船坐6人,每只小船坐4人。
求大船和小船各几只?
7、松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个。
它一连8天共采了112个松籽,这八天有几天晴天几天雨天?
8、解放军进行野营拉练。
晴天每天走35千米,雨天每天走28千米,11天一共走了350千米。
求这期间晴天共有多少天?
9、一次数学竞赛共有20道题。
做对一道题得8分,做错一题倒扣4分,刘冬考了112分,你知道刘冬做对了几道题?
10、小明计算20道竞赛题,做对一题得5分,做错一题倒扣3分,结果小明得了60分,他做对了几道题?
15、东风小学有3名同学去参加数学竞赛,一份试卷共10道题,答对一题得10分,答错一题不但不得分还要扣去3分,这三名同学都答了全部题目,小明得74分,小华得22分,小红得87分,他们三人共答对多少题?。