关于多巴胺知识点

合集下载

多巴胺-百度百科

多巴胺-百度百科

多巴胺(化学物质)多巴胺(C6H3(OH)2-CH2-CH2-NH2) 由脑内分泌,可影响一个人的情绪。

它正式的化学名称为4-(2-氨基乙基)-1,2-苯二酚(4-(2-aminoethyl)benzene-1,2-diol)。

Arvid Carlsson确定多巴胺为脑内信息传递者的角色使他赢得了2000年诺贝尔医学奖。

多巴胺是一种神经传导物质,用来帮助细胞传送脉冲的化学物质。

这种脑内分泌主要负责大脑的情欲,感觉将兴奋及开心的信息传递,也与上瘾有关。

爱情其实就是因为相关的人和事物促使脑里产生大量多巴胺导致的结果。

吸烟和吸毒都可以增加多巴胺的分泌,使上瘾者感到开心及兴奋。

根据研究所得,多巴胺能够治疗抑郁症;而多巴胺不足则会令人失去控制肌肉的能力,严重会令病人的手脚不自主地震动或导致帕金森氏症。

2012年有科学家研究出多巴胺可以有助进一步医治帕金森症。

治疗方法在于恢复脑内多巴胺的水准及控制病情。

德国研究人员称,[1] 多巴胺有助于提高记忆力,这一发现或有助于阿尔茨海默氏症的治疗。

多巴胺最常被使用的形式为盐酸盐,为白色或类白色有光泽的结晶。

无臭,味微苦。

露置空气中及遇光色渐变深。

在水中易溶,在无水乙醇中微溶,在氯仿或乙醚中极微溶解。

熔点243℃-249℃(分解)。

多巴胺也是大脑的"奖赏中心",又称多巴胺系统。

[2]中文名4-(2-乙胺基)苯-1,2-二酚英文名Dopamine别称多巴胺化学式C8H11NO2CAS登录号51-61-6熔点128°C水溶性易溶外语缩写DA汉语拼音duōbāàn多巴胺(dopamine)是NA的前体物质,是下丘脑和脑垂体腺中的一种关键神经递质,中枢神经系统中多巴胺的浓度受精神因素的影响,神经末梢的GnRH和多巴胺间存在着轴突联系并相互作用,以及多巴胺有抑制GnRH分泌的作用。

中脑的神经原物质多巴胺(Dopamine),则直接影响人们的情绪。

兴趣 知乎 多巴胺

兴趣 知乎 多巴胺

兴趣知乎多巴胺多巴胺(dopamine, da),化学式:c6h3(oh)2-ch2-ch2-nh2,是一种激素和一种神经递质,可以控制多种功能,包括运动活动、认知、情绪、正向增强行为、食物摄入和内分泌调节等。

多巴胺是儿茶酚胺和苯乙胺家族的有机化学物质,通过从前体化学物质l-dopa(左旋多巴)分子中除去羧基而合成,主要发生在人脑细胞和肾上腺细胞中。

合成多巴胺的前体是芳族氨基酸酪氨酸,通过两步反应将酪氨酸转化为多巴胺:第一步反应是通过酪氨酸羟化酶(th)(被认为是该途径中的限速酶)催化,将酪氨酸转化为1-3,4-二羟基苯丙氨酸(ldopa);第二步是dopa脱羧反应,通过芳香族1-氨基酸脱羧酶(aadc)催化,可产生多巴胺。

像大多数胺一样,多巴胺也属于一种有机碱,在酸性环境中,通常会质子化,其质子化形式是高度水溶性相对稳定的,但如果暴露于氧或其它氧化剂中,则能够被氧化;而在碱性环境,多巴胺则不会质子化。

多巴胺是脑内极其重要的神经递质,因为其作用特点又被称作快乐物质,约占大脑中儿茶酚胺含量的80%。

在大脑中,多巴胺通过神经元(神经细胞)释放的化学物质,将信号发送给其他神经细胞。

目前共发现五种多巴胺受体,分为d1型受体(包括d1和 d5)和d2型受体(d2、 d3 和d4 )。

多巴胺受体都隶属于g蛋白偶联受体的超级家族。

大脑包括几种不同的多巴胺途径,其中一种在奖励动机行为的动机部分中起着重要作用。

对大多数类型奖励的预期会增加大脑中多巴胺的水平,并且许多成瘾性药物会增加多巴胺的释放或在释放后阻止其重新吸收到神经元中。

其他脑多巴胺途径也参与运动控制和控制各种激素的释放,这些途径和细胞群形成具有神经调节作用的多巴胺系统。

传统理论认为,多巴胺通常被视为愉悦的主要化学物质,但目前药理学方面的观点是多巴胺赋予了动机显着性,换句话说,多巴胺表明了感知到的动机所突出的结果(即期望或厌恶),反过来又推动生物体的行为朝着或远离实现该结果的目标。

多巴胺化学相关知识点总结

多巴胺化学相关知识点总结

多巴胺化学相关知识点总结一、多巴胺的化学结构多巴胺是一种含有双酚结构的芳香胺类神经递质,其化学结构为4-羟基-3,5-二甲基苯乙胺。

它的分子式为C8H11NO2,分子量为153.18。

多巴胺分子中含有两个酚基和一个胺基,这使得它具有良好的生物活性和生物利用度。

多巴胺通过在神经元之间传递信号,调节大脑中的神经传导,从而影响多种生理过程。

二、多巴胺的合成与代谢多巴胺是由酪氨酸(tyrosine)合成而来的一种生物胺类,其合成途径主要包括以下几个步骤:首先,酪氨酸被酪氨酸羟化酶(tyrosine hydroxylase)作用后形成3,4-二羟基苯丙氨酸,然后经过羟基化反应形成多巴,最后再经过羧酸脱羧酶的作用,多巴转化为多巴胺。

多巴胺在体内主要由多巴酸羟化酶(dopamine beta-hydroxylase)转化为去麻黄碱,再由甲基转移酶(methyltransferase)转化为肾上腺素。

多巴胺的代谢途径主要包括儿茶酚氧化酶(catechol-O-methyltransferase)和单胺氧化酶(monoamine oxidase)两条途径。

儿茶酚氧化酶是一种对多巴胺具有较高亲和力的酶,它将多巴胺转化为3-甲氧基多巴胺(3-MT),然后经单胺氧化酶的作用转化为3,4-二羟基苯乙酸,最后在肾上腺素能途径中进一步被转化。

三、多巴胺受体多巴胺受体是多巴胺在细胞膜上的受体蛋白,通过与受体结合发挥其生物学效应。

根据其分子结构和信号转导机制的差异,多巴胺受体主要分为D1类(包括D1和D5两个亚型)和D2类(包括D2、D3和D4五个亚型)两大类。

D1类受体主要激活腺苷酸环化酶(adenylyl cyclase)信号转导通路,而D2类受体主要抑制腺苷酸环化酶信号转导通路,从而调节细胞内的第二信使水平和细胞的生物学功能。

四、多巴胺的作用机制多巴胺在中枢神经系统中发挥着非常重要的作用,包括调节运动功能、情绪、奖励机制等多种生理过程。

什么是多巴胺

什么是多巴胺

什么是多巴胺多巴胺(dopamine)是一种神经递质,又称为神经递质多巴酚。

它在人类体内起着重要的作用,与许多生理和心理过程有关,包括运动协调、奖赏和惊奇体验、情感、记忆和学习等。

本文将从多个方面来介绍什么是多巴胺。

一、多巴胺的发现和结构多巴胺最早是由瑞典科学家Arvid Carlsson和Nils-Åke Hillarp于1957年在研究肾上腺素和去甲肾上腺素的生物合成过程中发现的。

他们发现,当使用一种药物来阻断去甲肾上腺素合成时,神经元仍然释放出一种类似于去甲肾上腺素的物质。

这种物质后来被确认为多巴胺。

多巴胺是一种单胺类化合物,由苯丙氨酸经过羟化和脱羧反应而来。

它的化学名为3,4-二羟基苯乙胺,分子式为C8H11NO2,分子量为153.18。

多巴胺在水中的溶解度较低,但在酸性条件下可以形成盐酸盐或硫酸盐,溶解度则会增加。

二、多巴胺的合成和代谢多巴胺的生物合成主要发生在中枢神经系统中。

它是由苯丙氨酸经过酪氨酸羟化酶(tyrosine hydroxylase)的作用形成的。

酪氨酸羟化酶是一种铜金属依赖性酶,它的活性可以受到调节,从而影响多巴胺的合成量。

多巴胺合成的过程中,酪氨酸羟化酶将苯丙氨酸羟化为3,4-二羟基苯丙氨酸(L-DOPA),然后L-DOPA由羧化酶(aromatic L-amino acid decarboxylase)作用转化为多巴胺。

多巴胺的代谢主要通过两个酶来进行:一是多巴酚氧化酶(monoamine oxidase,MAO),二是多巴胺-β-羟化酶(dopamine β-hydroxylase,DBH)。

多巴酚氧化酶是一种在线粒体内的酶,它可以将多巴胺氧化为3,4-二羟基苯乙酸(DOPAC)。

DOPAC还可以进一步被代谢为3-甲氧基-4-羟基苯乙酸(homovanillic acid,HVA)。

多巴胺-β-羟化酶则将多巴胺转化为去甲肾上腺素,这个过程需要维生素C作为辅助因子。

多巴胺的药理学知识

多巴胺的药理学知识

多巴胺的药理学知识
多巴胺是一种重要的神经递质,在大脑中起着关键的作用。

以下是多巴胺的一些药理学知识:
受体作用:多巴胺作用于多种受体,包括D1和D2受体。

这些受体分布在大脑的不同区域,参与调节运动、情感、认知和内分泌等多种生理功能。

运动功能:多巴胺对运动功能有重要影响。

在黑质-纹状体通路中,多巴胺能神经元释放多巴胺,调节纹状体中神经元的活性,从而影响运动控制。

帕金森病就是一种由于黑质-纹状体通路中多巴胺能神经元损失导致的疾病,表现为肌肉僵直、震颤和运动减少等症状。

奖赏和成瘾:多巴胺还与奖赏和成瘾行为有关。

中脑边缘多巴胺系统参与奖赏和成瘾行为的调节。

当个体体验到愉悦或奖赏时,多巴胺的释放增加,产生积极的强化效应。

这也解释了为何一些药物(如可卡因、安非他命等)滥用会导致成瘾,因为它们增加了多巴胺的释放,产生了强烈的奖赏效应。

情感和精神疾病:多巴胺还与情感和精神疾病有关。

例如,精神分裂症可能与多巴胺功能的异常有关。

一些抗精神病药物通过阻断多巴胺D2受体来缓解症状。

内分泌调节:多巴胺还参与内分泌系统的调节。

它可以抑制催乳素的释放,影响性腺激素的分泌,从而调节生殖和性功能。

需要注意的是,多巴胺作为一种神经递质,其药理作用复杂且多样。

不同的多巴胺受体亚型和通路参与不同的生理功能,因此对多巴胺的调节需要精确而细致。

在使用多巴胺相关药物时,应根据具体病情和医生的指导进行合理的用药。

多巴胺

多巴胺
应用多巴胺受体亚型特异抗体可对其在不同脑区进行细胞和亚细胞定位。D1和D5受体共同表达于前额叶皮层, 运动前区,扣带和内嗅皮层,海马和齿状回的锥体细胞。电子显微镜证实D1和D5受体存在于前额叶皮层,海马的 突触前和突触后,以突触后分布更常见。超微结构分析发现:D1和D5受体在人锥体细胞分布不同,D1受体集中在 树突棘,D5受体集中位于树突轴。在嗅球,D1受体限于内颗粒层和内从层;在杏仁核,其限于中介核和基底外侧 核。在尾状核,D1和D5受体大多数位于中等大小的GABA能神经元。D5受体也存在于大的胆碱能中间神经元。
D1和D2多巴胺受体都典型地发现于对多巴胺神经末梢是突触后的成分,两类受体也见于皮层-纹状体的末梢, 在此多巴胺末梢与谷氨酸能末梢形成轴突-轴突型突触以调节谷氨酸的释放。重要的是,在多巴胺细胞胞体,树突 和末梢都有多巴胺受体发现。这些自身受体既调节多巴胺的合成、释放,也调节神经元的冲动发放频率。从药理 学角度看,这些受体似与D2受体性质相似。刺激脑内多巴胺受体产生的确切行为变化尚不清楚。多巴胺通过在锥 体外运动系统中的作用肯定参与运动调节。当黑质纹状体多巴胺通路受损时,将导致帕金森病的运动功能丧失或 运动不能的产生。多巴胺似乎也参与摄食和摄水的增强和调节。
当动作电位到达时,膜蛋白构造改变,允许Ca2+流入,囊泡与神经末梢或树突融合,通过胞吐作用将多巴胺 释入突触间隙。有两种释放方式:一种是间断性释放,即动作电位到达时一过性释放多巴胺,然后快速回收入神 经元;一种是持续性释放,即低水平持续释放多巴胺,此时的多巴胺水平不足以激动突触后膜多巴胺受体,只能 激动突触前膜多巴胺自身受体,抑制间断性释放。
多巴胺是一种神经传导物质,用来帮助细胞传送脉冲的化学物质。这种脑内分泌物和人的情欲、感觉有关, 它传递兴奋及开心的信息。另外,多巴胺也与各种上瘾行为有关。阿尔维德·卡尔森(Arvid Carlsson)确定多 巴胺为脑内信息传递者的角色,使他赢得了2000年诺贝尔医学奖。

多巴胺生物知识点总结归纳

多巴胺生物知识点总结归纳

多巴胺生物知识点总结归纳多巴胺是一种重要的神经递质,在大脑中起着重要的调节作用。

本文将对多巴胺的生物知识进行总结归纳,包括多巴胺的生物合成途径、多巴胺受体的类型和功能、多巴胺功能异常与疾病的关系以及多巴胺在行为调控中的作用等方面。

1. 多巴胺的生物合成途径多巴胺是由酪氨酸经过多个酶的催化合成而成的。

酪氨酸首先经过酪氨酸羟化酶(TH)的催化,转化为3,4-二羟基苯丙氨酸,然后经过羟酚酸脱羧酶(AAAD)的催化,生成多巴,最后再经过多巴羟化酶(DBH)的催化,转化为多巴胺。

这个生物合成途径是体内合成多巴胺的关键步骤,对多巴胺的合成起着至关重要的作用。

2. 多巴胺受体的类型和功能多巴胺受体主要分为D1类和D2类两大类,它们分别由D1、D2、D3、D4和D5五种亚型组成。

多巴胺受体在中枢神经系统中广泛分布,主要作用是调节神经元的兴奋性和抑制性,参与了运动、情绪、认知和奖赏等行为的调控。

不同的多巴胺受体亚型在神经系统中发挥着不同的作用,对多巴胺的信号传导和效应具有复杂的调控作用。

3. 多巴胺功能异常与疾病的关系多巴胺功能异常往往与多种神经系统疾病的发生和发展密切相关。

例如,帕金森病是由于多巴胺生成细胞的丧失和多巴胺水平下降所引起的,而精神分裂症则是由于多巴胺受体功能失调导致的。

此外,多巴胺在药物成瘾、注意缺陷多动障碍(ADHD)等疾病中也发挥着重要作用。

因此,对多巴胺功能异常的研究具有重要的临床意义,能够为神经系统疾病的预防、治疗和研究提供重要的理论依据。

4. 多巴胺在行为调控中的作用多巴胺在中枢神经系统中参与了多种行为的调控,例如运动、情绪、认知和奖赏等。

在运动调控方面,多巴胺主要通过调节中脑多巴胺能神经元对基底神经节的影响来控制运动的执行和调节。

在情绪调控方面,多巴胺参与了情绪的产生和表达,同时也与抑郁症、焦虑症等情绪障碍相关。

在认知调控方面,多巴胺对学习、记忆、认知和决策等认知功能具有重要调控作用。

探秘多巴胺:你不知道的神奇分子

探秘多巴胺:你不知道的神奇分子

探秘多巴胺:你不知道的神奇分子引言:想象一下,我们的大脑就像是一座繁忙的城市,神经元之间不断传递着信息,而多巴胺就像是这座城市中的奖励机制。

每当我们完成了一项任务,或者体验到愉悦的事情时,大脑就会释放多巴胺作为奖励,促使我们去重复那些带来愉悦的行为。

从品尝美食到获得成就,多巴胺都在幕后默默地发挥着作用。

那么,这个神奇的“快乐分子”究竟是如何工作的?它又与我们的哪些行为和情感息息相关呢?本文将带你深入探索多巴胺的神秘世界,揭开它背后的科学原理。

第一章:多巴胺的生理基础——大脑中的“快乐信使”1.神经递质:大脑的化学信使我们的大脑是一个极其复杂的器官,由数以亿计的神经元组成。

这些神经元之间并不是孤立存在的,它们通过突触连接起来,形成复杂的神经网络。

神经元之间信息的传递依赖于一种特殊的化学物质——神经递质。

多巴胺就是其中一种重要而特殊的神经递质。

2.多巴胺的合成与释放多巴胺的合成过程相对复杂,涉及多个酶的参与。

它主要在脑内的特定区域合成,如中脑的腹侧被盖区。

合成好的多巴胺被储存在突触小泡中,当神经元受到刺激时,这些小泡就会释放多巴胺,传递信号给下一个神经元。

3.多巴胺受体:多巴胺发挥作用的“门户”多巴胺的效应取决于它与特定受体的结合。

多巴胺受体分为多种亚型,分布在不同的脑区。

这些受体就像是一把把锁,只有特定的“钥匙”(即多巴胺分子)才能打开。

不同的受体亚型,对多巴胺的反应也不同,这也就决定了多巴胺在不同脑区发挥的不同作用。

4.多巴胺的神经通路多巴胺在脑内并不是随机分布的,而是沿着特定的神经通路进行传递。

这些通路与我们的多种生理功能密切相关,例如:•中脑边缘多巴胺通路:与奖赏、动机、学习和记忆等功能密切相关。

•中脑皮层多巴胺通路:与认知功能、运动控制等密切相关。

5.多巴胺与其他神经递质多巴胺并不是大脑中唯一的神经递质,它与其他神经递质,如5-羟色胺、去甲肾上腺素等,共同调节我们的情绪、行为和认知。

这些神经递质之间相互作用,共同构成了我们复杂的神经系统。

多巴胺的功能和结构

多巴胺的功能和结构

多巴胺的结构和功能一、多巴胺的简介多巴胺(dopamine,DA,或3-羟酪胺,3、4-二羟苯乙胺)又名儿茶酚乙胺或羟酪胺,是儿茶酚胺类的一种,分子式为C8H11 N O2(化学式和空间结构如图1)。

是内源性含氮有机化合物,为酪氨酸在代谢过程中经二羟苯丙氨酸所产生的中间产物[1]。

图1 多巴胺的化学式和空间结构多巴胺是去甲肾上腺素的前体,多巴胺能神经末梢中的囊泡与去甲肾上腺素囊泡不同点在于它不含多巴胺β-羟化酶,所以不会将多巴胺羟化成去甲肾上腺素,可以行使储存多巴胺的功能。

脑内多巴胺的代谢产物主要是3-甲氧基-4-羟基苯乙酸(HVA)[2]。

多巴胺神经元在脑内分布相对集中,支配范围较局限。

多巴胺能神经纤维主要投射于黑质-纹状体,中脑边缘系统和结节-漏斗部位。

黑质纹状体部位的多巴胺能神经元位于中脑黑质,其神经纤维投射到纹状体,在纹状体储存。

当黑质被破坏或黑质-纹状体束被切断,纹状体中多巴胺的含量随即降低;中脑边缘系统的多巴胺能神经元位于中脑脚间核头端的背侧部位,其神经纤维投射到前脑边缘;结节-漏斗部位的多巴胺能神经元位于下丘脑弓状核,其神经纤维投射到正中隆起[2]。

在大脑中合成、分泌多巴胺递质的多巴胺能神经元主要集中位于中脑组织黑质致密部、腹侧被盖区和红核后区。

二、多巴胺的功能多巴胺是儿茶酚胺类神经递质,可以与脑内广泛表达的多巴胺能受体结合,在中枢神经系统中有着极其重要的作用,多巴胺神经元可调节和控制许多重要的行为过程,其中包括运动、认知、奖赏、情感、学习记忆和神经内分泌的调节等。

其中阿尔维德·卡尔森(Arvid Carlsson)确定多巴胺为脑内信息传递者的角色,使他获得了2000年诺贝尔医学奖。

1.运动——帕金森病多巴胺对运动控制起重要作用,多巴胺拮抗剂和激动剂应用的研究表明了多巴胺受体在运动控制中的重要作用如:大鼠的前进,后退,僵直,吸气和理毛功能。

通常激动剂提高多巴胺的运动功能,拮抗剂作用相反。

多巴胺药理作用

多巴胺药理作用

多巴胺药理作用多巴胺是去甲肾上腺素生物合成的前体,药用的多巴胺是人工合成品。

药理作用:多巴胺主要激动α、β和外周的多巴胺受体。

1、心血管多巴胺对心血管的作用与药物浓度有关。

低浓度(每分10微克/kg)时主要与位于肾脏、肠系膜和冠脉的多巴胺受体D1结合,通过激活腺苷酸环化酶,是细胞内cAMP水平提高而导致血管舒张。

高浓度(每分20微克/kg)多巴胺可作用于心脏β1受体,是心肌收缩力加强,心排出量增加。

可增加收缩压和脉压差,但对舒张压无明显影响或轻微影响。

由于心排出量增加,而肾和肠系膜血管阻力下降,其他血管阻力基本不变,总外周阻力变化不大。

继续增加给药浓度,多巴胺可激动血管的α受体,导致血管收缩,引起总外周阻力增加,是血压升高,这一作用可被α受体阻断药所拮抗。

多巴胺也可促进神经末梢释放去甲肾上腺素,产生心血管效应。

2、肾脏多巴胺在低浓度时作用于D1受体,舒张肾血管,使肾血流量增加,肾小球的滤过率也增加。

同时多巴胺具有排钠利尿作用,可能是多巴胺直接对肾小管D1受体的作用。

大剂量时,可使肾血管明显收缩。

临床应用:用于各种休克,如感染中毒性休克、心源性休克及出血性休克等。

多巴胺作用时间短,需静脉滴注最初滴注速度为每分2~5微克/kg,可根据需要逐渐增加剂量。

在滴注给药时需正确评估血容量,通过输入全血、血浆或其他适宜的液体补充血容量,同事需纠正酸中毒,可取得较好疗效。

在用药时监测心功能改变。

也可与利尿药合并应用于急性肾衰竭,也可用于急性心功能不全,具有改善血流动力学的作用。

不良反应:一般较轻,偶见恶心、呕吐。

如剂量过大或滴注过快可出现心动过速、心律失常和肾血管收缩引起肾功能下降等,一旦发生,应减慢滴注速度或停药,同时合用单胺氧化酶抑制剂或三环类抗抑郁药时,多巴胺剂量应酌减。

注意事项:①应用多巴胺治疗前必须先纠正低血容量。

②在滴注前必须稀释,稀释液的浓度取决于剂量及个体需要的液量,若不需要扩容,可用0.8㎎/ml溶液,如有液体潴留,可用1.6-3.2㎎/ml溶液。

多巴胺(dopamine

多巴胺(dopamine

多巴胺多巴胺(dopamine, DA)是神经系统中另一类重要的儿茶酚胺类神经递质,其含量至少占整个中枢神经系统儿茶酚胺含量的50%。

多巴胺一度被认为仅是去甲肾上腺素生物合成过程中的中间产物。

1958年,瑞典药理学家Carlson首先报道纹状体内多巴胺含量极高,约占全脑多巴胺含量的70%,且和去甲肾上腺素的分布并不一致。

这使人们提出设想,多巴胺可能是脑内独立存在的神经递质。

60年代,人们证实帕金森病是黑质致密区多巴胺能神经元变性所致,用多巴胺的前体左旋多巴(L-DOPA)可获较好疗效,这对多巴胺的研究起了极大的推动作用。

70年代中,应用放射受体结合分析方法证实体内存在着多巴胺受体,某些化合物能与其结合而产生生理效应。

进入80年代后,大量实验深入分析了DA受体的亚型及其与多种生理功能和疾病的关系。

80年代末至90年代初,随着分子生物学技术的发展,DA受体的不同类型得以克隆,其结构也被阐明。

第一节 多巴胺能神经元的分布及纤维联系一、多巴胺能神经元的主要分布采用荧光组织化学、免疫细胞和组织化学方法可以显示出多巴胺能神经元在中枢神经系统中的分布。

Falck-Hillarp(1962)发现,神经元内的单胺类物质可与甲醛蒸汽反应,聚合成为异喹啉(isoquinoline)类化合物,该化合物在荧光显微镜下可发射出波长不同的荧光,神经元内的儿茶酚胺可转变成绿色荧光物,5-羟色胺可转变成黄色荧光物。

运用这一方法,中枢多巴胺能神经元的胞体分布被成功定位。

到目前为止,已知脑内有10个多巴胺细胞群,继去甲肾上腺素的A1 ~ A7细胞群之后,被命名为A8 ~ A17,其中A8 ~ A10细胞群分布于中脑,A11 ~ A14细胞群在丘脑,A15、A16位于端脑,A17在视网膜内(表1)。

A8 ~ A10细胞群集中了约70%的DA能神经元。

表1 脑内多巴胺能神经元胞体的定位A8 位于红核后方的网状结构内,内侧丘系外侧部的背侧A9 位于中脑大脑脚的背内侧黑质复合体,大部分位于致密部,少部分位于网状部A10 位于脚间核的背侧和腹侧被盖区。

多巴胺的功能和结构

多巴胺的功能和结构

多巴胺的结构和功能一、多巴胺的简介多巴胺(dopamine,DA,或3-羟酪胺,3、4-二羟苯乙胺)又名儿茶酚乙胺或羟酪胺,是儿茶酚胺类的一种,分子式为C8H11 N O2(化学式和空间结构如图1)。

是内源性含氮有机化合物,为酪氨酸在代谢过程中经二羟苯丙氨酸所产生的中间产物[1]。

图1 多巴胺的化学式和空间结构多巴胺是去甲肾上腺素的前体,多巴胺能神经末梢中的囊泡与去甲肾上腺素囊泡不同点在于它不含多巴胺β-羟化酶,所以不会将多巴胺羟化成去甲肾上腺素,可以行使储存多巴胺的功能。

脑内多巴胺的代谢产物主要是3-甲氧基-4-羟基苯乙酸(HVA)[2]。

多巴胺神经元在脑内分布相对集中,支配范围较局限。

多巴胺能神经纤维主要投射于黑质-纹状体,中脑边缘系统和结节-漏斗部位。

黑质纹状体部位的多巴胺能神经元位于中脑黑质,其神经纤维投射到纹状体,在纹状体储存。

当黑质被破坏或黑质-纹状体束被切断,纹状体中多巴胺的含量随即降低;中脑边缘系统的多巴胺能神经元位于中脑脚间核头端的背侧部位,其神经纤维投射到前脑边缘;结节-漏斗部位的多巴胺能神经元位于下丘脑弓状核,其神经纤维投射到正中隆起[2]。

在大脑中合成、分泌多巴胺递质的多巴胺能神经元主要集中位于中脑组织黑质致密部、腹侧被盖区和红核后区。

二、多巴胺的功能多巴胺是儿茶酚胺类神经递质,可以与脑内广泛表达的多巴胺能受体结合,在中枢神经系统中有着极其重要的作用,多巴胺神经元可调节和控制许多重要的行为过程,其中包括运动、认知、奖赏、情感、学习记忆和神经内分泌的调节等。

其中阿尔维德·卡尔森(Arvid Carlsson)确定多巴胺为脑内信息传递者的角色,使他获得了2000年诺贝尔医学奖。

1.运动——帕金森病多巴胺对运动控制起重要作用,多巴胺拮抗剂和激动剂应用的研究表明了多巴胺受体在运动控制中的重要作用如:大鼠的前进,后退,僵直,吸气和理毛功能。

通常激动剂提高多巴胺的运动功能,拮抗剂作用相反。

多巴胺药理知识点总结高中

多巴胺药理知识点总结高中

多巴胺药理知识点总结高中一、多巴胺的生理作用1.多巴胺在中枢神经系统的作用多巴胺是一种重要的神经递质,它在大脑中的含量和分布与许多重要的生理和病理过程密切相关。

多巴胺参与了运动控制、情感和认知功能的调节。

在运动调节方面,多巴胺与运动功能神经元的活动有关,参与了动作的发出和抑制。

在情感和认知功能方面,多巴胺在奖赏感知和决策制定中起着重要作用。

2.多巴胺在外周神经系统的作用多巴胺也存在于外周神经系统中,它在心血管系统、内分泌系统和消化系统等方面都起到重要的调节作用。

在心血管系统中,多巴胺的作用主要是扩血管,增加心输出量,使心脏的收缩力增强。

在内分泌系统中,多巴胺可以刺激肾上腺素能受体,增加肾素的分泌。

在消化系统中,多巴胺可以增加胃肠蠕动,促进消化液的分泌。

二、多巴胺相关药物及其临床应用1.多巴胺受体激动剂多巴胺受体激动剂是一类常用的多巴胺药物,主要用于治疗帕金森病和多动症等疾病。

常见的多巴胺受体激动剂包括左旋多巴、多巴酚丁胺和阿片多尔等。

这些药物能够通过激动多巴胺受体,增加多巴胺的含量,从而改善运动功能和注意力不集中等症状。

2.多巴胺转运体抑制剂多巴胺转运体抑制剂是另一种常用的多巴胺药物,主要用于治疗抑郁症和多动症等疾病。

常见的多巴胺转运体抑制剂包括舍曲林、米氮平等。

这些药物能够通过抑制多巴胺转运体,增加多巴胺在突触间隙的浓度,从而起到抗抑郁和注意力不集中的作用。

3.多巴胺受体拮抗剂多巴胺受体拮抗剂是一类常用的多巴胺药物,主要用于治疗精神分裂症和麻痹性疯狂等疾病。

常见的多巴胺受体拮抗剂包括氯丙嗪、氟哌啶醇等。

这些药物能够通过拮抗多巴胺受体,减少多巴胺的作用,产生镇静和抗精神病症的效果。

三、多巴胺药理学知识1.多巴胺受体的分类多巴胺受体主要分为D1类和D2类两个亚型,每个亚型又分为D1和D5,D2、D3和D4五个亚种。

多巴胺受体的不同亚型在不同的脑区和细胞中的分布和功能也有所不同。

例如D1类多巴胺受体主要分布于胞体区和突触前膜上,其激动可增加腺苷酸环化酶的活性,起促进效应,与运动功能、学习和记忆功能有关;而D2类多巴胺受体主要分布于突触后膜和远离突触后膜的自主神经内核区,多数是抑制效应,与情感、认知功能、快感等有关。

人体的神经递质——多巴按

人体的神经递质——多巴按

人体的神经递质——多巴按多巴胺是大脑中含量最丰富的儿茶酚胺类神经递质,是神经传导物质之一,用来帮助细胞传送脉冲的化学物质。

这种脑内分泌物和人的情欲、感觉有关,它传递兴奋及开心的信息,也与各种上瘾行为有关。

但是过度分泌或者异常分泌可能会对人体产生不良影响。

一、多巴胺的生理功能多巴胺作为一种神经传导物质,可以控制多种功能,包括运动活动、认知、情绪、正向增强行为、食物摄入和内分泌调节等。

1.情绪调节:多巴胺参与调节情绪的产生和调整,可以帮助提升情绪状态,增加愉悦感和幸福感。

2.奖赏机制:多巴胺被认为是奖赏机制中的重要组成部分。

当我们做一些令人满意的事情时,多巴胺水平会升高,产生一种奖赏感和快乐感。

3.运动控制:多巴胺参与运动控制和协调,维持肌肉的正常功能。

多巴胺不足可能导致运动障碍,如帕金森病。

4.学习和记忆:多巴胺在学习和记忆过程中发挥重要作用。

适度的多巴胺水平有助于提高学习和记忆能力。

5.注意力和动机:多巴胺对于调节注意力和动机非常关键。

适度的多巴胺水平可以增加注意力和动力,提高工作效率。

6.压力应对:一些研究表明,多巴胺参与调节应对压力的能力。

适当的多巴胺水平有助于缓解压力和焦虑状态。

二、多巴胺的主要来源多巴胺主要由大脑和肾上腺髓质产生。

在大脑中,多巴胺是丰富的儿茶酚胺神经递质,充当信息传递者,负责在神经元之间传递脉冲。

此外,肾上腺髓质也会产生多巴胺,在外周组织中起作用。

除了大脑和肾上腺髓质,中枢神经系统的其他部位也可能产生多巴胺,但这些来源相对较少。

需要注意的是,多巴胺是一种神经递质,其作用和功能受到多种因素的影响,例如多巴胺受体的类型和分布、多巴胺的合成和代谢途径等。

因此,多巴胺的功能和作用在不同组织和器官中可能存在差异。

三、多巴胺缺乏表现多巴胺缺乏可能会导致情绪低落、丧失兴趣、缺乏动力和疲劳感。

多巴胺是一种神经递质,在大脑中起着传递信息的作用。

当多巴胺缺乏时,大脑中的神经元之间的信息传递会受到影响,导致情绪不稳定、缺乏兴趣和动力。

多巴胺药理知识点总结

多巴胺药理知识点总结

多巴胺药理知识点总结多巴胺的合成、释放和再摄取是通过多种受体和途径来调节的,因此多巴胺药物可以通过不同的作用机制来影响多巴胺系统的功能。

根据其作用机制不同,多巴胺药物可以分为多巴胺受体激动剂、多巴胺合成酶抑制剂、多巴胺再摄取抑制剂和多巴胺降解酶抑制剂。

多巴胺受体激动剂主要包括针对D1受体和D2受体的药物。

激动D1受体的药物可以增加多巴胺在中枢神经系统的浓度,从而提高运动功能、认知功能和情绪稳定性。

激动D2受体的药物则可以抑制多巴胺释放,从而减少多巴胺在中枢神经系统的作用,适用于治疗精神分裂症和运动障碍等疾病。

多巴胺合成酶抑制剂主要针对多巴胺β-羟化酶,通过抑制多巴胺的合成来达到治疗目的。

多巴胺再摄取抑制剂主要通过阻断多巴胺再摄取途径,增加多巴胺在突触间隙的浓度,从而增加多巴胺的作用。

多巴胺降解酶抑制剂则通过抑制多巴胺的降解来增加多巴胺在中枢神经系统的浓度,从而增加多巴胺的作用。

多巴胺药物在临床应用中主要用于治疗帕金森病、多动症、注意力缺陷障碍、精神分裂症等疾病。

然而,多巴胺药物也存在一些不良反应,包括运动障碍、焦虑、躁狂和依赖等。

因此,在使用多巴胺药物时需要慎重考虑其益处和风险,并在医生的指导下进行治疗。

总的来说,多巴胺药物在临床上有着广泛的应用,对多种疾病和症状都有明显的疗效。

然而,对于多巴胺药物的使用和剂量,还需要进行更深入的研究和临床实践,以确保其安全性和有效性。

希望未来能有更多的研究成果为多巴胺药物的临床应用提供更好的指导。

在实际临床应用中,多巴胺药物的使用需要根据患者的具体病情和症状进行个体化治疗。

同时,对于多巴胺药物的不良反应和副作用也需要引起足够的重视,及时进行监测和处理。

希望未来能有更多的研究成果为多巴胺药物的临床应用提供更好的指导,实现更好的治疗效果。

多巴胺 的介绍,及其物化性质

多巴胺 的介绍,及其物化性质
×10-7mol/L.实验结果表明:该修饰电极能有效消除抗坏血酸的干扰,用于注射液中多巴胺的检
测,其回收率在97.7%-101.6%范围内.
在电化学测定方法中用聚钙羧酸膜聚甘氨酸聚磺基水杨酸十二烷基苯磺酸钠聚氨基乙酸聚甲基蓝聚荧光素薄膜等测定多巴胺的方法已经有文献报道
多巴胺(Dopamine) (C6H3(OH)2-CH2-CH2-NH2)由脑内分泌,可影响一个人的情绪。它正式的化学名称为4-(2-乙胺基)苯-1,2-二酚,简称「DA」。Arvid Carlsson确定多巴胺为脑内信息传递者的角色使他赢得了2000年诺贝尔医学奖。多巴胺是一种神经传导物质,用来帮助细胞传送脉冲的化学物质。这种脑内分泌主要负责大脑的情欲,感觉,将兴奋及开心的信息传递,也与上瘾有关。
Square wave cyclic voltammetry方波循环伏安法
【中文名称】溴甲酚绿;3,3′,5,5′-四溴间甲酚磺酰酞
【英文名称】Bromocresol green;γ-Sultone
【CAS RN】76-60-8【EINECS】200-972-8
【分子式】C21H14BR4O5S
【相对分子量或原子量】698.05
.多巴胺的氧化峰电流与其浓度分段呈线性关系:在3×10-7~9×10-6mol/L浓度范围内,其回
归方程为ipa(10μA) = 0.23548+0.30552c(mol/L),相关系数r=0.9930;在10-5-10-4mol/L浓度
范围内,其回归方程为ipa(10μA) =2.35604+0.0685c (mol/L),相关系数r=0.9913.检出限为3.0
5

L
(李卫娟,罗世忠.分析测试学报),2009,28(11): 1287-1290.

多巴胺使用方法及注意事项

多巴胺使用方法及注意事项

多巴胺使用方法及注意事项多巴胺是一种在临床上应用广泛的药物,它对于调节人体的心血管功能、肾脏功能等都有着重要的作用。

然而,多巴胺的使用需要严格遵循一定的方法和注意相关的事项,以确保治疗的安全性和有效性。

一、多巴胺的作用机制多巴胺能激动多巴胺受体、β受体和α受体。

根据使用剂量的不同,其作用效果也有所差异。

小剂量(每分钟 1 5 微克/千克体重)时,主要作用于多巴胺受体,使肾及肠系膜血管扩张,肾血流量及肾小球滤过率增加,尿量及钠排泄量增加。

中等剂量(每分钟 5 10 微克/千克体重)时,能直接激动β₁受体及间接促使去甲肾上腺素自储藏部位释放,对心肌产生正性肌力作用,使心肌收缩力及心搏量增加,最终使心排血量加大、收缩压升高、脉压可能增大,舒张压无变化或有轻度升高,外周总阻力常无改变。

大剂量(每分钟大于 10 微克/千克体重)时,激动α受体,导致周围血管阻力增加,肾血管收缩,肾血流量及尿量反而减少。

由于心排血量及周围血管阻力增加,致使收缩压及舒张压均增高。

二、多巴胺的使用方法1、剂量的确定多巴胺的使用剂量需要根据患者的具体病情、体重、年龄等因素进行个体化的计算和调整。

一般来说,开始时以小剂量为宜,逐渐增加剂量,直至达到预期的治疗效果。

2、配制方法通常将多巴胺加入 5%葡萄糖溶液或 09%氯化钠溶液中进行稀释。

配制的浓度和总量应根据具体的治疗方案和输液速度来确定。

3、输液速度的控制输液速度是影响多巴胺疗效的关键因素之一。

一般使用微量输液泵来精确控制输液速度,以确保多巴胺能够以稳定的剂量输入患者体内。

4、给药途径多巴胺可以通过静脉滴注或静脉注射的方式给药。

在紧急情况下,如心源性休克,可能会选择静脉注射的方式,以便迅速发挥药效。

三、多巴胺使用的注意事项1、密切监测生命体征在使用多巴胺期间,应密切监测患者的血压、心率、心律、呼吸、尿量等生命体征。

每 5 15 分钟测量一次血压和心率,根据监测结果及时调整多巴胺的剂量和输液速度。

多巴胺及其受体:快感之源,毒瘾之源,精神分裂症的发病之源

多巴胺及其受体:快感之源,毒瘾之源,精神分裂症的发病之源

多巴胺及其受体:快感之源,毒瘾之源,精神分裂症的发病之源(一}多巴胺的分布、合成及代谢多巴胺(dopamine,DA)在中枢神经系统内存在于黑质、中脑腹侧被盖区、下丘脑等部位的DA能神经元内。

其前体为酪氨酸,在酪氨酸羟化酶(tyrosine hydroxylase,TH)的作用下转化为多巴,后者再经多巴脱羧酶的作用生成DA。

在突触前膜释放后,DA作用于多巴胺受体,其余的DA被主动摄取进入突触前神经元,单胺氧化酶(MAO)和儿茶酚胺氧位甲基移位酶(COMT)参与DA的代谢失活。

(二)中枢多巴胺能神经通路脑内多巴胺能系统有4条投射通路:①中脑-边缘通路:主要调控情绪反应。

②中脑皮质通路:主要与认知功能有关。

③黑质-纹状体通路:是锥体外系运动功能的高级中枢。

④结节-漏斗通路:主要调控垂体激素的分泌,如抑制催乳素分泌、促进ACTH分泌等。

另外,脑内还存在犒赏通路(该通路属于中脑-边缘通路),DA参与脑内奖赏和强化机制的调节。

(三)多巴胺受体及其亚型DA受体属G蛋白偶联受体家族,包括D1、D2、D3、D4、D5五个亚型。

根据配体的不同及其与信号转导系统的偶联关系,将D1和D5受体归为D1样受体,D2、D3和D4受体归为D2样受体。

D2样受体与精神活动、情绪及认知过程密切相关,其中D3亚型受体为DA自身受体,通过负反馈机制调节DA的生物合成和释放。

黑质-纹状体通路存在D1样受体和D2样受体;结节-漏斗通路存在D2亚型受体;中脑-边缘通路和中脑皮质通路主要存在D2样受体,D4亚型受体特异地存在于这两个通路。

推测可能成为开发具有较少锥体外系不良反应新型抗精神病药的靶点。

(四)多巴胺及其受体与精神疾病与脑内DA关系最密切的疾病是精神分裂症和帕金森病。

研究表明,精神分裂症患者DA能神经元功能亢进,D2受体与精神分裂症的发生明确相关;帕金森病的发病原因主要为DA能神经元的变性死亡和DA合成减少。

犒赏通路DA激活可强化服药行为,导致药物滥用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于多巴胺知识点
1. 生理功能:多巴胺主要负责大脑中奖励和动机系统的调节。

它与愉悦、满足感和奖励相关的情感体验有关,参与了许多行为和决策的形成。

2. 神经系统:多巴胺主要在中脑的黑质和腹侧被盖区产生,并通过神经元投射到大脑的各个区域,包括前额皮质、杏仁核、纹状体等。

3. 奖励机制:多巴胺在奖励机制中扮演关键角色。

当我们体验到愉悦或奖励时,多巴胺水平会升高,从而增强相关行为的动机和强化学习。

4. 运动和药物:多巴胺与运动和药物滥用密切相关。

运动可以增加多巴胺的释放,带来愉悦感和活力。

而某些药物,如可卡因和安非他命,会模拟多巴胺的作用,导致愉悦感和成瘾。

5. 精神疾病:多巴胺系统的异常与多种精神疾病有关,如帕金森病、精神分裂症和抑郁症等。

药物治疗这些疾病常常涉及调节多巴胺水平。

6. 学习和记忆:多巴胺也参与学习和记忆过程。

它与奖励相关的学习和记忆形成有关,对于强化学习和行为习惯的形成起着重要作用。

7. 其他功能:除了奖励和动机,多巴胺还参与调节运动控制、注意力、情感反应和社交行为等方面。

总之,多巴胺是一种重要的神经递质,对于人体的生理和心理功能起着关键作用。

了解多巴胺的知识点对于理解许多生理和心理现象以及相关疾病的治疗具有重要意义。

相关文档
最新文档