厂家改进离心泵的结构设计与汽蚀余量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
厂家改进离心泵的结构设计与汽蚀余量改善泵的汽蚀性能,可以从降低泵的必需汽蚀余量着手,根据离心泵必需汽蚀余量公式:
式中:v0——叶轮进口平均流速,通常指叶轮喉部液体绝对速度,m/s;
ω0——叶轮进口处液体的相对速度,m/s;
λ1——因液体从泵入口到叶轮进口段速度增大和流向改变引起能量损失的校正系数;
λ2——流体绕过叶片头部的压降系数,与冲角、叶片数、叶片头部形状等有关;
g——重力加速度,m/s2。
从公式(1)看出,NPSHr仅与泵本身的结构有关,而与介质的性质无关,由此可以从如下几个方面改进泵的结构,降低NPSHr:
(1)增大叶轮入口直径D0,可使叶轮进口流速v0减小;或者增大叶轮叶片入口边宽度b1,可使叶轮入口处液体的相对速度ω0减小。但需要注意D0和b1并非是越大越好,而是有最佳的设计范围,否则泵的效率会下降。
(2)适当增大叶轮盖板进口段的曲率半径;将叶片适当的向叶轮入口边延伸,并尽量使进口处叶片薄;提高叶轮和叶片进口部分的表面光洁度;增大叶片进口角和采用正冲角;这些措施都可以降低流动损失,使介质流动更加平稳,从而降低泵的NPSHr。
(3)选用双吸叶轮,介质从叶轮两侧流入,相当于增大了叶轮的入口面积,使流经叶轮每一侧的流量减少,从而降低叶轮的v0、ω0和λ2,提高了泵的抗汽蚀能力。
(4)为离心泵安装诱导轮,可以对介质进行预增压,增大了叶轮入口处的介质压头,可以显著降低NPSHr。但诱导轮会增加轴向的安装尺寸,且安装了诱导轮的离心泵在小流量运行时,扬程会降低,从曲线上表现为出现了“驼峰”,因此在API610标准中是不推荐离心泵加诱导轮的。
4.2 提高装置有效汽蚀余量
在进行装置的设计时,尽可能进行优化设计,以提高泵吸入口的有效汽蚀余量NPSHa:
(1)适当增大泵吸入管路的直径,采用尽可能短的吸入管长度,降低管路内表面的粗糙度,减少不必要的弯头、阀门等,以减少泵入口管段的管路损失,从而提高NPSHa。
(2)增大泵吸入储罐介质压力,来提高NPSHa。
(3)当装置所能提供的NPSHa不能满足泵要求时,可以选择合适的泵型,如筒袋泵,来降低泵的安装高度,提高泵吸入口处的压力。
4.3 使用抗汽蚀材料或对过流部件进行涂层处理
当离心泵受工况等因素限制,不能完全避免汽蚀的发生时,可以采用抗汽蚀性能良好的材料来制造叶轮,以延长叶轮的使用寿命。实践证明,材料的强度、硬度越高,韧性越好,化学性能越稳定,材料的抗汽蚀性能就越好,常用的材料如含有镍铬的不锈钢,铝青铜,高镍铬合金等。此外,采用以环氧树脂为基础的抗汽蚀耐磨材料对离心泵过流部件表面进行涂层处理比采用贵重的合金钢要经济的多。
4.4 加强对泵的操作管理
在离心泵运行过程中,注意对泵的正确操作,不当操作会人为诱发离心泵的汽蚀。
(1)保证离心泵在允许工作区内工作。
(2)避免使用入口节流的方法来调节泵的流量。
(3)泵关阀启动的时间不能过长。
(4)对于变速调节的泵,应避免泵的转速过高。