动态规划算法作业

合集下载

0018算法笔记——【动态规划】流水作业调度问题与Johnson法则

0018算法笔记——【动态规划】流水作业调度问题与Johnson法则

0018算法笔记——【动态规划】流水作业调度问题与Johnson 法则1、问题描述:n个作业{1,2,…,n}要在由2台机器M1和M2组成的流水线上完成加工。

每个作业加工的顺序都是先在M1上加工,然后在M2上加工。

M1和M2加工作业i所需的时间分别为ai和bi。

流水作业调度问题要求确定这n个作业的最优加工顺序,使得从第一个作业在机器M1上开始加工,到最后一个作业在机器M2上加工完成所需的时间最少。

2、问题分析直观上,一个最优调度应使机器M1没有空闲时间,且机器M2的空闲时间最少。

在一般情况下,机器M2上会有机器空闲和作业积压2种情况。

设全部作业的集合为N={1,2,…,n}。

S是N的作业子集。

在一般情况下,机器M1开始加工S中作业时,机器M2还在加工其他作业,要等时间t后才可利用。

将这种情况下完成S中作业所需的最短时间记为T(S,t)。

流水作业调度问题的最优值为T(N,0)。

设π是所给n个流水作业的一个最优调度,它所需的加工时间为aπ(1)+T’。

其中T’是在机器M2的等待时间为bπ(1)时,安排作业π(2),…,π(n)所需的时间。

记S=N-{π(1)},则有T’=T(S,bπ(1))。

证明:事实上,由T的定义知T’>=T(S,bπ(1))。

若T’>T(S,bπ(1)),设π’是作业集S在机器M2的等待时间为bπ(1)情况下的一个最优调度。

则π(1),π'(2),…,π'(n)是N的一个调度,且该调度所需的时间为aπ(1)+T(S,bπ(1))<aπ(1)+T’。

这与π是N的最优调度矛盾。

故T’<=T(S,bπ(1))。

从而T’=T(S,bπ(1))。

这就证明了流水作业调度问题具有最优子结构的性质。

由流水作业调度问题的最优子结构性质可知:从公式(1)可以看出,该问题类似一个排列问题,求N个作业的最优调度问题,利用其子结构性质,对集合中的每一个作业进行试调度,在所有的试调度中,取其中加工时间最短的作业做为选择方案。

算法分析与设计(线下作业二)

算法分析与设计(线下作业二)

算法分析与设计(线下作业⼆)《算法分析与设计》学习中⼼:专业:学号:姓名:作业练习⼆⼀、名词解释1、MST性质2、⼦问题的重叠性质递归算法求解问题时,每次产⽣的⼦问题并不总是新问题,有些⼦问题被反复计算多次,这种性质称为⼦问题的重叠性质。

⼆、简答题1、简述动态规划算法求解的基本要素。

答:动态规划算法求解的基本要素包括:1)最优⼦结构是问题能⽤动态规划算法求解的前提;2)动态规划算法,对每⼀个⼦问题只解⼀次,⽽后将其解保存在⼀个表格中,当再次需要解此⼦问题时,只是简单地⽤常数时间查看⼀下结果,即重叠⼦问题。

2、备忘录⽅法和动态规划算法相⽐有何异同简述之。

答:备忘录⽅法是动态规划算法的变形。

与动态规划算法⼀样,备忘录⽅法⽤表格保存已解决的⼦问题的答案,在下次需要解此问题时,只要简单地查看该⼦问题的解答,⽽不必重新计算。

备忘录⽅法与动态规划算法不同的是,备忘录⽅法的递归⽅式是⾃顶向下的,⽽动态规划算法则是⾃底向上递归的。

因此,备忘录⽅法的控制结构与直接递归⽅法的控制结构相同,区别在于备忘录⽅法为每个解过的⼦问题建⽴了备忘录以备需要时查看,避免了相同的⼦问题的重复求解,⽽直接递归⽅法没有此功能。

3、贪⼼算法求解的问题主要具有哪些性质简述之。

答:贪⼼算法求解的问题⼀般具有⼆个重要的性质:⼀是贪⼼选择性质,这是贪⼼算法可⾏的第⼀个基本要素;另⼀个是最优⼦结构性质,问题的最优⼦结构性质是该问题可⽤贪⼼算法求解的关键特征。

三、算法编写及算法应⽤分析题1、设计求解如下最⼤⼦段和问题的动态规划算法。

只需给出其递推计算公式即可。

最⼤⼦段和问题:给定由n 个整数(可能为负整数)组成的序列a1a2 … an,求该序列形如Σi≤k≤j ak的⼦段和的最⼤值。

当所有整数均为负整数时定义其最⼤⼦段和为0。

依次定义,所求的最优值为max{0, max1≤i≤j≤n Σi≤k≤j ak }。

2、关于多段图问题。

设G =(V ,E)是⼀个赋权有向图,其顶点集V 被划分成k>2个不相交的⼦集V i :1i k ≤≤,其中,V 1和V k 分别只有⼀个顶点s (称为源)和⼀个顶点t (称为汇),图中所有的边(u,v ),i u V ∈,1i v V +∈。

动态规划练习例题

动态规划练习例题
c(m,n)为最终最小代价,反向追踪获得编辑序列
动态规划方法总结
动态规划算法的设计步骤
– – – – – – – 将问题表示成多步判断 确定是否满足优化原则——必要条件 确定子问题的重叠性——估计算法效率 列出关于优化函数的递推方程(或不等式)和边界条件 自底向上计算子问题的优化函数值----非递归的算法 备忘录方法记录中间结果 标记函数追踪问题的解
• S(i)表示结束于位置i的最大子区间和 • max{S(i)}即为所求最大子区间和 • 考虑如何递推求解并反算问题解
最大子矩阵
• 已知矩阵的大小定义为矩阵中所有元素的 和。给定一个矩阵,找到最大的非空(大小 至少是1 * 1)子矩阵。 • 例如这个矩阵的最大子矩阵大小为15。
0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
动态规划练习例题在棋盘上移动在一个nn的棋盘上棋子可以向上方右上方或左上方移动每次从x方格移动到y方格将获得pxy元钱pxy不一定是正数现求一个获得钱最多的从底边到顶边的一种移动棋子的方案
动态规划练习例题
在棋盘上移动
• 在一个n×n的棋盘上,棋子可以向上方、 右上方或左上方移动,每次从x方格移动到y 方格将获得p(x,y)元钱, p(x,y)不一定是正 数,现求一个获得钱最多的从底边到顶边 的一种移动棋子的方案。
解题思路
Qx, y 1 Q x, y max Qx 1, y 1 Q x 1, y 1 y 1 px, y 1, x, y y 1 px 1, y 1, x, y y 1且x 1 px 1, y 1, x, y y 1且x 字符串X=x1,x2,…xm和Y=y1,y2,…yn 使用一系列编辑操作将字符串X转变成Y。允许使 用插入,删除,修改三种操作,每种操作都有 一定的代价,求一个总代价最小的操作序列。 – 设从字符X中删除符号xi的代价为D(xi) – 将符号yj插入X的代价为I(yj) – 将X中的符号xi修改成yj的代价为C(xi,yj)

第3章 动态规划_作业-3.22

第3章 动态规划_作业-3.22



0.36
0 1 2 3
1 0.24
2
3
4
5
6 1
0
1
2
3
4
5
6
0
0.6
0.18
1
0
0.36
0.09
2
1 2
0
0.31
0.13 0.56
3 4 0.3 0.42
2 3
4
5 6 7
0
4 4
0
4
5
6 7
5 5
0
0.06
5 6
k 3 : C ( 3, 2 ) C ( 4 , 4 ) C ( 3,4) m in k 4 : C ( 3 , 3 ) C ( 5 ,4 )
式1 式2
C(i, j)=min{C(i, k-1)+C(k+1, j)+w(i,j)} (1≤i≤j≤n, i≤k≤j) =min{C(i, k-1)+C(k+1, j)}+w(i,j) (1≤i≤j≤n, i≤k≤j) 式3
0 1 0.24 2 3 4 5 6 1 2 0.09 3 0.13 4 0.3 5 0.06 6 7 0 1 2 3 4 5 6
s
0 0.18 0.42 0.6
C(i, i-1)=0 (1≤i≤n+1) C(i, i)=pi (1≤i≤n)
式1 式2
C(i, j)=min{C(i, k-1)+C(k+1, j)+w(i,j)} (1≤i≤j≤n, i≤k≤j) =min{C(i, k-1)+C(k+1, j)}+w(i,j) (1≤i≤j≤n, i≤k≤j) 式3

动态规划练习题(含答案)

动态规划练习题(含答案)

动态规划练习题USACO 2.2 Subset Sums题目如下:对于从1到N的连续整集合合,能划分成两个子集合,且保证每个集合的数字和是相等的。

举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,他们每个的所有数字和是相等的:and {1,2}这是唯一一种分发(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数)如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分发的子集合各数字和是相等的:{1,6,7} and {2,3,4,5} {注1+6+7=2+3+4+5}{2,5,7} and {1,3,4,6}{3,4,7} and {1,2,5,6}{1,2,4,7} and {3,5,6}给出N,你的程序应该输出划分方案总数,如果不存在这样的划分方案,则输出0。

程序不能预存结果直接输出。

PROGRAM NAME: subsetINPUT FORMAT输入文件只有一行,且只有一个整数NSAMPLE INPUT (file subset.in)7OUTPUT FORMAT输出划分方案总数,如果不存在则输出0。

SAMPLE OUTPUT (file subset.out)4参考程序如下:#include <fstream>using namespace std;const unsigned int MAX_SUM = 1024;int n;unsigned long long int dyn[MAX_SUM];ifstream fin ("subset.in");ofstream fout ("subset.out");int main() {fin >> n;fin.close();int s = n*(n+1);if (s % 4) {fout << 0 << endl;fout.close ();return ;}s /= 4;int i, j;dyn [0] = 1;for (i = 1; i <= n; i++)for (j = s; j >= i; j--)dyn[j] += dyn[j-i];fout << (dyn[s]/2) << endl;fout.close();return 0;}USACO 2.3 Longest Prefix题目如下:在生物学中,一些生物的结构是用包含其要素的大写字母序列来表示的。

动态规划-例题众多-详细讲解

动态规划-例题众多-详细讲解

步骤2:状态转移方程:
步骤3:以自底向上的方法来计算最优解
12
程序的实现
BuyTicks(T, R)
1 n ← length[T]
2 f[0] ← 0
3 f[1] ← T[1]
4 for i ← 2 to n do
5
f[i] ← f[i-2]+R[i-1]
6
if f[i] > f[i-1]+T[i] then
n 0 1 2 3 4 5 6 7 8 9 10 F(n) 1 1 2 3 5 8 13 21 34 55 89
2
递归 vs 动态规划
递归版本:
F(n)
1 if n=0 or n=1 then
2
return 1
3 else
4
return F(n-1) + F(n-2)
太慢!
动态规划:
F(n)
1 A[0] = A[1] ← 1
这里是某支股票的价格清单: 日期 1 2 3 4 5 6 7 8 9 10 11 12 价格 68 69 54 64 68 64 70 67 78 62 98 87 最优秀的投资者可以购买最多4次股票,可行方案中的一种是: 日期 2 5 6 10 价格 69 68 64 62 输入 第1行: N (1 <= N <= 5000),股票发行天数 第2行: N个数,是每天的股票价格。 输出 输出文件仅一行包含两个数:最大购买次数和拥有最大购买次数的方案数(<=231) 当二种方案“看起来一样”时(就是说它们构成的价格队列一样的时候),这2种方 案被认为是相同的。
你的任务是,已知所有N位同学的身高,计算最少需要 几位同学出列,可以使得剩下的同学排成合唱队形。

动态规划习题详解

动态规划习题详解

动态规划动态规划是运筹学的一个分支,它是解决多阶段决策过程最优化问题的一种方法。

该方法是由美国数学家贝尔曼(R.Bellman)等人在本世纪50年代初提出的。

他们针对多阶段决策问题的特点,提出了解决这类问题的“最优化原理”,并成功地解决了生产管理、工程技术等方面的许多实际问题,从而建立了运筹学的一个新分支——动态规划。

他的名著《动态规划》于1957年出版,该书是动态规划的第一本著作。

动态规划是现代企业管理中的一种重要决策方法,在工程技术、经济管理、工农业生产及军事及其它部们都有广泛的应用,并且获得了显著的效果。

动态规划可用于解决最优路径问题、资源分配问题、生产计划与库存问题、投资分配问题、装载问题、设备更新与维修问题、排序问题及生产过程的最优控制等。

由于它所具有独特的解题思路,在处理某些优化问题时,常常比线性规划或非线性规划方法更有效。

第一节动态规划的基本方法多阶段决策的实际问题很多,下面通过具体例子,说明什么是动态规划模型及其求解方法。

例1:最短路线问题某工厂需要把一批货物从城市A运到城市E,中间可经过B1 、B2、B3、C1、C2、C3、D1、D2等城市,各城市之间的交通线和距离如下图所示,问应该选择一条什么路线,使得从A到E的距离最短?下面引进几个动态规划的基本概念和相关符号。

(1)阶段(Stage)把所给问题的过程,按时间和空间特征划分成若干个相互联系的阶段,以便按次序去求每个阶段的解,阶段总数一般用字母n表示,用字母k表示阶段变量。

如例l中 (最短路线问题)可看作是n=4阶段的动态规划问题,k=2表示处于第二阶段。

(2)状态(State)状态表示每个阶段开始时系统所处的自然状况或客观条件,它描述了研究问题过程状况。

描述各阶段状态的变量称为状态变量,常用字母sk表示第k阶段的状态变量,状态变量的取值范围称为状态集,用Sk表示。

如例l中,第一阶段的状态为A(即出发位置)。

第二阶段有三个状态:B1 、B2、B3,状态变量s2=B2表示第2阶段系统所处的位置是B2。

算法设计与分析-动态规划习题

算法设计与分析-动态规划习题

a
j
k
T(n)=2T(n/2)+O(n) 解此递归方程可知,T(n)=O(nlogn) 3) 记 b[j]=
a
k 1
j
k
,1≤i≤n,则所求的最大子段和问题为
a
k 1
j
k
=max max
a
k i
j
k
=max b[j]
由 b[j]的定义可知,b[j-1]>0 时,b[j]= b[j-1]+a[j], 否则 b[j]=a[j],因此 b[j]的动态规划递 归式 b[j]=max{b[j-1]+a[j],a[j]},1≤j≤n。 据此, 可设计出最大子段和动态规划算法如下: int MaxSum(int n,int *a) { Int sum=0,b=0; For(int i=1;i<=n;i++){ If(b>0)b+=a[j]; Else b=a[j]; If(b>sum)sum=b; } Return sum; } 显然,这个算法需要的时间和空间复杂度均为 O(n)。
则 RELI(1,n,c)可靠性设计的最优值为:
初始条件:f0 (X)=1,0≤X≤c
i
S ={ (f , X ) | f =f (X ) }
i i
S ={ (f , X ) | f =f (X ) }为可靠性设计问题 RELI(1,i,X) 的最优解,(f, X)是由 m1 ,m2 ,…,mi 的
按此递归式计算出来的 m(n,b)为最优值,算法所需的计算时间为 O(nb)。
4、可靠性设计:一个系统由 n 级设备串联而成,为了增强 可靠性,每级都可能并联了不止一台同样的设备。假设第 i 级设备 Di 用了 mi 台,该级设备的可靠性是 gi(mi),则这个 系统的可靠性是Π gi(mi)。一般来说 gi(mi)都是递增函数,所 以每级用的设备越多系统的可靠性越高。但是设备都是有成 本的, 假定设备 Di 的成本是 ci, 设计该系统允许的投资不超 过 c,那么,该如何设计该系统(即各级采用多少设备)使 得这个系统的可靠性最高。试设计一个动态规划算法求解可 靠性设计。

动态规划作业完整

动态规划作业完整

动态规划作业1、1、设某工厂自国外进口一部精密机器,由机器制造厂至出口港有三个港口可供选择,而进口港又有三个可供选择,进口后可经由两个城市到达目的地,其间的运输成本如图中所标的数字,试求运费最低的路线?把A看作终点,该问题可分为4个阶段。

f k(S k)表示从第K阶段点S k到终点A的最短距离。

f4(B1)=20,f4(B2)=40,f4(B3)=30f3(C1)=min[d3(C1,B1)+ f4(B1), d3(C1,B2)+ f4(B2), d3(C1,B3)+ f4(B3) ]=70,U3(C1)= B2 或B3f3(C2)=40 ,U3(C2)= B3f3(C3)=80 ,U3(C3)= B1或B2 或B3f2(D1)=80 ,U2(D1)= C1f2(D2)=70 ,U2(D2)= C2f1(E)=110 ,U1(E)= D1或D2所以可以得到以下最短路线,E→D1→C1→B2 / B3→AE→D2→C2→B3→A2、习题4-2解:1)将问题按地区分为三个阶段,三个地区的编号分别为1、2、3;2)设Sk表示为分配给第k个地区到第n个地区的销售点数,Xk表示为分配给第k个地区的销售点数,S k+1=S k-X kPk(Xk)表示为Xk个销售点分到第k个地区所得的利润值fk(Sk)表示为Sk个销售点分配给第k个地区到第n个地区的最大利润值3)递推关系式:fk(Sk)=max[ Pk(Xk)+ f k+1(S k-X k) ] k=3,2,1f4(S4)=04)从最后一个阶段开始向前逆推计算第三阶段:设将S3个销售点(S3=0,1,2,3,4)全部分配给第三个地区时,最大利润值为:f3(S3)=max[P3(X3)] 其中X3=S3=0,1,2,3,4表1第二阶段:设将S2个销售点(S2=0,1,2,3,4)分配给乙丙两个地区时,对每一个S2值,都有一种最优分配方案,使得最大盈利值为:f2(S2)=max[ P2(X2)+ f3(S2-X2) ]其中,X2=0,1,2,3,4表2第一阶段:设将S1个销售点(S1=4)分配给三个地区时,则最大利润值为:f1(S1)=max[ P1(X1)+ f2(4-X1) ]其中,X1=0,1,2,3,4表3然后按计算表格的顺序反推,可知最优分配方案有两个:最大总利润为531)由X1*=2,X2*=1,X3*=1。

实验二最长公共子序列(动态规划算法)

实验二最长公共子序列(动态规划算法)

实验二最长公共子序列(动态规划算法)班级:08计算机科学与技术(1)班学号:E08620113 姓名:戴斌江机器号:实验二最长公共子序列问题一、实验目的:1、理解动态规划算法的概念;2、掌握动态规划算法的基本要素;3、掌握设计动态规划算法的步骤;4、通过应用范例学习动态规划算法的设计技巧与策略;二、实验内容及要求:1、使用动态规划算法解决最长公共子序列问题:给定两个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列。

2、通过上机实验进行算法实现。

3、保存和打印出程序的运行结果,并结合程序进行分析,上交实验报告。

三、实验原理:动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。

20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。

1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。

算法总体思想:1)动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。

2)与分治法不同的是,适合于用动态规划法求解的问题,经分解得到的子问题往往不是独立的。

子问题中存在大量的公共子问题,在分治求解过程中被多次重复计算,保存计算结果,为后面的计算直接引用,减少重复计算次数这就是动态规划的基本思想。

3)用动态规划算法求解问题,可依据其递归式以自底向上的方式进行计算。

在计算过程中,保存已解决的子问题的答案。

每个子问题只计算一次,而在后面需要时只要简单查一下,从而避免大量重复计算,最终得到多项式时间算法。

算法设计与分析——流水作业调度(动态规划)

算法设计与分析——流水作业调度(动态规划)

算法设计与分析——流⽔作业调度(动态规划)⼀、问题描述N个作业{1,2,………,n}要在由两台机器M1和M2组成的流⽔线上完成加⼯。

每个作业加⼯的顺序都是先在M1上加⼯,然后在M2上加⼯。

M1和M2加⼯作业i所需的时间分别为ai和bi,1≤i≤n。

流⽔作业⾼度问题要求确定这n个作业的最优加⼯顺序,使得从第⼀个作业在机器M1上开始加⼯,到最后⼀个作业在机器M2上加⼯完成所需的时间最少。

⼆、算法思路直观上,⼀个最优调度应使机器M1没有空闲时间,且机器M2的空闲时间最少。

在⼀般情况下,机器M2上会有机器空闲和作业积压2种情况。

最优调度应该是:1. 使M1上的加⼯是⽆间断的。

即M1上的加⼯时间是所有ai之和,但M2上不⼀定是bi之和。

2. 使作业在两台机器上的加⼯次序是完全相同的。

则得结论:仅需考虑在两台机上加⼯次序完全相同的调度。

设全部作业的集合为N={1,2,…,n}。

S是N的作业⼦集。

在⼀般情况下,机器M1开始加⼯S中作业时,机器M2还在加⼯其他作业,要等时间t后才可利⽤。

将这种情况下完成S中作业所需的最短时间记为T(S,t)。

流⽔作业调度问题的最优值为T(N,0)。

这个T(S,t)该如何理解?举个例⼦就好搞了(⽤ipad pencil写的...没贴类纸膜,太滑,凑合看吧)1、最优⼦结构T(N,0)=min{ai + T(N-{i}, bi)}, i∈N。

ai:选⼀个作业i先加⼯,在M1的加⼯时间。

T(N-{i},bi}:剩下的作业要等bi时间后才能在M2上加⼯。

注意这⾥函数的定义,因为⼀开始⼯作i是随机取的,M1加⼯完了ai之后,要开始加⼯bi了,这⾥M1是空闲的可以开始加⼯剩下的N-i个作业了,但此时M2开始加⼯bi,所以要等bi时间之后才能重新利⽤,对应到上⾯函数T(s,t)的定义的话,这⾥就应该表⽰成T(N-{i},bi), 所以最优解可表⽰为T(N,0)=min{ai + T(N-{i}, bi)}, i∈N,即我们要枚举所有的⼯作i,使这个式⼦取到最⼩值。

数学建模作业_动态规划求解指派问题

数学建模作业_动态规划求解指派问题

3 问题的伪代码实现
1 设 k 的初始值为 1; 2 写出 X k ,即第 k 阶段决策变量可能的取值,特别地, X 1 ={1,2, 。 。 。 ,n}。 3 对每一个 sk ,计算 sk g1 (sk 1 , xk 1 ) sk 1 {xk 1. j} ,及 d ( sk , xk ) ; 4 计算 f k ( sk ) ; 5 若 X k 为空,转到第 6 步,否则,k++,转回执行第 2 步。 6 最优指派决策为 f k ( sk ) ,根据 f k ( sk ) 写出最优指派方案{ xkj }。 7 程序算法复杂度:是 O(V*E*E)
其中“ - ”表示集合的差运算。 (4)指派问题指标递归方程:
f k (sk ) min{ f k (sk , xk ) | xk X k } , f k (sk , xk ) d k (sk , d k ) f k 1 ( g1 (sk 1 , xk 1 )) , f 0 (s0 ) 0, k 1,2,..., n.
float costforout[101][101]; int matrixsize; int personnumber; int jobnumber; }matrix; matrix sb; int result[501][2]; void twozero(matrix &sb); void judge(matrix &sb,int result[501][2]); void refresh(matrix &sb); void circlezero(matrix &sb); matrix input(); void output(int result[501][2],matrix sb); void zeroout(matrix &sb); matrix input() { matrix sb; int m; int pnumber,jnumber; int i,j; float k; char w; printf("指派问题的动态规划解法:\n\n"); printf("按最大价值分配请输入 1;最小价值分配请输入 0:\n"); scanf("%d",&m); while (m!=1&&m!=0) { printf("请输入 1 或 0:\n"); scanf("%d",&m); } printf("请输入可分配总人数(介于 1 和 100 之间):\n"); scanf("%d",&pnumber); while(pnumber<1 || pnumber>100) { printf("请输入合法数据:\n"); scanf("%d",&pnumber); } printf("请输入工作数(介于 1 和 100 之间):\n"); scanf("%d",&jnumber); while(jnumber<1 || jnumber>100) { printf("请输入合法数据:\n");

动态规划讲解大全(含例题及答案)

动态规划讲解大全(含例题及答案)
基本模型
多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在 它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不 是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个 决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问 题就称为多阶段决策问题。
在前面的例子中,第一个阶段就是点 A,而第二个阶段就是点 A 到点 B,第三个阶段是点 B 到点 C,而第四个阶段是点 C 到点 D。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称 为不可控因素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前 一阶段某支路的终点。
fout.close(); return 0; }
USACO 2.3 Longest Prefix
题目如下: 在生物学中,一些生物的结构是用包含其要素的大写字母序列来表示的。生物学家对于把长的序 列分解成较短的(称之为元素的)序列很感兴趣。 如果一个集合 P 中的元素可以通过串联(允许重复;串联,相当于 Pascal 中的 “+” 运算符) 组成一个序列 S ,那么我们认为序列 S 可以分解为 P 中的元素。并不是所有的元素都必须出现。 举个例子,序列 ABABACABAAB 可以分解为下面集合中的元素: {A, AB, BA, CA, BBC} 序列 S 的前面 K 个字符称作 S 中长度为 K 的前缀。设计一个程序,输入一个元素集合以及一 个大写字母序列,计算这个序列最长的前缀的长度。 PROGRAM NAME: prefix INPUT FORMAT 输入数据的开头包括 1..200 个元素(长度为 1..10 )组成的集合,用连续的以空格分开的字 符串表示。字母全部是大写,数据可能不止一行。元素集合结束的标志是一个只包含一个 “.” 的行。 集合中的元素没有重复。接着是大写字母序列 S ,长度为 1..200,000 ,用一行或者多行的字符串 来表示,每行不超过 76 个字符。换行符并不是序列 S 的一部分。 SAMPLE INPUT (file prefix.in) A AB BA CA BBC . ABABACABAABC OUTPUT FORMAT 只有一行,输出一个整数,表示 S 能够分解成 P 中元素的最长前缀的长度。 SAMPLE OUTPUT (file prefix.out) 11 示例程序如下: #include <stdio.h>

经典的动态规划入门练习题

经典的动态规划入门练习题

动态规划入门练习题1.石子合并在一个圆形操场的四周摆放着N堆石子(N<= 100),现要将石子有次序地合并成一堆.规定每次只能选取相邻的两堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分.编一程序,由文件读入堆栈数N及每堆栈的石子数(<=20).(1)选择一种合并石子的方案,使用权得做N-1次合并,得分的总和最小;(2)选择一种合并石子的方案,使用权得做N-1次合并,得分的总和最大;输入数据:第一行为石子堆数N;第二行为每堆的石子数,每两个数之间用一个空格分隔.输出数据:从第一至第N行为得分最小的合并方案.第N+1行是空行.从第N+2行到第2N+1行是得分最大合并方案.每种合并方案用N行表示,其中第i行(1<=i<=N)表示第i次合并前各堆的石子数(依顺时针次序输出,哪一堆先输出均可).要求将待合并的两堆石子数以相应的负数表示.输入输出范例:输入:44 5 9 4输出:-459-4-8-59-13-9224-5-944-14-4-4-1822最小代价子母树设有一排数,共n个,例如:22 14 7 13 26 15 11.任意2个相邻的数可以进行归并,归并的代价为该两个数的和,经过不断的归并,最后归为一堆,而全部归并代价的和称为总代价,给出一种归并算法,使总代价为最小.输入、输出数据格式与“石子合并”相同。

输入样例:412 5 16 4输出样例:-12-516417-16-4-17-20372.背包问题设有n种物品,每种物品有一个重量及一个价值。

但每种物品的数量是无限的,同时有一个背包,最大载重量为XK,今从n种物品中选取若干件(同一种物品可以多次选取),使其重量的和小于等于XK,而价值的和为最大。

输入数据:第一行两个数:物品总数N,背包载重量XK;两个数用空格分隔;第二行N个数,为N种物品重量;两个数用空格分隔;第三行N个数,为N种物品价值; 两个数用空格分隔;输出数据:第一行总价值;以下N行,每行两个数,分别为选取物品的编号及数量;输入样例:4 102 3 4 71 3 5 9输出样例:122 14 13.商店购物某商店中每种商品都有一个价格。

常见动态规划题目详解

常见动态规划题目详解

常见动态规划题⽬详解1.爬楼梯题⽬描述:假设你正在爬楼梯。

需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。

你有多少种不同的⽅法可以爬到楼顶呢?注意:给定 n 是⼀个正整数。

⽰例 1:输⼊: 2输出: 2解释:有两种⽅法可以爬到楼顶。

1. 1 阶 + 1 阶2. 2 阶⽰例 2:输⼊: 3输出: 3解释:有三种⽅法可以爬到楼顶。

1. 1 阶 + 1 阶 + 1 阶2. 1 阶 + 2 阶3. 2 阶 + 1 阶实现代码:class Solution {public:int climbStairs(int n) {vector<int> a(n);a[0] = 1;a[1] = 2;if(n == 1){return 1;}if(n == 2){return 2;}for(int i = 2; i < n;i++){a[i] = a[i - 1] + a[i - 2];}return a[n - 1];}};2.变态跳台阶题⽬描述:⼀只青蛙⼀次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。

求该青蛙跳上⼀个n级的台阶总共有多少种跳法。

实现代码:class Solution {public:int jumpFloorII(int number) {if(number == 0){return 0;}int total = 1;for(int i = 1; i < number; i++){total *= 2;}return total;}};3.n年后⽜的数量题⽬描述:假设农场中的母⽜每年会产⽣⼀头⼩母⽜,并且永远不会死。

第⼀年农场中只有⼀头成熟的母⽜,第⼆年开始,母⽜开始⽣⼩母⽜,每只⼩母⽜三年之后成熟⼜可以⽣⼩母⽜,给定整数N,求N年后母⽜的数量。

实现代码:class solution{ public: int f(int n){ if(n < 1){ return 0; } if(n == 1|| n== 2||n == 3){ return n; } int res = 3; int pre = 2; int prepre = 1; int tmp1=0; int tmp2 = 0; for(int i = 4;i < n;i++){ tmp1 = res; tmp2 = pre; res = pre + prepre; pre = tmp1; prepre = tmp2; } return res; }};4.矩形覆盖题⽬描述:我们可以⽤2*1的⼩矩形横着或者竖着去覆盖更⼤的矩形。

动态规划算法题(5题)

动态规划算法题(5题)

动态规划算法题(5题)1、题⽬描述(⽹易)有 n 个学⽣站成⼀排,每个学⽣有⼀个能⼒值,⽜⽜想从这 n 个学⽣中按照顺序选取 k 名学⽣,要求相邻两个学⽣的位置编号的差不超过d,使得这 k 个学⽣的能⼒值的乘积最⼤,你能返回最⼤的乘积吗?输⼊描述:每个输⼊包含 1 个测试⽤例。

每个测试数据的第⼀⾏包含⼀个整数 n (1 <= n <= 50),表⽰学⽣的个数,接下来的⼀⾏,包含 n 个整数,按顺序表⽰每个学⽣的能⼒值 ai(-50 <= ai <= 50)。

接下来的⼀⾏包含两个整数,k 和 d (1 <= k <= 10, 1 <= d <= 50)。

输出描述:输出⼀⾏表⽰最⼤的乘积。

试题分析:本题要使⽤动态规划来解,动态规划的特点:1.求解的是最优化问题;2.可以分解为最优⼦结构本题可以先求解在第i个学⽣的位置下,j(j<K)个学⽣的能⼒值的最⼤值,得到所有学⽣位置下j个学⽣的能⼒值的最⼤值;在j个学⽣的情况下,得到j+1个学⽣的最⼤值,样例输出: 10 8 7 2 -7 9 5 4 10 -7 1 3 3输出: 630如上,第⼀步先计算k=2的情况:7:在d=3的情况下,最⼤最⼩值都为562:在d=3的情况下,最⼤值为16,最⼩值为14-7:在d=3的情况下,最⼤值为-14,最⼩值为-56......得到第⼀趟的结果k=3的情况下(这⾥以第⼀趟的结果为基础,只有这样就不需要考虑第⼀趟中d=3的限制):2:在d=3的情况下,最⼤最⼩值都为112(56*2)-7:在d=3的情况下,最⼤值为-98(14*-7)最⼩值为-392(56*-7)9:在d=3的情况下,最⼤值为504(56*9)最⼩值为-504(-56*9)......得到第⼆趟的结果返回最⼤值就是最后的结果#-*- coding:utf-8 -*-n=input()array=[int(i) for i in raw_input().split()]k,d=[int(i) for i in raw_input().split()]# n=36array_max=array_min=array#轮询k-1趟即可for i in range(0,k-1):_max=[-float('inf')]*n#将最⼤值的数组赋值⽆穷⼩_min=[float('inf')]*n#将最⼩值的数组赋值⽆穷⼤for j in range(i+1,n):if j<=d+i:#下⾯对应的min、max都是考虑到array[j]为负值的情况下temp_max = max(max(ii*array[j] for ii in array_max[i:j]),max(ii*array[j] for ii in array_min[i:j]))temp_min = min(min(ii*array[j] for ii in array_max[i:j]),min(ii*array[j] for ii in array_min[i:j]))else:temp_max = max(max(ii*array[j] for ii in array_max[j-d:j]),max(ii*array[j] for ii in array_min[j-d:j]))temp_min = min(min(ii*array[j] for ii in array_max[j-d:j]),min(ii*array[j] for ii in array_min[j-d:j]))_max[j]=temp_max_min[j]=temp_minarray_max=_maxarray_min=_minprint array_maxprint array_minprint max(array_max)2、题⽬描述(腾讯):腾讯⼤厦有39层,你⼿⾥有两颗⼀抹⼀眼的玻璃珠。

0018算法笔记__[动态规划]流水作业调度问题及Johnson法则

0018算法笔记__[动态规划]流水作业调度问题及Johnson法则

0018算法笔记——【动态规划】流水作业调度问题与Johnson 法则1、问题描述:n个作业{1,2,…,n}要在由2台机器M1和M2组成的流水线上完成加工。

每个作业加工的顺序都是先在M1上加工,然后在M2上加工。

M1和M2加工作业i所需的时间分别为ai和bi。

流水作业调度问题要求确定这n个作业的最优加工顺序,使得从第一个作业在机器M1上开始加工,到最后一个作业在机器M2上加工完成所需的时间最少。

2、问题分析直观上,一个最优调度应使机器M1没有空闲时间,且机器M2的空闲时间最少。

在一般情况下,机器M2上会有机器空闲和作业积压2种情况。

设全部作业的集合为N={1,2,…,n}。

S是N的作业子集。

在一般情况下,机器M1开始加工S中作业时,机器M2还在加工其他作业,要等时间t后才可利用。

将这种情况下完成S中作业所需的最短时间记为T(S,t)。

流水作业调度问题的最优值为T(N,0)。

设π是所给n个流水作业的一个最优调度,它所需的加工时间为aπ(1)+T’。

其中T’是在机器M2的等待时间为bπ(1)时,安排作业π(2),…,π(n)所需的时间。

记S=N-{π(1)},则有T’=T(S,bπ(1))。

证明:事实上,由T的定义知T’>=T(S,bπ(1))。

若T’>T(S,bπ(1)),设π’是作业集S在机器M2的等待时间为bπ(1)情况下的一个最优调度。

则π(1),π'(2),…,π'(n)是N的一个调度,且该调度所需的时间为aπ(1)+T(S,bπ(1))<aπ(1)+T’。

这与π是N的最优调度矛盾。

故T’<=T(S,bπ(1))。

从而T’=T(S,bπ(1))。

这就证明了流水作业调度问题具有最优子结构的性质。

由流水作业调度问题的最优子结构性质可知:从公式(1)可以看出,该问题类似一个排列问题,求N个作业的最优调度问题,利用其子结构性质,对集合中的每一个作业进行试调度,在所有的试调度中,取其中加工时间最短的作业做为选择方案。

动态规划模拟题及答案

动态规划模拟题及答案

动态规划测试题一:填空题(每空2分,共20分)1.动态规划算法的步骤是(找出最优解的性质,并刻画其结构特征)、(递归地定义最优值)(以自底向上的方式计算最优值)、(根据计算最优值时得到的信息构造最优解)。

2.为方便起见、将矩阵连乘积A i A i+1……A j简记为(A[i:j] )。

3.动态规划算法的两个基本要素是(最优子结构性质)和(重叠子问题性质)。

4.矩阵连乘问题的算法可由(递归)设计实现。

5.对于矩阵连乘问题、设计算A[i:j]、1≤i≤j≤n,所需要的最少数乘次数为m[i][j],则原则问题的最优值为(m[1][n] )。

6. 动态规划算法的基本思想是将待求解问题分解成若干(子问题),先求解(子问题),然后从这些(子问题)的解得到原问题的解。

二:综合题(第一题5分其余各题15分,共50分)1.补充下面的最大子段和动态规划算法。

int MaxSum(int n,int *a){int sum=0,b=0;for(int i=1;i<=n;i++){if(b>0){b+=a[i];besti=1;}else b=a[i];if(b>sum){sum=b;bestj=i;}}return sum;}2. 0—1背包问题:有5种物品,背包的容量为c=10,物品i的重量为wi,其价值为vi:(w1,v1)=(2,6) (w2,v2)=(2,3) (w3,v3)=(6,5) (w4、v4)=(5,4)(w5,v5)=(4,6), 求最优解及最优值。

解∵p[5+1]={(0,0)}又∵(w5,w5)=(4,6)∴q[5+1]=p[5+1]○+(4,6)={(4,6)}则p[5]=m5j-其中的受控点={(0,0),(4,6)}又∵(w4,v4)=(5,4)∴q[5]○+(w4,v4)={(0,0),(4,6)}○+(5,4)={(5,4),(9,10)}∴w4j=p[5]∨q[5]={(0,0),(4,6),(5,4),(9,10)}又∵(w3,v3)=(6,5)∴q[4]=p[4]○+(w3,v3)={(6,5),(10,11)}∴m3j=p[4]∨q[4]={(0,0),(4,6),(6,5),(9,10),(10,11)} 则p[3]=m3j-其中的受控点={(0,0),(4,6),(9,10),(10,11)}又∵(w2,v2)=(2,3)∴q[3]=p[3]○+(w2,v2)={(2,3),(6,9)}∴m2j={(0,0),(2,3),(4,6), (6,9),(9,10),(10,11) } p[2]=m2j-其中的受控点={(0,0),(2,3),(4,6),(6,9),(9,10),(10,11)}又∵(w1,v1)=(2,6)∴q[2]=p[2]○+(w2,v2)={(2,6),(4,9),(6,12),(8,15)}∴m1j={(0,0),92,3},(2,6),(4,6),(4,9),(6,9),(6,12),(8,15),(9,10),(10,11)}∴p[1]={(0,0),(2,6),(4,9),(6,12),(8,15)}∴此0—1问题的最优值15.最优解为p[1]={(0,0),(2,6),(4,9)(6,12),(8,15)}3.设n=4,(a1,a2,a3,a4)=(3,4,8.10),(b1,b2,b3,b4)=(6,2,9,15),求作业中的一种最优调度方案并计算其最优值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动态规划算法作业
动态规划是一种解决多阶段决策问题的优化方法。

在这种方法中,我
们将问题划分为多个子问题,并通过解决这些子问题来求解原始问题的最
优解。

动态规划可以应用于各种领域,如经济学、制造业、计算机科学等,在优化问题中经常被使用。

1.状态定义:确定问题的子问题以及每个子问题的状态。

状态是问题
的关键属性,这些属性在问题的不同阶段保持不变。

2.状态转移方程:表示问题的子问题之间的关系。

它描述了如何从一
个子问题转移到下一个子问题。

通过状态转移方程,我们可以推导出子问
题的最优解。

3.初始条件:定义问题的起始状态。

这通常是问题的边界条件,如在
第一个阶段的子问题中,我们需要定义初始状态。

4.最优解的计算:通过迭代计算,我们可以逐步解决子问题,并最终
求解出原始问题的最优解。

这通常通过填充一个表或者使用递归函数来实现。

为了更好地理解动态规划算法的应用,我们可以考虑以下两个经典问题。

1.背包问题:有一个容量为C的背包和一组物品。

每件物品有一个重
量和价值。

我们的目标是选择物品,使其总重量不超过背包的容量,同时
价值最大化。

我们可以使用动态规划来解决这个问题。

我们定义一个二维表,其中每一行表示一个物品,每一列表示背包的容量。

通过填充这个表,我们可以计算出每个子问题的最优解,并最终得出最优解。

2.最长公共子序列问题:给定两个字符串,求它们的最长公共子序列。

子序列在原字符串中不一定是连续的,但保持原有顺序。

我们可以使用动
态规划来解决这个问题。

我们定义一个二维表,其中每个单元格表示两个
字符串的子问题。

通过填充这个表,我们可以逐步计算出更长子序列的最
优解,并最终得出最长公共子序列。

动态规划算法的优点是可以减少问题的重复计算,并且可以避免使用
递归导致的堆栈溢出。

然而,这种算法也存在一些局限性。

首先,动态规
划算法需要定义子问题以及状态转移方程,这在一些问题中可能会很困难。

其次,动态规划算法的时间复杂度通常较高,特别是对于一些大规模问题。

总之,动态规划算法是一种重要的优化方法,可以用于解决各种多阶
段决策问题。

通过合理定义状态和转移方程,我们可以有效地求解原始问
题的最优解。

然而,动态规划算法也存在一些限制,需要根据具体问题来
进行适当的选择和应用。

相关文档
最新文档