用最大公因数或最小公倍数解决问题的题目

合集下载

最大公因数和最小公倍数和列方程应用题1

最大公因数和最小公倍数和列方程应用题1

最大公因数和最小公倍数和列方程应用题1.甲、乙、丙三个班的同学去公园划船,甲班49人,乙班56人,丙班42人。

把各班同学分别分成小组,分乘若干条小船,使每条船上人数相等,最少要多少条船?2.有三根铁丝,长度分别是120厘米、180厘米、300厘米。

现在要把它们截成相等的小段,每根都不能有剩余。

每小段最长多少厘米?一共可以截成多少段?3.兄弟三人在外工作,大哥6天回家一次,二哥8天回家一次,小弟12天回家一次。

兄弟三人同时在十月一日回家,下一次三人再见面是哪一天?4.三个朋友每人隔不同的天数去图书馆一次,甲3天一次,乙4天一次,丙5天一次。

上次三人是星期二在图书馆相逢的,至少要过多少天才能在图书馆重逢?重逢时是星期几?5.两个数的最大公约数是14,最小公倍数是84。

已知其中一个数是28,则另一个数是多少?6.甲数是28,甲、乙两数的最小公倍数是168,最大公约数是4,求乙数。

7.三个连续自然数的最小公倍数是360,求这三个数。

8.三个连续自然数的最小公倍数是1092,求这三个数。

9.爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过几年分别是你的5倍、4倍、3倍、2倍。

”你知道爷爷和小明现在的年龄吗?10.大雪后的一天,亮亮和爸爸从同一点出发沿同一方向分别步测一个圆形花坛的周长。

亮亮每步长54厘米,爸爸每步长72厘米,由于两个人的脚印有重合,所以雪地上只留下60个脚印。

问这个花坛的周长是多少?11.现有四个自然数,它们的和是1111。

如果要求这四个数的公约数尽可能大,那么这四个数的公约数最大可能是多少?12.有三个互不相同的数,它们的和为721。

它们的公约数最大可能是多少?13.已知两个数的最大公约数是21,最小公倍数是126,求这两个数的和是多少。

14.已知两个数的最大公约数是4,最小公倍数是120,求这两个数。

15.两根铁丝分别长65米和95米,用一根绳子分别测量它们,都恰好量完无剩余,这根绳子最多有多长?16.一块砖底面长22厘米,宽是10厘米,要铺成一个正方形地面(不要折断,只能铺整砖)至少要多少块砖?17.小明和小华骑自行车同时从相距120千米的甲乙两地相向而行,3小时相遇,小明的速度是小华的3倍,求他们的速度各是多少?18.某学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍?19.弟弟有课外书20本,哥哥有课外书25本。

最大公因数与最小公倍数应用题

最大公因数与最小公倍数应用题

最大公因数与最小公倍数应用题1、假设这些糖果最少有x个,那么x既能被8整除,又能被10整除,因此x是8和10的最小公倍数,即x=40.2、假设这包糖最少有y块,那么y既能被8整除,又能被10整除,因此y是8和10的最小公倍数,即y=40.3、这个数是4的倍数,因为4除以4余数是0,所以这个数必须被4整除。

这个数是6的倍数,因为6除以6余数是0,所以这个数必须被6整除。

这个数比6的倍数多1,因此这个数必须是6的倍数加1.因此这个数是24+1=25.4、这个人数是30~50的倍数,且是3、4、6、8的公倍数。

这个人数是120的倍数,且小于等于50,因此这个人数是120.5、每个正方形由6块瓷砖组成,因此正方形的面积等于6的倍数。

正方形的边长等于瓷砖的公因数,因此正方形的面积最小是6×6=36.6、假设这堆苹果最少有x千克,那么x既能被8整除,又能被9整除,又能被10整除,因此x是8、9、10的最小公倍数加3,即x=89.7、假设合唱队至少有x人,那么x既能被7整除,又能被8整除,因此x是7和8的最小公倍数加2,即x=54.8、假设最多有x个研究成绩优秀的同学,那么x既能被37和38整除,又要满足钢笔多出一支,书缺2本,因此x是37和38的最小公倍数加1,即x=703.9、这些水果的最大公因数是8,因此每个盘子里的水果数是8的倍数。

苹果和梨的总数是24+32=56,因此每个盘子里的水果数最多是56/2=28.每个盘子里苹果和梨的个数相同,因此每个盘子里苹果和梨各有14个。

10、这两路汽车同时发车的时间是它们发车时间的最小公倍数,即3×5=15分钟后。

11、这个年级的人数是6、8和9的公倍数,因此这个年级的人数是216.12、这个数是3的倍数,因为3除以3余数是0,所以这个数必须被3整除。

这个数是4的倍数,因为4除以4余数是0,所以这个数必须被4整除。

这个数比4的倍数多2,因此这个数必须是4的倍数加2.这个数是5的倍数,因为5除以5余数是0,所以这个数必须被5整除。

最大公因数与最小公倍数的实际应用

最大公因数与最小公倍数的实际应用

最大公因数和最小公倍数基础知识与实际应用相关基础知识几个数公有的因数叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数。

几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

最大公因数和最小公倍数的性质(1)两个数分别除以它们的最大公因数,所得的商一定是互质数。

(2)两个数的最大公因数的因数,都是这两个数的公因数,(3)两个自然数的最大公因数与最小公倍数的乘积等于这两个数的乘积。

两个自然数的最大公因数与最小公倍数关系是:(a,b)×[a,b]=a×b。

6是12和18的最大公因数,记作(12,18)=6。

36是12和18的最小公倍数,记作[12,18]=36。

这样,求两个数的最小公倍数的问题,即可转化成先求两个数的最大公因数,再用最大公因数除两个数的积,其结果就是这两个数的最小公倍数。

两个数A,B,①如果A是B的倍数,那么最大公因数就是B,最小公倍数是A;②如果AB互质,那么最大公因数就是1,最小公倍数是A*B;欧几里得用辗转相除法求两个数的最大公因数。

《九章算术》更相减损术找最大公因数65-26=3939-26=1326-13=13所以,260与104的最大公因数等于13乘以第一步中约掉的两个2,即13*2*2=52。

短除法找最大公因数与最小公倍数短除符号就是除号倒过来。

短除就是在除法中写除数的地方写两个数共有的质因数,然后落下两个数被公有质因数整除的商,之后再除,以此类推,直到结果互质为止(两个数互质,最大公因数是1的两个数叫互质数,如8和9)。

而在用短除计算多个数时,对其中任意两个数存在的因数都要算出,其它没有这个因数的数则原样落下。

直到剩下每两个都是互质关系。

求最大公因数便乘一边,求最小公倍数便乘一圈。

(公因数:如果一个整数同时是几个整数的因数,称这个整数为它们的“公因数”;公因数中最大的称为最大公因数。

)实际应用例:有一个长方体的木头,长3.25米,宽1.75米,厚0.75米。

五年级下学期最大公因数和最小公倍数应用题及练习题

五年级下学期最大公因数和最小公倍数应用题及练习题

五年级下学期最大公因数和最小公倍数应用题及练习题1. 应用题题目一:杰克有18个苹果,要把苹果分成相等的一些堆,每堆有最多10个苹果。

请问杰克最多可以分成几堆?每堆有几个苹果?解析:首先,我们可以知道每堆之间的苹果数要相等。

而且每堆的苹果数应该是苹果数的公因数。

根据题意,每堆最多有10个苹果,所以我们可以列举出18的所有公因数:1、2、3、6、9和18。

根据题目描述的每堆最多有10个苹果的要求,我们可以发现最多可以分成的堆数应该是公因数中小于等于10的数的个数。

因此答案为3堆,每堆6个苹果。

题目二:小明和小红一起做一道数学题。

小明说:“这个数既是15的倍数,又是20的倍数。

”小红听后说:“啊!那这个数一定是300的倍数。

”小明说:“对!”请问小红为什么这样断定?解析:假设这个数为x,根据题目描述,我们可以得到两个条件:(1)x是15的倍数,即$15 \\times n = x$;(2)x 是20的倍数,即$20 \\times m = x$。

我们可以将每个整数分解成质数的乘积形式,即$15 = 3^1 \\times 5^1$,$20 = 2^2 \\times 5^1$。

因为x既是15的倍数,又是20的倍数,所以它的质因数必须包含15和20的所有质因数,即$3^1 \\times 5^1\\times 2^2$。

考虑到15和20的最小公倍数为60,所以x必为60的倍数。

即$x = 60 \\times k$,其中k为任意整数。

而300正是60的倍数,所以小红断定这个数一定是300的倍数。

2. 练习题请计算以下题目中的最大公因数和最小公倍数:题目一:10和15的最大公因数和最小公倍数分别是多少?解析:首先我们可以列举出10和15的所有公因数:1、5。

由于最大公因数是两个数的公因数中最大的一个,所以10和15的最大公因数是5。

最小公倍数可以通过两个数相乘再除以最大公因数得到,即10乘以15再除以最大公因数:$10 \\times 15 ÷ 5 = 30$。

(完整版)最大公因数与最小公倍数综合应用题练习及答案④

(完整版)最大公因数与最小公倍数综合应用题练习及答案④

最大公因数与最小公倍数综合应用练习及答案(四)1、有一些糖果,分给8个人或分给10个人,正好分完,这些糖果最少有多少粒?2、有一包糖,不论分给8个人,还是分给10个人,都能正好分完。

这包糖至少有多少块?3、一个数被2除余1,被3除余2,被4除余4,被6除余5,此数最小是几?4、五年级学生参加植树活动,人数在30~50之间。

如果分成3人一组,4人一组,6人一组或者8人一组,都恰好分完。

五年级参加植树活动的学生有多少人?5、利用每一小块长6公分,宽4公分的长方形彩色瓷砖在墙壁上贴成正方形的图案。

问:拼成的正方形的面积最小是多少?6、有一堆苹果,每8千克一份,9千克一份,或10千克一份,都会多出3千克,这堆苹果至少有多少千克?7、学校合唱队排练时,如果7人一排就差2人,8人一排也差2人,合唱队至少有多少人?8、把37支钢笔和38本书,平均奖给几个学习成绩优秀的学生,结果钢笔多出一支,书还缺2本,最多有几个学习成绩优秀的同学?9、有24个苹果,32个梨,要分装在盘子里,每盘的苹果和梨的个数相同,最多可以装多少盘?每个盘子里苹果和梨各多少?10、阜沙市场是20路和21路汽车的起点站。

20路汽车每3分钟发车一次,21路汽车每5分钟发车一次。

这两路汽车同时发车以后,至少再过多少分钟又同时发车?11、中心小学五年级学生,分为6人一组,8人一组或9人一组排队做早操,都刚好分完。

这个年级至少有学生多少人?12、有一盘水果,3个3个地数余2个,4个4个数余3,5个5个数余4个,问个盘子里最少有多少个水果?13、有一个电子表,每走9分钟亮一次灯,每到整点响一次铃,中午12点整,电子表既响铃又亮灯,请问下一次既响铃又亮灯的是几点钟?14、数学兴趣小组有24个男同学,20个女同学,现要分成小组,每个小组男、女同学人数分别相同,最多可以分成多少个小组?每组至少有多少个男同学?多少个女同学?15、有38支铅笔和41本练习本平均奖给若干个好少年,结果铅笔多出3支,练习本还缺1本。

(完整版)最大公因数与最小公倍数应用题

(完整版)最大公因数与最小公倍数应用题

(完整版)最大公因数与最小公倍数应用题最大公因数与最小公倍数应用题1、有一些糖果,分给8个人或分给10个人,正好分完,这些糖果最少有多少粒?解:【8,10】=402、有一包糖,不论分给8个人,还是分给10个人,都能正好分完。

这包糖至少有多少块?解:【8,10】=40(人)3、一个数被2除余1,被3除余2,被4除余4,被6除余5,此数最小是几?解:【2,3,4,6】=1212-1=114、五年级学生参加植树活动,人数在30~50之间。

如果分成3人一组,4人一组,6人一组或者8人一组,都恰好分完。

五年级参加植树活动的学生有多少人?解:【3,4,6,8】=24(人)24×2=48(人)5、利用每一小块长6公分,宽4公分的长方形彩色瓷砖在墙壁上贴成正方形的图案。

问:拼成的正方形的面积最小是多少?解:【6,4】=12(公分)12×12=144(CM2)6、有一堆苹果,每8千克一份,9千克一份,或10千克一份,都会多出3千克,这堆苹果至少有多少千克?解:【8,9,10】=360360+3=363kg7、学校合唱队排练时,如果7人一排就差2人,8人一排也差2人,合唱队至少有多少人?解:【7,8】=56(人)56-2=54(人)8、把37支钢笔和38本书,平均奖给几个学习成绩优秀的学生,结果钢笔多出一支,书还缺2本,最多有几个学习成绩优秀的同学?解:37-1=36(本) 38+2=40(本)(36,40)=4(人)9、有24个苹果,32个梨,要分装在盘子里,每盘的苹果和梨的个数相同,最多可以装多少盘?每个盘子里苹果和梨各多少?解:(24,32)=8(盘)24÷8=3(个)32÷8=4(个)10、阜沙市场是20路和21路汽车的起点站。

20路汽车每3分钟发车一次,21路汽车每5分钟发车一次。

这两路汽车同时发车以后,至少再过多少分钟又同时发车?解:【3,5】=15(分钟)11、中心小学五年级学生,分为6人一组,8人一组或9人一组排队做早操,都刚好分完。

最大公因数与最小公倍数应用题及练习题

最大公因数与最小公倍数应用题及练习题

最大公因数与最小公倍数应用题及练习题最大公约数与最小公倍数练题姓名:一、填空:1、如果自然数A除以自然数B商是17,那么A与B的最大公因数是(),最小公倍数是()。

2、最小质数与最小合数的最大公因数是(),最小公倍数是()。

3、能被5、7、16整除的最小自然数是()。

4、(1)(7、8)最大公因数(),[7,8 ]最小公倍数()2)(25,15)最大公因数(),[25、15 ]最小公倍数()3)(140,35)最大公因数(),[140,35 ]最小公倍数()4)(24,36)最大公因数(),[24、36 ]最小公倍数()5)(3,4,5)最大公因数(),[3,4,5 ]最小公倍数()6)(4,8,16)最大公因数(),[4,8,16 ]最小公倍数()5、5和12的最小公倍数减去()就等于它们的最大公因数。

91和13的最小公倍数是它们最大公因数的()倍。

6、已知两个互质数的最小公倍数是153,这两个互质数是()和()。

7、甲数=2×3×5×7,乙数=2×3×11,甲乙两数的最大公因数是(),最小公倍数是()。

8、3个连续天然数的最小公倍数是60,这三个数是()、()和()。

9、被2、3、5除,结果都余1的最小整数是(),最小三位整数是()。

10、一筐苹果4个4个拿,6个6个拿,或者8个8个拿都恰好拿完,这筐苹果最少有()个。

11、三个连续偶数的和是42,这三个数的最大公因数是()。

12、三个13、天然数m和n,n= m+1,m和n的最大公因数是(),最小公倍数是()。

14、把自然数a与b分解质因数,得到a=2×5×7×m,b=3×5×m,如果a与b的最小公倍数是2730,那么m =()。

15、(273,231,117)最大公因数(),[273,231,117]最小公倍数()16、三个数的和是312,这三个数分别能被7、8、9整除,而且商相同。

最大公因数与最小公倍数综合应用题练习及答案④

最大公因数与最小公倍数综合应用题练习及答案④

最大公因数与最小公倍数综合应用练习及答案(四)1、有一些糖果,分给8个人或分给10个人,正好分完,这些糖果最少有多少粒2、有一包糖,不论分给8个人,还是分给10个人,都能正好分完。

这包糖至少有多少块3、一个数被2除余1,被3除余2,被4除余4,被6除余5,此数最小是几4、五年级学生参加植树活动,人数在30~50之间。

如果分成3人一组,4人一组,6人一组或者8人一组,都恰好分完。

五年级参加植树活动的学生有多少人5、利用每一小块长6公分,宽4公分的长方形彩色瓷砖在墙壁上贴成正方形的图案。

问:拼成的正方形的面积最小是多少6、有一堆苹果,每8千克一份,9千克一份,或10千克一份,都会多出3千克,这堆苹果至少有多少千克7、学校合唱队排练时,如果7人一排就差2人,8人一排也差2人,合唱队至少有多少人8、把37支钢笔和38本书,平均奖给几个学习成绩优秀的学生,结果钢笔多出一支,书还缺2本,最多有几个学习成绩优秀的同学9、有24个苹果,32个梨,要分装在盘子里,每盘的苹果和梨的个数相同,最多可以装多少盘每个盘子里苹果和梨各多少10、阜沙市场是20路和21路汽车的起点站。

20路汽车每3分钟发车一次,21路汽车每5分钟发车一次。

这两路汽车同时发车以后,至少再过多少分钟又同时发车11、中心小学五年级学生,分为6人一组,8人一组或9人一组排队做早操,都刚好分完。

这个年级至少有学生多少人12、有一盘水果,3个3个地数余2个,4个4个数余3,5个5个数余4个,问个盘子里最少有多少个水果13、有一个电子表,每走9分钟亮一次灯,每到整点响一次铃,中午12点整,电子表既响铃又亮灯,请问下一次既响铃又亮灯的是几点钟14、数学兴趣小组有24个男同学,20个女同学,现要分成小组,每个小组男、女同学人数分别相同,最多可以分成多少个小组每组至少有多少个男同学多少个女同学15、有38支铅笔和41本练习本平均奖给若干个好少年,结果铅笔多出3支,练习本还缺1本。

最大公因数与最小公倍数 应用题训练带答案

最大公因数与最小公倍数 应用题训练带答案

9、把长120厘米,宽80厘米的铁板裁成面积相等,最大的 正方形而且没有剩余,可以裁成多少块?
要裁成最大的正方形,正方形的边长是120和80的最大公因数 (120,80)=40 边长是40厘米 可以裁成的块数:(120÷40)×(80÷40)=6(块)
10、从小明家到学校原来每隔50米安装一根电线杆,加 上两端的两根一共是55根电线杆,现在改成每隔60米安 装一根电线杆,除两端的两根不用移动外,中途还有多少 根不必移动?
6、兄弟三人在外工作,大哥6天回家一次,二哥8天回家一 次,小弟12天回家一次。兄弟三人同时在十月一日回家, 下一次三人再见面是哪一天?
【6,8,12】=24 10月1日+24天10月25日
7、有一个长80厘米,宽60厘米,高115厘米的长方体储 冰容器,往里面装入大小相同的立方体冰块,这个容器最 少能装多少数量冰块?
1、一批练习本,如果平均分给6位同学,就多出3本;如果 平均分给8位同学,还是多出3本,如果平均分给10位同学 ,仍然会多出3本,这批练习本至少有多少本?
先把多的3本练习本拿出来,那么平均分给6位同学可以分完, 平均分给8位同学可以分完,平均分给10位同学也可以分完, 说明是6,8,10的公倍数 6,8,10的最小公倍数是120 120+3=123(本)
12、把1.36米,宽0.8米的长方形纸裁剪成同样大小的 正方形纸,如果要使得正方形纸的面积尽可能大,且裁 完没有剩余,可以裁出多少张?
1.36米=136厘米 0.8米=80米 正方形的边长是136和80的最大公因数 (136,80)=8 所以边长为8厘米 (136÷8)×(80÷8)=170(张)
(80,60,115)=5,说明正方体的棱长最大为5厘米 块数:(80÷5)×(60÷5)×(115÷5)=4416(块)

最大公因数和最小公倍数解决问题

最大公因数和最小公倍数解决问题

六号作业纸
1.现在卷糖240支,甜饼200个,将这些物品装成数量相等的礼品袋,送给幼儿园小朋友,装的
袋数要最多,可装多少袋?每袋两种食品各多少?
2.有一张长方形纸,长70厘米,宽50厘米。

如果要剪成若干个同样大小的正方形而没有剩余,
那么剪出的小正方形的边长最大是多少厘米?能剪多少个?
3.某公共汽车站有两条线路通往不同地方。

第一条线路每隔8分钟发一班车,第二条线路每隔
6分钟发车一次。

这两条线路在同一时间发车后,至少再过多少分钟又同时发车?
4.有一块正方形的花布,要把这个花布截成长20厘米,宽8厘米的长方形手绢无剩余,这块花
布的边长最小是多少?
5.“小红军〃野营小组有24名男生,18名女生,男生、女生夜间分组休息,要使每个人帐
篷的人数同样多,每个帐篷最多有多少人?男、女至少各要搭建多少个帐篷?
6.“小红军〃野营小组有32名男生,48名女生,男生、女生夜间分组休息,要使每个人帐篷
的人数同样多,男、女至少各要搭建多少个帐篷?
7.把32个文具盒和40支铅笔全部平均分给尽可能多的小朋友,每人至少分得几个文具、几支铅笔?
8.现有科技类图书42本、工具类图书112本,平均分给若干个学生,最多可以分给多少个学生?每个学生可以分得多少本科技类图书、多少本工具类图书?。

用最大公因数与最小公倍数解决问题解读

用最大公因数与最小公倍数解决问题解读

一、用公因数知识解决生活问题。
1、用96朵红玫瑰和72朵白玫瑰做成花束。 如果每个花束里的红玫瑰和白玫瑰的朵 数相同且没有剩余,最多可以做多少个 花束?每个花束里至少要有几朵束?
每个花束里的红玫瑰和白玫瑰的朵数相 同,又要求花束的个数最多,所以花束的 个数应该是96和72的最大公因数。
(96,72)=24 96÷24+72÷24=7(朵)
3、今有梨320个、糖果240个、饼干200个,将这 些东西分成相同的礼品包送给儿童,但包数要最多, 则每包有多少个梨?有多少个糖果?有多少个饼干? 320、240和200的最大公因数是:40
梨:320÷40=8(个)
糖果:240÷40=6 (个) 饼干:200÷40=5(个) 答:每包有8个梨。有6个糖果。有5个饼干。
李阿姨今天给月季和君子兰同时浇了水,至少多少天 以后给这两种花同时浇水?
月季每5天浇一次水, 君子兰每6天浇一次水。
5和6的最小公倍数是:30 所以至少30天以后给这两种花同时浇水。
上 回 下
人民公园是3路和5路汽车的起点站。3 路:每隔6分钟发车一次,5路:每隔8 分钟发车一次。它们同时发车以后, 至少再过多多少分钟又同时发车?
A、可以用列举法解答 B、24+31=55(天) 55÷12=4(次)……7(天) 4+1=5(次)
例2:美美客运有A、B两种车,A车每45分发车一次, B车每1小时发车一次,两车同时由上午6点发车,下 一次同时发车是什么时候?
解: 〔45,60〕=180 180÷60=3(时)
15
45
3
60
4
15×3×4=180
30÷6=5(人) 30÷5=6(人) 30÷15=2(人) 答:要使加工生产均衡,第一道工序至少分配5人, 第二道工序至少分配6人,第三道工序至少分配2人。

四年级有关最大公因数和最小公倍数,有关加法的应用题(一)

四年级有关最大公因数和最小公倍数,有关加法的应用题(一)

四年级有关最大公因数和最小公倍数,有关加法的应用题(一)四年级数学应用题最大公因数和最小公倍数•例题1:小明的妈妈买了24个橙子和36个苹果,她想将它们放在相同的数量的篮子里,每个篮子里放多少个水果?•例题2:小华家里有12杯水,小明家里有16杯水,他们想将水均匀地分给所有的同学,每个同学分得多少杯?•例题3:小杰需要用80根铁丝和64根铜丝搭建一个模型,他希望每个模型的搭建过程中使用的铁丝和铜丝数量是相同的,每个模型需要各用多少根铁丝和铜丝?加法•例题1:小明家里有48颗糖果,他和小红一起去买了40颗糖果,他们一共拥有多少颗糖果?•例题2:小华每天早晨走路去学校,一次走5公里,连续上学5天,共走了多少公里?•例题3:小杰的奶奶说,如果小杰一周完成了7次家务,她会给小杰1块钱奖励,小杰连续做了3周家务,他可以得到多少钱?请根据以上提示进行继续补充,以满足需求。

四年级数学应用题最大公因数和最小公倍数•例题1:小明的妈妈买了24个橙子和36个苹果,她想将它们放在相同的数量的篮子里,每个篮子里放多少个水果?•例题2:小华家里有12杯水,小明家里有16杯水,他们想将水均匀地分给所有的同学,每个同学分得多少杯?•例题3:小杰需要用80根铁丝和64根铜丝搭建一个模型,他希望每个模型的搭建过程中使用的铁丝和铜丝数量是相同的,每个模型需要各用多少根铁丝和铜丝?•例题4:小明和小红一起在花坛上种花,小明一次种3朵花,小红一次种4朵花,他们一共种了多少朵花?加法•例题1:小明家里有48颗糖果,他和小红一起去买了40颗糖果,他们一共拥有多少颗糖果?•例题2:小华每天早晨走路去学校,一次走5公里,连续上学5天,共走了多少公里?•例题3:小杰的奶奶说,如果小杰一周完成了7次家务,她会给小杰1块钱奖励,小杰连续做了3周家务,他可以得到多少钱?•例题4:小明和小红一起做作业,小明一天做5道题,小红一天做4道题,他们一共做了多少道题?以上是关于最大公因数、最小公倍数和加法的四年级数学应用题。

小学最小公倍数与最大公因数典型的应用题

小学最小公倍数与最大公因数典型的应用题

小学最小公倍数与最大公因数典型的应用题最小公倍数与最大公因数典型的应用题汇总一、解决问题的技能:最大公因数解题技巧:通常,从问题开始,当寻求的数量位于小数点位置(即除数、商和因子)时,因为小数点(即除数、商和因子)是大数的因子,此时,寻求的数量位于因子位置。

如果有相同的(公共)/最长的需求量,也就是说,找到它们的公因数/最大公因数的应用问题。

最低常见多重问题解决技能:通常从问题入手,所求的数量处于大数(即处于被除数、被除数、积)的地位时,因为大数(即处于被除数、被除数、积)是小数的倍数,此时,所求的数量应处于倍数的地位。

如果出现相同的(公有的)/最小的所求数量,即求他们的公倍数/最小公倍数的应用题。

补充部分公式小矩形数=(大矩形边长÷小矩形边长)×(大矩形边长÷小矩形宽度)小矩形数=(大矩形边长÷小矩形边长)×(大矩形边长÷小矩形边长)小长方体个数=(大正方体边长÷小长方体长)×(大正方体边长÷小长方体的宽)×(大正方体边长÷小长方体高)小立方体数=(大立方体边长÷小立方体边长)×(大长方体宽度÷小立方体边长)×(大长方体高度÷小立方体边长)剩余定理余数相同时,总数(被除数)=最小公倍数+余数缺数相同时,总数(被除数)=最小公倍数-缺数植树问题公式非封闭型:2。

只种了一端。

1.两端种植的植物数量=间隔的植物数量=植物数量-间隔的植物数量=间隔的植物数量+间隔的植物数量=距离=间隔的长度×间隔的数量距离=间隔的长度×间隔的数量3。

两端都不能种植。

间隔数量=植物数量+1植物数量=间隔数量-1距离=间隔长度×间隔数量闭合类型:间隔个数=株数株数=间隔个数距离=一个间隔的长度×间隔个数封闭型再正方形边上栽,并且4个顶点都栽:株数=(每边株数-1)×4备注:上下多少层楼以及锯段数及敲钟问题等实际运用实质上是两端都栽树的植树问题,这类题通常先求一层/一段需要多少时间,再乘以段数即可二、经典题目一.一个大长方形长24厘米,宽18厘米。

最小公倍数和最大公因数练习

最小公倍数和最大公因数练习

最小公倍数和最大公因数练习姓名1. 一块长方形地面,长120米,宽60米,要在它的四周和四角种树,每两棵之间的距离相等,最少要种树苗多少棵?每相邻两棵的距离是多少米?2. 将长25分米、宽20分米,高15分米的长方体木块锯成完全一样的尽可能大的立方体,不能有剩余,每个立方体的体积是多少?一共可锯多少块?3.甲、乙、丙三班同学去公园划船,甲班49人,乙班56人,丙班42人,把各班同学分别分成小组,分乘若干条小船,使每条船上人数相等,最少要有多少条船?4.有两根木料,一根长503毫米,另一根长188毫米,要把它们锯成同样长的小段,不许有剩余,但每锯一次要损耗1毫米的木料,每小段木料最长可以是多少毫米?5.幼儿园买来桃93个,杏123个,桔子150个,分给大班的小朋友,每人要分得一样多,结果桃、李各剩下3个,桔子正好分完。

大班小朋友最多有几个人?每人分到几个桃?6.用一个数去除52,余4,再用这个数去除40,也余4,这个数最大是几?7.有一批作业本,无论是平均分给10个人,还是12个人,都剩余4本,这批作业本至少有多少本?8.五年级同学参加社区服务活动,人数在40和50之间,如果分成3人一组,4人一组或6人一组都正好缺1人,五年级参加活动的一共有多少人?9.某会议有代表不到300人,分住房时,每5人一间多3人,吃饭时每9人一桌少1人,开小组会时每7人一组多6人。

到会的代表有多少人?10.兄弟三人在外工作,大哥6天回家一次,二哥8天回家一次,小弟12天回家一次。

兄弟三人同时在十月一日回家,下一次三人再见面是哪一天?11.有一条道路,左边每隔5米种一棵杨树,右边每隔6米种一棵柳树,两端都种上树,共有5处是杨树与柳树相对。

这条道路长多少米?12. 有若干名学生上体育课,内容是学习篮球、排球和足球。

规定每二人合用一只排球,每三人合用一只足球,每四人合用一只篮球,共用了26只球。

问有多少名学生?13. 大雪后的一天,大亮和爸爸共同步测一个圆形花圃的周长,他俩的起点和走的方向完全相同,大亮每步长54厘米,爸爸每步长72厘米,由于两人脚印有重合的,所以各走完一圈后雪地上只留下60个脚印。

最大公因数与最小公倍数应用题

最大公因数与最小公倍数应用题

最大公因数与最小公倍数应用题题目一某个班级有45人,他们被平均分成若干个小组,每个小组人数相同,并且不能多于9人。

问这个班级至少分成多少组,以及每组的人数。

解答我们需要找到班级人数45的最大公因数和最小公倍数。

最大公因数(公约数)是指能够整除两个或多个数的最大正整数。

我们可以使用欧几里得算法来求得最大公因数。

45÷9=59÷5=45÷4=1最大公因数为1。

最小公倍数是指能够被两个或多个数整除的最小正整数。

我们可以通过以下公式来求得最小公倍数:最小公倍数 = (两数的乘积) / 最大公因数最小公倍数 = (45 × 9) / 1 = 405因此,班级人数为45的最大公因数为1,最小公倍数为405。

由于每个小组人数相同,并且不能多于9人,因此我们需要找到45的因数中最接近9的数。

通过观察和尝试,我们可以得到以下答案:每组人数为9班级分成的最少组数为5题目二某个农场有68只鸡和88只兔子,它们被平均分成若干个笼子,每个笼子的动物数量相同,并且不能多于8只。

问该农场至少需要多少个笼子,以及每个笼子分别有多少只动物。

解答我们需要找到鸡的数量68和兔子的数量88的最大公因数和最小公倍数。

最大公因数为1,因为68和88没有其他公约数。

最小公倍数 = (68 × 88) / 1 = 5984因此,农场需要的最小笼子数量为5984。

由于每个笼子的动物数量相同,并且不能多于8只,因此我们需要找到5984的因数中最接近8的数。

通过观察和尝试,我们可以得到以下答案:每个笼子的动物数量为8农场需要的最少笼子数量为748以上是最大公因数与最小公倍数应用题的解答。

希望能对您有所帮助!。

利用最大公因数和最小公倍数解决实际问题。

利用最大公因数和最小公倍数解决实际问题。

利用最大公因数和最小公倍数解决实际问
题。

利用最大公因数和最小公倍数解决实际问题
引言
最大公因数的应用
最大公因数是指两个或多个数中最大的能够整除所有给定数的数。

利用最大公因数,我们可以解决一些与分数运算相关的实际问题。

例子1:比例和分数化简
假设我们要将一个比例化简为最简形式,可以利用最大公因数来实现。

首先,我们找到比例的所有分子和分母的最大公因数,然后将分子和分母都除以最大公因数,即可得到最简形式的比例。

例子2:分数加减运算
在进行分数加减运算时,我们需要找到分母的最小公倍数。


过求最小公倍数,我们可以将多个分数的分母统一,从而方便进行
加减运算。

最小公倍数的应用
最小公倍数是指两个或多个数中最小的能够被给定数整除的数。

利用最小公倍数,我们可以解决一些与时间、周期等概念相关的实
际问题。

例子3:两辆车同时从不同地点出发
假设有两辆车A和车B同时从不同地点出发,车A每隔10分
钟发一次车,车B每隔15分钟发一次车。

我们希望知道,多长时
间后两辆车再次同时发车。

为了解决这个问题,我们可以求出车A
和车B发车时间的最小公倍数,即为两辆车再次同时发车的时间间隔。

例子4:周期性事件的规律性
有些事件具有周期性,比如月相变化、潮汐变化等。

通过求最
小公倍数,我们可以确定这些事件的周期,以便更好地预测和规划。

结论
最大公因数和最小公倍数在解决实际问题中起着重要的作用。

通过合理运用最大公因数和最小公倍数的概念,我们可以简化问题、统一数据,从而更好地解决实际应用中的复杂数学问题。

有关最大公因数和最小公倍数的各类应用题

有关最大公因数和最小公倍数的各类应用题

有关最大公因数和最小公倍数的各类应用题有关最大公因数和最小公倍数的各类应用题,只需一节课全部掌握。

用求最大公因数与最小公倍数方法求解的应用题,叫做公因数与公倍数问题。

解题的关键是先求出几个数的最大公因数或最小公倍数,然后按题意解答要求的问题。

例题1、有三根铁丝,一根长18米,一根长24米,一根长30米现在要把它们截成同样长的小段。

每段最长可以有几米?一共可截成多少段?解题分析:截成的小段一定是18、24、30的最大公因数。

先求这三个数的最大公因数,再求一共可以截多少段?解:(18、24、30)=6(18÷6+24÷6+30÷6)=3+4+5=12(段)答:每段最长可以有6米,一共可以截成12段。

例题2、一张长方形纸,长60厘米,宽36厘米,要把它截成同样大小的正方形,并使它们的面积尽可能大。

截完后又正好没有剩余,正方形的边长最长可以是多少厘米?能截多少个正方形?解题分析:要使截成的正方形面积尽可能大,也就是说,正方形的边长要尽可能大,截完后又正好没有剩余,这样正方形边长一定是60和36的最大公因数。

解:(36、60)=12(60÷12)×(36÷12)=5×3=15(个)答:正方形的边长最长是12厘米,一共能截正方形15个。

例题3、用96朵红瑰花和72朵白政瑰花做花束。

如每个花束里的红攻瑰花的朵数相同,白玫瑰花的朵数也相同,问最多可以做多少个花束?每个花束里至少要有多少朵花?解题分析:要把96朵红花和72朵白花做成花束,每束花里的红花朵数一样多,白花朵数也一样多,那么做成花束的个数一定是96和72的公因数,又要求花束的个数要最多,所以花東的个数应是96和72的最大公因数。

解:(1)最多可以做多少个花束?(96、72)=24(个)(2)每个花束里有几朵红瑰花?96÷24=4(朵)(3)每个花束里有几朵白政瑰花?72÷24=3(朵)(4)每个花束里最少有几朵花?4+3=7(朵)答:最多可以做24个花束,每个花束里最少有7朵花。

用最大公因数或最小公倍数解决问题的题目

用最大公因数或最小公倍数解决问题的题目

用最大公因数或最小公倍数解决问题的题目班级姓名一. 填空题1. 如果m和n是互质数,那么它们的最大公因数是(),最小公倍数是()。

2. 在4、9、10和16这四个数中,()和()是互质数,()和()是互质数,()和()是互质数。

3. 用一个数去除15和30,正好都能整除,这个数最小是()。

4. 两个连续自然数的和是21,这两个数的最大公因数是(),最小公倍数是()。

5. 两个相邻奇数的和是16,它们的最大公因数是(),最小公倍数是()。

6. 某数除以3、5、7时都余1,这个数最小是()。

二. 判断题1. 互质的两个数必定都是质数。

()2. 两个不同的奇数一定是互质数。

()3. 最小的质数是所有偶数的最大公因数。

()4. 有公因数1的两个数,一定是互质数。

()5. a是质数,b也是质数, ab一定是质数。

()三. 直接写出每组数的最大公因数和最小公倍数。

26和13 13和6 4和135和9 29和87 30和1513、26和52 2、3和7四. 求下面每组数的最大公因数和最小公倍数。

(三个数的只求最小公倍数)45和60 36和6027和72 6和8042、105和56 24、36和48五、明明用一些长6分米、宽4分米的长方形纸板拼成了一个正方形,正方形的边长至少是多少?要用多少块小长方形纸板?六、贝贝用一块长6分米、宽4分米的长方形纸板裁成若干个边长是整分米数的小正方形,小正方形的边长最大是多少?可以裁成多少块?七、有一些长15厘米、宽12厘米、高10厘米的长方体积木,用它们拼一个大正方体,正方体的棱长最小是多少?至少要用多少块积木?八、五1班上体育课,站成长方形队伍,排成3行、5行、6行都可以,上体育课的至少有多少人?九、五1班上体育课,站成长方形队伍,排成3行、5行、6行都少1人,上体育课的至少有多少人?十、暑假期间,贝贝和明明去敬老院照顾老人。

7月7日她们都去了敬老院,并约定以后贝贝每隔2天去一次,明明每隔3天去一次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用最大公因数或最小公倍数解决问题的题目
班级姓名
一. 填空题
1. 如果m和n是互质数,那么它们的最大公因数是
(),最小公倍数是()。

2. 在4、9、10和16这四个数中,()和()
是互质数,()和()是互质数,
()和()是互质数。

3. 用一个数去除15和30,正好都能整除,这个数最小是
()。

4. 两个连续自然数的和是21,这两个数的最大公因数是
(),最小公倍数是()。

5. 两个相邻奇数的和是16,它们的最大公因数是
(),最小公倍数是()。

6. 某数除以3、5、7时都余1,这个数最小是()。

二. 判断题
1. 互质的两个数必定都是质数。

()
2. 两个不同的奇数一定是互质数。

()
3. 最小的质数是所有偶数的最大公因数。

()
4. 有公因数1的两个数,一定是互质数。

()
5. a是质数,b也是质数, ab一定是质数。

()
三. 直接写出每组数的最大公因数和最小公倍数。

26和13 13和6 4和6 5和9
29和87 30和15
13、26和52 2、3和7
四. 求下面每组数的最大公因数和最小公倍数。

(三个数的只求最小公倍数)
45和
60
36和60
27和
72
76和80
42、105和
56 24、36和48
五、明明用一些长6分米、宽4分米的长方形纸板拼成了一个正方形
,正方形的边长至少是多少?要用多少块小长方形纸板?
六、贝贝用一块长6分米、宽4分米的长方形纸板裁成若干个边长是
整分米数的小正方形,小正方形的边长最大是多少?可以裁成多少块?
七、有一些长15厘米、宽12厘米、高10厘米的长方体积木,用它们
拼一个大正方体,正方体的棱长最小是多少?至少要用多少块积木?
八、五1班上体育课,站成长方形队伍,排成3行、5行、6行都可以
,上体育课的至少有多少人?
九、五1班上体育课,站成长方形队伍,排成3行、5行、6行都少1人
,上体育课的至少有多少人?
十、暑假期间,贝贝和明明去敬老院照顾老人。

7月7日她们都去了敬老院,并约定以后贝贝每隔2天去一次,明明每隔3天去一次。

(1)两人下一次在敬老院相遇是几月几日?
(2)从7月7日到8月底,她们一起去敬老院的日子有几次?。

相关文档
最新文档