脉冲编码调制PCM系统设计及仿真
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- - -.
脉冲编码调制〔PCM〕系统设计与仿真
1 设计目的
加深对所学的通信原理知识理解,培养专业素质;掌握通信电路的设计方法,能够进展设计简单的通信电路系统;掌握通信系统安装的根本知识和技能,培养学生对通信电路系统的整机调试和检测的能力;通过专业课程设计掌握通信中常用的信号处理方法,能够分析简单通信系统的性能。
2 设计要求
画出系统构造框图,根据系统的工作原理,利用SystemView的模块画出系统的构造图并进展仿真,观察仿真波形。
3 设计原理
SystemView 仿真软件可以实现多层次的通信系统仿真。脉冲编码调制〔PCM〕是现代语音通信中数字化的重要编码方式。利用SystemView 实现脉冲编码调制(PCM)仿真,可以为硬件电路实现提供理论依据。通过仿真展示了PCM 编码实现的设计思路及具体过程,并加以进展分析。
PCM即脉冲编码调制,在通信系统中完成将语音信号数字化功能。PCM的实现主要包括三个步骤完成:抽样、量化、编码。分别完成时间上离散、幅度上离散、及量化信号的二进制表示。根据CCITT的建议,为改善小信号量化性能,采用压扩非均匀量化,有两种建议方式,分别为A律和μ律方式,我**用了A 律方式,由于A律压缩实现复杂,常使用 13 折线法编码,采用非均匀量化PCM 编码示意图见图1。
(a) 抽样
所谓抽样,就是对模拟信号进展周期性扫描,把时间上连续的信号变成时间上离散的信号。该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。它的抽样速率的下限是由抽样定理确定的。
(b) 量化
从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合。如图2所示,量化器Q 输出L 个量化值k y ,k=1,2,3,…,L 。k y 常称为重建电平或量化电平。当量化器输入信号幅度x 落在k x 与1+k x 之间时,量化器输出电平为k y 。这个量化过程可以表达为:
{}1(),
1,2,3,,k k k y Q x Q x x x y k L +==<≤==
这里k x 称为分层电平或判决阈值。通常k k k x x -=∆+1称为量化间隔。
图3.2 模拟信号的量化
模拟信号的量化分为均匀量化和非均匀量化。由于均匀量化存在的主要缺点是:无论抽样值大小如何,量化噪声的均方根值都固定不变。因此,当信号()m t 较小时,则信号量化噪声功率比也就很小,这样,对于弱信号时的量化信噪比就难以到达给定的要求。通常,把满足信噪比要求的输入信号取值*围定义为动态*围,可见,均匀量化时的信号动态*围将受到较大的限制。为了抑制这个缺点,实际中,往往采用非均匀量化。
非均匀量化是根据信号的不同区间来确定量化间隔的。对于信号取值小的区间,其量化间隔v ∆也小;反之,量化间隔就大。它与均匀量化相比,有两个突出的优点。首先,当输入量化器的信号具有非均匀分布的概率密度〔实际中常常是这样〕时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;其次,非均匀量化时,量化噪声功率的均方根值根本上与信号抽样值成比例。因此量化噪声对大、小信号的影响大致一样,即改善了小信号时的量化信噪比。
实际中,非均匀量化的实际方法通常是将抽样值通过压缩再进展均匀量化。通常使用的压缩器中,大多采用对数式压缩。广泛采用的两种对数压缩律是μ压缩律和A 压缩律。美**用μ压缩律,我国和欧洲各国均采用A 压缩律,因此,PCM 编码方式采用的也是A 压缩律。
所谓A 压缩律也就是压缩器具有如下特性的压缩律:
A律压扩特性是连续曲线,A值不同压扩特性亦不同,在电路上实现这样的函数规律是相当复杂的。实际中,往往都采用近似于A律函数规律的13折线〔A=87.6〕的压扩特性。这样,它根本上保持了连续压扩特性曲线的优点,又便于用数字电
图3.3 A律函数13折线
路实现,本设计中所用到的PCM编码正是采用这种压扩特性来进展编码的。
图3示出了这种压扩特性。
表1列出了13折线时的x值与计算x值的比较。
表3.1 13折线时的x值与计算x值的比较
表1中第二行的x值是根据6.
=
A时计算得到的,第三行的x值是13折线
87
分段时的值。可见,13折线各段落的分界点与6.
A曲线十分逼近,同时x按
87
=
2的幂次分割有利于数字化。
(c) 编码
所谓编码就是把量化后的信号变换成代码,其相反的过程称为译码。当然,这里的编码和译码与过失控制编码和译码是完全不同的,前者是属于信源编码的*畴。
在现有的编码方法中,假设按编码的速度来分,大致可分为两大类:低速编码和高速编码。通信中一般都采用第二类。编码器的种类大体上可以归结为三类:逐次比较型、折叠级联型、混合型。在逐次比较型编码方式中,无论采用几位码,一般均按极性码、段落码、段内码的顺序排列。下面结合13折线的量化来加以说明。
表3.2 段落码表3.3 段内码
5 0101
3 010
4 0100
3 0011
2 001
2 0010
1 0001
1 000
0 0000
在13折线法中,无论输入信号是正是负,均按8段折线〔8个段落〕进展编码。假设用8位折叠二进制码来表示输入信号的抽样量化值,其中用第一位表示量化值的极性,其余七位〔第二位至第八位〕则表示抽样量化值的绝对大小。具体的做法是:用第二至第四位表示段落码,它的8种可能状态来分别代表8个段落的起点电平。其它四位表示段内码,它的16种可能状态来分别代表每一段落的16个均匀划分的量化级。这样处理的结果,8个段落被划分成27=128个量化级。段落码和8个段落之间的关系如表2所示;段内码与16个量化级之间的关系见表3。
PCM编译码器的实现可以借鉴单片PCM编码器集成芯片,如:TP3067A、CD22357等。单芯片工作时只需给出外围的时序电路即可实现,考虑到实现细节,仿真时将PCM编译码器分为编码器和译码器模块分别实现。
3.1、信号源子系统的组成
由三个幅度一样、频率不同的正弦信号〔图符7、8、9〕合成,如图
4
图3.4 信号源子系统的组成
3.2、PCM编码器模块
PCM编码器模块主要由信号源〔图符7〕、低通滤波器〔图符15〕、瞬时压缩器〔图符16〕、A/D转换器〔图符8〕、并/串转换器〔图符10〕、输出端子构成