实数指数与指数函数(教案)

合集下载

高中数学 第四章 指数函数、对数函数与幂函数 4.1.1 实数指数幂及其运算学案(含解析)新人教B版

高中数学 第四章 指数函数、对数函数与幂函数 4.1.1 实数指数幂及其运算学案(含解析)新人教B版

第四章指数函数、对数函数与幂函数4.1 指数与指数函数4.1.1 实数指数幂及其运算素养目标·定方向课程标准学法解读1.理解n次方根、n次根式的概念,能正确运用根式运算性质化简求值.2.理解有理数指数幂的含义,能正确运用其运算法则进行化简、计算.3.理解无理数指数幂,了解指数幂的拓展过程.4.掌握实数指数幂的运算法则.1.通过学习n次方根、n次根式概念及有理数指数幂含义,提升数学抽象素养.2.通过根式运算性质、有理数指数幂运算法则的应用,提升数学运算素养.3.通过学习无理数指数幂,了解无限逼近思想,提升数学抽象素养.4.通过实数指数幂运算法则的应用,提升数学运算素养.必备知识·探新知知识点n次方根(1)定义:给定大于1的正整数n和实数a,如果存在实数x,使得__x n=a__,则x称为a的n次方根.(2)表示:n为奇数n为偶数a∈R a>0a=0a<0x=__na__x=__±na__0不存在思考:对于式子na中a一定是非负数吗?如不是,其范围是什么?提示:不一定是非负数,其范围由n的奇偶决定;当n为奇数时,a∈R;当n为偶数时,a≥0.知识点根式(1)当n a 有意义时,na 称为根式,n 称为__根指数__,a 称为被开方数. (2)性质:①(na )n=__a __;②nan=⎩⎪⎨⎪⎧__a __,n 为奇数,__|a |__,n 为偶数.思考:(na )n与na n中的字母a 的取值范围是否一样?提示:取值范围不同.式子(na )n中隐含a 是有意义的,若n 为偶数,则a ≥0,若n 为奇数,a ∈R ;式子na n中,a ∈R .分数指数幂的意义 知识点正分数 指数幂n 为正整数,na 有意义,且a ≠0时,规定a 1n =__na __ 正分数m n,a m n =__(n a )m __=n a m负分数 指数幂s 是正分数,a s 有意义且a ≠0时,规定a -s =__1as __思考:分数指数幂中的m n有什么规定?提示:m n为既约分数,如果没有特殊说明,一般总认为分数指数中的分数都是既约分数. 知识点无理数指数幂当a >0且t 是无理数时,a t是一个确定的__实数__. 思考:当a >0时,式子a x 中的x 的范围是什么? 提示:x ∈R . 知识点实数指数幂的运算法则(a >0,b >0,r ,s ∈R )(1)a r a s=__ar +s__.(2)(a r )s =__a rs__. (3)(ab )r=__a r b r__.关键能力·攻重难题型探究题型n 次方根的概念及相关问题┃┃典例剖析__■典例1 (1)求使等式a -3a 2-9=(3-a )a +3成立的实数a 的取值范围;(2)设-3<x <3,求x 2-2x +1-x 2+6x +9的值. [分析] (1)利用a 2=|a |进行讨论化简. (2)利用限制条件去绝对值号. [解析] (1)a -3a 2-9=a -32a +3=|a -3|a +3,要使|a -3|a +3=(3-a )a +3成立,需⎩⎪⎨⎪⎧a -3≤0,a +3≥0,解得-3≤a ≤3,即实数a 的取值范围为[-3,3].(2)原式=x -12-x +32=|x -1|-|x +3|,∵-3<x <3,∴当-3<x <1时,原式=-(x -1)-(x +3)=-2x -2;当1≤x <3时,原式=(x -1)-(x +3)=-4.∴原式=⎩⎪⎨⎪⎧-2x -2,-3<x <1,-4,1≤x <3.规律方法:1.对于na ,当n 为偶数时,要注意两点:(1)只有a ≥0时才有意义;(2)只要na 有意义,na 必不为负.2.当n 为偶数时,na n先化为|a |,再根据a 的正负去绝对值符号. ┃┃对点训练__■1.(1)若4a -2+(a -3)0有意义,则a 的 取值范围是__[2,3)∪(3,+∞)__;(2)已知x ∈[1,2],化简(4x -1)4+6x -26=__1__.[解析] (1)由⎩⎪⎨⎪⎧a -2≥0,a -3≠0,得a ≥2,且a ≠3.(2)∵x ∈[1,2],∴x -1≥0,x -2≤0,∴(4x -1)4+6x -26=x -1+|x -2|=x -1-(x -2)=1.题型根式与分数指数幂的互化┃┃典例剖析__■典例2 (1)用根式表示下列各式:a 15 ;a 34 ;a -23 ;(2)用分数指数幂表示下列各式:3a 5;3a 6;13a2.[分析] 利用分数指数幂的定义求解.[解析] (1)a 15 =5a ;a 34 =4a 3;a -23 =1a 23 =13a 2.(2)3a 5=a 53 ;3a 6=a 63 =a 2;13a 2=1a 23=a -23 .规律方法:根式与分数指数幂互化的规律(1)根指数化为,分数指数的分母,被开方数(式)的指数――→化为分数指数的分子. (2)在具体计算时,通常会把根式转化成分数指数幂的形式,然后利用有理数指数幂的运算法则解题.┃┃对点训练__■2.(1)用根式表示下列各式:x 35 ;x -13 ; (2)用分数指数幂表示下列各式: ①b 3a 2·a 2b 6(a >0,b >0); ②a -4b 23ab 2(a >0,b >0).[解析] (1)x 35 =5x 3;x -13 =13x.(2)①b 3a 2·a 2b 6=b 3a 2·a b 3=a -12 . ②a -4b23ab 2=a -4b 2·ab213 =a -4b 2a 13 b 23 =a -113 b 83 =a -116 b 43 .题型有理(实数)指数幂的运算法则的应用┃┃典例剖析__■典例3 化简:(1)(5x -23 y 12 )·⎝ ⎛⎭⎪⎫-14x -1y 12 ·⎝ ⎛⎭⎪⎫-56x 13 y -16 (其中x >0,y >0);(2)0.064-13 -⎝ ⎛⎭⎪⎫-780+[(-2)3] -43 +16-0.75;(3)32+3×27-33; (4)(1+2)[(-2-1)-2(2)12 ]12 +(2)1-3×(2)1+3.[分析] 利用幂的运算法则计算.[解析] (1)原式=⎣⎢⎡⎦⎥⎤5×-14×-56·x -23 +(-1)+13·y 12 +12 -16=2524x -43 y 56 .(2)原式=0.4-1-1+(-2)-4+2-3=52-1+116+18=2716. (3)32+3×27-33 =32+3×(33)-33 =32+3×3-3=32+3-3=32=9.(4)(1+2)[(-2-1)-2(2)12 ]12 +(2)1-3×(2)1+3=(1+2)[(2+1)-2·(2)12 ]12 +(2)1-3+1+3=(1+2)[(2+1)-2×12(2)12 ×12 ]+(2)2=(1+2)·[(2+1)-1·(2)14 ]+2=(2)14 +2=2+218 .规律方法:指数幂的一般运算步骤是:有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数幂的运算性质.┃┃对点训练__■ 3.化简与求值(1)⎝ ⎛⎭⎪⎫-338 -23 +(0.002)-12 -10(5-2)-1+(2-3)0; (2)3a 32·a -3·a-5-12 ·a -1213.[解析] (1)原式=(-1) -23 ⎝ ⎛⎭⎪⎫338-23 +⎝ ⎛⎭⎪⎫1500-12-105-2+1=⎝ ⎛⎭⎪⎫278-23 +(500) 12 -10(5+2)+1=49+105-105-20+1=-1679. (2)原式=(a 32 ·a -23 )13 ·[(a -5)-12 ·(a -12 )13] 12 =(a 0) 13 ·(a 52 ·a -23 )12=(a -4) 12 =a -2.易错警示┃┃典例剖析__■典例4 化简(1-a )[(a -1)-2·(-a ) 12 ] 12 .[错解] 原式=(1-a )(a -1)-1·(-a ) 14 =-(-a ) 14 .[辨析] 误解中忽略了题中有(-a ) 12 ,即-a ≥0,a ≤0,则[(a -1)-2] 12 ≠(a -1)-1. [正解] ∵(-a ) 12 存在,∴-a ≥0,故a -1<0,原式=(1-a )·(1-a )-1(-a ) 14 =1 (-a)4.。

高中数学复习教案:指数与指数函数

高中数学复习教案:指数与指数函数

第五节 指数与指数函数[考纲传真] 1.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.2.了解指数函数模型的实际背景,理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点,会画底数为2,3,10,12,13的指数函数的图象.3.体会指数函数是一类重要的函数模型.1.根式n 次方根概念 如果x n =a ,那么x 叫作a 的n 次方根,其中n >1,n ∈N *表示 当n 是奇数时,a 的n 次方根x =na当n 是偶数时,正数的n 次方根x =±n a ;负数没有偶次方根0的任何次方根都是0,记作n0=0根式概念 式子n a 叫作根式,其中n 叫作根指数,a 叫作被开方数性质 (na )n =a当n 为奇数时,na n =a当n 为偶数时,na n=|a |=⎩⎨⎧a ,a ≥0-a ,a <02.(1)分数指数幂①正分数指数幂:a m n =na m (a >0,m ,n ∈N *,且n >1); ②负分数指数幂:a -m n =1a m n =1n a m (a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的运算性质 ①a r ·a s =a r +s (a >0,r ,s ∈Q ); ②(a r )s =a rs (a >0,r ,s ∈Q );③(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质y =a xa >10<a <1图象定义域 R 值域(0,+∞) 性质(0,1) 过定点当x >0时,y >1; x <0时,0<y <1当x >0时,0<y <1; x <0时,y >1在R 上是增函数在R 上是减函数[常用结论]指数函数的图象与底数大小的关系如图是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b .由此我们可得到以下规律:在第一象限内,指数函数y =a x (a >0,且a ≠1)的图象越高,底数越大.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)4(-4)4=-4.( ) (2)(-1) 24=(-1) 12=-1. ( ) (3)函数y =2x-1是指数函数.( )(4)若a m <a n (a >0且a ≠1),则m <n . ( )[答案] (1)× (2)× (3)× (4)×2.化简[(-2)6]12-(-1)0的结果为( )A .-9B .7C .-10D .9 B [原式=(26) 12-1=8-1=7.]3.(教材改编)若函数f (x )=a x (a >0,且a ≠1)的图象经过点P ⎝ ⎛⎭⎪⎫2,12,则f (-1)等于( )A.22 B. 2 C.14D .4B [由题意知12=a 2,所以a =22,所以f (x )=⎝ ⎛⎭⎪⎫22x,所以f (-1)=⎝ ⎛⎭⎪⎫22-1= 2.]4.函数y =a x -a (a >0,且a ≠1)的图象可能是( )A B C DC [令y =a x -a =0,得x =1,即函数图象必过定点(1,0),符合条件的只有选项C.] 5.指数函数y =(2-a )x 在定义域内是减函数,则a 的取值范围是________. (1,2) [由题意知0<2-a <1, 解得1<a <2.]指数幂的化简与求值1.A.⎝ ⎛⎭⎪⎫n m 7=n 7m 17 B.12(-3)4=3-3 C.4x 3+y 3=(x +y )34 D.39=33D [39=(913)12=916=313=33,故选D.]2.若a >0,b >0,则化简=________.ab -1 [原式===ab -1.]3.化简-10(5-2)-1+3π0+59=________.-16 [原式=⎝⎛⎭⎪⎫82723+50012-105-2+3+59 =49+105-10(5+2)+3+59 =-16.]4.若x 12+x -12=3,则=________.25[由x 12+x -12=3得x +x -1+2=9. 所以x +x -1=7.同理由x +x -1=7可得x 2+x -2=47.x 32+x -32=(x 12+x -12)(x +x -1-1)=3×6=18. 所以[规律方法] 指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先算指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数. (4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解题. 易错警示:运算结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数,形式力求统一.指数函数的图象及应用【例1】 (1)函数f (x )=a x -b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<0(2)已知函数f(x)=3+a2x-4的图象恒过定点P,则点P的坐标是________.(3)若曲线y=|3x-1|与直线y=k只有一个公共点,则实数k的取值范围为________.(1)D(2)(2,4)(3){0}∪[1,+∞)[(1)由f(x)=a x-b的图象可以观察出函数f(x)=a x-b在定义域上单调递减,所以0<a<1.函数f(x)=a x-b的图象是在f(x)=a x的基础上向左平移得到的,所以b<0.(2)令2x-4=0得x=2,且f(2)=4,则点P的坐标为(2,4).(3)函数y=|3x-1|的图象是由函数y=3x的图象向下平移一个单位后,再把位于x轴下方的图象沿x轴翻折到x轴上方得到的,函数图象如图所示.当k=0或k≥1时,直线y=k与函数y=|3x-1|的图象有唯一的交点.][规律方法]指数函数图象应用的4个技巧(1)画指数函数y=a x(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),.(2)已知函数解析式判断其图象一般是取特殊点,判断所给的图象是否过这些点,若不满足则排除.(3)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论.(4)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.(1)函数y=xa x|x|(a>1)的图象大致是()A B C D(2)函数f(x)=2|x-1|的图象是()A B C D(3)已知a >0,且a ≠1,若函数y =|a x -2|与y =3a 的图象有两个交点,则实数a 的取值范围是________.(1)B (2)B (3)⎝ ⎛⎭⎪⎫0,23 [(1)y =⎩⎨⎧a x ,x >0,-a x ,x <0,又a >1,故选B.(2)函数f (x )=2|x -1|的图象可由y =2|x |的图象向右平移1个单位得到,故选B. (3)①当0<a <1时,如图①,所以0<3a <2,即0<a <23; ②当a >1时,如图②,而y =3a >1不符合要求.图① 图②所以0<a <23.]指数函数的性质及应用►考法1 比较指数式的大小【例2】 已知a =343,b =925,c =12113,则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <bA [因为a =343=923>925=b ,c =12113=1123>923=a ,所以c >a >b .故选A.] ►考法2 解简单的指数方程或不等式 【例3】 (1)设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x-7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)(2)已知实数a ≠1,函数f (x )=⎩⎨⎧4x ,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为________.(1)C (2)12 [(1)当a <0时,不等式f (a )<1可化为⎝ ⎛⎭⎪⎫12a-7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a <⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1,所以0≤a <1.故a 的取值范围是(-3,1).故选C.(2)当a <1时,41-a =21,解得a =12;当a >1时,代入不成立.故a 的值为12.]►考法3 与指数函数有关的函数的值域或最值问题【例4】 (1)已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________.(2)已知0≤x ≤2,则y =4x -12-3·2x +5的最大值为________.(1)-32 (2)52[(1)当a >1时,函数f (x )=a x +b 在[-1,0]上为增函数,由题意得⎩⎨⎧a -1+b =-1,a 0+b =0,无解.当0<a <1时,函数f (x )=a x +b 在[-1,0]上为减函数,由题意得⎩⎨⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b =-32.(2)y =12(2x )2-3·2x +5.令t =2x ,由0≤x ≤2得1≤t ≤4,又y =12t 2-3t +5=12(t -3)2+12, ∴当t =1时,y 有最大值,最大值为52.] ►考法4 复合函数的单调性、值域或最值【例5】 函数f (x )=⎝ ⎛⎭⎪⎫12-x 2+2x +1的单调递减区间是________,值域是________.(-∞,1] ⎝ ⎛⎭⎪⎫14,+∞ [令u =-x 2+2x +1,则u =-(x -1)2+2.又y =⎝ ⎛⎭⎪⎫12u 在R 上是减函数,则函数f (x )=⎝ ⎛⎭⎪⎫12-x 2+2x +1的单调递减区间为函数u =-x 2+2x +1的增区间.由此函数f (x )的单调递减区间为(-∞,1].因为u ≤2,则f (x )≥⎝ ⎛⎭⎪⎫122=14,即函数f (x )的值域为⎣⎢⎡⎭⎪⎫14,+∞.] [规律方法]应用指数函数性质综合的常考题型及求解策略常考题型 求解策略比较幂值的大小 (1)能化成同底数的先化成同底数幂再利用单调性比较大小.(2)不能化成同底数的,一般引入“1”等中间量比较大小解简单指数不等式 先利用幂的运算性质化为同底数幂,再利用单调性转化为一般不等式求解探究指数型函数的性质与研究一般函数的定义域、单调性(区间)、奇偶性、最值(值域)等性质的方法一致(1)(2019·信阳模拟)已知a =⎝ ⎛⎭⎪⎫35-12,b =⎝ ⎛⎭⎪⎫35-14,c =⎝ ⎛⎭⎪⎫32-34,则a ,b ,c 的大小关系是( )A .c <a <bB .a <b <cC .b <a <cD .c <b <a(2)(2019·长春模拟)函数y =4x +2x +1+1的值域为( ) A .(0,+∞) B .(1,+∞) C .[1,+∞) D .(-∞,+∞)(3)已知函数y =2-x 2+ax +1在区间(-∞,3)上单调递增,则a 的取值范围为________.(4)函数y =2-x 2+2x的值域为________.(1)D (2)B (3)[6,+∞) (4)(0,2] [(1)c =⎝ ⎛⎭⎪⎫32-34=⎝ ⎛⎭⎪⎫278-14,则⎝ ⎛⎭⎪⎫35-13>⎝ ⎛⎭⎪⎫35-14>⎝ ⎛⎭⎪⎫278-14,即a >b >c ,故选D. (2)y =4x +2x +1+1=(2x )2+2·2x +1, 令t =2x ,则t >0,∴y =t 2+2t +1=(t +1)2>1,故选B.(3)由题意知,函数u=-x2+ax+1在区间(-∞,3)上单调递增,则a2≥3,即a≥6.(4)-x2+2x=-(x-1)2+1≤1,则0<y≤2.即函数y=2-x2+2x的值域为(0,2].]。

指数函数教案(优秀5篇)

指数函数教案(优秀5篇)

指数函数教案(优秀5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!指数函数教案(优秀5篇)作为一名优秀的教育工作者,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。

§3.1 指数与指数函数 3.1.1 实数指数幂及其运算(一)

§3.1 指数与指数函数 3.1.1 实数指数幂及其运算(一)

§3.1指数与指数函数3.1.1实数指数幂及其运算(一)学习目标1.理解正整指数幂的含义,掌握正整指数幂的运算法则.2.了解根式与方根的概念.3.掌握根式的性质,并能进行简单的根式运算.知识点一整数指数思考1 n个相同因数a相乘的结果怎么表示?这个结果叫什么?答案a n,叫幂.思考2 零指数幂和负整指数幂是如何规定的?答案规定:a0=1 (a≠0),零的零次幂无意义;a-n=1a n(a≠0,n∈N+).梳理 整数指数幂的概念及性质 (1)有关幂的概念a n =···n a a a 个,a n 叫做a 的n 次幂,a 叫做幂的底数,n 叫做幂的指数,n ∈N +,并规定a 1=a .(2)零指数幂与负整指数幂规定:a 0=1(a ≠0),a -n=1an (a ≠0,n ∈N +).(3)整数指数幂的运算法则a m ·a n =a m +n .(a m )n =a mn .a m an =a m -n (m >n ,a ≠0).(ab )m =a m b m. 知识点二 n 次方根、n 次根式思考 若x 2=3,这样的x 有几个?它们叫做3的什么?怎么表示? 答案 这样的x 有2个,它们都称为3的平方根,记作± 3. 梳理 根式的概念 (1)a 的n 次方根定义如果存在实数x ,使得x n =a ,那么x 叫做a 的n 次方根,其中a ∈R ,n >1,且n ∈N +. (2)a 的n 次方根的表示(3)根式当n a有意义的时候,n a叫做根式,这里n叫做根指数,a叫做被开方数.知识点三根式的性质一般地,有(1)n0=0(n∈N+,且n>1).(2)(n a)n=a(n∈N+,且n>1).(3)n a n=a(n为大于1的奇数).(4)na n=|a|=⎩⎨⎧a,a≥0,-a,a<0(n为大于1的偶数).1.a0一定等于1.( ×)2.实数a的n次方根有且只有一个.( ×)3.当n 为偶数,a ≥0时,na ≥0.( √ )4.na n =⎝⎛⎭⎫n a n .( × )类型一 根式的意义 例1 求使等式a -3a 2-9=(3-a )a +3成立的实数a 的取值范围. 解a -3a 2-9=a -32a +3=|a -3|a +3,要使|a -3|a +3=(3-a )a +3,需⎩⎨⎧a -3≤0,a +3≥0,解得a ∈[-3,3].反思与感悟 对于n a ,当n 为偶数时,要注意两点:(1)只有a ≥0才有意义;(2)只要na有意义,na 必不为负.跟踪训练1 若a 2-2a +1=a -1,求a 的取值范围.解 ∵a 2-2a +1=|a -1|=a -1, ∴a -1≥0,∴a ≥1.类型二 利用根式的性质化简或求值 例2 化简:(1)43-π4;(2)a -b2(a >b );(3)(a -1)2+1-a2+31-a3.解 (1)43-π4=|3-π|=π-3.(2)a -b 2=|a -b |=a -b .(3)由题意知a -1≥0,即a ≥1.原式=a -1+|1-a |+1-a =a -1+a -1+1-a =a -1.反思与感悟 n 为奇数时,⎝⎛⎭⎫n a n =na n =a ,a 为任意实数;n 为偶数时,a ≥0,⎝⎛⎭⎫n a n 才有意义,且⎝⎛⎭⎫n a n =a ;而a 为任意实数n a n 均有意义,且na n =|a |. 跟踪训练2 求下列各式的值:(1)7-27;(2)43a -34(a ≤1);(3)3a 3+41-a4.解 (1)7-27=-2.(2)43a -34=|3a -3|=3|a -1|=3-3a .(3)3a 3+41-a4=a +|1-a |=⎩⎨⎧1,a ≤1,2a -1,a >1.类型三 有限制条件的根式的化简例3 设-3<x <3,求x 2-2x +1-x 2+6x +9的值. 解 原式=x -12-x +32=|x -1|-|x +3|,∵-3<x <3, ∴当-3<x <1时,原式=-(x -1)-(x +3)=-2x -2; 当1≤x <3时,原式=(x -1)-(x +3)=-4.∴原式=⎩⎨⎧-2x -2,-3<x <1,-4,1≤x <3.引申探究本例中,若将“-3<x <3”变为“x ≤-3”,则结果又是什么? 解 原式=x -12-x +32=|x -1|-|x +3|.∵x ≤-3,∴x -1<0,x +3≤0,∴原式=-(x -1)+(x +3)=4.反思与感悟 n 为偶数时,na n 先化为|a |,再根据a 的正负去绝对值符号.跟踪训练3 已知x∈[1,2],化简(4x-1)4+6x2-4x+43=________.答案1解析∵x∈[1,2],∴x-1≥0,x-2≤0,∴(4x-1)4+6x2-4x+43=x-1+6x-26=x-1-(x-2)=1.1.已知x5=6,则x等于( )A. 6B.56C.-56 D.±56答案B2.m是实数,则下列式子中可能没有意义的是( )A.4m2B.3mC.6mD.5-m答案C3.(42)4运算的结果是( )A.2 B.-2 C.±2D.不确定答案A4.3-8的值是( )A.2 B.-2 C.±2D.-8答案B5.化简1-2x2(2x>1)的结果是( ) A.1-2x B.0C.2x-1 D.(1-2x)2答案C1.如果x n =a ,n 为奇数时,x =n a ,n 为偶数时,x =±na (a >0);负数没有偶次方根,0的任何次方根都是0.2.掌握两个公式:(1)(n a )n =a ;(2)n 为奇数,n a n =a ,n 为偶数,na n =|a |=⎩⎨⎧a , a ≥0,-a , a <0.一、选择题1.已知m 10=2,则m 等于( )A.102 B .-102 C.210 D .±102 答案 D 解析 ∵m 10=2,∴m 是2的10次方根.又∵10是偶数,∴2的10次方根有两个,且互为相反数. ∴m =±102.故选D.2.计算2122242+-⨯的结果是( ) A .32B .16C .64D .128答案 B 3.化简3-8125的值是( ) A.25 B .-25C .±25D .-35 答案 B解析 3-8125=3⎝ ⎛⎭⎪⎫-253=-25. 4.化简e -1+e 2-4等于( )A .e -e -1B .e -1-eC.e+e-1D.0答案A解析e-1+e2-4=e-2+2e-1e+e2-4=e-2-2+e2=e-1-e2=|e-1-e|=e-e-1.5.若2<a<3,化简2-a2+43-a4的结果是( ) A.5-2a B.2a-5C.1 D.-1答案C解析∵2<a<3,∴a-2>0,a-3<0,∴2-a2+43-a4=|2-a|+|3-a|=a-2+3-a=1. 6.5-26的平方根是( )A.3+ 2B.3-2C.2- 3D.3-2,2-3答案D解析±5-26=±3-26+2=±3-22=±(3-2).二、填空题7.化简π-42+3π-43的结果为________.答案 0解析 原式=|π-4|+π-4=4-π+π-4=0.8.若x <0,则|x |-x 2+x 2|x |=________. 答案 1 解析 ∵x <0,∴原式=-x -(-x )+-x -x=-x +x +1=1. 9.3-223+22=________.答案 3-22解析 方法一 3-223+22= 2-122+12=2-12+1=2-122+12-1=3-2 2. 方法二 3-223+22=3-2223+223-22=3-2 2.10.把a -1a根号外的a 移到根号内等于________. 答案 --a解析 要使 -1a有意义,需a <0. ∴a -1a =-|a | -1a=- |a |2·⎝ ⎛⎭⎪⎫-1a =--a .三、解答题11.求3-63+45-44+35-43的值. 解 ∵3-63=-6,45-44=|5-4|=4-5,35-43=5-4,∴原式=-6+4-5+5-4=-6.12.设f (x )=x 2-4,若0<a ≤1,求f ⎝ ⎛⎭⎪⎫a +1a . 解 f ⎝ ⎛⎭⎪⎫a +1a = ⎝ ⎛⎭⎪⎫a +1a 2-4= a 2+1a 2-2 =⎝ ⎛⎭⎪⎫a -1a 2=⎪⎪⎪⎪⎪⎪a -1a , 因为0<a ≤1,所以a ≤1a, 故f ⎝ ⎛⎭⎪⎫a +1a =1a-a . 13.化简x 2-2xy +y 2+7y -x 7. 解 原式=x -y 2+y -x =|x -y |+y -x . 当x ≥y 时,原式=x -y +y -x =0;当x <y 时,原式=y -x +y -x =2(y -x ).∴原式=⎩⎨⎧0,x ≥y ,2y -x ,x <y .四、探究与拓展 14.化简(1-a )·41a -13=________.答案 -4a -1解析 要使代数式有意义需a -1>0. (1-a ) 41a -13=-|a -1| 41a -13 =-4a -14·1a -13=-4a -1. 15.计算: (1)614- 3338+30.125; (2)3-83+43-24-32-33;(3)3⎝ ⎛⎭⎪⎫34-143·(3+1)+( 2 015- 2 014)0. 解 (1)原式=254-3278+318 =52-32+12=32. (2)原式=-8+|3-2|-(2-3)=-8+2-3-2+3 =-8.(3)原式=⎝ ⎛⎭⎪⎫34-14·(3+1)+1 =12(3-1)·(3+1)+1 =12(3-1)+1=1+1=2.。

指数函数教案

指数函数教案

指数函数教案指数函数教案(通用3篇)指数函数教案1教材分析(一)本课时在教材中的地位及作用:指数函数的教学共分两个课时完成。

第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。

指数函数第一课时是在学习指数概念的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。

(二)教学目标:1、知识目标:掌握指数函数的概念,图像和性质。

2、能力目标:通过数形结合,利用图像来认识,掌握函数的性质,增强学生分析问题,解决问题的能力。

3、德育目标:对学生进行辩证唯物主义思想的教育,使学生学会认识事物的特殊性与一般性之间的关系,培养学生善于探索的思维品质。

(三)教学重点,难点和关键:1、重点:指数函数的定义、性质和图象。

2、难点:指数函数的定义理解,指数函数的图象特征及指数函数的性质。

3、关键:能正确描绘指数函数的图象。

教学基本思路:在讲解指数函数的定义前,复习有关指数知识及简单运算,然后由实例引入指数函数的概念,因为手工绘图复杂且不够精确,并且是本节课的教学关键,教学中,我借助电脑手段,通过描点作图,观察图像,引导学生说出图像特征及变化规律,并从而得出指数函数的性质,提高学生的形数结合的能力。

一、学法指导:1、学情分析:大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。

2、学法指导:针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。

并逐步学会独立提出问题、解决问题。

总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。

指数函数教案2教学目标:1、进一步理解指数函数的性质。

指数函数及其性质教学设计(共8篇)

指数函数及其性质教学设计(共8篇)

指数函数及其性质教学设计〔共8篇〕第1篇:《指数函数及其性质》教学设计《指数函数及其性质》教学设计尚义县第一中学乔珺一、指数函数及其性质教学设计说明新课标指出:学生是教学的主体,老师的教应本着从学生的认知规律出发,以学生活动为主线,在原有知识的根底上,建构新的知识体系。

我将以此为根底对教学设计加以说明。

数学本质:探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图象打破,体会数形结合的思想。

通过分类讨论,通过研究两个详细的指数函数引导学生通过观察图象发现指数函数的图象规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。

引导学生探究出指数函数的一般性质,从而对指数函数进展较为系统的研究。

二、教材的地位和作用:本节课是全日制普通高中标准实验教课书《数学必修1》第二章2.1.2节的内容,研究指数函数的定义,图像及性质。

是在学生已经较系统地学习了函数的概念,将指数扩大到实数范围之后学习的一个重要的根本初等函数。

它既是对函数的概念进一步深化,又是今后学习对数函数与幂函数的根底。

因此,在教材中占有极其重要的地位,起着承上启下的作用。

此外,《指数函数》的知识与我们的日常消费、生活和科学研究有着严密的联络,尤其表达在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这局部知识还有着广泛的现实意义。

三、教学目的分析^p :根据本节课的内容特点以及学生对抽象的指数函数及其图象缺乏感性认识的实际情况,确定在理解指数函数定义的根底上掌握指数函数的图象和由图象得出的性质为本节教学重点。

本节课的难点是指数函数图像和性质的发现过程。

为此,特制定以下的教学目的: 1〕知识目的〔直接性目的〕:理解指数函数的定义,掌握指数函数的图像、性质及其简单应用、能根据单调性解决根本的比拟大小的问题.2〕才能目的〔开展性目的〕:通过教学培养学生观察、分析^p 、归纳等思维才能,体会数形结合和分类讨论思想,增强学生识图用图的才能。

必修1第二章指数和指数函数教案(7个课时)

必修1第二章指数和指数函数教案(7个课时)

(2)5x 4,5y 2,则52xy _______
练 2、用分数指数幂的形式表示下列各式(a>0)
7
(1) 3 a2 a3
(2) 3 a8 3 a15

解:(1)原式=a
7 2
1 3
31
a 23
7
a6
1
a2
2
a3;

(2)原式=a
(

8 ) 3
1 2
15 1

an

1 an
(a 0)
5
观察归纳,讲授新课
观察以下式子,并总结出规律: a >0
10
① 5 a10 5 (a2 )5 a2 a 5

8
a8 (a4 )2 a4 a2
12
③ 4 a12 4 (a3 )4 a3 a 4
10
④ 5 a10 5 (a2 )5 a2 a 5
a3 2
45
a 3 2
7
a6.


7
教学内容
第3课 (单元)
主题
分数指数幂及其性质 2
1 课时
1、理解分数指数幂的概念;

知识 与技能
2、掌握分数指数幂和根式之间的互化;
3、掌握分数指数幂的运算性质.

过 程 从整数指数幂到分数指数幂,再推广到无理指数幂,将指数范围扩充到实数,
目 与方法 进而学习分数指数幂以及指数幂的性质.
图象特征函数性质轴正负方向无限延伸函数的定义域为r图象关于原点和y轴不对称非奇非偶函数函数图象都在x轴上方函数的值域为r自左向右图象逐渐上升自左向右图象逐渐下降增函数减函数在第一象限内的图象纵坐标都大于1在第一象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都大于1学习目标

人教B版高中数学必修一教案-3.1 指数与指数函数

人教B版高中数学必修一教案-3.1 指数与指数函数

2.1.2 指数函数及其性质(1)三维目标一、知识与技能1.掌握指数函数的概念、图象和性质..能借助计算机或计算器画指数函数的图象. 3.能由指数函数图象探索并理解指数函数的性质. 二、过程与方法1.在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程,数形结合的方法等.2.通过探讨指数函数的底数a >0,且a ≠1的理由,明确数学概念的严谨性和科学性,做一个具备严谨科学态度的人.三、情感态度与价值观1.通过实例引入指数函数,激发学生学习指数函数的兴趣,体会指数函数是一类重要的函数模型,并且有广泛的用途,逐步培养学生的应用意识.2.在教学过程中,通过现代信息技术的合理应用,让学生体会到现代信息技术是认识世界的有效手段. 教学重点指数函数的概念和性质. 教学难点用数形结合的方法从具体到一般地探索、概括指数函数的性质. 教具准备多媒体、学案. 教学过程(一)新课导学探究一:指数函数的概念问题1:细胞分裂时,第一次由1个分裂成2个(即 12),第2次由2个分裂成4个(即 ),第3次由4个分裂成8个(即 ),如此下去,如果第x 次分裂得到 个细胞,那么细胞个数y 与次数x 的关系式是问题2:《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭。

”请你写出截取x 次后,木棰剩余量y 关于x 的关系式是【讨论】:(1)这两个关系式是否构成函数?我们发现:在两个关系式中,每给一个自变量都有唯一的一个函数值和它对应,因此关系式2x y= 和 1()2xy = 都是函数关系式。

(2)这是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字?我们发现: 函数2x y= 和 1()2xy =在在形式上是是相同的,解析式的右边都是指数式,且自变量都在指数位置上。

底数是常数,指数是自变量。

结论:函数2x y= 和 1()2x y =都是函数y =a x 的具体形式.函数y =a x是一类重要的函数模型,并且有广泛的用途,它可以解决好多生活中的实际问题,这就是我们下面所要研究的一类重要函数模型——指数函数. (引入新课,书写课题)(二)概念讲解指数函数的概念:一般地,函数y =a x (a >0,a ≠1)叫做指数函数,其中x 是自变量,函数的定义域是R . 思考:1、指数函数解析式的结构特征: ①xa 前面的系数为:1 ②a 的取值范围:a >0,a ≠1③指数只含x2:为什么规定10≠>a a 且呢?否则会出现什么情况呢?①当0=a ,ⅰ若0>x ,则00=xⅱ若0≤x ,则x0无意义,如:21-=x ,则010102121===-y 无意义。

指数函数教案(精选多篇)

指数函数教案(精选多篇)

指数函数教案(精选多篇)第一篇:指数函数教案.doc一.思考题1.来回答其变化的过程和答案2.过ppt来讲解思考题二、问题1.接说出指数函数2.学来思考问题23.出指数函数的概念三.例题1.下题目,叫学生思考几秒钟,请学生来回答。

2.学生的回答进行分析四.思考1.第一个思考,引导学生说出图像的做法,2.学生来画出4个图像3.图像进行补充4.函数的三要素来分析图像的性质5.图像上的到恒过的点及单调性6.行底数互为倒数的函数图像的比较、得到对称的性质(换算)7.行底数不同大小的比较,说明其大小的变化五.例题先思考,再请同学来回答,再进行点评六、总结七、布置作业第二篇:《指数函数概念》教案《指数函数概念》教案(一)情景设置,形成概念1、引例1:折纸问题:让学生动手折纸观察:①对折的次数x与所得的层数y之间的关系,得出结论y=2x②对折的次数x与折后面积y之间的关系(记折前纸张面积为1),得出结论y=(1/2)x引例2:《庄子。

天下篇》中写到:“一尺之棰,日取其半,万世不竭”。

请写出取x次后,木棰的剩留量与y与x的函数关系式。

2、形成概念:形如y=ax(a>0且a≠1)的函数称为指数函数,定义域为x∈r。

提出问题:为什么要限制a>0且a≠1?这一点让学生分析,互相补充。

分a﹤=0,a=1讨论。

1)a<0时,y=(-3)x对于x=1/2,1/4,??(-3)x无意义。

2)a=0时,x>0时,ax=0;x≤0时无意义。

3)a=1时,a= 1=1是常量,没有研究的必要。

(二)发现问题、深化概念问题:判断下列函数是否为指数函数。

1)y=-3x2)y=31/x3) y=31+x4) y=(-3)x5) y=3-x=(1/3) x1、1)ax的前面系数为1; 2)自变量x在指数位置; 3)a>0且a≠1。

2、问题中4)y=(-3)x的判定,引出上面讨论的问题:即指数函数的概念中为什么要规定a>0且a≠1。

指数与指数幂的运算(第一课时)教案

指数与指数幂的运算(第一课时)教案

2.1 指数函数2.1.1 指数与指数幂的运算(第一课时)一、教材分析:本节是高中数学新人教版必修1的第二章2.1指数函数的内容. 二、学习目标:①理解n 次方根与根式的概念;②正确运用根式运算性质化简、求值; ③了解分类讨论思想在解题中的应用.三、教学重点:理解有理数指数幂的含义及其运算性质.四、教学难点:理解方根和根式的概念,掌握根式的性质,会进行简单的求n 次方根的运算.五、课时安排:2课时 六、教学过程(一)、自主导学(课堂导入)1、设计问题,创设情境问题:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系,这个关系式应该怎样表示呢?我们可以先来考虑这样的问题:①当生物死亡了5730,2×5730,3×5730,…年后,它体内碳14的含量P 分别为原来的多少?21,,...)21(,)21(32 ②当生物体死亡了6000年,10000年,100000年后,它体内碳14的含量P 分别为原来的多少?573010000057301000057306000)21(,)21(,)21(③由以上的实例来推断生物体内碳14含量P 与死亡年数t 之间的关系式应该是什么?573021tp ⎪⎭⎫ ⎝⎛=考古学家根据上式可以知道,生物死亡t 年后,体内碳14含量P 的值.那么这些数21,,...)21(,)21(32,573010000057301000057306000)21(,)21(,)21(,573021t p ⎪⎭⎫ ⎝⎛=的意义究竟是什么呢?这正是我们将要学习的知识.2、学生探索,尝试解决问题1:什么是一个数的平方根?什么是一个数的立方根?一个数的平方根有几个,立方根呢?若x2=a,则x叫做a的平方根.同理,若x3=a,则x叫做a的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数.问题2:如果x4=a,x5=a,又有什么样的结论呢?如果一个数的4次方等于a,那么这个数叫做a的4次方根;如果一个数的5次方等于a,那么这个数叫做a的5次方根.问题3:①如果x2=a,那么x叫做a的平方根;②如果x3=a,那么x叫做a的立方根;③如果x4=a,那么x叫做a的4次方根.你能否据此得到一个一般性的结论?一般地,如果x n=a,那么x叫做a的n次方根.问题4:上述结论中的n的取值有没有什么限制呢?方根的定义:一般地,如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*.3、信息交流,揭示规律试根据n次方根的定义分别求出下列各数的n次方根.(多媒体显示,学生完成)(1)25的平方根是±5;(2)27的立方根是3;;(3)-32的5次方根是-2;(4)16的4次方根是±2;(5)a6的立方根是a2;(6)0的7次方根是0.问题5:观察并分析以上各数的方根,你能发现什么?①以上各数的对应方根都是整数;②第(1)(4)题的答案有两个,第(2)(3)(5)(6)题的答案只有一个;③第(1)(4)题的答案中的两个根互为相反数.问题6:请仔细分析上述各题,并结合问题5中同学们发现的结论,你能否得到一个一般性的结论?一个数的奇次方根只有一个;一个数的偶次方根有两个,且互为相反数.问题7:是否任何一个数都有偶次方根?0的n次方根如何规定更合理?因为任何一个数的偶次方都是非负数,所以负数没有偶次方根;0的n次方等于0,所以0的n次方根等于0.问题8:同学们能否把所得到的结论再总结得具体一些呢?n次方根的性质实际上是平方根和立方根性质的推广,因此跟立方根和平方根的情况一样,方根也有如下性质:(1)当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.这时,a的n次.(2)当n是偶数时,正数的n次方根有两个,这两个数互为相反数.这时,正数a的正的n次,负的n.正的n次方根与负的na>0).注:①负数没有偶次方根;②0的任何次方根都是0,记作n 0=0;③当a ≥0时,n a ≥0,所以类似416=±2的写法是错误的. 另外,我们规定:式子n a 叫做根式,其中n 叫做根指数,a 叫做被开方数. 问题9:利用上面所学n 次方根的知识,能否求出下列各式的值? (1)(5)2;(2)38-;(3)416;(4)33)3(-a (a>0). (1)5;(2)-2;(3)2;(4)a-3.问题10:上面的计算涉及了哪几类问题? 主要涉及了(a)n 与n a 的问题.组织学生结合例题及其解答,进行分析讨论,归纳出以下结论: (1)(n a )n =a.例如,(3)3=27,(-2)5=-32. (2)当n 是奇数时,nn a =a ;当n 是偶数时,nna =|a|=⎩⎨⎧<-≥)0(,)0(,a a a a 例如,33)2(-=-2,442=2;553=3,()883-=|-3|=3.4、类比前面的学习,给出并讲解分数指数幂的定义和运算性质 分数指数幂 正数的分数指数幂的意义 规定:)1,,,0(*>∈>=n N n m a a an m nm)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.(1).有理指数幂的运算性质①r a ·s r r a a +=),,0(Q s r a ∈>;②rss r a a =)(),,0(Q s r a ∈>;③srra a ab =)( ),0,0(Q r b a ∈>>.引导学生解决本课开头实例问题 让学生先看并一起分析讲解例题.(教材例2、例3、例4、例5)说明:让学生熟练掌握根式与分数指数幂的互化和有理指数幂的运算性质运用. 4. 无理指数幂结合教材实例利用逼近的思想理解无理指数幂的意义.指出:一般地,无理数指数幂),0(是无理数αα>a a 是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.(二) 、合作学习让学生合作做练习,教师巡视指导然后讲解例题.【例1】求下列各式的值:(1)33)8(-;(2)2)10(-; (3)44)3(π-;(4)2)(b a -(a>b ).解:(1)33)8(-=-8;(2)2)10(-=10-=10;(3)44)3(π-=;33-=-ππ(4)2)(b a -=.b a b a -=- 例2、 计算下列各式的值. (1)33)(a ;(2 (1n >,且n N *∈)(3)1n >,且n N *∈) 【解析】(1)a a =33)(.(2)当n =3π-;当n =3π-.(3)||x y -,当x y ≥时,x y -;当x y <时,y x -.【小结】(1)当n 为奇数时,a a nn =;当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a nn(2)不注意n 的奇偶性对式子n na 值的影响,是导致错误出现的一个重要原因.故要在理解的基础上,记准、记熟、会用、活用.(三)、当堂检测 1.课本.321,54题、、p2、(P 56,例2)求值:①238;②1225-;③51()2-;④3416()81-.学生思考,口答,教师板演、点评. 2、解:① 223338(2)=2323224⨯===; ② 1122225(5)--=12()121555⨯--===; ③ 5151()(2)2---=1(5)232-⨯-==;④334()44162()()813-⨯-=3227()38-==3、用分数指数幂的形式表或下列各式(a >0)①3a 2a 分析:先把根式化为分数指数幂,再由运算性质来运算.解:①117333222a a a a a +=⋅==②2223a a a =⋅28233aa +==;③421332()a a ====.(四)、课堂小结(教师根据学生具体的的学习接受情况提问并和学生一起做总结概括)先让学生独自回忆,然后师生共同总结.本节主要学习了根式与分数指数幂以及指数幂的运算,分数指数幂是根式的另一种表示形式,根式与分数指数幂可以进行互化.在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,化小数为分数进行运算,便于进行乘除、乘方、开方运算,以达到化繁为简的目的,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则. 以下是本节课重要知识点及需要理解的概念: 1.分数指数是根式的另一种写法. 2.无理数指数幂表示一个确定的实数.3. 掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的.1.复习课本P 48~50内容,熟悉巩固有关概念和性质;2.课本P 59习题2.1A 组第1、2、4题. 八、教学反思:。

《5.1.2实数指数幂》教学设计教学反思-2023-2024学年中职数学高教版21基础模块下册

《5.1.2实数指数幂》教学设计教学反思-2023-2024学年中职数学高教版21基础模块下册

《实数指数幂》教学设计方案(第一课时)一、教学目标1. 理解实数指数幂的概念,掌握其运算法则。

2. 能够正确地进行实数指数幂的运算。

3. 培养学生对指数函数的认识及运算能力。

二、教学重难点1. 教学重点:理解实数指数幂的概念,掌握其运算法则。

2. 教学难点:将有理数指数幂进行推广得到实数指数幂,并正确地进行运算。

三、教学准备1. 准备教学用具:黑板、白板、笔、纸等。

2. 设计教案及PPT课件。

3. 准备指数幂的运算例题和练习题。

4. 了解学生已有的知识基础,设计合理的教学计划和评价方式。

PPT课件:1. 引入课题:通过实际生活中的例子,引出指数幂的概念和运算,激发学生的学习兴趣。

2. 指数幂运算规则展示:通过PPT演示指数幂的运算规则,让学生能够直观理解。

3. 例题解析:通过例题解析,让学生能够掌握指数幂的运算方法,并能够独立解决相关问题。

4. 练习题:设计一系列练习题,让学生能够巩固指数幂的运算方法,并能够熟练运用。

5. 总结回顾:通过PPT展示,对本节课所学的指数幂的运算进行总结回顾,帮助学生梳理知识。

课后反思:针对本节课的教学过程和教学效果进行反思,总结优点和不足,为今后的教学提供参考。

四、教学过程:本节课是实数指数幂的教学,是在学完有理数和整数指数幂的基础上进行教学的,学生已经掌握了有理数和整数指数幂的意义和运算方法,因此本节课主要是让学生进一步理解实数指数幂的意义,掌握实数指数幂的运算方法,为以后学习分数指数幂和根式指数幂等知识打下基础。

1. 导入新课通过复习引入新课,提问学生以前学过的数的指数幂法则是什么?有理数指数幂的运算法则有哪些?让学生回答后,再引入实数指数幂的概念和运算法则。

2. 讲授新课通过演示课件,让学生观察底数为实数的指数幂的运算方法与有理数指数幂的运算方法有什么不同,并根据以前学过的数的指数幂和有理数指数幂的意义和运算方法,让学生思考和讨论底数为实数的指数幂的意义和运算法则,并在教师的引导下得出结论。

高中数学第三章基本初等函数(Ⅰ)3.1指数与指数函数3.1.1实数指数幂及其运算教案新人教B版必修1

高中数学第三章基本初等函数(Ⅰ)3.1指数与指数函数3.1.1实数指数幂及其运算教案新人教B版必修1

3。

1。

1 实数指数幂及其运算错误!教学分析在初中,学生已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把整数指数推广到分数指数,进而推广到有理数指数幂,再推广到无理指数幂,并将幂的运算性质由整数指数幂推广到实数指数幂.本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)等,同时,充分关注与实际问题的结合,体现数学的应用价值.根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.三维目标1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.2.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.3.掌握根式与分数指数幂的互化,渗透“转化"的数学思想.通过运算训练,养成学生严谨治学、一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.4.能熟练地运用实数指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.重点难点教学重点:(1)分数指数幂和根式概念的理解.(2)掌握并运用分数指数幂的运算性质.(3)运用实数指数幂性质进行化简、求值.教学难点:(1)分数指数幂及根式概念的理解.(2)实数指数幂性质的灵活应用.课时安排2课时错误!第1课时导入新课思路1.碳14测年法.原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平.而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5 730年的半衰期开始衰变并消失.对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半).引出本节课题.思路 2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的.这就是本节的主讲内容,教师板书本节课题.推进新课错误!提出问题错误!讨论结果:(1)整数指数幂的运算性质:a n=a·a·a·…·a,a0=1(a≠0);00无意义;a-n=错误!(a≠0);a m·a n=a m+n;(a m)n=a mn;(a n)m=a mn;(ab)n=a n b n.其中n、m∈N+.(2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根.实质上①错误!=a错误!,②错误!=a错误!,③错误!=a错误!,④错误!=a错误!结果的a的指数是2,4,3,5分别写成了错误!,错误!,错误!,错误!,形式上变了,本质没变.根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式).(3)利用(2)的规律,错误!=5错误!,错误!=7错误!,错误!=a错误!,错误!=x错误!。

高考数学一轮复习 指数与指数函数教案

高考数学一轮复习 指数与指数函数教案

山东省泰安市肥城市第三中学高考数学一轮复习指数与指数函数教案负数没有偶次方根两个重要公式.有理数指数幂(1)幂的有关概念在x 轴 . 当x 逐渐增大时逐渐增大时,定义域2、化简)41()3)(2(324132213141-----÷-b a b a b a =24bnD (0a > ( B )6.若,221=+-x x 则=+-33xx 102 。

7. 知函数26112()x x y -+=考试题形式出现,也可能与方程、不等式等知识积结合出现在解答题中。

41(1)-2答案(1)④(2)0<a<1,b<0 (3)1个()()2x上的单f(x)=2^x/(4^x+1)=1/(2^x+1/2^如下图中曲线分别、、比较下列各题中两个值的大小:B.的解析式;C.精美句子1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。

幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。

幸福是“零落成泥碾作尘,只有香如故”的圣洁。

幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。

幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。

幸福是“人生自古谁无死,留取丹心照汗青”的气节。

3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。

4、成功与失败种子,如果害怕埋没,那它永远不能发芽。

鲜花,如果害怕凋谢,那它永远不能开放。

高中数学 第2章 基本初等函数(1)(1.1 指数与指数幂的运算 第1课时)示范教案 新人教A版必修

高中数学 第2章 基本初等函数(1)(1.1 指数与指数幂的运算 第1课时)示范教案 新人教A版必修

某某省青龙满族自治县逸夫中学高中数学必修1第2章 基本初等函数〔1〕-1.示X 教案〔1.1 指数与指数幂的运算 第1课时〕本章教材分析教材把指数函数、对数函数、幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,从而让学生体会建立和研究一个函数模型的基本过程和方法,学会运用具体的函数模型解决一些实际问题.本章总的教学目标是:了解指数函数模型的实际背景,理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算;理解指数函数的概念和意义,掌握f(x)=a x 的符号及意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质〔单调性、值域、特别点〕,通过应用实例的教学,体会指数函数是一种重要的函数模型;理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用;通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x 的符号及意义,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质〔单调性、值域、特殊点〕;知道指数函数y=a x 与对数函数y=log a x 互为反函数〔a >0,a≠1〕,初步了解反函数的概念和f -1(x)的意义;通过实例了解幂函数的概念,结合五种具体函数y=x,y=x 2,y=x 3,y=x -1,y=x 21的图象,了解它们的变化情况.本章的重点是三种初等函数的概念、图象及性质,要在理解定义的基础上,通过几个特殊函数图象的观察,归纳得出一般图象及性质,这种由特殊到一般的研究问题的方法是数学的基本方法.把这三种函数的图象及性质之间的内在联系及本质区别搞清楚是本章的难点.教材注重从现实生活的事例中引出指数函数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情境创设.在学习对数函数的图象和性质时,教材将它与指数函数的有关内容作了比较,让学生体会两种函数模型的增长区别与关联,渗透了类比思想.建议教学中重视知识间的迁移与互逆作用.教材对反函数的学习要求仅限于初步的知道概念,目的在于强化指数函数与对数函数这两种函数模型的学习,教学中不宜对其定义做更多的拓展.教材对幂函数的内容做了削减,仅限于学习五种学生易于掌握的幂函数,并且安排的顺序向后调整,教学中应防止增加这部分内容,以免增加学生的学习负担.通过运用计算机绘制指数函数的动态图象,使学生进一步体会到信息技术在数学学习中的作用,教师要尽量发挥电脑绘图的教学功能.教材安排了“阅读与思考〞的内容,有利于加强数学文化的教育,应指导学生认真研读.2.1 指数函数2.1.1 指数与指数幂的运算整体设计我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫. 本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,表达数学的应用价值.根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.三维目标1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.2.掌握根式与分数指数幂的互化,渗透“转化〞的数学思想.通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.3.能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.4.通过训练及点评,让学生更能熟练掌握指数幂的运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.重点难点教学重点:(1)分数指数幂和根式概念的理解.(2)掌握并运用分数指数幂的运算性质.(3)运用有理指数幂性质进行化简、求值.教学难点:(1)分数指数幂及根式概念的理解.(2)有理指数幂性质的灵活应用.课时安排3课时教学过程第1课时指数与指数幂的运算(1)导入新课思路 1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的.教师板书本节课题:指数函数——指数与指数幂的运算.思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算. 推进新课提出问题(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?(2)如x4=a,x5=a,x6=a根据上面的结论我们又能得到什么呢?(3)根据上面的结论我们能得到一般性的结论吗?(4)可否用一个式子表达呢?活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题②的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维. 讨论结果:(1)假设x2=a,那么x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,假设x3=a,那么x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.(2)类比平方根、立方根的定义,一个数的四次方等于a,那么这个数叫a的四次方根.一个数的五次方等于a,那么这个数叫a的五次方根.一个数的六次方等于a,那么这个数叫a的六次方根.(3)类比(2)得到一个数的n次方等于a,那么这个数叫a的n次方根.(4)用一个式子表达是,假设x n=a,那么x叫a的n次方根.教师板书n次方根的意义:一般地,如果x n=a,那么x叫a的n次方根(n-throot),其中n>1且n∈N*.可以看出数的平方根、立方根的概念是n次方根的概念的特例.提出问题(1)你能根据n次方根的意义求出以下数的n次方根吗?(多媒体显示以下题目).①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质的数,有什么特点?(3)问题〔2〕中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?(4)任何一个数a的偶次方根是否存在呢?活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的特点,对问题〔2〕中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:〔1〕因为±2的平方等于4,±2的立方等于8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.〔2〕方根的指数是2,3,4,5,7…特点是有奇数和偶数.总的来看,这些数包括正数,负数和零.〔3〕一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数.0的任何次方根都是0.〔4〕任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数.类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n 次方根的性质:①当n 为偶数时,a 的n 次方根有两个,是互为相反数,正的n 次方根用n a 表示,如果是负数,负的n 次方根用n a -表示,正的n 次方根与负的n 次方根合并写成±n a (a >0).②n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时a 的n 次方根用符号n a 表示.③负数没有偶次方根;0的任何次方根都是零.上面的文字语言可用下面的式子表示:a 为正数:⎪⎩⎪⎨⎧±.,,,n n a n a n a n a n 次方根有两个为的为偶数次方根有一个为的为奇数 a 为负数:⎪⎩⎪⎨⎧.,,,次方根不存在的为偶数次方根只有一个为的为奇数n a n a n a n n 零的n 次方根为零,记为n 0=0.可以看出数的平方根、立方根的性质是n 次方根的性质的特例.思考根据n 次方根的性质能否举例说明上述几种情况?活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,4次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题. 解答:答案不唯一,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为527-527-也表示方根,它类似于n a 的形式,现在我们给式子n a 一个名称——根式. 根式的概念: 式子n a 叫根式,其中a 叫被开方数,n 叫根指数. 如327-中,3叫根指数,-27叫被开方数.思考n n a 表示a n 的n 次方根,等式n n a =a 一定成立吗?如果不一定成立,那么n n a 等于什么? 活动:教师让学生注意讨论n 为奇偶数和a 的符号,充分让学生多举实例,分组讨论.教师点拨,注意归纳整理. 〔如33)3(-=327-=-3,44)8(-=|-8|=8〕.解答:根据n 次方根的意义,可得:(n a )n =a.通过探究得到:n 为奇数,n na =a.n 为偶数,n n a =|a|=⎩⎨⎧<-≥.0,,0,a a a a因此我们得到n 次方根的运算性质: ①(n a )n=a.先开方,再乘方〔同次〕,结果为被开方数. ②n 为奇数,n n a =a.先奇次乘方,再开方〔同次〕,结果为被开方数.n 为偶数,n n a =|a|=a,⎩⎨⎧<-≥.0,,0,a a a a 先偶次乘方,再开方〔同次〕,结果为被开方数的绝对值.应用示例思路1例1求以下各式的值: (1)33)8(-;(2)2)10(-;(3)44)3(π-;(4)2)(b a -(a>b).活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求以下各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数. 解:(1)33)8(-=-8; (2)2)10(-=10; (3)44)3(π-=π-3; (4)2)(b a -=a-b(a>b).点评:不注意n 的奇偶性对式子n n a 的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用.变式训练求出以下各式的值: (1)77)2(-; (2)33)33(-a (a≤1); (3)44)33(-a .解:(1)77)2(-=-2, (2)33)33(-a (a≤1)=3a -3,(3)44)33(-a =⎩⎨⎧<-≥-.1,33,1,33a a a a点评:此题易错的是第(3)题,往往忽视a 与1大小的讨论,造成错解.思路2例1以下各式中正确的选项是( ) (1)44a =a; (2)62)2(-=32-;(3)a 0=1; (4)105)12(-=)12(-.活动:教师提示,这是一道选择题,此题考查n 次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答.解:(1)44a =a,考查n 次方根的运算性质,当n 为偶数时,应先写n n a =|a|,故此题错. (2)62)2(-=32-,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为62)2(-=32,故此题错.(3)a 0=1是有条件的,即a≠0,故此题也错.(4)是一个正数的偶次方根,根据运算顺序也应如此,故此题正确.所以答案选(4).点评:此题由于考查n 次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心. 例223++223-=_________活动:让同学们积极思考,交流讨论,此题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路. 解:223+=2)2(221++=2)21(+=2+1. 223-=122)2(2+-=2)12(-=2-1. 所以223++223-=22.点评:不难看出223-与223+形式上有些特点,即是对称根式,是B A 2±形式的式子,我们总能找到办法把其化成一个完全平方式.思考上面的例2还有别的解法吗?活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是+,一个是-,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.另解:利用整体思想,x=223++223-,两边平方得x 2=3+22+3-22+2(223+)(223-)=6+222)22(3-=6+2=8,所以x=22.点评:对双重二次根式,特别是B A 2±形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对B A B A 22-±+的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解.变式训练 假设12a -a 2+=a-1,求a 的取值X 围.解:因为12a -a 2+=a-1,而12a -a 2+=2)1(-a =|a-1|=a-1,即a-1≥0,所以a≥1.点评:利用方根的运算性质转化为去绝对值符号,是解题的关键.知能训练(教师用多媒体显示在屏幕上)1.以下说法正确的选项是( )n a 表示(以上n >1且n∈N *).答案:C2.化简以下各式: (1)664;(2)42)3(-;(3)48x ;(4)636y x ;(5)2y)-(x .答案:(1)2;(2)9;(3)x 2;(4)|x|y ;(5)|x-y|.407407-++=__________. 解:407407-++ =2222)2(252)5()2(252)5(+•-++•+ =22)25()25(-++=5+2+5-2- =25.答案:25拓展提升 问题:n n a =a 与(n a )n =a 〔n >1,n∈N 〕哪一个是恒等式,为什么?请举例说明.活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n 次方根的定义.通过归纳,得出问题结果,对a 是正数和零,n 为偶数时,n 为奇数时讨论一下.再对a 是负数,n 为偶数时,n 为奇数时讨论一下,就可得到相应的结论.解答:①〔n a 〕n =a 〔n >1,n∈N 〕.如果x n =a 〔n >1,且n∈N 〕有意义,那么无论n 是奇数或偶数,x=n a 一定是它的一个n 次方根,所以〔n a 〕n =a 恒成立.例如:〔43〕4=3,33)5(-=-5. ②n n a =⎩⎨⎧.|,|,,为偶数当为奇数当n a n a当n 为奇数时,a∈R ,n n a =a 恒成立. 例如:552=2,55)2(-=-2. 当n 为偶数时,a∈R ,a n ≥0,n n a 表示正的n 次方根或0,所以如果a≥0,那么n n a 443=3,40=0;如果a <0,那么n n a =|a|=-a,如2(-3)=23=3. 即〔n a na 〕n =a 〔n >1,n∈N 〕是恒等式,n n a =a 〔n >1,n∈N〕是有条件的.点评:实质上是对n 次方根的概念、性质以及运算性质的深刻理解.课堂小结学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上. n =a,那么x 叫a 的n 次方根,其中n >1且n∈N *.用式子n a 表示,式子n a 叫根式,其中a 叫被开方数,n 叫根指数.(1)当n 为偶数时,a 的n 次方根有两个,是互为相反数,正的n 次方根用n a 表示,如果是负数,负的n 次方根用-n a 表示,正的n 次方根与负的n 次方根合并写成±n a (a >0).(2)n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时a 的n 次方根用符号n a 表示.(3)负数没有偶次方根.0的任何次方根都是零.2.掌握两个公式:n 为奇数时,(n a )n =a,n 为偶数时,n n a =|a|=⎩⎨⎧<-≥.0,,0,a a a a 作业课本P 59习题2.1A 组 1.补充作业:1.化简以下各式: (1)681;(2)1532-;(3)48x ;(4)642b a .解:(1)681=643=323=39; (2)1532-=1552-=32-; (3)48x =442)(x =x 2; (4)642b a =622)|(|b a •=32||b a •.2.假设5<a<8,那么式子22)8()5(---a a 的值为__________.分析:因为5<a<8,所以22)8()5(---a a =a-5-8+a=2a-13.答案:2a-13. 3.625625-++=__________.分析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式, 不难看出625+=22)(3+=3+2. 同理625-=22)(3-=3-2.所以625++625-=23. 答案:23设计感想学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式n a 的讲解要分n 是奇数和偶数两种情况来进行,每种情况又分a>0,a<0,a=0三种情况,并结合具体例子讲解,因此设计了大量的类比和练习题目,要灵活处理这些题目,帮助学生加以理解,所以需要用多媒体信息技术服务教学.。

2.1指数函数(新课标人教版必修一教案)

2.1指数函数(新课标人教版必修一教案)

2.1 指数函数[教学目标]1.通过具体实例了解指数函数模型的实际背景. 2.理解有理指数幂的含义,理解扩张指数范围的必要性. 3.通过具体实例了解实数指数幂的意义,掌握幂的运算. 4.理解指数函数的概念和意义.5.能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.6.在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型. [教学要求]指数函数是本章的重点内容之一,也是高中新引进的第一个基本初等函数.学习指数函数时,建议首先通过实际问题引入分数指数幂,为此先将平方根与立方根的概念扩充到n 次方根,将二次根式的概念扩充到一般根式的概念,然后进一步介绍分数指数幂及其运算性质,最后结合具体实例,通过有理数幂的方法介绍了无理指数幂的意义,从而将指数的取值范围扩充到了实数.在实数指数幂的基础上,学习指数函数及其图象和性质.教学中应通过具体的实例从正整数指数幂开始到现实中出现的分数指数幂,引出指数的取值范围需要进行必要的扩充.根式是教学的一个难点,教材第一部分安排根式这部分内容,为讲分数指数幂做准备,所以只需要讲根式的概念、方根的性质.为了分散难点,在教学中可以适当放慢进度,多举几个具体的例子,之后再给出n 次方根的一般定义.为突破方根的性质的难点,要抓住立方根与平方根的性质,通过探究得到当n 分奇偶数时方根的性质.分数指数幂是教学上的又一个难点,也是指数概念的又一次推广.教学时应注意循序渐进.教学中要让学生反复理解分数指数幂的意义,明确它是根式的一种新的写法.教科书通过比较本节开始时的问题引入指数函数,教学中要让学生体会指数函数的概念来自实践,并体会其中蕴含的函数关系,可引导学生在探究中获得函数的共同特征,这样就可以很自然地给指数函数下定义了.教学中注意对底数规定的合理性解释:0>a 且1≠a .在理解指数函数定义的基础上,建议通过列表描点绘图或者利用信息技术绘图,教学中要注意发挥指数函数图象的作用,让学生亲自作出图象.使得图象成为研究函数性质的直观工具,建议尽可能地引导学生通过观察图象自己归纳概括指数函数的一些性质.本节容量较大,课时较多,建议教学中根据学生的实际情况合理划分每节课的教学内容,以便于学生的系统学习.[教学重点]指数函数的概念和图象 [教学难点] 根式和分数指数幂 [教学时数] 6课时[教学过程]第一课时2.1.1指数与指数幂的运算——根式与运算 新课导入通过课本第48页的两个问题引入本节的主题内容.问题1 从2000年起的未来20年,我国国内生产总值年平均增长率可达到7.3%.那么,在2001——2020年,各年的国内生产总值可望为2000年的多少倍?引导学生逐年计算,并得出规律:设x 年后我国的国内生产总值为2000年的y 倍,那么)20*,(073.1≤∈=x N x y x.问题2 当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系5730)21(tP =.当生物死亡了5730,2⨯5730,3⨯5730,…年后,它体内碳14的含量P 分别为21,2)21(,3)21(,….是正整数指数幂.它们的值分别为21,41,81,….当生物死亡6000年,10000年,100000年后,它体内碳14的含量P 分别为57306000)21(,573010000)21(,5730100000)21(,这些式子的意义又是什么呢?这些正是本节课要学习的内容.新课进展 一、根式1.回顾初中学习的内容:平方根、立方根4的平方根为2±,3的平方根为3±,16的平方根为4±,等等.一般地,如果a x =2,那么x 叫做a 的平方根.对于立方根则由师生一起举出若干例子. 2.根式(1)类比平方根、立方根,我们看下面的一些例子:3225=,那么2是32的5次方根,记作2325=;24335=,那么3是243的5次方根,记作32435=;1624=,那么2是16的4次方根,记作2164=;8134=,那么3是81的4次方根,记作3814=;32)2(5-=-,那么-2是32的5次方根,记作2325-=-;16)2(4=-,那么-2也是16的4次方根,记作-2164=.(2)根式一般地,如果a x n=,那么x 叫做a 的n 次方根,其中1>n ,且*N n ∈. 当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.这时,a 的n 次方根用符号n a 表示.当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数.这时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号n a -表示.正的n 次方根与负的n 次方根可以合并写成n a ±(0>a ).例如负的n 次方根可以表示为2164±=±.负数没有偶次方根.0的任何次方根都是0,记作00=n .式子n a 叫做根式(radical ),其中n 叫做根指数(radical exponent ),a 叫做被开方数(radicand ).(3)根式的性质通过讨论探究得到:a a n n =)( (1,*)n n >∈N .||a n a n ⎧=⎨⎩为奇数为偶数. 例如,27)27(33=, 32)32(55-=-,2)2(33-=-, 443=3.课堂例题例1 (课本第50页例1)本例是方根与根式性质的具体运用. 课堂练习求值:(1)2)(b a -;(2)44)4(-;(3)55)2(5-⋅. (4)本课小结根式:如果a x n=,那么x 叫做a 的n 次方根.根式性质:a a nn =)( (1,*)n n >∈N .||a n a n ⎧=⎨⎩为奇数为偶数. (5)布置作业课本第59页习题2.1A 组第1(1)——(4)题.第二课时2.1.1指数与指数幂的运算——分数指数幂 复习导入通过提问复习上节课主要学习内容. 1.请讲一讲你所理解的根式.2.根据n 次方根的定义和数的运算,能否把根式表示为分数指数的形式? 通过讨论,探索新知. 新课进展二、分数指数幂 1.实例引入,形成冲突 看下面的例子: 当0>a 时, (1)2552510)(a a a==,又5102=,所以510510a a =;(2)3443412)(a a a==,又4123=,所以412412a a =.从上面的例子,我们看到,当根式的被开方数的指数能被根指数整除时,根式可以表示为分数指数幂的形式.那么,当根式的被开方数的指数不能被根指数整除时,根式是否也可以表示为分数指数幂的形式呢?2.复习旧知,导出新知为此,我们先回顾初中所学的指数概念.*)(N n a a a a a n ∈⋅⋅= ,当0≠a 时,10=a ,0的0次幂没有意义,*),0(1N n a a a nn ∈≠=-.讨论:0)(b a -的结果是什么? 提示:注意分类讨论.问:我们学习过整数指数幂哪些运算性质: 答:(1)),,0(Z n m a a a a nm nm∈>=⋅+;(2)),,0()(Z n m a aa mnnm ∈>=;(3)),0,0()(Z n b a ba b a nnn ∈>>⋅=⋅根据n 次方根的定义,规定正数的正分数指数幂的意义是:n m nma a=(0>a ,1*,,>∈n N n m ).0的正分数指数幂等于0, 0的负分数指数幂无意义.由于分数有既约分数和非既约分数之分,因此当0<a 时,应当遵循原来的运算顺序,通常不写成分数指数幂形式.例如:3273-=-,而3)27(62=-.规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. 整数指数幂的运算性质对于分数指数幂即有理数指数幂同样适用. (1)),,0(Q n m a a a a nm nm∈>=⋅+; (2)),,0()(Q n m a aa mnn m ∈>=;(3)),0,0()(Q n b a b a b a nnn ∈>>⋅=⋅课堂例题例1 (课本第51页例2)求值:4352132)8116(,)21(,25,8---.本例的目的是巩固分数指数幂的概念.例2 求下列各式的值:(1)1225; (2)3227-;(3)361-⎪⎭⎫ ⎝⎛; (4)431000081-⎪⎭⎫⎝⎛.解 (1) 55)5(2521221221===⨯;(2)9133)3(272)32(332332====--⨯--; (3)2166)6(613313===⎪⎭⎫ ⎝⎛---;(4)27100031010310310000813343443=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⨯-.课堂练习课本第51页例3、第52页例4、例5.上述三例是利用分数指数幂的运算性质进行计算和化简,学生练习时要严格按照书本的步骤进行对照,因为分数指数幂的定义和运算都刚刚学习,老师讲解时可以仿照单项式乘除法进行.3.本课小结(1)分数指数幂的定义,注意底数0>a 的限制条件.(2)分数指数幂的运算性质,是整数指数幂的运算性质的推广. 4.布置作业课本第54页练习1、2(1)——(6)题; 课本第59页习题2.1A 组第2、3题.第三课时2.1.1指数与指数幂的运算——无理指数幂 复习导入通过解答一组习题复习上节课主要学习内容. 课堂练习1.课本第54页练习第3题.2.课本第59页习题2.1A 组第4(1)——(4)题. 新课进展 三、无理指数幂 1.动手实验,探索新知 问:我们如何理解25呢?首先明确:25表示一个确定的实数.然后通过计算器的列表功能或者投影课本第53页的表格,计算25的近似值,发现下面的规律:当2的不足近似值从小于2的方向逼近2时,25的近似值从小于25的方向逼近25;当2的过剩近似值从大于2的方向逼近2时,25的近似值从大于25的方向逼近25.所以25就是有理指数幂按上述变化规律变化的结果.2.形成概念,扩充认知 一般地,无理指数幂αα,0(>a a是无理数)是一个确定的数.有理指数幂的运算性质同样适用于无理指数幂. 即:(1)),,0(R n m a a a a nm nm∈>=⋅+;(2)),,0()(R n m a aa mnnm ∈>=;(3)),0,0()(R n b a ba b a nnn ∈>>⋅=⋅.3.变式操作,巩固概念22表示一个确定的实数.按照前面的“用有理数逼近无理数”的思想,请你利用计算器(或者计算机)进行实际操作,感受“逼近”过程.操作过程:取2的不足近似值或过剩近似值:1.4,1.41,1.414,1.4142,1.41421……(2的不足近似值) 1.5,1.42,1.415,1.4143,1.41422……(2的过剩近似值) 可以得到4.12,41.12,414.12,4142.12,41421.12……和5.12,42.12,415.12,4143.12,41422.12……,当2的不足近似值从小于2的方向逼近2时,22的近似值从小于22的方向逼近22,当2的过剩近似值从大于2的方向逼近2时,22的近似值从大于22的方向逼近22.4.本课小结本节课我们通过“用有理数逼近无理数”的思想引进无理数指数幂.像分数指数幂一样,我们研究的无理数指数幂αa (其中α是无理数)的底数a 也是正数.我们把指数幂的运算性质推广到幂指数为实数的情形.这样前面提到的5730)21(tP =对任意的0≥t 都是有意义的.5.布置作业课本第59页习题2.1A 组第4(5)——(8)题.第四课时2.1.2指数函数及其性质(1)复习导入通过提问导入本节课主要学习内容.问:函数5730)21(tP =(0≥t )的解析式与函数)20*,(073.1≤∈=x N x y x的解析式有什么共同特征?通过师生讨论,归纳概括得出:如果用字母a 代替数57301)21(和1.073,那么以上两个函数的解析式都可以表示为xay =的形式.问:底数a 的取值范围怎么规定合适?提示:当1=a 时,11=x,所以规定1≠a ;当0<a 时,如x)3(-中,指数x 取21时,x )3(-就没有意义.0=a 时,当0>x 时,x a 恒为0;当0≤x 时,x a 无意义.结论:规定0>a ,且1≠a . 一、指数函数 1.指数函数的定义一般地,函数(0,1)xy a a a =>≠且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域是R .课堂例题例1 当动植物体死亡以后,体内14C 的浓度就要因为它的衰变发生减少,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.这样,人们就可以根据生物体中含有的14C 的多少来测定其生存的年代.考古学家得到一块鱼化石, 根据鱼化石中的14C 的残留量,考古学家推断这群鱼是6300多年前死亡的,求这块鱼化石中14C 的残留量约占原始含量的多少?解 设鱼化石中14C 的原始含量为1, 1年后残留量为x ,由于死亡机体中原有的14C 按确定的规律衰减,所以生物体的死亡的年数t 与其体内每克组织的14C 含量y 有如下关系:因此,生物死亡t 年后体内14C 的含量ty x =由于大约每经过5730年,死亡生物体内的14C 含量衰减为原来的一半,所以 573012x =, 于是1573012x ⎛⎫== ⎪⎝⎭,这样生物死亡t 年后体内14C 含量573012t y ⎛⎫=⎪⎝⎭.当6300x =时,利用计算器, 得到63005730146.67%2y ⎛⎫=≈⎪⎝⎭.即这块鱼化石中14C 的残留量约占原始含量的46.67%.下面我们来研究指数函数xy a =(0,1)a a >≠且图象与性质. 2.指数函数xy a =(0,1)a a >≠且的图象在同一坐标系中画出下列函数的图象(可用描点法,也可借助科学计算器或计算机). (1)2xy =(2)12xy ⎛⎫= ⎪⎝⎭(3)3xy =(4)13xy ⎛⎫= ⎪⎝⎭(5)5xy =操作过程:(1)先画2xy =的图象,再画12xy ⎛⎫= ⎪⎝⎭的图象,再单独观察两个函数的图象特征,再比较两个图象的关系.(2)进行适当讨论之后,再画3xy =和13xy ⎛⎫= ⎪⎝⎭的图象,并与前面观察所得结论进行比较.(3)画5xy =的图象.(4)通过观察以上函数的图象的特征,归纳出指数函数的性质. 3.指数函数的性质一般地,指数函数(0,1)xy a a a =>≠且的图象和性质如下表所示.例2 (课本第56页例6)已知指数函数(0,1)xy a a a =>≠且的图象经过点(3,π),求)0(f ,)1(f ,)3(-f 的值.问:请你说出解决本例的步骤和过程.明确底数a 是确定指数函数的要素. 4.本课小结本节课主要学习了指数函数的图象和性质.投影出一般的指数函数的特征图象,并再次显示指数函数的性质.5.布置作业课本第59页习题2.1A 组第5、6题.第五课时2.1.2指数函数及其性质(2) 复习导入通过提问复习上节课主要学习内容. 问:我们是怎样研究指数函数的?通过一般的指数函数的特征图象,总结其单调性和特殊点. 新课进展二、指数函数的应用 课堂例题例1 (课本第57页例7)引导学生利用函数单调性,通过自变量的大小关系可以判断相应函数值的大小关系. 例2 (课本第57页例8)结合本例给出第58页的“探究”,目的是让学生体会指数增长,初步感受“指数爆炸”的含义,另外这里可以适当插入思想教育.课堂练习1.比较下列各题中两个数的大小:(1) 3.541.9 1.9,; (2)0.20.10.60.6--,;(3)0.33.11.80.7,.解 (1)考察指数函数 1.9xy =,由于底数1.91>,所以指数函数 1.9xy =在()-∞∞,+上是增函数.∵ 3.54<, ∴ 3.541.9 1.9<.(2)考察指数函数0.6xy =,由于底数00.61<<,所以指数函数0.6xy =在()-∞∞,+上是减函数.∵0.225x<0.20.1-<-, ∴0.20.10.60.6-->.(3)由指数函数的性质知0.301.8 1.81>=, 3.100.70.71<=,即0.33.11.80.71<>1,,∴0.3 3.11.80.7>.2.(1)已知3355mn⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,试比较m n 与的大小;(2)已知0.564x>,求实数x 的取值范围.解 (1)考察指数函数35x y ⎛⎫= ⎪⎝⎭,由于底数3015<<,所以指数函数35xy ⎛⎫= ⎪⎝⎭在()-∞∞,+上是减函数.∵3355m n⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭, ∴m n <.(2)考察指数函数12x y ⎛⎫= ⎪⎝⎭,由于底数1012<<,所以指数函数12xy ⎛⎫= ⎪⎝⎭在()-∞∞,+上是减函数.∵10.52=,6616422-⎛⎫== ⎪⎝⎭,0.564x>,∴61122x -⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭, ∴6x <-,即x 的取值范围是(,6)-∞-.布置作业课本第59页习题2.1A 组第7、8、9题.第六课时2.1.2指数函数及其性质(3)复习导入通过提问复习前面5节课主要学习内容. 问1:我们按照怎样的顺序扩充指数及其运算?答:从具体的实际问题引出指数的取值范围应进行必要的扩充,先把整数指数幂扩充到分数指数幂,再进一步扩充到无理指数幂.在扩充过程中整数指数幂的运算性质仍然保留,但分数指数幂n m nma a =的意义以及指数的运算性质中的限制条件“0>a ”是必不可少的.问2:对于指数函数xa y =,你认为需要注意哪些方面? 答:(1)底数a 的取值有范围限制:0>a 且1≠a ;(2)有些函数貌似指数函数,实际上却不是.例如k a y x+=(0>a 且1≠a ,0≠k ),x ka y =(0>a 且1≠a ,1≠k ).有些函数看起来不像是指数函数,实际上却是.例如xay -=(0>a 且1≠a ).形如xka y =(0>a 且1≠a ,0≠k )的函数是一种指数型函数,上节课我们遇到的x p N y )1(+=(N x ∈)模型,就是此类型.(3)指数函数xa y =从大的来说按照底数分为两类:10<<a 和1>a .不要混淆这两类函数的性质.(4)函数xa y =的图象与xay -=(0>a 且1≠a )的图象关于y 轴对称,这是因为点),(y x 与点),(y x -关于y 轴对称.根据这种对称性就可以通过函数xa y =的图象得到x a y -=的图象.(5)利用指数函数的概念和性质比较大小,解决的方法主要是:抓底看增减进行比较.对于一般的字母底数要运用分类讨论的思想解决问题.教学实施过程中师生一道完成归纳和总结. 新课进展 课堂例题例1 解决下面问题:1. 已知指数函数()()xa x f 1-=是R 上的单调减函数,求a 的取值范围.CC 2. 求x 的值: (1)2713=x; (2)221=⎪⎭⎫⎝⎛x.3. 求x 的取值范围:(1)131>⎪⎭⎫⎝⎛x; (2)()121322<x; (3)x x 2934⋅>⋅. [设计说明]:通过三个简单练习来巩固“指数函数的性质”,尤其是单调性;同时为本节课利用指数函数单调性解决实际问题埋下伏笔.例2 在抗击“SARS ”中,某医药研究所开发出防治“SARS ”的M 、N 两种同类型新药.据监测,如果成人按规定的剂量服用,服用两种药物后每毫升血液中的含药量y (微克)与服药后的时间t (小时)之间分别近似满足右图所示的曲线,其中OA 是线段,曲线ABC 是型如t a k y ⋅=()是常数且a k a t ,0,1>≥的函数图像. (1) 分别写出服用两种药后y 关于t 的函数关系式;(2) 据测定,每毫升血液中含药量不少于2微克时对治疗疾病有效,则两种药物中哪种药的药效持续时间较长?(3) 假如两位病人在同一时刻分别服用这两种药物,则何时两位病人每毫升血液中含药量相等?何时开始,服用M 药的病人每毫升血液中含药量较高?解:(1)M 药⎪⎩⎪⎨⎧>⎪⎭⎫ ⎝⎛⋅≤≤=1,21810,4t t t y t ,N 药⎪⎩⎪⎨⎧>⎪⎭⎫⎝⎛⋅≤≤=1,312710,9t t t y t. [设计说明]:本例的设计意图:根据图像信息确定数学模型中的参数,这个环节由学生板演. (2)借助函数图像,对于M 药221≤≤t ,持续时间为5.1小时;对于N 药37.292≤≤t ,持续时间约为15.2小时,故N 药的持续时间较长.[设计说明]:此处是利用指数函数的单调性解决实际问题.对于N 药,不需要知道第2次含药量为2毫克的时刻值,只需要利用指数函数的单调性,明确这个时刻应在2——3之间即可.由此即可判断出N 药的持续时间在78.1922=-(小时)到78.2923=-(小时)之间.在判断出N 药持续时间长这个结论后,还可以顺势指出N 药比较好,因为见效快、药效持续时间长.(3)令33127218=⇒⎪⎭⎫⎝⎛⋅=⎪⎭⎫ ⎝⎛⋅t tt ,即3=t 时两位病人的血液中含药量相等.显然,当10≤≤t 时,服用M 药的含药量较低;当1>t 时,令33127218>⇒⎪⎭⎫⎝⎛⋅>⎪⎭⎫ ⎝⎛⋅t tt ,即3小时后服用M 药的含药量高.[设计说明]:这里重点研究两个不同底数的指数函数图象的关系.学生指出:当1>t 时t y ⎪⎭⎫ ⎝⎛=218图象在ty ⎪⎭⎫⎝⎛=3127图象上方,此时应启发学生:如何能保证两个函数图象在1>t 没有交点?接着与开始时的练习题3呼应.[设计说明]:在此处对问题稍作发散引申,主要是深化学生对数形结合思想的认识,从一定程度上起到了培养学生思维严密性的作用.思考:1.假如某病人早上6点第一次服用M 药,为了保持每毫升血液中不少于2微克的含药量,第二次服药时间应该在当天几点钟?分析:()224218≥-+⎪⎭⎫ ⎝⎛=t y t 对任意2≥t 恒成立,即t t214521-≥⎪⎭⎫⎝⎛对任意2≥t 恒成立.研究两个函数ty ⎪⎭⎫⎝⎛=21与t y 2145-=的图象交点可以得到一个直观理解.但是利用图象并不一定准确,这个问题留作课后思考.[设计说明]:这个思考题有较大难度,以高一学生的认知水平是很难解决的,但这种问题可以激发学有余力的学生学习数学的好奇心;在提倡研究性学习的今天,该问题也不失为一个值得思索的研究题材,而在课堂教学中挖掘研究课题不正是我们在新课程标准下开展研究性学习的良好途径么?2.外来物种水葫芦在1901年作为观赏植物引入中国,但是到了100年后的今天,水葫芦已经到了一发而不可收拾的地步了.水葫芦每5天就繁殖1倍,试建立水葫芦的数量关于时间变量的函数关系式.本节课我们通过对一类药物残留量问题的探究,学习了如何根据实际问题建立指数函数模型、如何利用指数函数的单调性解决实际问题,同时也对数形结合的思想方法有了更深的认识.当然,指数函数的应用中还有很多问题值得我们继续探究.布置作业课本第82页复习参考题A 组第1、2、7、9题.。

最新教案:指数与指数函数(含解析)

最新教案:指数与指数函数(含解析)

指数与指数函数一、根式 1.根式的概念2.两个重要公式(1)n a n=⎩⎨⎧a , n 为奇数,|a |=⎩⎪⎨⎪⎧a (a ≥0),-a (a <0), n 为偶数;(2)(n a )n =a (注意a 必须使na 有意义). 二、有理数指数幂1.幂的有关概念(1)正分数指数幂:a m n =na m (a >0,m ,n ∈N *,且n >1);(2)负分数指数幂:a -m n =1a m n =1na m (a >0,m ,n ∈N *,且n >1);(3)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质 (1)a r a s=a r +s (a >0,r ,s ∈Q);(2)(a r )s =a rs (a >0,r ,s ∈Q); (3)(ab )r =a r b r (a >0,b >0,r ∈Q). 三、指数函数的图象和性质[基础自测]1.[(-2)6]12-(-1)0的结果为( )A .-9B .7C .-10D .9解析:选B 原式=(26)12-1=7.2.函数f (x )=1-2x 的定义域是( ) A .(-∞,0] B .[0,+∞) C .(-∞,0)D .(-∞,+∞)解析:选A ∵1-2x ≥0,∴2x ≤1,∴x ≤0. 3.已知函数f (x )=4+a x -1的图象恒过定点P ,则点P 的坐标是( ) A .(1,5) B .(1,4) C .(0,4)D .(4,0)解析:选A 当x =1时,f (x )=5.4.若函数y =(a 2-3a +3)·a x 是指数函数,则实数a 的值为________. 解析:∵a 2-3a +3=1,∴a =2或a =1(舍). 答案:25.若函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________. 解析:由题意知0<a 2-1<1,即1<a 2<2, 得-2<a <-1或1<a < 2. 答案:(-2,-1)∪(1,2)[例1] 化简下列各式(其中各字母均为正数). (1)(a 23·b -1)-12·a -12·b 136a ·b 5;(2)⎝⎛⎭⎫2790.5+0.1-2+⎝⎛⎭⎫21027-23-3π0+3748. [自主解答] (1)原式=a -13b 12·a -12b 13a 16b 56=a -13-12-16·b 12+13-56=1a.(2)原式=⎝⎛⎭⎫25912+10.12+⎝⎛⎭⎫6427-23-3+3748=53+100+916-3+3748=100. 总结:指数式的化简求值问题,要注意与其他代数式的化简规则相结合,遇到同底数幂相乘或相除,可依据同底数幂的运算规则进行,一般情况下,宜化负指数为正指数,化根式为分数指数幂.对于化简结果,形式力求统一.变式练习1.计算:(1)(0.027)-13-⎝⎛⎭⎫-17-2+⎝⎛⎭⎫27912-(2-1)0; (2)⎝⎛⎭⎫14-12·(4ab -1)30.1-2(a 3b -3)12.解:(1)原式=⎝⎛⎭⎫271 000-13-(-1)-2⎝⎛⎭⎫17-2+⎝⎛⎭⎫25912-1 =103-49+53-1=-45. (2)原式=412·432100·a 32·a -32·b 32·b -32=425a 0·b 0=425.[例2] 函数y =a x -a (a >0,且a ≠1)的图象可能是( )[自主解答] 法一:令y =a x -a =0,得x =1,即函数图象必过定点(1,0),符合条件的只有选项C.法二:当a >1时,y =a x -a 是由y =a x 向下平移a 个单位,且过(1,0),排除选项A 、B ; 当0<a <1时,y =a x -a 是由y =a x 向下平移a 个单位,因为0<a <1,故排除选项D. [答案] C总结:1.与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.2.一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.变式练习2.(1)在同一坐标系中,函数y =2x 与y =⎝⎛⎭⎫12x 的图象之间的关系是( ) A .关于y 轴对称 B .关于x 轴对称 C .关于原点对称D .关于直线y =x 对称(2)方程2x =2-x 的解的个数是________.解析:(1)∵y =⎝⎛⎭⎫12x =2-x ,∴它与函数y =2x 的图象关于y 轴对称. (2)方程的解可看作函数y =2x 和y =2-x 的图象交点的横坐标,分别作出这两个函数图象(如图).由图象得只有一个交点,因此该方程只有一个解. 答案:(1)A (2)1[例3] 已知函数f (x )=⎝⎛⎭⎫23|x |-a.则函数f (x )的单调递增区间为________,单调递减区间为________.[自主解答] 令t =|x |-a ,则f (x )=⎝⎛⎭⎫23t ,不论a 取何值,t 在(-∞,0]上单调递减,在[0,+∞)上单调递增, 又y =⎝⎛⎭⎫23t 是单调递减的,因此f (x )的单调递增区间是(-∞,0], 单调递减区间是[0,+∞). [答案] (-∞,0] [0,+∞)在本例条件下,若f (x )的最大值等于94,则a =______.解析:由于f (x )的最大值是94,且94=⎝⎛⎭⎫23-2,所以g (x )=|x |-a 应该有最小值-2, 从而a =2. 答案:2总结:求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归纳为内层函数相关的问题加以解决.变式练习1.(1)已知a =20.2,b =0.40.2,c =0.40.6,则( ) A .a >b >c B .a >c >b C .c >a >bD .b >c >a(2)已知函数f (x )=e |x -a |(a 为常数).若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是________.解析:(1)由0.2<0.6,0.4<1,并结合指数函数的图象可知0.40.2>0.40.6,即b >c ;因为a =20.2>1,b =0.40.2<1,所以a >b .综上,a >b >c .(2)结合函数图象求解.因为y =e u 是R 上的增函数,所以f (x )在[1,+∞)上单调递增,只需u =|x -a |在[1,+∞)上单调递增,由函数图象可知a ≤1.答案:(1)A (2)(-∞,1]课后练习A 组1.下列函数中值域为正实数集的是( ) A .y =-5x B .y =⎝⎛⎭⎫131-xC .y =⎝⎛⎭⎫12x -1D .y =1-2x解析:选B ∵1-x ∈R ,y =⎝⎛⎭⎫13x的值域是正实数集, ∴y =⎝⎛⎭⎫131-x 的值域是正实数集.2.已知f (x )=2x +2-x ,若f (a )=3,则f (2a )等于( )A .5B .7C .9D .11解析:选B 由f (a )=3得2a +2-a =3, 两边平方得22a +2-2a+2=9,即22a +2-2a=7,故f (2a )=7.3.函数f (x )=2|x -1|的图象是( )解析:选B ∵f (x )=⎩⎪⎨⎪⎧2x -1,x ≥1,⎝⎛⎭⎫12x -1,x <1,∴根据分段函数即可画出函数图象.4.已知f (x )=3x -b (2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域( )A .[9,81]B .[3,9]C .[1,9]D .[1,+∞)解析:选C 由f (x )过定点(2,1)可知b =2,因f (x )=3x-2在[2,4]上是增函数,可知C 正确.5.设函数f (x )=a-|x |(a >0,且a ≠1),f (2)=4,则( ) A .f (-2)>f (-1) B .f (-1)>f (-2) C .f (1)>f (2)D .f (-2)>f (2)解析:选A ∵f (2)=4,∴a-|2|=4,∴a =12,∴f (x )=⎝⎛⎭⎫12-|x |=2|x |,∴f (x )是偶函数,当x ≥0时,f (x )=2x是增函数,∴x <0时,f (x )是减函数,∴f (-2)>f (-1).6.若(2m +1)12>(m 2+m -1)12,则实数m 的取值范围是( )A.⎝ ⎛⎦⎥⎤-∞,5-12 B.⎣⎢⎡⎭⎪⎫5-12,+∞C .(-1,2)D.⎣⎢⎡⎭⎪⎫5-12,2解析:选D 因为函数y =x 12的定义域为[0,+∞),且在定义域内为增函数,所以不等式等价于⎩⎪⎨⎪⎧2m +1≥0,m 2+m -1≥0,2m +1>m 2+m -1,解2m +1≥0,得m ≥-12;解m 2+m -1≥0,得m ≤-5-12或m ≥5-12;解2m +1>m 2+m -1,即m 2-m -2<0,得-1<m <2. 综上所述,m 的取值范围是5-12≤m <2. 7.⎝⎛⎭⎫32-13×⎝⎛⎭⎫-760+814×42- ⎝⎛⎭⎫-2323=________.解析:原式=⎝⎛⎭⎫2313×1+234×214-⎝⎛⎭⎫2313=2. 答案:28.已知正数a 满足a 2-2a -3=0,函数f (x )=a x ,若实数m 、n 满足f (m )>f (n ),则m 、n 的大小关系为________.解析:∵a 2-2a -3=0,∴a =3或a =-1(舍). 函数f (x )=a x 在R 上递增,由f (m )>f (n ),得m >n . 答案:m >n9.若函数f (x )=a |2x -4|(a >0,a ≠1)且f (1)=9.则f (x )的单调递减区间是________.解析:由f (1)=9得a 2=9,∴a =3.因此f (x )=3|2x-4|,又∵g (x )=|2x -4|的递减区间为(-∞,2],∴f (x )的单调递减区间是(-∞,2]. 答案:(-∞,2]10.求下列函数的定义域和值域. (1)y =⎝⎛⎭⎫122x -x 2;(2)y = 32x -1-19.解:(1)显然定义域为R.∵2x -x 2=-(x -1)2+1≤1, 且y =⎝⎛⎭⎫12x为减函数. ∴⎝⎛⎭⎫122x -x 2≥⎝⎛⎭⎫121=12.故函数y =⎝⎛⎭⎫122x -x 2的值域为⎣⎡⎭⎫12,+∞. (2)由32x -1-19≥0,得32x -1≥19=3-2,∵y =3x 为增函数,∴2x -1≥-2, 即x ≥-12,此函数的定义域为⎣⎡⎭⎫-12,+∞, 由上可知32x -1-19≥0,∴y ≥0.即函数的值域为[0,+∞).11.函数f (x )=a x (a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a2,求a 的值.解:当a >1时,f (x )=a x 为增函数,在x ∈[1,2]上,f (x )最大=f (2)=a 2,f (x )最小=f (1)=a . ∴a 2-a =a2.即a (2a -3)=0.∴a =0(舍)或a =32>1.∴a =32.当0<a <1时,f (x )=a x 为减函数,在x ∈[1,2]上,f (x )最大=f (1)=a ,f (x )最小=f (2)=a 2. ∴a -a 2=a2.∴a (2a -1)=0,∴a =0(舍)或a =12.∴a =12.综上可知,a =12或a =32.12.函数y =lg(3-4x +x 2)的定义域为M ,当x ∈M 时,求f (x )=2x +2-3×4x 的最值. 解:由3-4x +x 2>0,得x >3或x <1, ∴M ={x |x >3,或x <1},f (x )=-3×(2x )2+2x +2=-3⎝⎛⎭⎫2x -162+2512. ∵x >3或x <1,∴2x >8或0<2x <2, ∴当2x =16,即x =log 216时,f (x )最大,最大值为2512,f (x )没有最小值.B 组1.函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)的关系是( )A .f (-4)>f (1)B .f (-4)=f (1)C .f (-4)<f (1)D .不能确定解析:选A 由题意知a >1,又f (-4)=a 3,f (1)=a 2,由单调性知a 3>a 2,∴f (-4)>f (1). 2.已知函数f (x )=|2x -1|,a <b <c ,且f (a )>f (c )>f (b ),则下列结论中,一定成立的是________.①a <0,b <0,c <0;②a <0,b ≥0,c >0; ③2-a <2c ;④2a +2c <2.解析:画出函数f (x )=|2x -1|的图象(如图), 由图象可知,a <0,b 的符号不确定,c >0.故①②错;∵f (a )=|2a -1|,f (c )=|2c -1|, ∴|2a -1|>|2c -1|,即1-2a >2c -1, 故2a +2c <2,④成立; 又2a +2c >22a +c ,∴2a +c <1,∴a +c <0,∴-a >c ,∴2-a >2c ,③不成立.答案:④3.已知函数f (x )=⎝⎛⎭⎫13ax 2-4x +3. (1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.解:(1)当a =-1时,f (x )=⎝⎛⎭⎫13-x 2-4x +3, 令t =-x 2-4x +3,由于t (x )在(-∞,-2)上单调递增,在[-2,+∞)上单调递减,而y =⎝⎛⎭⎫13t 在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在[-2,+∞)上单调递增, 即函数f (x )的递增区间是[-2,+∞),递减区间是(-∞,-2).(2)令h (x )=ax 2-4x +3,f (x )=⎝⎛⎭⎫13h (x ),由于f (x )有最大值3,所以h (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,12a -164a =-1,解得a =1. 即当f (x )有最大值3时,a 的值等于1.。

《4.2.1指数函数的概念》教学设计教案

《4.2.1指数函数的概念》教学设计教案
从情感层面看,高一的学生充满了好奇心与求知欲,为顺利解决问题提供了良好的情感、态度基础,但探
究问题的能力以及合作交流等方面的发展不够均衡.
四、教学重难点
重点:指数函数的概念及其应用.
难点:从实际问题中,发现问题变化规律的本质,抽象出指数函数的概念.
五、教学设计
教学环节
环节一
环节目标
自主学习成果
分享
教学活动(师生活动)
媒体作用及设计意图
教师在课前给学生布置自主学习任务.
教师从学生上传的作业中,
(详见课前学习任务单)任务一:探究三
挑出典型错误或优秀答案,在
个不同背景的函数模型.任务二:归纳三个
课堂上进行展示.
函数的共同特征.
学生通过平板上传作业,提交后,即可
将学习任务前置,培养学生
观看答案自己订正.有不能独立解决的问
数函数的教学,体会“背景——概念——图象与性质——应用”的研究具体函数的一般思路.
三、学情分析
从知识方面看,学生已经学习了函数概念及其性质,掌握了一些初等函数的基本性质;并且对于指数幂的运
算,学生已经学习了将指数运算扩充到实数范围内,掌握了基本的指数运算技能.这些都为指数函数的学习奠定
了良好基础.
从能力方面看,学生初步具备了数形结合的思想,初步具备了研究具体函数的一般思路和方法.
达成上述目标的标志是:
①能够结合教科书中问题 1 的游客增长模型和问题 2 的碳 14 衰减模型,通过运算发现其中具体的增长或衰
减的规律,并从中体会实际问题中变量间的关系.在了解指数函数的实际意义的基础上,理解指数函数所刻画
的变化规律,清楚其定义域和底数的取值范围.
②经历由具体实例抽象为具体函数、再由具体函数概括为指数函数的过程,提升数学抽象的素养.并结合指
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学过程一、知识讲解考点1 根式的概念(1)定义:若一个数的n 次方等于),1(*∈>N n n a 且,则这个数称为a 的n 次方根.即,若a x n =,则x 称a 的n 次方根(*∈>N n n 且1).①当n 为奇数时,n a 的次方根记作na ;②当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作)0(>±a a n .(2)性质:①a a n n =)(; ②当n 为奇数时,a a nn =;③当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a n n .考点2幂的有关概念(1)规定:①)(*∈⋅⋅⋅=N n a a a a n;②)0(10≠=a a , ③∈=-p aa p p (1Q ) ④m a a an m n m ,0(>=、*∈N n ,且)1>n(2)性质:①r a a a a sr sr,0(>=⋅+、∈s Q ),②r a aa sr sr ,0()(>=⋅、∈s Q ),③∈>>⋅=⋅r b a b a b a rrr ,0,0()( Q )(注)上述性质对r 、∈s R 均适用. 考点3 指数函数定义:函数)1,0(≠>=a a a y x且叫做指数函数. 图象与性质:二、例题精析【例题1】【题干】求下列各式的值:(1)21100; (2)328; (3)239-; (4)4381-.【答案】(1)2110010=)10(=212.(2)3284=2=)2(=2323.(3)239-271=3=)3(=3232--. (4)4381-271=3=)3(=3434--. 【解析】同答案 【例题2】【题干】用分数指数幂的形式表示下列各式(a >0)(1)a a3; (2)322a a ·; (3)3a a ·【答案】(1)117333222a a a aa +=⋅==.(2)322a a ·3832+2322===a aa a .(3)3a a ·323431===a a aa .【解析】同答案【例题3】【题干】计算: 25.02121325.0320625.0÷])32.0(×)02.0(÷)008.0(+)945()833[(----. 【答案】92【解析】 原式=41322132)10000625(]102450)81000()949()278[(÷⨯÷+- 922)2917(21]1024251253794[=⨯+-=÷⨯⨯+-=. 【例题4】【题干】化简:.)2(2485332332323323134aa a a ab aaab b b a a ⋅⋅⨯-÷++--【答案】a ²【解析】原式=51312121323131231313123133133131)()(2)2()2()(])2()[(a a a a ab a b b a a b a a ⋅⋅⨯-÷+⋅+- 23231616531313131312)2(a a a a aa ba ab a a =⨯⨯=⨯-⨯-=.提示:这是一组很基本的指数运算的练习题,虽然在考试中这些运算要求并不高,但是数式运算是学习数学的基本功,通过这样的运算练习熟练掌握运算公式、法则,以及学习数式变换的各种技巧.根式运算或根式与指数混合运算时将根式化为指数式运算较为方便,对于计算的结果,不强求统一用什么形式来表示,如果有特殊要求,可根据要求写出结果,但结果不能同时含有根号和分数指数,也不能既有分母又含有负指数. 【例题5】【题干】比较下列各组数的大小(1)2277.0与 (2)32与3)21( (3)5.02与25.0 (4)3121⎪⎭⎫ ⎝⎛,3221⎪⎭⎫⎝⎛,3251⎪⎭⎫ ⎝⎛ 【答案】323231)51(>)21(>)21(.【解析】(1)由2x 在)+∞,0[上是增函数,∵7<7.0,∴227<7.0.(2)由x2在R 上是增函数,∵3<3-,∴332<2-,即3321<2)(.(3)由x2在R 上是增函数,∵2>5.0-,∴25.02<2-,即225.05.0=21<2)(.(4)由x )21(在R 上是减函数,∵32<31,∴3231)21(>)21(,又32x 在)+∞,0[上是增函数,∵51>21,∴3232)51(>)21(;故323231)51(>)21(>)21(.【例题6】【题干】已知函数11)(+-=x x a a x f ,)0(>a(1)判断函数的奇偶性; (2)求该函数的值域;(3)证明()f x 是R 上的增函数.【答案】(1)奇函数 (2))1,1(- (3)见解析【解析】(1)∵定义域为x R ∈,且11)(+-=---x x a a x f =xx a a --+-11=)(x f -∴ )(x f 是奇函数;(2)121)(+-+=x x a a x f =121+-x a ∵ 1+xa >1, ∴ 0<12+xa <2 即函数11)(+-=x x a a x f 的值域为)1,1(-;(3)设1x ,2x R ∈,且1x <2x ,则21x x a a<)(1x f -)(2x f =1111+-x x a a -1122+-x x a a =)1)(1(222121+--x x x x a a a a <0, ∴()f x 是R 上的增函数.提示:函数的性质综合问题,需要准确把握定义域、值域、奇偶性、单调性等基本概念,充分运用数形结合、分类讨论、等价转换等数学思想,灵活运用通性通法.三、课堂运用【基础】1. 求值下列各式的值:①238;②1225-;③51()2-;④3416()81- 【答案】①4 ②51 ③32 ④827 【解析】① 2223323338(2)224⨯====.② 1112()21222125(5)555--⨯--====. ③ 5151(5)1()(2)2322----⨯-===.④334()344162227()()()81338-⨯--===.2.化简46394369)()(a a ⋅的结果为( )A .a 16B .a 8C .a 4D .a 2【答案】C .【解析】原式=461319431619)))((()))(((a a ⋅=22a a ⋅=4a ,故选C .lg10==;【巩固】 1.若122-=xa,则xx xx a a a a --++33等于( )A .22-1B .2-22C .22+1D . 2+1【答案】A . 【解析】注意到122+=-xa.∴ x x x x a a a a --++33=x x x x aa a a --++33)()(=xx x x x x a a a a a a ---++-+)1)((22 =x x a a 221-+-=122-. 选A .2.在下列图象中,二次函数c bx ax y ++=2与函数x aby )(=的图象可能是( )【答案】A .【解析】由函数x aby )(=知ab >0,于是抛物线c bx ax y ++=2的对称轴应在y 轴左边,B 、D 两个答案被排除.对于答案C , 显然12-=-a b ,a b =2,函数x aby )(=为增函数,图象与之不符,被淘汰.故选A .提示: 从图象看,c =0,关键由a 与b 大小决定.重要的条件是指数函数x ab y )(=的底a b >0,使得对称轴与x 轴的交点横坐标a b 2-<0.再由0<a b <1,便定出ab 2-的位置. 【拔高】1.设5.1344.029.01)21(,8,4-===y y y ,则( )A .3y >1y >2yB .2y >1y >3yC .1y >2y >3yD .1y >3y >2y【答案】D .【解析】 化为同底,再利用单调性即可.∵ 8.112=y ,32.122=y ,5.132=y ,又 ∵ 函数xy 2=是单调增函数,∴ 1y >3y >2y ,故选D . 2.求函数y =3322++-x x 的定义域、值域和单调区间.【答案】定义域(-∞,+∞) 值域 ]81,0( 单调减区间[1,+∞) 【解析】 (1)定义域显然为(-∞,+∞).(2) ∵ 4)1(423)(22≤--=-+==x x x x f u , ∴ uy 3=是u 的增函数,∴4330≤<u , 即函数的值域为 ]81,0(.(3) 当x ≤1 时, u =)(x f 为增函数, uy 3=是u 的增函数,y 由x ↑→u ↑→y ↑∴ 原函数单调增区间为(-∞,1];当x >1时,u =)(x f 为减函数,uy 3=是u 的增函数,由x ↑→u ↓→y ↓∴ 原函数单调减区间为[1,+∞).提示:这是复合函数的典型例子.是指数函数与二次函数的复合,由于外层指数函数u y 3=是u 的增函数,所以该函数的单调性由内层函数也就是二次函数223)(x x x f u -+==决定.另一类由基本初等函数经过四则运算而形成的函数,其单调性和奇偶性的判定需采用前面所学办法.课程小结(1)指数运算常规方法将小数化为分数,带分数化为假分数,负指数化为正指数,根指数化为分数指数. (2)1,0≠>a a 时,xa y -=与xa y =的图象关于y 轴对称,即x ay )1(=与xa y =的图象关于y 轴对称.(3)指数函数都以x 轴为渐近线(当10<<a 时,图象向左无限接近x 轴,当1>a 时,图象向右无限接近x 轴). (4)比较大小问题的处理方法①看类型 ②化为同底用单调性 ③其它类型找中间量. (5)复合函数的单调性对于复合函数的单调性,可以根据各层函数单调性去判别.课后作业【基础】1. 求值(1)2325 (2)21)425(- (3)41)0081.0(-【答案】(1)125=5=)5(=25323223;(2) 52=)25(=])25[(=)425(121221---;(3) 310=)103(=)1000081(=)0081.0(14141---; 【解析】同答案2. 指数函数xa x f )1()(2-=是减函数,求实数a 的取值范围. 【答案】)2,1()1,2( --. 【解析】同答案3. 已知指数函数xa x f =)((a >0且a ≠1)的图象过点(3,π),求(0),(1),(3)f f f-的值.【答案】1==)0(0πf 331==)1(ππf ππ1==)3(1--f 【解析】由π=)3(f ,得π=3a ,即31=πa ,3=)(x x f π,∴1==)0(0πf ;331==)1(ππf ;ππ1==)3(1--f .4. 求函数151-=xy 的定义域.【答案】)+∞,0( 【巩固】1. 计算下列各式(式中字母都是正数)(1)211511336622(2)(6)(3)a b a b a b -÷-; (2)31884()m n -. 【答案】(1)原式=211115326236[2(6)(3)]ab+-+-⨯-÷-=04ab =4a ;(2)原式=318884()()m n -=23m n -. 【解析】同答案 2.计算下列各式(1) (22(a >0). 【答案】(1)原式= 111324(25125)25-÷= 231322(55)5-÷= 2131322255---= 1655-=5;(2)原式=125222362132a aa a a--===⋅.【解析】同答案3.已知44221)31)(21(,31aa aa aa a a aa +++++=+求的值.【答案】5200550205)347()218(=⨯=+⨯+=∴原式【解析】719)1(312=+⇒=+⇒=+aa aa aa , 47149)1(222=+⇒=+∴aa a a ,])())[((1221212122121212323a aa a a a aa aa a a +⋅-+=+=+∴---1863)11)(1(=⨯=+-+=a a aa ,而512)1(124444=++=+=+aa aa aa ,5200550205)347()218(=⨯=+⨯+=∴原式.4.函数xa y =在]1,0[上的最大值与最小值的和为3,则=a .【答案】=a 2; 5.函数y =121+x的值域是_ ____. 【答案】(0,1)【拔高】1.若∈n N *,则=+-+++----12412411n n nn ( )A .2B .n-2C .n-12D .n22-【答案】A2.下列各式中正确的是( )A B C D .<<.<<.<<.<<()()()()()()()()()()()()121512121215151212151212232313132323231323232313【答案】D .【解析】由x y )21(=是减函数,得32)21(<31)21(,答案B 、C 被淘汰.又 32)51(<32)21(,故选D .3.函数()xa y 1-=与x a y ⎪⎭⎫ ⎝⎛=1具有不同的单调性,则()311-=a m 与31⎪⎭⎫⎝⎛=a n 的大小关系是( )A . m <nB . m =nC . m >nD .不能确定 【答案】 D .【解析】 ⇒<<⇒⎩⎨⎧<<<⇒⎪⎩⎪⎨⎧><-101021111a a a a a m <n ;或⇒>⇒⎩⎨⎧>>⇒⎪⎩⎪⎨⎧<<>-21211011a a a a a m >n .故选D . 4.已知函数2)(x x e e x f --=,2)(x x e e x g -+=(1)判断函数)(x f 、)(x g 的奇偶性; (2) 证明()f x 是R 上的增函数;(3) 证明:①)2(x f =2)(x f )(x g ; ②1)]([)]([22=-x f x g . 【答案】(1)(略))(x f 为奇函数,)(x g 为偶函数;(2) xe 是R 上的增函数,xe-是R 上的减函数,∴()f x 是R 上的增函数;(3) 证明:①)2(x f =222xx e e --,2)(x f )(x g =222x x x x e e e e --+⋅-=222xx e e --, ∴ )2(x f =2)(x f )(x g ;②22)]([)]([x f x g -=22]2[]2[x x x x e e e e ----+ =42422222-+-++--x x x x e e e e =1.【解析】同答案。

相关文档
最新文档